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Abstract.

The Rothermel fire spread model provides the scientific basis for the US National Fire Danger Rating System

(NFDRS) and several other important fire management applications. This study proposes a new perspective of the model that
partitions the reaction intensity function and Energy Release Component (ERC) equations as an alternative that simplifies
calculations while providing more insight into the temporal variability of the energy release component of fire danger. We
compare the theoretical maximum reaction intensities and corresponding ERCs across 1978, 1988 and 2016 NFDRS fuel
models as they are currently computed and as they would be computed under the proposed scheme. The advantages and
disadvantages of the new approach are discussed. More study is required to determine its operational implications.
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Introduction

Nearly 50 years after it first appeared, the Rothermel fire spread
model (Rothermel 1972) is still widely used in wildland fire
danger and fire behaviour analysis and prediction in the US and
elsewhere. Andrews published a comprehensive report (Andrews
2018) of the model and its applications, which Rothermel, in the
foreword to the report, characterised it as a ‘complete description
of not only the Rothermel model, but also the modifications and
addendums that have evolved for supporting the many systems
that use the model’. In the US, the initial purpose of the model was
to serve as the basis for the National Fire Danger Rating System
(NFDRS; Deeming et al. 1972, 1977; Bradshaw et al. 1984;
Cohen and Deeming 1985; Burgan 1988), which continues to the
present. The model subsequently was used to predict fire
behaviour in applications such as FIRECAST (Cohen 1986),
BEHAVE and BehavePlus (Andrews 1986, 2008), FARSITE
(Finney 1998), HFire (Peterson et al. 2009) and FlamMap
(https://iftdss.firenet.gov/firenetHelp/help/pageHelp/content/20-
models/lfb/techdoc.htm).

There is a substantial difference between fire danger and fire
behaviour applications, which the US National Wildfire Coor-
dinating Group describes as follows (NWCG 2002):

‘The principal difference is that fire danger is a broad-scale
assessment while fire behavior is site-specific. Fire danger
ratings describe conditions that reflect the potential, over a
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large area, for a fire to ignite, spread and require suppression
action. Fire behavior on the other hand deals with an existing
fire in a given time and space.’

The spatial and temporal resolution of the Rothermel model
therefore depends on how it is used. There are also separate sets of
fuel models needed by the Rothermel model that differ depending
on whether the application is for fire behaviour or fire danger.
Andrews (2018) lists parameters for 53 fuel models used for fire
behaviour (pp. 31-35), 13 from Albini (1976) and 40 from Scott
and Burgan (2005); also included are 20 fuel models from the
1978 NFDRS, 20 from the revised set for the 1988 NFDRS and 5
fuel models for the 2016 NFDRS (pp. 95-97).

The principle of conservation of energy is the foundation on
which the Rothermel model builds (Frandsen 1971), namely that
the no-wind no-slope fire spread rate is a balance between the
propagating heat energy and the heat required to bring the
unburned fuel to ignition. Its development relied on empirical
methods applied in a laboratory setting because the physics and
chemistry that drive wildland fire were not then, and arguably
are still not completely understood (Andrews 2018). FIRETEC
and WRF-Fire are examples of current research models that go
well beyond the Rothermel model, especially to simulate the
coupling between fire and atmospheric processes (Linn et al.
2002; Coen et al. 2013; Mandel ef al. 2011; Linn et al. 2020).
One of the greatest challenges that models like these face before
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they are brought into broad application is ease of usage. FIRE-
TEC, for example, demands extraordinary computing and new
and/or scarce data sources (Furman and Linn 2018).

The present work describes a modest revision to the Rother-
mel model to provide further insight on fire characteristics from
within the model framework. It introduces the concept of
reaction intensity partitioning, which is, in a sense, a simplifica-
tion of the model as it is currently being applied. It departs from
the original model in the treatment of different types of live and
dead fuels comprising a mixed fuel bed. The first section briefly
describes the Rothermel reaction intensity function and its
application for mixed fuel beds. We then introduce the reaction
intensity partitioning concept (RIP), which, while modest in
form, differs fundamentally in its approach to mixed fuels. This
is followed by a discussion of the implications of the RIP
concept related to the NFDRS Energy Release Component,
and to fire behaviour modelling only to the limited extent our
study allows. We conclude with some suggestions that our
approach offers for operational consideration.

The reaction intensity function

The reaction intensity function is the part of the Rothermel
model that expresses the principle of energy conservation, as
proposed by Frandsen (1971). He conceived the mathematical
problem of fire spread one-dimensionally in terms of what
happens in a homogeneous fuel bed as the flaming zone pro-
pagates into unburned fuel. Combustion from the flaming zone
produces a reaction intensity, expressed as Btu ft > min~" (Btu,
British thermal units) in US units used by the NFDRS and
kJm  min~" in ST units. It is derived from the inherent fuel heat
content, rate and amount of fuel consumed, and modulated by
the fuel moisture and mineral contents:

IR = F/th”snm (1)

where:
Ir = reaction intensity

I''= optimum reaction velocity
w, = net fuel load
h = heat content
n, = mineral damping coefficient

n,, = moisture damping coefficient
Eqn 1 applies to a single fuel type of specified fuel load, heat
content, mineral content and surface area/volume ratio (o). The

latter is a critical fuel property that enters the equation through
the optimum reaction velocity (Andrews 2018, p. 117).

