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ABSTRACT

Machine learning (ML) on edge computing devices is becoming
popular in the industry as a means to make control systems more
intelligent and autonomous. The new trend is to utilize embedded
edge devices, as they boast higher computational power and larger
memories than before, to perform ML tasks that had previously
been limited to cloud-hosted deployments. In this work, we assess
the real-time predictability and consider data privacy concerns
by comparing traditional cloud services with edge-based ones for
certain data analytics tasks. We identify the subset of ML problems
appropriate for edge devices by investigating if they result in real-
time predictable services for a set of widely used ML libraries. We
specifically enhance the Caffe library to make it more suitable
for real-time predictability. We then deploy ML models with high
accuracy scores on an embedded system, exposing it to industry
sensor data from the field, to demonstrates its efficacy and suitability
for real-time processing.

KEYWORDS
Edge Computing, Real-time Predictability, Keras, Caffe

ACM Reference Format:

number of data sources deployed in the field, directly transferring
raw streams of data into the cloud would have prohibitive side
effects on the stability of the Internet as such.

e Streaming data may have real-time performance and pre-
dictability restrictions in analytics. In industrial anomaly detection
systems, the real-time performance of a task is expressed in terms
of the ability to provide tight and predictable upper bounds on
the task’s worst-case execution time (WCET) [13]. These WCET
bounds can subsequently be utilized to monitor task execution and
detect timing anomalies due to malfunctioning hardware/software
or cyber attacks [14, 15] — and to then respond to such anomalies
by entering into a fail-safe state [5].

e Data privacy concerns restrict the transfer and use of data on
the cloud. Customers as well as industries have been increasingly
concerned about data privacy and may not trust that their data,
when transferred to the cloud, remains private (for individuals) or
can be guarded from competitors (for industries).

Among the analytics technologies of interest to industry is ML,
which has been proved to be powerful to solve numerous prob-
lems [6]. While today’s edge devices are comprised of a diverse
set of computing devices, e.g., workstations, personal computers,
microcomputers and micro-controllers, our research focuses on the
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1 INTRODUCTION AND MOTIVATION

Rapid developments in embedded systems hardware and commu-
nication technology have made it feasible to deploy data analytics
task on “edge” devices. These compute-intensive tasks were pre-
viously constrained to execute on cloud systems with much more
powerful computing capabilities. As a result, control systems in
the automotive and power grid areas can benefit from advances in
machine learning on big data analytics. Traditionally, an industry
data analytics scenario starts from the source data collected by sen-
sor arrays deployed in the fields, then travels through intermediate
networks and ultimately supplies input data to analytics algorithms
running on a cloud computing system. The new trend is to deploy
edge devices close to the data inputs so that edge computing tasks
may directly process sensor input data with much lower latencies
compared to first transmitting data over the network to the cloud.
Benefits of such edge computing include:

o Streaming data inputs may be prohibitively large when directly
transferred to the cloud. Nowadays, raw streaming data can be
generated at a sampling rate over 500Hz by sensors [12], which
severely impacts both communication bandwidth in transit to and
computational requirements within the cloud. Considering the large
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and micro-controller. Yet, real-time performance and predictability
of ML libraries on such embedded systems, particular on low-end
power-conscious devices, has not been researched much to the best
knowledge.

Contributions

This work makes the following contributions:

e We identify problems in ML processing on embedded systems.

e We assess the real-time predictability and suitability of widely
used ML libraries with respect to embedded systems subject to
timing constraints.

e We enhance the Caffe library to make it more suitable for
real-time predictability.

e We deploy ML models with high accuracy scores on an embed-
ded system, exposing it to industry sensor data from the field, to
demonstrates its efficacy and suitability for real-time processing
under the constrained resources of embedded systems.

2 MACHINE LEARNING ON EMBEDDED
SYSTEM

Let us identify what kinds of ML problem are appropriate to be
solved on an embedded system. We will initially consider supervised
and unsupervised learning.

