
Work-In-Progress: Making Machine Learning Real-Time
Predictable

Hang Xu and Frank Mueller, North Carolina State University, USA, mueller@cs.ncsu.edu

ABSTRACT

Machine learning (ML) on edge computing devices is becoming

popular in the industry as a means to make control systems more

intelligent and autonomous. The new trend is to utilize embedded

edge devices, as they boast higher computational power and larger

memories than before, to perform ML tasks that had previously

been limited to cloud-hosted deployments. In this work, we assess

the real-time predictability and consider data privacy concerns

by comparing traditional cloud services with edge-based ones for

certain data analytics tasks. We identify the subset of ML problems

appropriate for edge devices by investigating if they result in real-

time predictable services for a set of widely used ML libraries. We

specifically enhance the Caffe library to make it more suitable

for real-time predictability. We then deploy ML models with high

accuracy scores on an embedded system, exposing it to industry

sensor data from the field, to demonstrates its efficacy and suitability

for real-time processing.

KEYWORDS

Edge Computing, Real-time Predictability, Keras, Caffe

ACM Reference Format:

HangXu and FrankMueller, North Carolina State University, USA,mueller@cs.ncsu.edu

. 2018. Work-In-Progress: Making Machine Learning Real-Time Predictable

. In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND MOTIVATION

Rapid developments in embedded systems hardware and commu-

nication technology have made it feasible to deploy data analytics

task on “edge” devices. These compute-intensive tasks were pre-

viously constrained to execute on cloud systems with much more

powerful computing capabilities. As a result, control systems in

the automotive and power grid areas can benefit from advances in

machine learning on big data analytics. Traditionally, an industry

data analytics scenario starts from the source data collected by sen-

sor arrays deployed in the fields, then travels through intermediate

networks and ultimately supplies input data to analytics algorithms

running on a cloud computing system. The new trend is to deploy

edge devices close to the data inputs so that edge computing tasks

may directly process sensor input data with much lower latencies

compared to first transmitting data over the network to the cloud.

Benefits of such edge computing include:

• Streaming data inputs may be prohibitively large when directly

transferred to the cloud. Nowadays, raw streaming data can be

generated at a sampling rate over 500Hz by sensors [12], which

severely impacts both communication bandwidth in transit to and

computational requirements within the cloud. Considering the large

Conference’17, July 2017, Washington, DC, USA

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

number of data sources deployed in the field, directly transferring

raw streams of data into the cloud would have prohibitive side

effects on the stability of the Internet as such.

• Streaming data may have real-time performance and pre-

dictability restrictions in analytics. In industrial anomaly detection

systems, the real-time performance of a task is expressed in terms

of the ability to provide tight and predictable upper bounds on

the task’s worst-case execution time (WCET) [13]. These WCET

bounds can subsequently be utilized to monitor task execution and

detect timing anomalies due to malfunctioning hardware/software

or cyber attacks [14, 15] — and to then respond to such anomalies

by entering into a fail-safe state [5].

• Data privacy concerns restrict the transfer and use of data on

the cloud. Customers as well as industries have been increasingly

concerned about data privacy and may not trust that their data,

when transferred to the cloud, remains private (for individuals) or

can be guarded from competitors (for industries).

Among the analytics technologies of interest to industry is ML,

which has been proved to be powerful to solve numerous prob-

lems [6]. While today’s edge devices are comprised of a diverse

set of computing devices, e.g., workstations, personal computers,

microcomputers and micro-controllers, our research focuses on the

latter, namely embedded systems hardware such as microcomputers

and micro-controller. Yet, real-time performance and predictability

of ML libraries on such embedded systems, particular on low-end

power-conscious devices, has not been researched much to the best

knowledge.

Contributions

This work makes the following contributions:

•We identify problems in ML processing on embedded systems.

•We assess the real-time predictability and suitability of widely

used ML libraries with respect to embedded systems subject to

timing constraints.

• We enhance the Caffe library to make it more suitable for

real-time predictability.