(0, B) = T (0, Bexp(1 — u(a, B))]" )
where, in both US and SI units:

(o, B) = optimum reaction velocity (min ')
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o = surface area/volume ratio(ft'US orcm ™' SI)

f = packingratio (oven dry fuel bed bulk density/
oven dry fuel particle density)

[y = $(0)(495 + 0.0594s(0)) ~'US or
(0.0591 4 2.926/s(c)) " SI(min ")

s(o) =g
A(0) = 13367713 US 0r8.9033 ¢ 07713 SI
u(a, B) = B/B,, relative packing ratio

Bop = 3.3485 %8189 US 0r 0.20395 ¢ 8187 I,

optimum packing ratio

Eqn 2 is an alternative form of the optimum reaction velocity
given by Wilson (1980), who converted the entire Rothermel
model from US to SI units.

Note that I is largely a multiple non-linear function of o, and
isnon-linear in 3. The optimum packing ratio, 3, is also a non-
linear function of ¢. For a given o, the reaction intensity is
maximum when u, the relative packing ratio, is equal to 1, hence
when 8 = 8,,. Reaction intensity is non-linear in ¢ and 3 but
otherwise directly proportional to the other terms in Eqn 1.
Assume, for example, specified fuel characteristics as follows:

w, = 0.9455tonacre ' = 0.212kgm 2
h = 8000Btulb~' = 18608kJkg™!

n, = 0.417
N =1

The net loading assumes an initial oven-dry fuel load of 1 ton
acre” ! (0.224 kg m ) and a total mineral content of 0.0555 ton
acre”' (0.012 kg m~?). The mineral damping coefficient is
based on the effective mineral content and is the constant value
used for both dead and live fuels in the NFDRS (Cohen and
Deeming 1985). Setting the moisture damping coefficient to 1
assumes the fuel is moisture-free, hence maximises the reaction
intensity, a special case of what Rothermel called the potential
reaction velocity (Rothermel 1972, p. 11). This is a useful
reference value for the given fuel conditions because when the
fuel moisture content is greater than zero, the reaction velocity is
simply some fraction, equal to the moisture damping coefficient,
of the potential reaction velocity. When we apply these para-
meters to a range of ¢ and packing ratios that cover the 1978
NFDRS parameters, we obtain the contoured reaction intensity
surface in Fig. 1.

The reaction intensity function for this example is highest for
high ¢ and relatively low packing ratios, and uniformly low for
low o. ¢ is an important control on the heat and mass transfer
through the fuel particle surface; the packing ratio similarly
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Fig. 1. Reaction intensity assuming a net fuel load of 0.9455 ton acre '

(0.212 kg m~2) and moisture damping coefficient of 1, for variable surface
area/volume ratios and packing ratios that span NFDRS fuel model values;
(a) is given in US units, and (b) in SI units.

affects heat and air flow through the fuel bed. For a given fuel
load, a change in packing ratio implies a change in fuel bed bulk
density, hence a change in fuel bed depth. The relative maxima
along the ridgeline decrease with decreasing ¢ and increasing
packing ratio, apparently to an asymptotic lower limit of a. The
optimum reaction velocity gives the reaction intensity its shape
while the other terms affect its amplitude.

Reaction intensity as a function of mixed fuels

Albini (1976) described the reaction intensity (Eqn 1) as a
simple formula, further noting: ‘For a single size class fuel bed,
the indicated calculation is simple, but the computing of
weighted averages of fuel properties for beds with a mixture of
fuel particle sizes gets a bit complicated’.

Because the laboratory experiments provided empirical
solutions for single size class fuel beds only, mixed-class fuel
beds required additional considerations. Rothermel’s approach
was to determine a characteristic ¢ from a weighting of the
individual gs in the fuel bed, i.e. surface area weighting. He used
this ¢ to calculate the optimum reaction velocity (Eqn 2), and
subsequently to calculate reaction intensity and rate of spread
(Rothermel 1972, p. 26). What follows is a version of his
weighting scheme preferred because it simplifies the calcula-
tions without changing the results.

Weighting schemes to determine characteristic as for mixed
fuel beds

The Rothermel model ingests fuel model data that consist of, at
most, six different components categorised as either dead or live
vegetation, by size within the dead category, and by herbaceous
or woody type within the live category (NWCG 2002). The dead
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fuel components are 1-, 10-, 100- and 1000-h timelag fuels,
which refer to the exponential timelag response of each to
ambient weather conditions. Rothermel (1972, pp. 29 ff.) used a
double subscript notation, the first to differentiate live and dead
categories, the second to identify the timelag of dead fuels and
type of live fuels. Without loss of generality, we adopt a single
subscript notation that enumerates the six components so that
the first four are the dead fuels in ascending order of their
timelags, and the fifth and sixth are the herbaceous and woody
live fuel types respectively. Denote surface area weights for
each component by the sequence {a;}. Then

OiWi .
ai:< )/atutalvl:17~-'76

Pi

where
o; = surface area/volume ratio of component i
w; = oven — dry fuel loading of component i
p; = fuel particle density of component i

(%) = mean total surface area per unit fuel cell of component i
(Ifbthermel’s A, Rothermel 1972, p. 30, eqn 53)

Aroral = Z% (Rothermel’s A7, eqn 55)
j=1 Fj

The 1000-h dead fuel component is omitted from the surface
area weighting, because of its low ¢ value (Cohen and Deeming
1985, p. 10). The surface area weights are used to find charac-
teristic dead, live and overall s for the fuel model (Andrews
2018, pp. 16-18), but they are not necessary to calculate
(Rothermel’s eqns 71 and 72) to determine the characteristic
surface area/volume ratio for the fuel bed, 7,.,. The dead and
live surface area subtotals cancel each other, leaving the
component weighted mean surface areas under the summation:

Carea = Zaio-i (3)

i#4

Note that ‘4’ under the summation sign means that the 1000-
h dead fuel component (the fourth in the sequence) is excluded.
Gareq 18 Used in computations for fire behaviour applications and
for the NFDRS Spread Component and fire front residence time,
i.e. the time the fire front takes to pass a given point. Andrews
(2018) lists the 74, for the 53 fuel models used for fire behaviour
calculations (pp. 31-35), under tabulated columns identified as
‘Characteristic SAV’ (SAV = surface-area-to-volume ratio).

