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ABSTRACT. We are concerned with geometric properties of transonic shocks as free boundaries in
two-dimensional self-similar coordinates for compressible fluid flows, which are not only important
for the understanding of geometric structure and stability of fluid motions in continuum mechanics
but also fundamental in the mathematical theory of multidimensional conservation laws. A tran-
sonic shock for the Euler equations for self-similar potential flow separates elliptic (subsonic) and
hyperbolic (supersonic) phases of the self-similar solution of the corresponding nonlinear partial dif-
ferential equation in a domain under consideration, in which the location of the transonic shock is
apriori unknown. We first develop a general framework under which self-similar transonic shocks,
as free boundaries, are proved to be uniformly convex, and then apply this framework to prove the
uniform convexity of transonic shocks in the two longstanding fundamental shock problems — the
shock reflection-diffraction by wedges and the Prandtl-Meyer reflection for supersonic flows past solid
ramps. To achieve this, our approach is to exploit underlying nonlocal properties of the solution and
the free boundary for the potential flow equation.

1. INTRODUCTION

We are concerned with geometric properties of transonic shocks as free boundaries in two-
dimensional self-similar coordinates for compressible fluid flows, which are not only important for
the understanding of geometric structure and stability of fluid motions in continuum mechanics but
also fundamental in the mathematical theory of multidimensional conservation laws. Mathemati-
cally, a transonic shock for the Euler equations for potential flow separates elliptic (subsonic) and
hyperbolic (supersonic) phases of the self-similar solution of the corresponding nonlinear partial
differential equation (PDE) in a domain under consideration, in which the location of the transonic
shock is apriori unknown. The Rankine-Hugoniot conditions on the shock, together with the non-
linear PDE in the elliptic and hyperbolic regions, provide the sufficient overdeterminancy for finding
the shock location. This enforces a restriction to the shock and yields its fine properties such as its
possible geometric shapes, which is the main theme of this paper. For this purpose, we formulate
the transonic shock problem as a one-phase free boundary problem for the nonlinear PDE in a
domain with a part of the boundary fixed, as illustrated in Fig. 2.1. More precisely, we first develop
a general framework under which self-similar transonic shock waves, as the free boundaries in the
one-phase problem, are proved to be uniformly convex, and then apply this framework to prove
the uniform convexity of transonic shocks in the two longstanding fundamental shock problems for
potential flow — the shock reflection-diffraction by wedges and the Prandtl-Meyer reflection for su-
personic flows past solid ramps. In particular, the convexity of transonic shocks is consistent with
the geometric configurations of shocks observed in physical experiments and numerical simulations;
see e.g. [4, 12, 30, 43], [21, 22, 31, 35, 39, 44], [27, 28, 29, 32, 45], and the references cited therein.
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Also see [10, 11, 34, 36, 37, 40, 42] for the geometric structure of numerical Riemann solutions
involving transonic shocks for the Euler equations for compressible fluids.

One of our key observations in this paper is that the convexity of transonic shocks is not a
local property. In fact, for the regular shock reflection-diffraction problem as described in §7.1, the
uniform convexity is a result of the interaction between the cornered wedge and the incident shock,
since the reflected shock remains flat when the wedge is a flat wall. Therefore, any local argument
is not sufficient to lead to a proof of the uniform convexity. In this paper, we develop a global
approach by exploiting some nonlocal properties of transonic shocks in self-similar coordinates and
employ it to prove that the transonic shocks must be convex. Our approach is based on two features
related to the global and nonlinear phenomena. One is that the convexity of transonic shocks is
closely related to the monotonicity properties of the solution, which is derived from the global
structure in the applications. These properties are also crucial in the proof of the existence of the
two shock problems in [3, 15]. The other is that the Rankine-Hugoniot conditions, combined with
the monotonicity properties, enforce the nonlocal dependence between the values of the velocity at
the points of the transonic shock, as well as the nonlocal dependence between the velocity and the
geometric shape of the shock. Moreover, for this problem, it seems to be difficult to apply directly
the methods as in [7, 8, 23], owing to the difference and more complicated structure of the boundary
conditions.

The convexity of shock waves is not only an important geometric property observed frequently in
physical experiments and numerical simulations, but also crucial in the analysis of multidimensional
shock waves. For example, the convexity property of transonic shocks plays an essential role in the
proof of the uniqueness and stability of shock waves with large curvature in [16]. Therefore, our
approach can be useful for other nonlinear problems involving transonic shocks, especially for the
problems that cannot be handled by the perturbation methods.

In particular, as an application of our general framework for the convexity of shocks, we prove
the uniform convexity of transonic shocks in the two longstanding fundamental shock problems.
The first is the problem of shock reflection-diffraction by concave cornered wedges as analyzed in
§7.1. It has been analyzed in Chen-Feldman [14, 15] and Bae-Chen-Feldman [1], in which von
Neumann’s sonic and detachment conjectures for the existence of regular shock reflection-diffraction
configurations have been solved all the way up to the detachment wedge-angle for potential flow.
The second is the Prandtl-Meyer reflection problem for supersonic flow past a solid ramp as analyzed
in §7.2. Elling-Liu [24] made a first rigorous analysis of the problem for which the steady supersonic
weak shock solution is a large-time asymptotic limit of an unsteady flow under certain assumptions
for an important class of wedge angles and potential fluids. Recently, in Bae-Chen-Feldman [2, 3],
the existence theorem for the general case all the way up to the detachment wedge-angle has been
established via new techniques based on those developed in Chen-Feldman [15]. For both problems,
we apply the general framework developed in this paper to prove the uniform convexity of the
transonic shocks involved.