2.1 Training vs. Predicting

A typical ML task generally consists of two phases, training and
inference. We argue that in a practical industry use scenario, timing
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analysis for ML on an embedded system is focused on the inference
phase for the following reasons:

e Computational resources on an embedded system are less
powerful than on commodity computing systems, and ML training
is more time demanding than the inference phase. Nowadays, a
training task may require a high performance computing (HPC)
system with hundreds, thousands, or more CPU cores to compute
for several days in parallel using petabytes, exabytes or even more
memory storage [8]. Such large resource demands for the training
phase make it infeasible to assign training tasks to an embedded
system with at most 8 cores and gigabytes of memory. And the
gap between the demand by ML tasks and the resource supply of
embedded systems is only increasing.

o Except for online ML tasks, it is not necessary to combine the
training and inference phases on the same machine. For offline ML
tasks, model development and its deployment can be separated.
One may still periodically update the deployed model after offline
retraining with newly collected data.

® The computational resources on an embedded system may well
satisfy the demand of an inference task. An inference task generally
uses input data item by item to perform computations according to
its trained model and finally calculate the inference result. Since the
input data is used item by item and could be dynamically supplied
to the inference task as streaming data with a negligible memory
footprint, the memory consumption of such an inference task de-
pends on the size of the model, which is typically on the order of
megabytes or gigabytes [2]. And the computation per item of input
data is limited to the arithmetic of optimized numerical libraries
such as Lapack, Atlas, etc. Its execution time will be in the order of
milliseconds or seconds, which allows deployment on an embedded
system for an inference task, but not for a training task.

2.2 Unsupervised Learning

There are two primary differences between supervised and unsuper-
vised learning, which make unsupervised learning inappropriate
on an embedded system especially for streaming data.

o Unlike supervised learning, unsupervised learning does not
use a pre-trained model but follows predefined algorithm to learn
on-the-fly.

e Unsupervised learning is temporally iterative but spatially
uniform while supervised learning is spatial iterative but temporal
uniform. An unsupervised learning task will use the entire data
set for the learning computation iteratively until a satisfactory
termination condition is met. But a supervised learning task will
use the data item by item and generate inference results without
temporal dependence.

Consider K — means, a classical unsupervised learning algorithm,
which defines how the averaging computation will be conducted
on the entire input data set. We do not use any trained model
during learning. Instead we use iterative computation to update
the averaging values for clusters until we reach a fix point.

As discussed, unsupervised learning requires all input data to
reside in the memory, which may be feasible for an embedded
system with mega- or gigabytes of memory nowadays, as a typical
unsupervised learning task tends to consume that much memory
for its input data, except for some unusually large inputs up to
terabytes [10]. However, an embedded system may receive input at

a faster streaming rate than can be processed, thereby exceeding
the embedded system’s memory. Consequently, it is not appropriate
to place an unsupervised learning task on an embedded system.

In summary, only the inference phase of a supervised learning
should be placed on an embedded system especially for streaming
analysis. Our following work assumes such ML tasks.

3 MODEL PREPARATION AND
EXPERIMENTS

Let us next detail how a supervised ML model is trained and how
the experiments are conducted.

3.1 The Artificial Neural Network (ANN) Model
based on Practical Data

Let us consider a practical industrial problem, ANN technology
with its data is utilized to solve a given problem.

With increasing deployment of green power generation source in
the power industry, such as solar and wind power, intelligent power
control technologies have become important to control power con-
version, flow and usage efficiency as well as economics. One of the
practical problems solar power management utilities are facing is
the prediction of generation capabilities of solar power systems
over future time spans. High accuracy of the prediction results is
imperative for the cooperation of different power generation and
storage devices to ensure peak power control and optimal overall
power management cost. ANNSs is a mature ML technology that
has been applied in industry [7]. Since our research is based on
industrial collaboration, we first target ANNs on embedded system
to assess their real time suitability.