In contrast to G4, fuel load weights {/;} are used to
determine a characteristic ¢ for the Energy Release Component
(ERC), call it 6,44 In this case, the 1000-h fuel component is not
omitted. The calculation parallels Eqn 3, with oven-dry compo-
nent weights in place of surface area weights:

li:Wi/Wtotahi: 17"'76
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where
w; = oven — dry fuel loading of component i
6
Wiotal = Z Wi
and =

6
Oload = Z liai (4)
i=1

Table 1 gives G404 and G544, as computed from Eqns 3 and 4,
respectively, for fuel models from the 1978, 1988 and 2016
NFDRS systems. G,4¢ iS never greater than .., because it
includes the 1000-h surface area/volume ratio.

The fuel load weights are not necessarily constants. To
simulate seasonal changes of fire danger, the 1978 and 1988
NFDRS incorporated dynamic transfer of live herbaceous fuel
to the 1-h dead fuel load as the live herbaceous fuel moisture
decreased below a specified level. The equations that describe
this transfer, as given in Andrews (2018, p. 99), rewritten for the

notation described above, are:

Winew = Wi + Ows

Wsnew = WS(I - ®)

where 0 varies from 0 to 1 in proportion to the decrease below the
specified level. The 2016 NFDRS also has this feature, but it ties
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O variations to the Growing Season Index (Andrews 2018). The
1988 NFDRS adds a similar option to transfer deciduous woody
fuel to the 1-h dead loading as a function of live woody greenness.

To simulate longer term effects of drought, the 1988 and
2016 NFDRS include a drought load that is transferred to the
dead fuel categories in proportion to their loadings relative to the
total dead fuel load. The rise above 100 of the Keetch—-Byram
Drought Index triggers the transfer (Andrews 2018). Dynamic
transfer of herbaceous fuel precedes the drought fuel load
transfers. The shifts in loading between fuel components ulti-
mately change the value of the characteristic ¢, hence the
reaction intensity calculated for all three NFDRS versions. ¢
is arguably one of the more critical fuel characteristics of the
Rothermel model in both fire behaviour and fire danger applica-
tions. The fact that the range of fuel model component ¢ values
spans three orders of magnitude (Fig. 1a) and its consequences
on the reaction intensity function led to the idea of reaction
intensity partitioning, described in the next section.

Reaction intensity partitioning by fuel model components

The reaction intensity equation that accounts for fuel model
components indexed by i as currently implemented in the
Rothermel model and its derivatives is:

Ir=T'(c,p) Z (wn)ihi (1) (n); (5)

i#4

Table1. Surface area weighted and fuel load weighted characteristic surface area/volume ratios (¢,,., and ¢,,,, respectively) for 1978,1988 and 2016

NFDRS fuel models

1978 model surface area/volume ratios

Fuel Model Description

—1 —1 —1 —1
Oarea (ft ) Oarea (Cm ) Oload (ft ) Oload (CITl )

1988 model surface area/volume ratios

—1 —1 —1 —1
Oarea (ft ) Oarea (Cm ) Oload (ft ) Oload (Cm )

A Western grasses (annual) 3000 98 3000 98 3000 98 3000 98
B California chaparral 1142 37 886 29 1142 37 886 29
C Pine-grass savanna 2114 69 1355 44 2047 67 1370 45
D Southern rough 1406 46 1220 40 1410 46 1230 40
E Hardwood litter (winter) 1898 62 1481 49 1810 59 1404 46
F Intermediate brush 1155 38 884 29 1177 39 876 29
G Short needle (heavy dead) 1848 61 321 11 1848 61 321 11
H Short needle (normal dead) 1858 61 658 22 1858 61 658 22
1 Heavy slash 1385 45 428 14 1385 45 428 14
J Intermediate slash 1384 45 450 15 1384 45 450 15
K Light slash 1386 45 432 14 1386 45 432 14
L Western grasses (perennial) 2000 66 2000 66 2000 66 2000 66
N Sawgrass 1502 49 1113 37 1502 49 1113 37
(0] High pocosin 1458 48 820 27 1458 48 820 27
P Southern pine plantation 1711 56 1035 34 1711 56 1035 34
Q Alaskan black spruce 1285 42 741 24 2573 84 977 32
R Hardwood litter (summer) 1657 54 1028 34 1657 54 1028 34
S Tundra 1372 45 725 24 1372 45 725 24
T Sagebrush-grass 1900 62 1623 53 1900 62 1623 53
U Western pines 1694 56 914 30 1694 56 914 30
2016 model surface area/volume ratios
Oarea (ftil) Oarea (Cmil) Oload (ftil) Oload (Cmil)

A\ Grass 2000 66 2000 66

w Grass/shrub 1773 58 1444 47

X Brush 1748 57 1475 48

Y Timber litter 1875 62 294 10

z Slash 1884 62 574 19




Reaction intensity partitioning

This equation expresses the reaction intensity as the sum of
the intensities of the individual fuel components, where each
shares a common optimum reaction velocity I"(a, ). The
individual gs are replaced by the characteristic 6,,., of Eqn 3
for the spread rate calculation.