•We deploy ML models with high accuracy scores on an embed-

ded system, exposing it to industry sensor data from the field, to

demonstrates its efficacy and suitability for real-time processing

under the constrained resources of embedded systems.

2 MACHINE LEARNING ON EMBEDDED
SYSTEM

Let us identify what kinds of ML problem are appropriate to be

solved on an embedded system.Wewill initially consider supervised

and unsupervised learning.

2.1 Training vs. Predicting

A typical ML task generally consists of two phases, training and

inference. We argue that in a practical industry use scenario, timing



Conference’17, July 2017, Washington, DC, USAHang Xu and Frank Mueller, North Carolina State University, USA, mueller@cs.ncsu.edu

analysis for ML on an embedded system is focused on the inference

phase for the following reasons:

• Computational resources on an embedded system are less

powerful than on commodity computing systems, and ML training

is more time demanding than the inference phase. Nowadays, a

training task may require a high performance computing (HPC)

system with hundreds, thousands, or more CPU cores to compute

for several days in parallel using petabytes, exabytes or even more

memory storage [8]. Such large resource demands for the training

phase make it infeasible to assign training tasks to an embedded

system with at most 8 cores and gigabytes of memory. And the

gap between the demand by ML tasks and the resource supply of

embedded systems is only increasing.

• Except for online ML tasks, it is not necessary to combine the

training and inference phases on the same machine. For offline ML

tasks, model development and its deployment can be separated.

One may still periodically update the deployed model after offline

retraining with newly collected data.

• The computational resources on an embedded systemmay well

satisfy the demand of an inference task. An inference task generally

uses input data item by item to perform computations according to

its trained model and finally calculate the inference result. Since the

input data is used item by item and could be dynamically supplied

to the inference task as streaming data with a negligible memory

footprint, the memory consumption of such an inference task de-

pends on the size of the model, which is typically on the order of

megabytes or gigabytes [2]. And the computation per item of input

data is limited to the arithmetic of optimized numerical libraries

such as Lapack, Atlas, etc. Its execution time will be in the order of

milliseconds or seconds, which allows deployment on an embedded

system for an inference task, but not for a training task.

2.2 Unsupervised Learning

There are two primary differences between supervised and unsuper-

vised learning, which make unsupervised learning inappropriate

on an embedded system especially for streaming data.

• Unlike supervised learning, unsupervised learning does not

use a pre-trained model but follows predefined algorithm to learn

on-the-fly.

• Unsupervised learning is temporally iterative but spatially

uniform while supervised learning is spatial iterative but temporal

uniform. An unsupervised learning task will use the entire data

set for the learning computation iteratively until a satisfactory

termination condition is met. But a supervised learning task will

use the data item by item and generate inference results without

temporal dependence.

ConsiderK −means , a classical unsupervised learning algorithm,

which defines how the averaging computation will be conducted

on the entire input data set. We do not use any trained model

during learning. Instead we use iterative computation to update

the averaging values for clusters until we reach a fix point.

As discussed, unsupervised learning requires all input data to

reside in the memory, which may be feasible for an embedded

system with mega- or gigabytes of memory nowadays, as a typical

unsupervised learning task tends to consume that much memory

for its input data, except for some unusually large inputs up to

terabytes [10]. However, an embedded system may receive input at

a faster streaming rate than can be processed, thereby exceeding

the embedded system’s memory. Consequently, it is not appropriate

to place an unsupervised learning task on an embedded system.

In summary, only the inference phase of a supervised learning

should be placed on an embedded system especially for streaming

analysis. Our following work assumes such ML tasks.

3 MODEL PREPARATION AND
EXPERIMENTS

Let us next detail how a supervised ML model is trained and how

the experiments are conducted.

3.1 The Artificial Neural Network (ANN) Model
based on Practical Data

Let us consider a practical industrial problem, ANN technology

with its data is utilized to solve a given problem.