With our partner, ABB Inc., we have access to field data, which
is collected from ABB’s UNO_2.0_2.5 inverter and ABB’s weather
station VSN800 — 14 from 2014 to 2017 located in Kihei, Hawaii.
In general, this data set consists of electrical data from the solar
inverter and weather data from the weather station deployed 20km
away from the solar inverter plant, both of which are collected every
five minutes. The electrical data reflects the inverter’s DC power
generation, and the weather data includes the ambient temperature,
the global horizontal irradiance (GHI) and plane of array irradiance
(POALI), etc. at the weather station. Since our objective is to predict
the inverter’s DC power output based on the weather station data,
we can define our ML problem as training an ANN model, the
output of which is the UNO inverter’s DC power output at time
k and the input of which are the weather data attributes in the
data set at time 0, where k is an positive integer. Here, we are not
focusing on how k, the number of future predictions, will affect the
accuracy of the model. So for simplicity, we use k = 1 for now (but
could increase k later).

In order to obtain an ANN model, we first preprocess the data set
through splitting and standardization. Since our problem does not
have higher dimensional data attributes and we want to preserve
the correlation to the input weather data, we simply use all input
data attributes, which, in total, amounts to four attributes in our
ANN training.

We first train and obtain our ANN model via the Python Keras
library [4] with the Tensorflow backend [1]. Our problem is a pre-
diction problem, so we choose Mean Square Error (MSE) as the



Work-In-Progress: Making Machine Learning Real-Time Predictable

evaluation metric for our model. We conduct groups of training
experiments to select the best trained model for our assessment of
real-time performance suitability (i.e., timing predictability). Our
experiments are tuning the number of neuron layers, the number
of neurons on each layer, the selection of activation functions on
each layer and the selection of training algorithms. Each training
experiment iterates over the training data set 30 times to obtain a
trained model, which takes about 3 hours on a machine with an
X86 64bit Intel i3 processor under Linux Ubuntu 17. After tuning,
we pick the best trained ANN model, which has 3 layers of neurons
with 64 neurons per layer and the activation functions “Linear”,
“Rectified Linear Unit (relu)”, and “Linear” for each respective layer
as trained by the “Stochastic Gradient Descent (sgd)” algorithm.
The evaluation metric shows an MSE 0.003 in the final training step.
Since the objective is not to find the single optimal ANN model, we
stop training when the model has a sufficiently low MSE suitable
for inference with high accuracy in terms of variance, namely 0.891.

3.2 Keras vs. Caffe

We obtain the trained model from training with the Keras library. In
order to make our model training process reproducible, we control
all random variables.

® We eliminate any random number generators except for the
random number generator of the Keras Tensorflow backend.

® We set the seed of the pseudo random number generator for
the Keras Tensorflow backend to a known constant.

® We disable data shuffling for each epoch of model training.

In order to fairly compare the real time suitability of ML between
Keras and Caffe, we use Microsoft’s MMdnn tool [3] to convert our
ANN model trained with Keras into a model suitable for inference
with Caffe.

We conduct experiments to record the execution times of the
ML inference task and compare them for Keras and Caffe, both
deployed on a Raspberry Pi 3B embedded system. The inference
APIs subject to comparison are “model.predict” in Keras, with an
option to provide input data item by item, and “net.forward” in
Caffe. This ensures a fair comparison for the prediction of each data
item. We time the inference APIs using the same numeric value
of data inputs to establish upper bounds on execution time bound
without skew due to input data variance.

In order to increase real-time predictability on the embedded
system, we do not rely on the existing preemptive scheduler of
the Rasbian OS on the Raspberry Pi but patch it to become fully
preemptive in the Linux kernel [9].

We conducted 10 repeated experiments with 10, 000 execution
time samples each, one per prediction on the streamed input data.
Fig. 1 compares the average execution time (y-axis) and its standard
deviation (error bars) per experiment for the inference API calls
between Keras and two Caffe versions, i.e., results indicate the cost
of one inference.

