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Abstract 
 
Two studies investigated the influence of conversational role on phonetic imitation toward human 
and voice-AI interlocutors. In a Word List Task, the giver instructed the receiver on which of two 
lists to place a word; this dialogue task is similar to simple spoken interactions users have with 
voice-AI systems. In a Map Task, participants completed a fill-in-the-blank worksheet with the 
interlocutors, a more complex interactive task. Participants completed the task twice with both 
interlocutors, once as giver-of-information and once as receiver-of-information. Phonetic 
alignment was assessed through similarity rating, analyzed using mixed-effects logistic 
regressions. In the Word List Task, participants aligned to a greater extent toward the human 
interlocutor only. In the Map Task, participants as giver only aligned more toward the human 
interlocutor. Results indicate that phonetic alignment is mediated by the type of interlocutor and 
that the influence of conversational role varies across tasks and interlocutors.  
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1. INTRODUCTION  
 
Human speech contains a huge amount of variation, some of which is shaped by multiple factors 
present in a speaker’s environment. For one, there is much work showing that talkers adopt the 
speech and language patterns of another talker (or even a voice presented over headphones) in 
subtle and subconscious ways, a process known as ‘alignment’ (or ‘imitation’ or ‘entrainment’) 
(Goldinger, 1998). Alignment can occur at multiple levels of linguistic structure (phonetic, lexical, 
syntactic) (e.g., Pickering & Garrod, 2004) and even gesture (Oben & Brône, 2015) and posture 
(Shockley et al., 2007). Furthermore, there is evidence that alignment is not constrained to 
interaction between humans: people align toward computers, as well (Bell, 2003; Branigan et al., 
2011; Cowan et al., 2015; Fandrianto & Eskenazi, 2012; Gessinger et al., 2021, 2019; Thomason 



et al., 2013). Yet, there are many questions about the dynamics of these patterns of alignment 
toward computer interlocutors and the extent to which behaviors from human-human interaction 
‘transfer’ to interactions with technology.  

The current paper tests whether the conversational role of the participant — as either the 
giver or receiver of information — influences phonetic alignment toward computer and human 
interlocutors. We examine phonetic alignment, where a speaker imitates the acoustic-phonetic 
properties of another talker’s speech (e.g., Babel, 2012; Namy et al., 2002). Phonetic alignment 
has been shown across studies to vary based on conversational role (e.g., Pardo, 2006; Pardo et al., 
2010; Pardo et al., 2013), as well as serve as an index of social harmony: interactions with more 
phonetic alignment are associated with improved rapport between interacting humans (e.g., 
Levitan et al., 2012) or with a computer dialogue system (e.g., Thomason et al., 2013). 
Furthermore, phonetic alignment is relevant given that people regularly talk to technology; 
increasingly, people interact with voice-activated artificially intelligent (voice-AI) systems on 
phones and devices (e.g., Apple’s Siri and Amazon’s Alexa) (Bentley et al., 2018) to complete a 
variety of tasks in interactive, yet, goal-oriented and utilitarian ways. Indeed, there is a growing 
body of research aimed at understanding alignment toward voice-AI systems (Cohn & Zellou, 
2019; Raveh et al., 2019; Zellou et al., 2020; Zellou & Cohn, 2020). 

As mentioned earlier, phonetic alignment has been shown across studies to vary based on 
conversational role (Pardo, 2006; Pardo et al., 2010, 2013, 2018). For example, Pardo (2006) had 
participant dyads complete a map task with one participant assigned either the role of ‘information-
giver’ or the role of ‘information-receiver’. In this task, the giver had a complete map with detailed 
directions marking the pathway along various landmarks from the start point to the location of the 
finish position, while the receiver had a map with just the start point and the landmarks. The task 
was for the giver to provide instructions to the receiver on how to navigate around the landmarks 
to get from start to finish. They found that both conversational role and gender of the participant 
had an effect on degree of phonetic alignment: female givers aligned more than female receivers, 
while male receivers aligned more than male givers. But, in other work, gender does not mediate 
the pattern (Pardo et al., 2013). 

Will there be greater phonetic alignment from ‘givers’ of information when they talk to 
voice-AI systems? On the one hand, we might predict differences since spoken interactions with 
voice-AI assistants are generally asymmetrical in terms of conversational role, where users 
typically issue commands to devices, giving instructions to play music, set a timer, ask for 
information (weather, news reports), or control smart home integration functions (“internet of 
things” (IoT) functions, such as turning on lights or TV) (Ammari et al., 2019). Thus, the majority 
of verbal interactions with voice-AI can be classified as the user adopting a more dominant giver-
of-information role in the dialogue (e.g., “set a timer”, “play my favorite song”, “tell me the 
weather report”). Indeed, there is work suggesting that people expect to interact with technology 
in different ways than with humans (Edwards, 2018) and some have proposed that we have a 
routinized way of engaging with technology (Gambino et al., 2020). On the other hand, the 
Computers are social actors (CASA) framework hypothesizes that people's behavior toward 
technology mirrors their behaviors from human-human interaction given a cue of humanity is 
displayed by the system (Nass et al., 1994)); accordingly, the ‘giver’ and ‘receiver’ roles might 
influence behaviors in similar ways for both types of interactions. For example, related work has 
shown that the local situational context — for instance, whether the participant was winning or 
losing a game — influences phonetic alignment to the same extent towards both robot and human 
interlocutors: Ibrahim et al. (2019) examined speech interactions between participants and a robot 



or another human while playing a card game. They found that phonetic alignment (specifically of 
fundamental frequency, f01) was higher when they were winning, but no difference by interlocutor 
type. Thus, they do observe situational factors affect phonetic imitation toward robots, similar as 
toward people, arguing that the greater social coordination and rapport that led to winning also led 
participants to align to a greater extent. 

While, to our knowledge, no prior work has tested the interaction of conversational role 
and interlocutor type (human vs. computer) on phonetic alignment, this line of research can speak 
to broader theories of alignment, as functionally or socially driven. 
 