With increasing deployment of green power generation source in

the power industry, such as solar and wind power, intelligent power

control technologies have become important to control power con-

version, flow and usage efficiency as well as economics. One of the

practical problems solar power management utilities are facing is

the prediction of generation capabilities of solar power systems

over future time spans. High accuracy of the prediction results is

imperative for the cooperation of different power generation and

storage devices to ensure peak power control and optimal overall

power management cost. ANNs is a mature ML technology that

has been applied in industry [7]. Since our research is based on

industrial collaboration, we first target ANNs on embedded system

to assess their real time suitability.

With our partner, ABB Inc., we have access to field data, which

is collected from ABB’sUNO_2.0_2.5 inverter and ABB’s weather

station VSN800 − 14 from 2014 to 2017 located in Kihei, Hawaii.

In general, this data set consists of electrical data from the solar

inverter and weather data from the weather station deployed 20km

away from the solar inverter plant, both of which are collected every

five minutes. The electrical data reflects the inverter’s DC power

generation, and the weather data includes the ambient temperature,

the global horizontal irradiance (GHI) and plane of array irradiance

(POAI), etc. at the weather station. Since our objective is to predict

the inverter’s DC power output based on the weather station data,

we can define our ML problem as training an ANN model, the

output of which is the UNO inverter’s DC power output at time

k and the input of which are the weather data attributes in the

data set at time 0, where k is an positive integer. Here, we are not

focusing on how k , the number of future predictions, will affect the

accuracy of the model. So for simplicity, we use k = 1 for now (but

could increase k later).

In order to obtain an ANNmodel, we first preprocess the data set

through splitting and standardization. Since our problem does not

have higher dimensional data attributes and we want to preserve

the correlation to the input weather data, we simply use all input

data attributes, which, in total, amounts to four attributes in our

ANN training.

We first train and obtain our ANN model via the Python Keras

library [4] with the Tensorflow backend [1]. Our problem is a pre-

diction problem, so we choose Mean Square Error (MSE) as the





Conference’17, July 2017, Washington, DC, USAHang Xu and Frank Mueller, North Carolina State University, USA, mueller@cs.ncsu.edu

diagnostic code inside the inference APIs to reduce the observed

interference.

• Caffe stores logging data onto the file system. The file oper-

ations add unnecessary I/O load disturbance, which will reduce

execution time predictability. The effect exists on PC platforms

as well, but it is more pronounced on lower-end embedded edge

platforms.

• Caffe supports multi-core execution, which is not necessarily

desirable for embedded systems. Even though embedded systems

may nowadays have multiple cores for real multi-threading, multi-

core execution tends to perturb execution time measurements [?

]. Our focus is to isolate ML inference on just one core for mea-

surement purposes. Consequently, we disabled the multi-core func-

tionality of our inference software and bound the process of the

inference task to a singular core on the Raspberry Pi.

4.2 Experiments and Discussion

We enhanced the source code of Caffe correspondingly to the above

discoveries, this increasing its real-time capabilities, and conduct

10 experiments measuring execution time to compare the perfor-

mance/predictability between the real-time (RT) enhanced Caffe

and the original Caffe code. We investigated 4 metrics (maximum,

minimum, average and the standard deviation) of execution time

and report 2 of them (due to space limitations) for comparing Keras,

the original Caffe code and the RT-enhanced Caffe.

Table 1: Avg. Exec. Time of ML Variants

Run Avg (ms)