For our purposes, we retain the original os, hence the
individual optimum reaction velocities that depend on the as
of each fuel model component indexed by i:

Irip = Zrl(aiaﬁ)(wn)ihi(”m)i(ns)i (6)

Eqns 5 and 6 both represent an overall reaction intensity as
the sum ofindividual reaction intensities of the fuel components,
except that Eqn 5 posits that a reaction velocity with a weighted
mean of the individual s is common to all fuel components.
Eqn 6, on the other hand, retains each ¢ as uniquely representing
the size class, therefore the reaction intensity of each fuel
component. It represents the overall reaction intensity as the
sum of partitioned single fuel fires — hence the term reaction
intensity partitioning (RIP) — each burning according to its
individual fuel characteristics, except that 3, the packing ratio,
isa function of all of the fuel loadings and bed depth. This is where
RIP differs fundamentally from current practice. The experiments
that gave rise to the model used only single size class fuels, hence
provide no basis for either averaging as or for reaction intensity
partitioning.

Further discussion of simulating fire spread with the
Rothermel model would have to consider the propagating
flux, wind and slope effects, and the heat sink that consumes
energy from the advancing fire. The present study does not
include these factors. Instead, we now address the effects of
RIP on the calculation of ERC, which is largely a function of
the reaction intensity. We limit consideration to oven-dry
fuels, so that ,, = 1. Moreover, the mineral damping coeffi-
cient is generally a constant across all fuel models and the heat
content is a constant within a fuel model, although it may vary
from one fuel model to another. Eqn 5 therefore may be
rewritten as

Ir = F/(6laad: [)’)hi’[s Z (Wn)i (7)

1

and Eqn 6 as

Irip :h”szr,(oivﬁ)(wﬂ)i (8)

Difference between NFDRS ERC and RIP ERC
NFDRS ERC

The NFDRS ERC is a function of the reaction intensity and
flaming front residence time:

ERC = 0.047(7, (9)

where T = 384/6 ., and 384 is the surface area/volume ratio
(ft~") of a fuel particle 1/8 inch (0.3 cm) in diameter.

Because 7 is proportional to the inverse of Ggpeq, it is
proportional to the diameter of a cylindrical fuel particle, hence
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increases for larger fuels. This trends opposite to the reaction
intensity function, as we saw in Fig. 1. Note that /zc, explained
below, is different from the reaction intensity I expressed by
Eqn 7, which one might have expected in ERC on theoretical
grounds. Energy release refers to heat per unit area produced by
the fire front over the course of its residence time in the spatial
interval from the front to the back of the flaming zone, which
Andrews (2018, p. 28) gives as H ;:

HA :]R‘L' (10)

Eqn 9 renders ERC as a scaled and dimensionless H, by
introducing the coefficient 0.04 with dimensions of ft* Btu™".
Using Iz from Eqn 7 in Eqn 9, but without the constant 0.04
would give an estimate of the heat release per unit area from the
front passage. Instead, Iz 1s used to calculate the NFDRS ERC
(Andrews 2018):

4 6

Tenc = TG )i, [ Y ) 4430w (1)

i=1 i=5

where f; and f; are the proportions of dead and live fuels,
respectively, in the fuel model.

4
f;i = (Z Wi) /Wtotul
i=1

o)

Wiotal

The difference between I and Izpc is in the terms under
summation. Where I includes the total net fuel load, /zzc uses
an average net fuel load weighted by the proportions of live and
dead fuels, i.e. the bracketed expression in Eqn 11. Let w,, denote
the average net fuel load and w,,,, the total net fuel load, then
W, can be rewritten as:

Wy, :fd(fdwntotal) + (l _fd)((l _fd)wntoml)
= (zfdz - 2fd + l)wntotul

Hence, w, is a quadratic function of the proportion of the net
dead fuel load in the fuel model. Since the average net fuel load
is less than the total net fuel load when both live and dead fuels
are present, we find

Igre < Ig,

where equality is attained only for fuel models with no live fuel;
although they would also be equal for a fuel model with no dead
fuel, all fuel models have a non-zero 1-h dead fuel load, expressed
mathematically as 0 < f; = 1. When the loadings are equal, w, is
at its minimum with respect to f; and gz represents the reaction
intensity of only half the total net fuel load.

A loading-weighted average of the dead and live reaction
intensities (Eqn 11) was not a part of the 1972 NFDRS, or the fire
behaviour equivalent. The reason loading weighting was
included, according to Andrews (2018, p. 109), is that ‘it
produced better results with 1000-h fuels, which were added
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to fuel models in the 1978 NFDRS (Jack D. Cohen, Missoula
Fire Sciences Laboratory, pers. comm., July 2011)’. Bradshaw
et al. (1984, p. 24) reported that the developers of the 1978
NFDRS wanted the system to reflect the influence of larger
fuels, particularly since G, used in the spread computations
omitted 1000-h fuels:

“The approach selected to bring larger fuels into play was
straightforward: use the fuel energy computations of the
spread model — the reaction intensity — but base the influ-
ences of the different classes of fuel on their contribution to
the total fuel load. Specifically, for the energy release
component, the characteristic surface area-to-volume ratio
and weighted fuel moisture of the fuel bed would be
calculated using fuel class weighting factors based on load-
ing, not surface area as in the spread component. This
solution had no experimental basis.’

The last sentence in the preceding quote casts doubt on using
loading for fuel class weighting factors, which will be addressed
in the discussion section.

RIP ERC

Under reaction intensity partitioning, the ERC is the sum of the
ERCs of each individual component in the fuel model:

6 6
ERCrip = »_ERC; = 0.04hn, > 1(0s, f)(wa);ti (12)

i=1 i=1

Note that the partitioning not only assigns a unique reaction
intensity to each fuel component, but also a unique residence time
7,, in both cases because of the dependency on ¢;. This implies a
separation or dilation of the flaming front not addressed by the
present study. As we saw in Fig. 1, the reaction intensity is very
low for large fuels (small os). Their relatively longer residence
times, however, allow more heat energy to be released after the
residence time of fine fuels. Each fuel component’s ERC also
depends on the fuel bed mean packing ratio.