1.1. Theories of Alignment 
 
Some theories of alignment, what we refer to as cognitive-functional accounts, propose that 
linguistic alignment is communicatively-strategic and it is used specifically to improve mutual 
understanding of interlocutors (Clark & Murphy, 1982; Pickering & Garrod, 2004; Zellou et al., 
2016). For example, the Interactive Alignment Account proposes that speakers align their output 
(across multiple levels of the grammar) to enhance intelligibility, matching representations 
between interlocutors (Pickering & Garrod, 2004). Pickering and Garrod (2004) further claim that 
imitation relies on automatic, resource-free priming mechanisms. Similarly, Audience Design 
theory (Clark & Murphy, 1982; Clark & Schaefer, 1987) proposes that speakers choose to 
converge toward the linguistic patterns of an interlocutor to improve intelligibility. Indeed, Pardo’s 
(2006) findings that participants align more as giver is consistent with the interpretation that 
increased alignment is found in contexts where it would increase communicative success. Other 
work in human-computer alignment also suggests a functional role: Branigan et al. (2011) told 
subjects they were interacting with a computer system or a person in another room across separate 
experimental blocks, in both pre-scripted speech- and text-based interactions. They found that 
when participants believed they were communicating with a computer they showed greater 
alignment in word choice than when they were told they were interacting with a human. The 
authors interpret this finding as functionally-motivated: people judge the computer as less 
communicatively able than the human, and consequently align more toward it in an effort to 
increase communicative success. This supports the stance of many researchers who have proposed 
that people’s speech and language patterns during human-computer interaction are driven by 
expectations that machines are less communicatively able interlocutors (for review, see Clark et 
al., 2019). In the current study, a possible outcome is that people view the voice-AI system as 
communicatively less able than humans and consequently will display more phonetic alignment 
toward the device voice. Moreover, when participants are in the giver role there is increased 
pressure to be intelligible since participants are providing instructions to the interlocutor. Thus, it 
is possible that participants will phonetically align to a greater extent in the giver role toward the 
device than toward the human.  

On the other hand, socially-mediated accounts, propose that alignment is driven by the 
characteristics of and relationships between interlocutors. For example, Communication 
Accommodation Theory (CAT; Gallois & Giles, 2015; Shepard, 2001) posits that alignment 
between interlocutors is one way that people enhance, maintain, or decrease social distance. In this 
approach, phonetic alignment is not viewed as a way to augment intelligibility, rather it is a way 
                                                 
1 Though one limitation of the Ibrahim at al. (2019) study was that they only looked at one phonetic feature (f0), a 
feature which could be modulated by factors such as cognitive load and/or emotional expressiveness. In the current 
study, we assess phonetic imitation holistically (through AXB perception ratings) rather than one acoustic variable. 



to display social solidarity or distance. Social dimensions such as gender, regional affiliation, 
ethnicity, age, sexuality, and more, have been shown to predict patterns of phonetic imitation 
between interacting talkers in ways that support this stance (Babel, 2012; Namy et al., 2002; Pardo 
et al., 2010; Yu et al., 2011). There is some evidence that people phonetically align less toward 
voice-AI (in direct comparisons with humans), suggesting a possible social role in mediating 
alignment toward computers. For example, Cohn et al. (2019) compared phonetic alignment 
patterns toward human and Siri voices by participants in a word shadowing task (where 
participants repeat isolated words produced by an interlocutor). Using a perceptual assessment, 
they found less alignment toward the Siri voices, overall, than toward the human voices (similar 
patterns were reported using an acoustic assessment of alignment in Snyder et al. (2019)). The 
observation of less alignment toward device voices than toward human voices suggests that people 
are sensitive to the social distinction between devices and humans, in line with a Communication 
Accommodation Theory (Giles et al., 1991), as well as accounts proposing more gradient 
application of CASA (e.g., that individuals show greater phonetic alignment toward machines as 
their embodiment increases in Cohn et al. (2020)). In other words, people are more socially close 
to other humans than AI, therefore, they might align more toward humans than voice-AI. Such an 
account might also predict participants will display less socially-mediated alignment patterns 
within the voice-AI condition, than for the human condition, as was reported in Cohn et al. (2019) 
for gender-mediated phonetic imitation patterns. For the current study, if voice-AI have a distinctly 
lower social status than humans, this will be reflected in a smaller degree of phonetic alignment, 
particularly when the participant is the giver, which is a more dominant conversational role. This 
interpretation is in line with Pardo (2006), who frames giver and receiver as social roles, reflecting 
how relational pressures such as dominance and deference shape speech and language patterns 
between interlocutors of different social statuses (e.g., Bilous & Krauss, 1988).  
 
1.2. Current Study  
 
The current study compares participants’ phonetic alignment toward a human and device 
interlocutor when they are in a giver and receiver role during conversational interactions. Many 
studies of Human-Computer interaction use a “Wizard-of-Oz” paradigm, where participants are 
led to believe they are interacting with a digital system, yet the system is being controlled in real-
time by a remote confederate (Dahlbäck et al., 1993). In the current study, in contrast, participants 
completed an automated and scripted task where they read target phrases presented on a screen 
and heard pre-recorded utterances produced by the human and the voice-AI interlocutors (naturally 
produced recordings and generated via TTS, respectively). In HCI work, this is similar to an 
approach that implements an approximation of a voice user interface (see Clark et al., 2019 for a 
review of studies that use a similar approach). In the present study, participants completed blocks 
as both the giver- and receiver-of-information with both interlocutor types (2 x 2, within-subjects 
design). These comparisons were made across two studies, varying in the nature of the task: in 
Study I, participants completed a Word List Task with the interlocutors; the Word List Task was 
designed to mirror the types of simple, utilitarian, command-based interactions between users and 
at-home digital voice assistant devices (i.e., dictating a shopping list). In Study II, participants 
completed a fill-in worksheet Map Task; this task was designed to be a more complex task similar 
to those used in studies of speech variation in human-human interaction (Scarborough & Zellou, 
2013; Zellou & Scarborough, 2019) and also phonetic alignment (Pardo, 2006). The interactions 
are designed to simulate dialogues between the participant and another human and a digital voice 



assistant (across separate blocks), with both top-down guise information (an image of the 
respective interlocutors) and distinct voices.  