3.3 Experiments and Discussion

Figure 1 and Table 1 show that the average execution time of Keras’s
inference phase is about 4 times slower than that of the original
Cafle code basis. However, the standard deviation of the execution
time, which is directly related to the upper bound on execution
time predictability for the original Caffe code distribution, varies
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Figure 1: Comparison between Keras, original Caffe and RT-

enhanced Caffe

significantly, i.e., it is occasionally two orders of magnitude larger
than and otherwise 4 times smaller than that of Keras. This some-
what surprising result (see following discussion) shows that Keras
outperforms the original Caffe code in performance and real-time
predictability for the ML task of inferencing.

4 CAFFE VS. REAL-TIME ENHANCED CAFFE
4.1 Inspection and Adaptation Of Caffe

Caffe is an open-source ML library written in C++. In contrast to the
Python interpreter-based Keras library, the inference code of Caffe
is written in C++, compiled into native code, which results in tighter
upper bounds of execution time. Another significant advantage of
Caffe over Keras is that it utilizes less memory than Keras and
does not dynamically allocate/free any of it. Python’s background
garbage collector does not provide fine-grained real-time control
and often perturbs the predictability of execution time of the ML
tasks under Keras. The same is true for Python’s reliance of an inter-
preter, which not only adds overhead for execution but also reduces
predictability. (Notice that Python’s libraries, such as numpy, often
make calls to lower-level C or Cuda libraries for CPUs and GPUs,
respectively, which results in better and more predictable perfor-
mance on higher-end platforms, but not on embedded architectures
such as the Raspberry Pi.)

After inspecting Caffe’s source code [11], we identified several
weaknesses that are the cause of real time predictability. Caffe’s
API “net.forward” (src/caffe/net.cpp) was isolated as the location
from where these effects originated. Inspection all nested function
invocations from above eventually led to this low-level module,
which issues C library calls and system calls. Let us summarize our
findings:

o Caffe contains redundant code to generate logging and debug-
ging data emitted by third-party libraries, such as glog and gflag,
which are disturbing real time predictability. We could not com-
pletely disable the corresponding macros since we have to use the
third-party libraries to input the trained model and prepare it for
our inference computation. As a result, we could only remove the
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diagnostic code inside the inference APIs to reduce the observed
interference.

e Caffe stores logging data onto the file system. The file oper-
ations add unnecessary I/O load disturbance, which will reduce
execution time predictability. The effect exists on PC platforms
as well, but it is more pronounced on lower-end embedded edge
platforms.

o Caffe supports multi-core execution, which is not necessarily
desirable for embedded systems. Even though embedded systems
may nowadays have multiple cores for real multi-threading, multi-
core execution tends to perturb execution time measurements [?
]. Our focus is to isolate ML inference on just one core for mea-
surement purposes. Consequently, we disabled the multi-core func-
tionality of our inference software and bound the process of the
inference task to a singular core on the Raspberry Pi.

4.2 Experiments and Discussion

We enhanced the source code of Caffe correspondingly to the above
discoveries, this increasing its real-time capabilities, and conduct
10 experiments measuring execution time to compare the perfor-
mance/predictability between the real-time (RT) enhanced Caffe
and the original Caffe code. We investigated 4 metrics (maximum,
minimum, average and the standard deviation) of execution time
and report 2 of them (due to space limitations) for comparing Keras,
the original Caffe code and the RT-enhanced Caffe.
Table 1: Avg. Exec. Time of ML Variants

Run Avg (ms)
Index | Keras | Original Caffe | RT-Enhanced Caffe
0 1.703 0.344269 0.0539196
1 1.670 0.346998 0.0541247
2 1.688 0.356934 0.0539761
3 1.670 0.352451 0.053923
4 1.690 0.34381 0.0539998
5 1.700 0.345875 0.0540965
6 1.691 0.346298 0.0540667
7 1.676 0.34739 0.0539603
8 1.688 0.822973 0.0541702
9 1.696 0.754966 0.0539765

Table 2: StdDev. of Exec. Time for ML Variants

Run Std Dev
Index | Keras | Original Caffe | RT-Enhanced Caffe
0 1.096 0.107229 0.00486311
1 0.562 0.211854 0.00484784
2 0.600 0.953092 0.00603904
3 0.579 0.943381 0.00469423
4 0.587 0.115886 0.00481081
5 0.579 0.21243 0.00480341
6 0.584 0.212915 0.00487353
7 0.577 0.213097 0.0047033
8 0.577 43.1206 0.00477731
9 0.586 37.1882 0.00476718