In the next section, we compare the maximum potential ERC
of 1978, 1988 and 2016 NFDRS fuel models, determined first by
the current method using 6;,,¢ to compute reaction intensity
(Eqn 11), and second by using the RIP reaction intensity (Eqn
12). The potentials are maximised by making all dynamic
transfers and drought load additions of fuel loadings as appro-
priate for each fuel model for the most extreme dry conditions
with the moisture damping coefficient equal to 1. Although ERC
is derived from reaction intensity, the intercomparisons will
refer to dimensionless quantities, consistent with the NFDRS
ERC, but bear in mind the ERC’s theoretical relationship to heat
release. This analysis is offered as a basis for comparing and
contrasting the maximum potential energy resulting from the
specifications of the 1978, 1988 and 2016 fuel models.

Intercomparisons of NFDRS and RIP ERCs

The NFDRS is in the process of replacing its 1978 and 1988 fuel
models with 2016 NFDRS fuel models derived from the 40 fire
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Table 2. NFDRS 2016 groupings of 1978 and 1988 fuel models under
2016 vegetation types V through Z
The new fuel models correspond to fire behaviour models identified by the
alphanumeric codes in parentheses. The information comes from the
National Interagency Fire Center website

2016 Fuel Model 1978-1988 Fuel Models
V (Grass, GR2) AL T
W (Grass/Shrub, GS2) C,D,R,S

X (Brush, SH9) B,F
Y (Timber, TL1) E,G H,N,0,P,Q,U
Z (Slash, SB1) LJ,K

behaviour models (Scott and Burgan 2005) by a similarity
analysis to represent groupings of the 20 1978—1988 fuel models
into categories of grass, grass/shrub, brush, timber, and slash
(Table 2)." Each capitalised letter in the table corresponds to the
matching model named in Table 1, and the alphanumeric codes
in the 2016 Fuel Model column identify the sourced reference
fire behaviour models. We used the fuel model parameters listed
in Andrews (2018) to compute the NFDRS ERC (Eqn 9) and RIP
ERC (Eqn 12) for each of the fuel models in Table 2. The next
section describes the ERC differences within and across
groupings that resulted from these calculations, beginning with
an intercomparison of the reaction intensities from /zzc (Eqn 11)
and IRIP (Eqn 8)

Reaction intensity intercomparisons across 2016 NFDRS
fuel model groupings

Fig. 2 shows plots of the NFDRS ERC reaction intensities
computed from Eqn 11 for all NFDRS fuel models on the x-axis
against the RIP reaction intensities from Eqn § on the y-axis. The
left side of the sloping line has models for which the RIP reaction
intensities are greater than the NFDRS reaction intensities, and
the opposite is true for models to the right of the line. The
minima for NFDRS and RIP reaction intensities are equal, but
the maximum RIP intensity (model B, California chaparral) is
just under half of the maximum NFDRS intensity (model I,
heavy slash). Models I, J and Z represent slash fuels. Their high
reaction intensities are a result of high loadings of exclusively
dead fuels, including high drought load additions. The 1988
models are higher-valued than their 1978 counterparts, with the
exception of model F (intermediate brush). In that case, the
combination of ¢s and loadings lowered 6,44 in the 1988 ver-
sion and subsequently the reaction intensity. The cluster of
points at the low end of reaction intensities is predominantly fine
fuel models such as grass, grass/shrub and hardwood litter,
which are examined in the next section. As the total fuel loadings
increase, the reaction intensities increase, and the plotted points
on either side of the line diverge conspicuously from each other.

ERC:s in the grass and grass/shrub groupings

The grass and grass/shrub groups occupy the low end of the ERC
plane (Fig. 3), given their low loadings. The 2016 V model has

"Information from National Interagency Fire Center web page accessed on 2 September 2019 at https:/gacc.nifc.gov/eacc/predictive_services/fuels_fire-
danger/documents/Overview%200f%20NFDRS2016%20and%20Implementation%20and%20Evaluation.pdf
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Fig.2. NFDRS and RIP reaction intensities for all NFDRS fuel models, where the letter indicates the fuel model and
the number represents the model year. The line is where the ratio y/x is equal to 1. Reaction intensity comparisons are
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Fig. 3. ERC plots for the grass group V (top) and grass/shrub group W (bottom). The axes are scaled differently between graphs.

ERCs similar to the Western grasses (model A) in the V group
but fall short of the sagebrush—grass model (model T), especially
for RIP ERCs. The range of ERCs in this group run from a
minimum for annual Western grasses to a maximum for the
1988 sagebrush—grass RIP ERC. In the W group, ERCs tend
higher because the loadings are greater than fuel models in the V
group. Fuel model W had an NFDRS ERC that was the second
lowest in the group. On average, the other models in the W group
were larger by 25. The 1988 Southern rough model had the
highest group NFDRS ERC, higher than the 2016 model W by
76. Its RIP ERC was nearly double that of its NFDRS ERC.

ERC:s in the brush and slash groupings

The brush (X) and slash (Z) groups stand out from the rest with
the largest ERCs of all groups (Fig. 4). The NFDRS ERC of the
1988 heavy slash model (model I) was highest. Within the brush
group, the 2016 brush model X had the lowest NFDRS ERC.
The 1988 California chaparral (model B) had a group high
NFDRS ERC. Within the slash group, the heavy and exclusively
dead loadings elevated the NFDRS ERCs. The 2016 slash model
Z was, on average, lower than the other group members, but the
light slash models (K) had the lowest group NFDRS ERCs. The
1988 heavy slash model (I) had the largest difference between
the NFDRS ERC and the RIP ERC. The sloping line that defines

the one-to-one ratio in the figures forms a sharp divide between
the brush and slash groups indicative of the difference in the
energy release calculation of NFDRS ERC and RIP. In Fig. 2,
the RIP reaction intensities are up to ~150% of the NFDRS ERC
reaction intensities in the brush group, while in the slash group,
the NFDRS ERC reaction intensities are as high as almost 300%
of the RIP reaction intensities.