A common approach to quantify phonetic alignment is to use a perceptual assessment of 
imitation where third-party raters complete a perception experiment (typically, an “AXB” rating 
task) in which they listen to baseline (e.g., “A”) and post-exposure (e.g., “B”) productions and 
decide which one sounds more like the model talker’s production (e.g., “X”) (e.g., Dias & 
Rosenblum, 2016; Namy et al., 2002; Pardo et al., 2017). If raters select the post-exposure item at 
an above-chance proportion, this is taken as evidence that phonetic imitation has occurred (Miller 
et al., 2013). This method has also previously been used as a holistic way to classify phonetic 
alignment in human and voice-AI comparisons (e.g., Cohn et al., 2019). Thus, in the current study, 
this approach is adopted to assess phonetic imitation across both studies. As illustrated in Figure 
1, both Study I and Study II consist of two experiments: the first experiment collects imitators’ 
productions of words before and after exposure to the model talkers’ productions of those words 
(Goldinger, 1996). The second experiment is an AXB similarity ratings task where a separate 
group of listeners rate baseline and post-exposure productions from the imitators in the first 
experiment, allowing for a holistic assessment of vocal alignment (Pardo et al., 2013). 
 

[INSERT FIGURE 1 ABOUT HERE] 
Figure 1: Overview of the current study experiments aimed to investigate phonetic alignment 
(Experiment 1: Word List Task, Experiment 3: Map Task) by imitators and the Similarity Rating 
(AXB) paradigm used to evaluate phonetic imitation by a separate group of listeners. 

 
2. Study I - Word List Phonetic Imitation Task 
 
Study I consists of two experiments. In Experiment 1 (Section 2.1.) participants interacted with 
both a human and voice-AI interlocutor (2 separate blocks), as both the giver- and receiver-of-
instructions (2 separate sub-blocks within each interlocutor block) during the Word List Task. 
Then, degree of phonetic imitation in participants’ test productions is assessed in a separate AXB 
perceptual similarity ratings experiment (Experiment 2, Section 2.2.).  
 
2.1. Experiment 1: Word List Production (female imitators only) 
 
The first study was designed to investigate whether speakers display different patterns of phonetic 
imitation based on conversational role (as ‘giver’ or ‘receiver’ of information) and whether they 
are talking to a device or human interlocutor. In light of work that has shown mixed effects of 
gender on alignment (e.g., Pardo, 2006; Pardo et al., 2013), we hold gender constant in Experiment 
1, examining only female imitators. 
 
2.1.1. Target words and pre-recorded model talker utterances 
 
Target words consisted of 15 low frequency monosyllabic items (selected from Babel, 2012) with 
consonant-vowel-consonant (CVC) or consonant-vowel (CV) structure, and balanced by across 5 
vowels: /i/ cheek, deed, key; /æ/ bat, tap, vat; /ɑ/ cot, sock, sod; /o/ coat, soap, toad; /u/ boot, hoop, 
zoo.  

Model talker utterances were pre-recorded: the human voice stimuli were recorded by a 
male native California English speaker in a sound-attenuated booth, with a head-mounted 



microphone (Shure WH20 XLR), and sampling rate of 44,100 Hz. The device voice stimuli were 
generated with an Amazon Polly voice (US-English: ‘Matthew’). 
 
2.1.2. Participants 
  
Since it has been reported that women align more than men in word shadowing tasks (e.g., Namy 
et al., 2002), only female participants were selected to complete the Word List Task to increase 
the likelihood of alignment. Participants consisted of 23 female undergraduates (mean age = 20.4, 
sd = 1.3), all native English speakers, recruited from the UC Davis Psychology subject pool who 
received course credit for their participation. All except 1 participant reported that they had used 
digital voice assistant devices before participating in the experiment. 12 out of these 22 participants 
reported having used Amazon’s Alexa, 9/12 reported rare usage, while only 1 reported daily usage, 
and another reported using Alexa on a weekly basis. Participants who reported using other devices 
reported using Siri (12/23) and/or Google (5/23). Of these participants, 8 reported daily usage, 5 
reported once-a-week usage, while the rest (3 participants) reported rare usage. 
 
2.1.3. Procedure 
 
Participants completed the experiment in a sound-attenuated booth, facing a computer monitor, 
and wearing a head-mounted microphone (Shure WH20 XLR) and over-ear headphones 
(Sennheiser Pro). Before beginning the experiment, participants were shown a list of the target 
words on a piece of paper and were asked to familiarize themselves with the words. Then, 
participants completed the production experiment in E-Prime 2.0 as one continuous session, 
consisting of two parts: A pre-exposure production block and a Word List Task paradigm (where 
participants interact with pre-recorded voices to complete a task). 

First, participants completed a pre-exposure production block (schematized in Figure 2) 
in order to collect their baseline productions of words before exposure to the model talkers. On 
each trial, they saw the target word presented in a frame sentence (“Put __ on the list”) and read it 
aloud. Their utterances were recorded. After 4.5 seconds, the next target sentence would be shown 
on the screen (ISI between slides = 300 ms). In total in the pre-exposure block, they produced the 
15 target words (randomly presented).   

 
[INSERT FIGURE 2 ABOUT HERE] 

Figure 2: Trial structure for Baseline production block collecting production of words in the frame 
sentence “Put ___ on the list” recorded prior to the interactions with the human and device model 
talkers. (Color online.) 
 