Index Keras Original Caffe RT-Enhanced Caffe

0 1.703 0.344269 0.0539196

1 1.670 0.346998 0.0541247

2 1.688 0.356934 0.0539761

3 1.670 0.352451 0.053923

4 1.690 0.34381 0.0539998

5 1.700 0.345875 0.0540965

6 1.691 0.346298 0.0540667

7 1.676 0.34739 0.0539603

8 1.688 0.822973 0.0541702

9 1.696 0.754966 0.0539765

Table 2: StdDev. of Exec. Time for ML Variants

Run Std Dev

Index Keras Original Caffe RT-Enhanced Caffe

0 1.096 0.107229 0.00486311

1 0.562 0.211854 0.00484784

2 0.600 0.953092 0.00603904

3 0.579 0.943381 0.00469423

4 0.587 0.115886 0.00481081

5 0.579 0.21243 0.00480341

6 0.584 0.212915 0.00487353

7 0.577 0.213097 0.0047033

8 0.577 43.1206 0.00477731

9 0.586 37.1882 0.00476718

Figure 1 and Table 1 show that the average execution time of

the RT-Enhanced Caffe inference API is about 6 times faster than

that of the original Caffe. Moreover, Table 2 shows the standard

deviation of the execution time for the RT-Enhanced Caffe is about

25 times smaller than the minimum sample of the original Caffe,

and about two orders smaller than that of the Keras, which means

the RT-Enhanced Caffe outperforms both original Caffe and Keras

in performance and real-time predictability for the ML task of

inferencing.

5 CONCLUSION

Overall, our experiments show that an inferencing task of a super-

vised ML problem can be appropriately solved on an embedded

system while the training task of supervised ML problems or an

unsupervised ML problems cannot be solved in a timely manner

and due to resource constrains, both in computation and storage,

on an embedded system.

While the original Caffe library was not suitable for ML problems

when high real-time predictability is required, our RT-enhanced

Caffe increased both performance and predictability significantly

to make inference tasks feasible.

Keras was identified to not be suitable for ML problems of high

real-time predictability on embedded systems, due to its interpreted

nature as well its dynamic memory management with non real-time

background garbage collection, in contrast to RT-Enhanced Caffe.

ACKNOWLEDGEMENT

This work was funded in part by NSF grants 1329780, 1813004.

REFERENCES
[1] Martín Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. CoRR, abs/1603.04467, 2016.
[2] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-

pression. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 535–541, New York, NY,
USA, 2006. ACM.

[3] Cheng Chen, Jiahao Yao, Ru Zhang, Yuhao Zhou, Tingting Qin, Tong Zhan, and
Qianwen Wang. Mmdnn. https://github.com/Microsoft/MMdnn, 2017.

[4] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[5] T.L. Crenshaw, E. Gunter, C.L. Robinson, Lui Sha, and P.R. Kumar. The simplex

reference model: Limiting fault-propagation due to unreliable components in
cyber-physical system architectures. In IEEE Real-Time Systems Symposium,
pages 400–412, 2007.

[6] R. Dutta, H. Mueller, and D. Liang. An interactive architecture for industrial
scale prediction: Industry 4.0 adaptation of machine learning. In 2018 Annual
IEEE International Systems Conference (SysCon), pages 1–5, April 2018.

[7] T. Fukuda and T. Shibata. Theory and applications of neural networks for
industrial control systems. IEEE Transactions on Industrial Electronics, 39(6):472–
489, Dec 1992.

[8] Demis Hassabis et al. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–489, 2016.

[9] Arnd Heursch, Dirk Grambow, Alexander Horstkotte, and Helmut Rzehak. Steps
towards a fully preemptable linux kernel. 2003.

[10] Hyungkeun Jee, Jooyoung Lee, and T DowonHong. High speed bitwise search
for digital forensic system. 2012.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[12] Q. Wang, X. Chai, Y. Wang, D. Liu, M. Chen, Y. Li, X. Liu, and O. Bai. A high
data rate, multi-nodes wireless personal-area sensor network for real-time data
acquisition and control. In 2017 First International Conference on Electronics
Instrumentation Information Systems (EIIS), pages 1–5, June 2017.

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenstrom. The worst-case execution time problem — overview of methods
and survey of tools. ACMTransactions on Embedded Computing Systems, 7(3):1–53,
April 2008.

[14] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Time-based intrusion dectection
in cyber-physical systems. In International Conference on Cyber-Physical Systems,
pages 109–118, April 2010.

[15] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Intrusion dectection for cps
real-time controllers. In Siddhartha Kumar Khaitan, James D. McCalley, and
Chen Ching Liu, editors, Cyber Physical Systems Approach to Smart Electric Power
Grid, pages 195–217, January 2015.