ERCs in the timber grouping

With eight members, the timber (Y) group is the largest of the
five (Fig. 5). The models in this group cover the mid-range of the
reaction intensity plane in Fig. 2. More models have NFDRS
ERC reaction intensities that are greater than the corresponding
RIP reaction intensities. The Y model in particular has a much
higher NFDRS ERC reaction intensity than the RIP value, which
is among the lowest in the group. Model Q (Alaskan black
spruce) also stands out owing to the difference in NFDRS
reaction intensity between the 1978 and 1988 versions. In this
case, the 000 — 741 ft! 24 cm’l) for the 1978 and 1087 ft !
(36 cm™") for the 1988 versions — place both in that part of the
reaction intensity function (Fig. 1) where the intensity gradient
is steep for low packing ratios. A group of models clusters at the
low end of reaction intensities that include hardwood litter (E),
sawgrass (N), and Southern pine plantation (P).
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Unlike the preceding groups, the 2016 model Y in the timber Discussion and conclusions
group, timber litter, had an NFDRS ERC that was higher than  yye caid in the introduction that RIP, in a sense, simplifies the
most group membe;rs. Only the 1988 heavy dead short needle R thermel model as it is currently applied. It does so by elimi-
(G) and high pocosin (Q) models had higher NFDRS ERCs. The nating the requirement to calculate an average surface area/vol-
1978 winter hardwood litter and sawgrass models had the lowest ume ratio, whether it be surface area- or loading-weighted.
NFDRS ERCs. Instead, we use the component surface area/volume ratios as
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specified by the fuel model. We described the direct con-
sequences of this model adaptation on ERC. RIP effectively
passes the current ERC through a prism that separates it into its
essential components, each with its own physical and temporal
characteristics. The physical characteristics are given by the fuel
model, but we have not covered temporal aspects, except in ref-
erence to residence times. We do so in what follows by con-
templating the role played by fuel moisture in a RIP framework.

Eqn 12 gives ERCpg;p for the special case when the moisture
damping coefficient, 7, is equal to 1. Generally, let

6

6
ERCppp = ZERQ = 0.04hn, > (05, ) (wa);(n,);: (13)

i=1 i=1

where Andrews (2018, p. 102) gives the moisture damping
coefficient for component i as:

() = 1= 20rm); + 15(rm); = 05(rm);
(rm); = M;/ (M),
M; = moisture content of fuel component i
(M,), = moisture of extinction of fuel component i

In addition to the surface area/volume ratio, net loading and
residence time, each component now has its own moisture
damping coefficient (1,,);. The moisture damping coefficient
varies from 0 to 1 as a function of the ratio of the fuel moisture
to the moisture of extinction. Fuel moisture also varies by
component in response to weather conditions and, for live fuels,
the physiological plant processes that govern water content. The
size and geometry of dead fuels strongly influence their moisture
contents, which is why they are segregated by size and charac-
terised by surface area/volume ratio. Their fuel moistures are also
referenced by a timelag signature, i.e. 1-, 10-, 100-, and 1000-h,
because they respond differently over time to weather conditions
(Byram and Nelson 2015). A larger timelag indicates a slower
response to weather (Bradshaw et al. 1984). Live fuel moisture
estimates simulate the phenological response of herbaceous and
woody vegetation as temporal changes of plant water content that
are affected in part by daily to seasonal weather patterns.
Estimating live fuel moisture content is a more complex issue
than the simplistic approaches used in 1978 and 1988 NFDRS that
may not reflect the flammability of live fuels (Jolly e al. 2014).

We conclude that the RIP method offers advantages to the
current practice of computing reaction intensity and energy release
for the following reasons. Instead of homogenising the fuel bed
components to create a single size fuel of single loading, moisture
content and residence time, the RIP perspective creates layers for
each fuel component with fuel properties specified by the fuel
model left intact, and with individual fuel moistures as determined
by current practice. This obviously results in more information to
consider, but it also offers distinct advantages, as follows:

1. There is no need to average fuel loadings, surface area/
volume ratios and fuel moistures, making computations
easier, and leaving specified fuel characteristics intact.
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2. Temporal variability of fuel component properties is
preserved.

3. Understanding the temporal complexity of fuel bed flamma-
bility is enhanced, because RIP requires tracking the fuel
moisture of each component.

4. More flexibility exists to simulate the fuel bed reaction
intensity characteristics.

We note that the weather data that feed the NFDRS ERC
almost exclusively are used to determine the fuel moistures of the
various fuel components. Setting aside the dependencies of the
dynamic transfer and drought load mechanisms on the Keetch—
Byram Drought Index, Growing Season Index, live herbaceous
fuel moisture and live woody greenness, note that the moisture
damping coefficients are the only time-dependent variables in
ERCgp (Eqn 12). The {(1,,);} carry the temporal variability of
flammability of each fuel component. In effect, they quantify the
dryness of each component on a scale from 0 to 1, where 0 means
the fuel component is saturated and 1 means it is completely dry.
We recast the moisture damping coefficients as dryness indices of
the fuel components for fire danger assessment, call them d;, d;,
d 100, 1000> Aperpy a0 d,504,- We can plot these indices over time to
track the flammability of each component as they change with
weather conditions and seasonal effects. Here, we define flam-
mability as the fractional degree to which the fuel component
attains its optimum reaction velocity, I"(a;,8). Fig. 6 is a
preliminary example from ongoing research of RIP strips for
dryness of 1-, 10-, and 100-h dead fuels based on data from Los
Prietos (34.53°N, 119.78°W) in the Los Padres National Forest,
California, where the 1978 California chaparral fuel model (B) is
used. The data cover the 2017 fall (autumn) period, when the
Thomas Fire burned more than 100 000 ha in southern California,
beginning on 4 December 2017. The dryness indices satisfy two
attributes desired for fire danger rating (Bradshaw ef al. 1984, p.
4): they are ‘physically interpretable in terms of fire occurrence
and behavior,” and they are ‘linearly related to the particular
aspect of fire danger being evaluated’.