Next, participants completed the novel Word List Task, designed to elicit productions of the 
target words following productions of those items by the model talkers, varying the conversational 
role (participant as ‘giver’ role schematized in Figure 3A and ‘receiver’ role in Figure 3B). The 
information containing the instructions to the task that participants heard is provided in Appendix 
A. Each trial consists of 3 scripted turns between participant and model talker. Turn 1: the model 
talker produces the target word in a sentence (“The word is deed.”). Turn 2: the participant reads 
a sentence aloud. In the ‘giver’ role, this is an instruction (“Put deed on the first list.”) (A.ii.). In 
the ‘receiver’ role, they check that word off (using a dry erase marker on a laminated list, on a 
clipboard) and gave a verbal response confirming the action (“I checked deed off the list.”) (B.ii.). 
Turn 3: the model talker responds to close the mini-dialogue (“Okay,” “Got it”, “Alright”). If the 



participant gave the instructions (in ‘giver’ role), the target word on the correct list was shown on 
the screen to provide feedback to the participant (A.iii.). Whenever the model talker (human or 
TTS voice) produced the target word, it was presented orthographically on the screen so that the 
target word was unambiguous (and not referring to a different word). Critically, in every mini-
interaction trial there is one utterance where the participant produces the target word following an 
utterance where the model talker produced that word.  

On each trial (target words were randomly presented within a sub-block), participants read 
their response from the screen aloud. They had a window of 5 seconds to produce the sentence. 
Then, the experiment would automatically proceed (ISI=1 second). Participants completed two 
experimental blocks, blocked by model talker. Within each model talker block, participants 
completed two separate sub-blocks: one where they were the giver of information and one where 
they were the receiver. The ordering of model talker block and conversational role sub-block was 
counterbalanced across participants across four versions. Participants were randomly assigned to 
one of these versions. In total, participants completed 15 turns (one for each word) in each of the 
4 interactive blocks (60 total test trials).  
 

[INSERT FIGURE 3 ABOUT HERE] 
 
Figure 3: Word List Task 3-turn interaction design. (A) Participant as ‘giver’ of information, while 
(B) Participant is ‘receiver’ of information. (i) The first turn consists of the model talker indicating 
the target word (e.g., “The word is __”). (ii) The second turn consists of the participant reading a 
sentence aloud. In the ‘giver’ role, this is an instruction (A.ii.). In the ‘receiver’ role, they check 
that word off (using a dry erase marker on a laminated list, provided on a clipboard) and read the 
sentence to confirm (B.ii.). (iii) The third turn consists of a confirmation by the model talker (e.g., 
“Okay”). Turns where the participant reads the sentence from the screen are indicated with a 
microphone and yellow speech bubble. (Color online.) 
 
2.2. Experiment 2: AXB Similarity Ratings (Word List Productions) 
 
In order to assess the extent of phonetic alignment in Experiment 1, Experiment 2 utilized a 
perceptual similarity ratings task (AXB) (Goldinger, 1996; Pardo et al., 2013). Here, a separate 
group of raters assessed the holistic similarity between the participants’ post-exposure productions 
of the target words and the model’s produced target item, relative to participants’ baseline 
productions of the words (recorded prior to exposure to the model talkers). 
 
2.2.1. Word List AXB Methods 
2.2.1.1. Stimuli  
 
Stimuli consisted of the productions of the 15 target words from the Word List Task in Experiment 
1 (see Section 2.1.1.) excised from participants’ pre-exposure utterances (e.g., “Put weave on the 
list.”) and productions from the interactions (e.g., “I checked weave off the list”). We also excised 
the model talker’s productions of the target words in the turns.  

To assess participants’ imitation of the model talker, we selected recordings for critical 
turns: when a model talker production was followed by a participant turn. In the ‘giver’ role, 
critical turns are Turns 1 and 2 (schematized in Figure 3A). In the ‘receiver’ role, critical turns are 
also Turns 1 and 2 (schematized in Figure 3B).  



 Participants’ pre-exposure of the word (e.g., “A”), the model talker’s production of that 
word (“X”), and the participants' production of that word post-exposure (i.e., following the model 
talker’s production of the word) (e.g., “B”) were excised from utterances into their own sound 
files. Individual word files were amplitude-normalized to 60 dB. Then, each AXB set was 
concatenated into a single sound file (with 400ms between each sound). Order of pre- and post-
exposure was counterbalanced for each speaker and model talker. 
 
2.2.1.2. Participants  
 
A total of 56 independent raters (mean age, 19.9 years old; 25 female, 30 male, 1 non-binary) 
completed Experiment 2, consisting of native English speakers who did not participate in 
Experiment 1. Raters were recruited through the UC Davis Psychology subjects’ pool and received 
course credit for their participation.  
 
2.2.1.3. Procedure 
 
Raters completed the experiment online, using the Qualtrics survey platform. Before the 
experiment began, raters completed a sound calibration step where they heard one sentence 
presented auditorily (“Lubricate the car with grease”), presented in silence at 60 dB, and had to 
identify the sentence from three multiple choice options. Next, they completed the Perceptual 
Similarity Ratings (“AXB”) task (illustrated in Figure 4). On each trial, raters identify the 
imitator’s token that sounded most similar to the model talker’s production. Listeners were told 
they would hear 3 sounds in a row: the 1st and 3rd were spoken by the same voice, while the 2nd 
(middle) was spoken by a different voice. Their task was to identify which sound, the 1st or 3rd, 
is more similar to the middle sound (2nd). The option “1st” and “3rd” was provided on the 
computer screen as a two-option, forced-choice selection. Raters needed to select one of these 
options before the experiment would advance to the next trial.  

The number of imitators each listener rated was limited in order to keep the experiment a 
reasonable length, following Pardo et al. (2017). Thus, 14 lists were constructed, containing the 
full set of stimuli from 2 imitators each. Raters were randomly assigned a list. In total, each list 
contained 120 AXB similarity ratings (2 imitators x 15 words x 2 model talkers x 2 conversational 
roles). A listening comprehension question was presented after the experimental trials. In the 
listening comprehension trial, participants were presented auditorily with a sentence (“Jane heard 
the pod”) and asked to select the final word of the sentence from four multiple choice options 
(“pod” (correct), “pawn”, “pot”; option order randomized across subjects). 

 
[INSERT FIGURE 4 ABOUT HERE] 

 
Figure 4: AXB trial schematic: raters heard a concatenated recording consisting of “A” (the 
“1st” sound) (an imitator’s pre-exposure production of the word), “X” (model talker’s 
production of the word), and “B” (the “3rd sound”) (that imitator’s post-exposure production of 
the word). Raters clicked to indicate whether the 1st sound (“A”) or 3rd sound (“B”) sounded 
more similar to “X”. (Color online.) 
 