Figure 1 and Table 1 show that the average execution time of
the RT-Enhanced Caffe inference API is about 6 times faster than
that of the original Caffe. Moreover, Table 2 shows the standard
deviation of the execution time for the RT-Enhanced Caffe is about
25 times smaller than the minimum sample of the original Caffe,

and about two orders smaller than that of the Keras, which means
the RT-Enhanced Caffe outperforms both original Caffe and Keras
in performance and real-time predictability for the ML task of
inferencing.

5 CONCLUSION

Overall, our experiments show that an inferencing task of a super-
vised ML problem can be appropriately solved on an embedded
system while the training task of supervised ML problems or an
unsupervised ML problems cannot be solved in a timely manner
and due to resource constrains, both in computation and storage,
on an embedded system.

While the original Caffe library was not suitable for ML problems
when high real-time predictability is required, our RT-enhanced
Caffe increased both performance and predictability significantly
to make inference tasks feasible.

Keras was identified to not be suitable for ML problems of high
real-time predictability on embedded systems, due to its interpreted
nature as well its dynamic memory management with non real-time
background garbage collection, in contrast to RT-Enhanced Caffe.

ACKNOWLEDGEMENT
This work was funded in part by NSF grants 1329780, 1813004.

REFERENCES

[1] Martin Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. CoRR, abs/1603.04467, 2016.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-

pression. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’06, pages 535-541, New York, NY,

USA, 2006. ACM.

[3] Cheng Chen, Jiahao Yao, Ru Zhang, Yuhao Zhou, Tingting Qin, Tong Zhan, and
Qianwen Wang. Mmdnn. https://github.com/Microsoft/MMdnn, 2017.

[4] Francois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[5] TL.Crenshaw, E. Gunter, C.L. Robinson, Lui Sha, and P.R. Kumar. The simplex
reference model: Limiting fault-propagation due to unreliable components in
cyber-physical system architectures. In IEEE Real-Time Systems Symposium,
pages 400-412, 2007.

[6] R. Dutta, H. Mueller, and D. Liang. An interactive architecture for industrial
scale prediction: Industry 4.0 adaptation of machine learning. In 2018 Annual
IEEE International Systems Conference (SysCon), pages 1-5, April 2018.

[7] T. Fukuda and T. Shibata. Theory and applications of neural networks for
industrial control systems. IEEE Transactions on Industrial Electronics, 39(6):472—
489, Dec 1992.

[8] Demis Hassabis et al. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484-489, 2016.

[9] Arnd Heursch, Dirk Grambow, Alexander Horstkotte, and Helmut Rzehak. Steps
towards a fully preemptable linux kernel. 2003.

[10] Hyungkeun Jee, Jooyoung Lee, and T DowonHong. High speed bitwise search

for digital forensic system. 2012.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[12] Q. Wang, X. Chai, Y. Wang, D. Liu, M. Chen, Y. Li, X. Liu, and O. Bai. A high

data rate, multi-nodes wireless personal-area sensor network for real-time data

acquisition and control. In 2017 First International Conference on Electronics

Instrumentation Information Systems (EIIS), pages 1-5, June 2017.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C.Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,

and P. Stenstrom. The worst-case execution time problem — overview of methods

and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3):1-53,

April 2008.

[14] C.Zimmer, B. Bhat, F. Mueller, and S. Mohan. Time-based intrusion dectection
in cyber-physical systems. In International Conference on Cyber-Physical Systems,
pages 109-118, April 2010.

[15] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Intrusion dectection for cps
real-time controllers. In Siddhartha Kumar Khaitan, James D. McCalley, and
Chen Ching Liu, editors, Cyber Physical Systems Approach to Smart Electric Power
Grid, pages 195-217, January 2015.

[2

—_
o

ey
&