If the fuel loadings are kept static, the only variable terms in
the RIP ERC (Eqn 13) are the moisture damping coefficients.
The empirical cumulative distribution functions of the compo-
nent ERCs, regardless of fuel model loadings, surface area/
volume ratios, etc., then correspond to the empirical cumulative
distribution functions of the dryness indices; therefore, the latter
can be used to determine quantiles for ERC fire danger classes.
The 1978 fuel model B used for Los Prietos is similar to a RIP
model in that it is not subject to seasonal load transfers, because
it does not have herbaceous fuels. The reaction intensity for ERC
in this case, call it /zzcp, is a version of Eqn 11 that introduces
dead and live moisture damping coefficients, and a special case
of the ERC reaction intensity given by Andrews (2018, p. 103):

3
Ircs = T (Gloaas B)hn, |:fd]7md Z (Wa); + i (Wa)g |- (14)

i=1
where

N,,a = dead fuel moisture damping coefficient

n,m = live fuel moisture damping coefficient
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The bracketed quantity represents the load-weighted avail-
able fuel after moisture damping is taken into account, call it
Wary. After computing Wy, for the Los Prietos data, we
normalised it by dividing by its maximum value, and also

Los prietos dryness fall 2017
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Fig. 6. Dead fuel (1-, 10-, 100-h) daily dryness time series example for Los
Prietos, California, September—December 2017. The fuel model used
(California chaparral model B) does not have a 1000-h component, and live
fuel dryness was not addressed.
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normalised the corresponding ERCs. When we calculated the
empirical cumulative distribution functions of the normalised
quantities and superimposed them, we obtained the result shown
in Fig. 7. The empirical cumulative distribution functions match
because Wy, completely captures the temporal variability of
Izrcep, hence of ERC for fuel model B.

The most versatile fuel model parameter is the dead fuel
moisture of extinction, because it is used to calculate all of the
dryness indices, including those of the live fuel components. By
contrast, the live fuel moisture of extinction is a complex
function of the dead fuel moisture of extinction, fuel loadings,
surface area/volume ratios and dead fuel moistures (Andrews
2018, p. 101). Since the fuel components have different tempo-
ral responses to the environment, monitoring their respective
dryness indices reveals the extent to which their trends are
synchronised or not. We compared the daily percentiles of Los
Prietos ERC and the dryness indices for fall 2017, obtained from
their respective empirical cumulative distribution functions for
the period 1997 to 2019. We found a good match between ERC
and the 1-h dryness index time series (Fig. 8). The study of the
relative impact that each fuel component has on ERC at Los
Prietos is ongoing. More research is required for other fuel
models at other locations.

Keeping fuel loadings static would eliminate the ability to
mimic ERC enhancement due to seasonal drying by transferring
live vegetation to dead categories or augmenting the latter from
drought load additions as the NFDRS currently does. Alterna-
tively under RIP, the Keetch—Byram Drought Index, Growing
Season Index, or other seasonal variable of choice can be tied to
the appropriate dryness index. In that case, we may be able to use
the drying trend of the seasonal variable to increase the dryness
index of the live herbaceous component, for example, instead of
transferring live herbaceous vegetation load to the 1-h compo-
nent. This may take the form of a linear response by effecting a
proportional increase in the dryness index based on the drying
trend of the seasonal variable, or it may be a non-linear response
by effecting an increase in the moisture of extinction for live
fuels. In certain respects, this alternative has an advantage over
load transfers, because the latter affects ERC by more complex
mathematical relationships involving .44, the moisture damp-
ing coefficients and the load-weighted available fuel in the ERC
reaction intensity.

We return to the subject of using fuel load weighting to
determine the characteristic surface/area volume ratio for ERC,
which Bradshaw et al. (1984) said had no experimental basis.
They did not describe exactly what problem was solved by using
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Fig. 7. Empirical cumulative distribution functions (ECDFs) of normalised ERC and load-
weighted available fuel calculated from Los Prietos data.
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fuel load weighting, except to say that the influences of the
different fuel components relative to the total fuel load would be
reflected in the reaction intensity, hence ERC, through 6., and
the weighted fuel bed moisture. The NFDRS sets the surface
area/volume ratio of 10-, 100-, and 1000-h fuels at 109, 30 and
8 ft !, respectively (3.6, 1.0 and 0.26 cm ™ "). Including 1000-h
fuel weighting to determine G;,,4 therefore lowers the average
value considerably, given the low surface area/volume ratio of
1000-h fuels. This results in a lower Iz and a smaller range of
variability of ERC, in spite of higher total fuel loads. Over the
range of packing ratios in Fig. 1, the reaction intensities for the
1000-h and 100-h surface area/volume ratios are no greater than
1 Btu ft > min~' (11 kJ m~? min~"), and the maximum reaction
intensity for 10-h is 92 Btu ft * min~' (1012 kJ m* min ).
Compare these with the maximum reaction intensity for a 1-h
fuel with a surface area/volume ratio of 2000 ft ' (67 cm ™),
which is 2230 Btu ft ? min~' (24530 kI m 2 min" ).