2.2.2. Statistical Modeling 
 



Mixed effects models are a powerful tool that allows for verification of statistical significance 
while testing and controlling for effects of multiple variables. In a mixed effects model, predictors 
that are nested by participant can be included as fixed effects (for example, each AXB task 
participant heard trials with both types of model talkers and both types of conversational role), 
which get estimated as traditional regression parameters, and they can also be included as random 
effects that are allowed to vary around a normal distribution in order to account for participant 
idiosyncrasy (Baayen et al., 2008). Responses from the AXB ratings task were coded for whether 
the post-exposure item was selected as more similar to the model talker (=1) or not (=0) and 
analyzed in a mixed effects logistic regression using the glmer() function in the lme4 package in 
R (Bates et al., 2014). Estimates for p-values were computed using Satterthwaite approximation 
in the lmerTest package (Kuznetsova et al., 2015). Fixed effects included main effects for Model 
Talker (Human, Device), Imitator Role (Giver, Receiver), and their interactions. Random effects 
structure included by-Imitator random intercepts and by-Imitator random slopes for Imitator Role 
and Model Talker (by-Word and by-Rater random intercepts resulted in singularity errors, 
indicating model overfit). 

Post-hoc analyses were conducted to test whether there is a greater than chance probability 
that the model production is perceived to be more similar to the post-exposure then pre-exposure 
imitator production (0.50), using one-sample binomial tests (with the biom.test() R base function) 
on the four subsets of data (Human-Giver, Human-Receiver, Device-Giver, Device-Receiver; p = 
0.50), following Miller et al. (2013). 
 
2.2.3. Word List AXB Results 
 
The output of the logistic regression modeling raters’ responses is provided in Table 1 and mean 
AXB responses are plotted in Figure 5. The model computed only a significant main effect of 
Model Talker on perceived alignment. As seen, participants’ post-exposure productions were rated 
as similar to the Human Model Talker’s items, but there was no phonetic alignment toward the 
Device Model talker. There was no effect of Imitator Role, nor any interaction between Role and 
Model Talker, on perceived similarity.  

The post-hoc binomial tests revealed greater than chance perception of imitation for the 
Human-Giver trials, with an average of 0.53 (CI: 0.51-0.56, p<0.01). All other Model and Role 
subsets did not significantly differ from chance. 

 
[INSERT FIGURE 5 ABOUT HERE] 

 
Figure 5: Mean proportion and standard errors of proportion of “post-exposure” tokens from the 
Word List task (females only) selected in the AXB ratings task by Model Talker (Human vs. 
Device), Imitator Conversational Role (Giver, Receiver). (Color online.) 
 
Fixed Effects Est Std.Err z p 

(Intercept) 0.01 0.03 0.47 0.64 

Model Talker (Human) 0.07 0.03 2.45 0.01 

Imitator Role (Giver) 0.02 0.03 0.76 0.45 

Model * Imitator Role 0.03 0.03 1.28 0.20 



Random Effects  Variance    

Imitator     

    (Intercept)  7.7e-04    

    Model Talker 3.0e-03    

    Imitator Role 1.8e-04    

Num. observations = 5,916, n=23 imitators, n=56 raters, 

Table 1. Summary statistics of the fixed and random effects for the mixed effects logistic regression 
from the AXB task for Experiment 2.  
 
3. Study II - Map Task Phonetic Imitation Task 
 
Study II extends the questions from Study I, asking whether participant conversational role might 
influence how people align towards devices and humans in a more complex task. Extending 
Experiment 1 which held gender constant (examining only female participants), Experiment 3 
additionally examines male and female participants.  

As with Study I, Study II consists of two experiments. Experiment 3 (Section 3.1.) tests 
the effect of imitator conversational role (giver vs. receiver), Model Talker (human vs. device), 
and Imitator Gender (male vs. female) in an interactive Map Task. In Experiment 3, participants 
completed an interactive fill-in task to place target words on corresponding locations in a 4 x 6 
grid of landmarks varying in color and shape. As in Experiment 1, each participant completed the 
task with two model talkers: one human and one digital voice assistant device interlocutor in both 
a giver and a receiver role. The task was pre-scripted: participants gave instructions (giver) or 
confirmations (receiver) that included a target word after the interlocutor produced an utterance 
with that item. Phonetic alignment was assessed with an AXB similarity ratings task by a separate 
group of raters (Experiment 4, Section 3.2.). 
 
3.1. Experiment 3: Map Task Production (female and male imitators) 
3.1.1. Target words and pre-recorded model talker utterances 
 
Target words consisted of 24 low frequency items, a larger subset taken from Babel (2012): /i/ 
cheek, deed, key, peel, teethe, weave; /æ/ bat, tap, vat, nag, wag, wax; /ɑ/ cot, sock, sod, tot, wad, 
pod; /u/ boot, hoop, zoo, doom, toot, dune. As in Experiment 1, all model talker productions were 
pre-recorded and all responses were predetermined (rather than contingent). The same two talkers 
from Experiment 1 were used to generate model talker recordings (human male, Amazon Polly 
‘Matthew’ voice).  
 
3.1.2. Participants  
 
Participants (n=50; mean age = 20.9 years old, sd = 3.3; 25 female, 25 male) were all native 
speakers of American English. Experiment 3 extended participation to males as well, to examine 
whether the same patterns of alignment are seen across genders. They were undergraduates 
recruited from the UC Davis Psychology subject pool who received course credit for their 
participation. As in Experiment 1, all except 1 participant reported that they had used a digital 
voice assistant before participating in the experiment. Participants reported using Siri (40), Alexa 



(10), and/or Google Assistant (1). 29 of these participants reported once-a-week usage, 4 reported 
daily usage, and the rest (7 participants) reported rare usage. 
 