We also noted that using Iz (Eqn 11) instead of 7z (Eqn 7)
to calculate NFDRS ERC generally leads to a lower result that
would underestimate the heat release per unit area (Eqn 10),
because of the dead and live fuel load weighting used for Izzc.
On the other hand, dead and live fuel weighting does not
influence the reaction intensities for the most energetic models,
slash fuels, because they contain no live fuel component, and
Irzrc = I in that case. In fuel models with live fuels, Izrc < I
because the total net fuel load is underrepresented in the former.
This problem is inherited by NFDRS flame length and fireline
intensity, which are functions of Iz . In fact, fireline intensity is
a function of rate of spread, which in turn is a function of a
different Iy, resulting in two different reaction intensities for the
same fuel bed. Studies have shown that the fireline intensity—
flame length relationship produces better approximations for
low-intensity fires, such as observed in prescribed burns in light
grass and pine needle fuel beds (Byram 1959; Alexander and
Cruz 2012; Weise et al. 2018).

The low reaction intensities for large fuels expose a critical
weakness in the RIP approach, given the orders of magnitude
difference between 1-h and larger dead fuels indicated by the

reaction intensity function. This is not apparent in the NFDRS
ERC because it uses 7,44 for all fuel components. Given that the
largest fuel in the Rothermel report (1972) was 0.5 inch (1.3 cm),
can the reaction intensity function be extrapolated to larger
fuels? A preferred alternative would be to derive intensities for
large fuels experimentally. In related studies, Albini and Rein-
hardt (1995) examined the burning rate of large woody fuels
with respect to fuel properties and the fire environment. Ander-
son (1990) examined surface burning rate and flame lengths of
stationary cribs composed of dimensional wood up to 15.24 cm
(6 inches) in width. Using the total fuel surface area burn rate
converted to a platform surface area burn rate of 0.0005 g cm 2
s, and assuming a fuel heat content of 16.5 kJ g~ ' yielded a
heat release rate (Iz) of 4950 kJ m~? min~' (436 Btu ft *
min~"), which is much smaller than the I reported in Rothermel
(1972) for cribs composed of smaller fuels.

The intercomparisons of ERC for the NFDRS fuel models
were presented to introduce the RIP concept. We offer the RIP
process to simplify computations and decompose energy release
into its basic components, each having its own temporal char-
acteristics through the dryness index. We found that the dead and
live load weighting factors used to calculate Izpc artificially
manipulate the net fuel load, which invalidates its conceptual
relationship to energy release, flame length and fireline intensity.

We remarked earlier that this study did not include all the
factors that make up the Rothermel spread equations. With that
in mind, we are limited in extending the RIP concept to fire
spread modelling. A natural extension of partitioning reaction
intensity is partitioned spread. Conceptually, this takes the form
of multiple flaming fronts initially propagating from the same
ignition point but thereafter separating at their respective rates of
spread. Without considering the factors affecting fire spread that
were not covered in this study, it would be difficult to even
speculate how such separation would occur. The rate of spread is
strongly influenced by the surface area/volume ratio of the 1-h
fuel component. Using an average surface area/volume ratio
instead will generally decrease the resultant reaction intensity,
hence spread rate, substantially. We suggest that in cases where
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simulations are underestimating the rate of spread of a fire, one
can reduce the fuel models used to 1-h dead fuels exclusively,
which will more than likely increase the simulated spread rate as
a result of a higher reaction intensity. In effect, this isolates the
simulation to the dead fine fuel layer, keeping the other fuel
components in the background. More research is required to
flesh out concepts implicit to RIP not covered here.

We conclude with an assessment of research related to the
present study that is needed to advance its relevant science and
technology objectives. First and foremost is that the reaction
intensity functions originating with the Rothermel model and
modified by RIP both falsely assume that the total reaction
intensity of a mixed fuel bed is the sum of the component
reaction intensities. Instead, the fine fuel components provide
the initial source of heat energy, which the larger fuels use to
ignite in turn. This requires the model to have mechanisms that
describe interactions between fuel components that are concep-
tually and mathematically more complex. Albini ez al. (1995)
worked on this problem in both laboratory and field settings. The
laboratory experiments were similar to Rothermel’s (1972), but
fuel components of up to six different sizes were used that
encompassed all four dead fuel components. The approach in
effect partitioned the fuel bed. Their study concluded with
encouraging results but they cited model weaknesses that
required more work. This objective remains unfulfilled.

Since its debut, the Rothermel model has found roles that go
far beyond its initial purpose for fire danger rating. It now serves
in a highly complex coupled model framework, WRF-SFIRE,
that describes atmosphere—fire interactions to simulate weather
and fire feedback processes that locally affect each, and to
simulate the effects of both on air quality (Mandel et al. 2011;
Mandel et al. 2014). Recent large fires in the western US
generated smoke that degraded air quality in the skies of New
York and Washington, DC.> This can happen when the heat
energy from the fires injects smoke high enough in the atmo-
sphere that it is carried over long distances. This requires
knowledge of the time-dependent energy release over the entire
actively burning area, not just the fire front. WRF-SFIRE incor-
porated the previously mentioned model developed by Albini and
Reinhardt (1995), which they intended to determine burnout rates
in large woody fuels, but in their judgement was incomplete for
operational use at the time of the report. There is still a need for a
model that simulates heat production from large woody fuels,
whether to predict air quality effects that large fires have on
distant cities, or simply to improve fire danger assessments.

None of the work we report here is ready for operational use.
We cited quotes from those involved in the development of the
Rothermel model and the NFDRS that recognised the pitfalls
and weaknesses they faced. We believe some of their concerns
are still valid and hope that we have posed questions and
identified avenues of research on the reaction intensity function
that eventually lead to improvements in fire danger analysis and
prediction.
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