3.1.3. Procedure 
 
The study took place in a sound-attenuated booth, and participants wore a head-mounted 
microphone (Shure WH20 XLR) and over-ear headphones (Sennheiser Pro). They were seated in 
a soundbooth facing a computer monitor. They received two blank color-number grids (laminated 
and attached to a clipboard) labeled for each interlocutor (device (‘Matthew’) vs. human (‘Carl’)) 
for use when instructed in the receiver blocks. As in Experiment 1, participants were given the list 
of target words on a piece of paper to familiarize themselves prior to the start of the study. 

Participants completed the experiment in one continuous session in E-Prime 2.0, consisting 
of two parts: a pre-exposure block (to get baseline productions prior to the interaction) and a Map 
Task paradigm (where participants interact with pre-recorded voices to complete a task). 
Participants began with a pre-exposure block, producing target words in a frame (“Repeat the 
word ___ to me”), using the same design as the pre-exposure in in Experiment 1 (this procedure 
is schematized in Figure 2 for Experiment 1; after 4.5 seconds, the next target sentence would be 
shown on the screen (ISI = 300)). Each of the 24 target words were randomly presented in the pre-
exposure block. 

Next, participants began an interlocutor block (either human or device, order 
counterbalanced). At the beginning of each interlocutor’s block, a ‘connecting’ screen was 
presented to simulate that a live interaction was beginning: for the human, this consisted of the 
Skype loading sound, while for the Alexa this consisted of a related ‘loading’ sound. Then, the 
interlocutor provided a short introduction (e.g., “Hi! I’m [Carl/Matthew]. I’m a digital device on 
Amazon products. Today we’re going to do a simple task together….”), with an image of a human 
or an Amazon Echo corresponding to the speaker. The introductions that participants heard are 
provided in Appendix B.  

In each interlocutor block, participants completed two conversational role sub-blocks, 
one as ‘giver’ of instructions and one as ‘receiver’ of instructions (order counterbalanced). In each, 
their task was to complete a novel Map Task paradigm: consisting of 3-turn dialogues with the 
participant and model talkers (human and device) varying conversational role as to where to place 
target words on a color/shape grid. Similar to Experiment 1 (List Task) the three turns had a 
consistently structured format: Turn 1 consists of asking where to put a target word on the 
color/shape grid (“Where should I put…”), Turn 2 consists of instructions to place the target word 
on a landmark (“Write sod on the green square”), and Turn 3 consists of a confirmation (“Okay, I 
wrote sod on the green square”). We created two versions of this dialogue, varying conversational 
role.  

When the participant was the ‘giver’ of information (schematized in Figure 6A), they heard 
the model talker (human or device) ask where to place the word. Then they read the instructions 
directly from the screen. Finally, they saw feedback that the interlocutor ‘heard’ them correctly, 
showing the word in the correct location on the color/shape grid.  

When the participant was the ‘receiver’ of information (schematized in Figure 6B), they 
were asked to pick up the clipboard labeled for that interlocutor (either human or device). Each 
clipboard had a laminated color/shape grid and a dry erase marker. Participants were told that they 
would ask where to place the word, and then they would write that word in the correct location. 
On each trial, participants began the 3-turn dialogue by reading the question written on the screen 



(“Where should I put the word, cot.”). Next, they heard the instruction from the model talker 
(human or device). Then, participants wrote the word in the appropriate location and read the 
confirmation sentence written on the screen (e.g., “Okay, I wrote cot on the green square.”). At the 
end of the ‘receiver’ block for each interlocutor, participants completely filled out the color/shape 
grid.  

Within each of the interlocutor/conversational role blocks, participants produced all target 
words (order randomized). The word to shape/color location was pseudorandomized for each of 
the two interlocutors (device, human) and conversational role blocks. Overall, subjects completed 
96 dialogue trials (24 words x 2 conversational roles x 2 model talkers). The experiment took 
roughly 45 minutes to complete.  

 
[INSERT FIGURE 6 ABOUT HERE] 

 
Figure 6: Map Task Paradigm 3-turn interaction design. (A) Participant as ‘Giver’ of information, 
while (B) Participant is ‘Receiver’ of information. (i) The first turn consists of asking where to 
place the word on the color/shape grid. (ii) The second turn consists of instructions for where to 
write the word. (iii) The third turn consists of a confirmation. When the Model Talker (device vs. 
human) asks for or gives instructions, their image and the word are displayed on the screen while 
the pre-recorded utterance is played (either human voice or TTS voice). When the Model Talker 
‘confirms’, they show the word in the correct position on the grid on the screen, seen in (A.iii.). 
When the participant ‘confirms’, they write the word on the color/shape location (with a laminated 
color/shape grid, provided on a clipboard, and dry erase marker) and then read the sentence on 
the screen to confirm they completed the action (B.iii.). Turns where the participant reads the 
sentence from the screen are indicated with a microphone and yellow speech bubble. (Color 
online.) 
 
3.2. Experiment 4: Map Task AXB Perceptual Similarity Assessment  
 
In order to assess holistic similarity between the post-exposure productions and the model talkers’ 
productions, we conducted an AXB perceptual similarity task, with a separate group of raters.  
 
3.2.1. Map Task AXB Methods 
3.2.1.1. Stimuli  
 
The target lexical items from the 50 participants (25 F, 25 M) who completed the Map Task 
production experiment were extracted from the participants’ pre-exposure and post-exposure 
productions, as well as from the Model Talkers’ utterances. The stimuli for the ratings task were 
prepared following the same procedure from the ratings task for Experiment 2 (Section 2.2.1.1.).  
 
3.2.1.2. Participants and Procedure 
 
A total of 227 raters (mean age = 20.3 years old; 166 female, 61 male) completed the holistic AXB 
perceptual assessment of the Map Task imitation productions. Raters, none of whom participated 
in the production studies, were recruited through the UC Davis Psychology subjects’ pool, 
completed the experiment online on Qualtrics, and received course credit for their participation 
(the ratings task procedure was identical to that used in Experiment 2, section 2.2.1.3.). A total of 



25 lists were constructed, containing the full set of stimuli from 2 imitators each. Raters were 
randomly assigned a list. Each list contained a total of 192 AXB similarity ratings (2 imitators x 
24 words x 2 model talkers x 2 conversational roles).  
 
3.2.2. Statistical Analysis 
 
Responses were coded for whether the target item was selected as more similar to the model talker 
(=1) or not (=0). These data were modeled following the same procedure from Experiment 2 (see 
Section 2.2.2. for details about the model structure and justification), using a mixed effects logistic 
regression with fixed effects of Model Talker, Imitator Role, Imitator Gender, and all two-way 
interaction and the three-way interaction. The random effects structure included by-Rater, by-
Word and by-Imitator random intercepts, as well as by-Imitator random slopes for Model Talker 
and Imitator Conversational Role.  
 
3.2.3. Map Task Results  
 
The summary statistics from the logistic regression are provided in Table 2. The model revealed a 
significant main effect of model talker. Overall, participants' responses to the Human Model Talker 
were more similar to that interlocutor’s productions than when they responded to the Device Model 
Talker. There was also a significant two-way interaction between Model talker and Imitator 
conversational role. This interaction is illustrated in Figure 7. As seen, for the human model talker, 
both female and male imitators converged when they were in the giver role, and did not align as 
receiver. There was no alignment toward the digital device model talker in both the giver and the 
receiver roles. No other main effects or interactions were significant. 

Post-hoc analyses tested if listeners perceived similarity of the post-exposure tokens was 
greater-than-chance, using one-sample binomial tests on the four subsets of data relative to chance 
(0.50) (Human-Giver, Human-Receiver, Device-Giver, Device-Receiver) (Miller et al., 2013).  
The post-hoc binomial tests revealed greater than chance perception of similarity for the Human-
Giver trials, with an average of 0.51 [CI: 0.50-0.52, p<0.05]. The Human-Receiver trials did not 
differ significantly from 0.50. However, both Device roles showed significantly less than chance 
perception of imitation for the Device-Giver (mean=0.48) [CI: 0.47-0.49, p<0.001] and Device-
Receiver (mean = 0.49) [CI: 0.48-0.50, p<0.05]. Put another way, listeners chose the baseline 
productions as sounding ‘more similar’ to the model (relative to the Device post-exposure 
productions). 

 
Fixed Effects Est Std.Err z p 

(Intercept) -0.04 0.04 -1.14 0.25 

Model Talker (Human) 0.03 0.01 2.01 0.04 

Imitator Role (Giver) 0.01 0.01 1.37 0.17 

Imitator Gender (Female) -0.04 0.03 -1.43 0.15 

Model * Imitator Role 0.03 0.01 2.59 <0.01 

Model * Imitator Gender 0.02 0.01 1.36 0.178 



Imitator Role * Imitator Gender 0.01 0.01 0.95 0.34 

Model * Imitator Role * Imitator Gender -6.4e-04 0.01 -0.07 0.95 

Random Effects Variance    

Imitator      

   (Intercept) 0.02    

    Model Talker 3.2e-03    

   Imitator Role 1.8e-04    

Word (Intercept)  0.02    

Rater (Intercept) 0.01    

Num. observations = 43,212, raters = 227, imitators =50, words = 24 

Table 2: Summary statistics of the fixed and random effects for the mixed effects logistic regression 
from the AXB ratings study run on productions from the Map Task. 

 
 

[INSERT FIGURE 7 ABOUT HERE] 
 

Figure 7. Mean proportion and standard errors of proportion of “post-exposure” tokens from 
the Map Task selected in the AXB ratings task by Model Talker (Human vs. Device) and Imitator 
Role (Giver, Receiver). (Color online.) 
 
4. Discussion 
 
The current study tested the effect of participants’ conversational role on their phonetic alignment 
toward voice-AI and human interlocutors. This study addresses a gap in the literature as prior work 
has not investigated how conversational role influences linguistic alignment in human-computer 
interaction. We designed two pre-scripted, yet interactive, dialogue tasks to explore this question. 
The Word List Task (Study I) was a simplistic, utilitarian dialogue where interlocutors coordinate 
where to place, or confirm, target words on appropriate lists, simulating the types of simple 
interactions between a user and a digital voice assistant (e.g., “put milk on the grocery list”). The 
Map Task (Study II) had a more complex and game-like task.  

First, we observed differences in phonetic imitation by conversational role, but critically 
only for the human interlocutor. In the Map Task, we observed greater alignment toward the human 
(relative to the device) when the participant was in the ‘giver’ role. While we did not observe role-
based differences in the simpler, Word List task (Study I) in the full model, the binomial tests 
testing difference from chance showed similar patterns: for both studies, there was significantly 
greater-than-chance perception of imitation for the Human-Giver role. This finding aligns with 
prior work in human-human interaction showing that conversational role mediates phonetic 
imitation and, specifically, that participants align toward their interlocutor when giving, than when 
receiving, information in an interaction (Pardo, 2006; Pardo et al., 2010). Furthermore, since the 
giver’s role is to provide information to their interlocutor, greater alignment in this role can be 
viewed as facilitating communication, supporting cognitive-functional accounts of alignment (e.g., 



Interactive Alignment Account: Pickering & Garrod, 2004). Yet, in the current study, role-based 
phonetic alignment was only observed in the more interactive task (here, Map Task) in our main 
modeling, which takes into account speaker variability. Thus, it is possible that the effect of 
conversational role on phonetic imitation is sensitive to the level of interaction and engagement in 
the task, as claimed by Pardo et al. (2018). Future work making direct comparisons of task can 
explore this question further.  

Second, across both tasks, we see similar patterns on phonetic imitation based on 
interlocutor: more phonetic alignment toward the human, relative to device. This interlocutor-
based asymmetry can be viewed as supporting predictions made by socially-mediated accounts of 
alignment, such as Communication Accommodation Theory (Shepard, 2001), which propose that 
linguistic alignment is a way to signal social closeness to an interlocutor. Here, one interpretation 
is that a voice-AI interlocutor has a lower social status than humans and lack of alignment could 
be seen as reflecting a lack of socially-downward accommodation toward the voice-AI who is the 
less socially-dominant actor (e.g., Giles, 1973; Giles et al., 1991). This interpretation is supported 
by prior studies comparing phonetic imitation of digital device and human voices in word 
shadowing tasks which report less phonetic alignment toward the device voices (Cohn et al., 2019; 
Snyder et al., 2019) and less phonetic alignment toward less anthropomorphized device systems 
than devices that have a more embodied human form (Cohn et al., 2020). More specifically, we 
observe apparent divergence toward the device interlocutor observed in the Map Task study: 
productions toward the device showed significantly less than chance perception of alignment. That 
is, the baseline production sounded more ‘similar’ to the model talker, indicating that the speaker 
might have diverged from the device in the interaction. This, too, is in line with socially-mediated 
accounts wherein people diverge to create social distance from an interlocutor they do not feel 
socially close to. 

Our observation of less phonetic alignment toward voice-AI than the human model talker 
contrasts with cognitive-functional accounts (e.g., Pickering & Garrod, 2004; Branigan et al., 
2011) that predict greater alignment toward a computer interlocutor. For example, increased 
lexical alignment toward computer interlocutors is thought to be driven by the perception they are 
seen as less communicatively capable than humans (Branigan et al., 2011). Here, one possibility 
is that communicative pressures mediate alignment in different ways for different linguistic 
features (e.g., syntactic, lexical, phonetic). This is supported by Kim, Horton, and Bradlow (2011) 
which examined map task dialogues between native and non-native English-speaking interlocutors 
and found that native English speakers displayed no phonetic alignment toward English learners. 
Kim et al. (2011) did observe phonetic alignment between pairs where both interlocutors were 
non-native English speakers and argued that interlocutor language distance was negatively 
correlated with degree of phonetic alignment. In the current study, a similar might be realized as 
greater phonetic alignment toward the more similar interlocutor (the human voice) relative to the 
synthesized device voice. Future work examining and comparing both speech and lexical 
alignment can tease apart whether differential alignment toward computers across studies are 
indeed due to differential constraints on alignment across linguistic features. If so, this would 
contrast with theoretical claims that alignment in dialogue applies automatically and across all 
levels of the grammar (Pickering & Garrod, 2004).  
 Contra predictions from CASA (Nass et al., 1994) — yet, in line with more recent work 
proposing that people have routinized ways of engaging with technology that are distinct from 
human-human interaction (Gambino et al., 2020) — we did not observe ‘transfer’ of speech 
behaviors from human-human interaction to voice-AI in our tasks. For one, the lack of phonetic 



alignment toward the device interlocutors contrasts with prior work showing phonetic alignment 
to computers (Bell, 2003; Gessinger et al., 2021, 2017; Thomason et al., 2013) and modern voice-
AI systems (e.g., Raveh et al., 2019; Cohn et al., 2019; Zellou & Cohn, 2020). Additionally, we 
did not observe transfer of conversational-role based alignment from human-human to human-
computer interaction. This contrasts with prior studies that have observed display similar socially-
mediated differences in phonetic alignment for human and voice-AI talkers (e.g., more alignment 
toward male than female voices in Cohn et al., 2019; Snyder et al., 2019). In those studies, 
participants ‘shadowed’ single words (repeating after the interlocutor); one possibility is that the 
more interactive dialogue in the present study highlighted different social constraints on alignment 
between humans and voice-AI.  

There are several limitations of the present study, as well as open questions that provide 
avenues for future work. For one, it is important to note that in the current studies there were no 
comprehension errors by either the human or voice-AI in the controlled experimental context. 
There is some recent work showing differences in alignment following an error made by the voice-
AI and human interlocutors at a very high error rate (50% accurate) (Zellou & Cohn, 2020). Indeed, 
a comprehension error by the interlocutor might increase functional pressures acting on alignment. 
Future research can test the effect that interlocutor errors have in mediating role-based patterns of 
alignment toward voice-AI and human interlocutors. Relatedly, one limitation of the present study 
is that it is a pre-scripted, artificial task. Future work comparing alignment toward humans and 
voice-AI during unscripted conversations is a next step to understand how these patterns play out 
in more naturalistic interactions. We also only assessed imitation through AXB perceptual ratings; 
examining acoustic patterns of alignment can shed light on the patterns of convergence (and 
potential divergence) observed across interlocutor types and conversational roles.  

Another future direction is to investigate alignment across users with different language 
backgrounds and different age and cognitive profiles (since the current study examined only 
English-speaking college-age adults). Moreover, in the current study imitators in Experiment 1 
(and raters in Experiment 4) were not fully balanced for participant gender. Future work fully 
balancing imitator, rater, and model talker gender can explore the role that this social factor has on 
linguistic alignment. An additional limitation is that the different model talkers were cued by 
differences across multiple auditory and visual properties (different voices and different guises 
with images of a human vs. device). Thus, whether the differences in phonetic alignment toward 
the human vs. voice-AI was triggered by voice or guise cues cannot be fully teased apart in this 
study. Future work varying both voice and label can address this gap. Finally, the present study 
did not manipulate degree of alignment by the interlocutors; mutual alignment and accommodation 
is a natural behavior between two interlocutors in human-human interaction (e.g., Szabo, 2019). 
Such behavior might be expected with a text-to-speech (TTS) system, as well. For example, 
Levitan (2014) found that participants were more likely to entrain to the speech of a TTS system 
when the interlocutor entrained back toward them. In the present study, the model talker’s 
productions were pre-recorded and not modified to adapt to the participant. These factors raise 
many avenues for future work to fully understand the conditions under which people do and do 
not align toward the speech patterns of voice-AI assistants.  
 
4.1. Conclusion  
 
Overall, the current studies contribute to our understanding of conversational-internal factors in 
alignment by exploring the impact of participant role (as giver or receiver) as well as the type of 



interlocutor (human or voice-AI). Together, these studies provide important first steps in 
comparing alignment across multiple studies, and varying degrees of interactivity, across 
interlocutor types. At the same time, this work addresses larger questions about the nature of voice-
AI interaction. For example, phonetic imitation has been proposed as mechanisms for the spread 
of sound change (Garrett & Johnson, 2013); will voice-AI influence human speech patterns? As 
people increasingly use speech to interface with technology, understanding how voice-AI 
influences human language patterns will be more important.  
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