The study of geometric properties of free boundaries, such as the convexity under consideration,
is fundamental in the mathematical theory of free boundary problems; see [7, 8, 23, 26, 41] and
the references cited therein. Furthermore, as mentioned earlier, the convexity of free boundaries
has played an essential role in the analysis of the uniqueness and stability of solutions of the free
boundary problems, as shown in [16].

The organization of this paper is as follows: In §2, we introduce the potential flow equation and
the Rankine-Hugoniot conditions on the shock, and set up a framework as a general free boundary
problem on which we focus in this paper, and then we present the main theorem for this free
boundary problem. In §3, we show some useful lemmas. Then we develop our approach to prove
first the strict convexity of the shock, i.e. Theorem 2.1 in §4, and to prove further the uniform
convexity of the shock on compact subsets of its relative interior, i.e. Theorem 2.3 in §5. In §6,
we establish the relation between the strict convexity of the transonic shock and the monotonicity
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properties of the solution, i.e. Theorem 2.2. Finally, in §7, we apply the main theorems to prove the
uniform convexity of transonic shocks in the two shock problems — the shock reflection-diffraction
by wedges and the Prandtl-Meyer reflection for supersonic flows past solid ramps.

A note regarding terminology for simplicity: Since our main concern is the convexity of the elliptic
(subsonic) region for which the transonic shock as a free boundary is a part of the boundary of the
region throughout this paper, we use the term — convexity — for the free boundary, even though it
corresponds to the concavity of the shock location function in a natural coordinate system. Moreover,
we use the term — uniform convezxity — for a transonic shock to represent that the transonic shock
is of non-vanishing curvature on any compact subset of its relative interior.

2. THE POTENTIAL FLOW EQUATION AND FREE BOUNDARY PROBLEMS

2.1. The potential flow equation. As in [1, 14], the Euler equations for potential flow consist of
the conservation law of mass for the density and the Bernoulli law for the velocity potential W:

Bip + Vi - (pVT) = 0, (2.1)
1
W + S|V ¥ +i(p) = By, (2:2)

where By is the Bernoulli constant determined by the incoming flow and/or boundary conditions,
x = (x1,72) € R?, and i(p) = flp @d’]’ for the pressure function p = p(p), and v = VV is the
velocity.

For polytropic gas, by scaling,

p’7 2 ¥ . IO’Y_1 -1
plp)="—, c(p)=p"", ilp)=—"
=2 ) (="
where ¢(p) is the sound speed.
If the initial-boundary value problem is invariant under the self-similar scaling:

for v > 1,

U
(x,t) = (ax,at), (p,¥) — (p, 5) for a # 0,
then we can seek self-similar solutions with the form:
1 X
p(x,t) = p(€), V(x,t)=t(p(&)+ §|€I2) for £ = (§1,62) = 7

where ¢ is called a pseudo-velocity potential that satisfies Dy := (¢¢,, ¢¢,) = v — &, which is called
a pseudo-velocity. The pseudo—potential function ¢ satisfies the following potential equation in
self—similar coordinates:

div(pDy) 4+ 2p = 0, (2.3)
where the density function p = p(|D¢|?, ¢) is determined by
- 1 1
p(IDel* 0) = (o5 = (v = (e + 51Del?) T, (2.4)

with constant pg > 0, and the divergence div and gradient D are with respect to the self-similar
variables €.

From (2.3)—(2.4), we see that the potential function ¢ is governed by the following potential flow
equation of second order:

div(p(|Del, ¢) Dg) + 2p(ID¢l, ) = 0. (2.5)
Equation (2.5) written in the non-divergence form is
(02 - 9021)905151 — 20, 06,0616, T (62 - <,0§2)<p§2§2 +20% - |D‘P|2 =0, (2.6)
where the sonic speed ¢ = ¢(|Dy|?, ¢, po) is determined by

B B B 1
A(1Dgl* 0.p0) = 711Dl 0,08 D =0 = (= D (51Del” + ). (2.7)
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Equation (2.5) is a second-order equation of mixed hyperbolic-elliptic type, as it can be seen from
(2.6): It is elliptic if and only if

|Dg| < (| Dgl?, ¢, po), (2.8)
which is equivalent to
2 1
D = ——(p 7 = (v—1 . 2.
|Dg| < ci(s po) \/7 1 (g —(v=Dyp) (2.9)

Moreover, from (2.6)-(2.7), equation (2.5) satisfies the Galilean invariance property: If p(§) is
a solution, then its shift p(& — &) for any constant vector & is also a solution. Furthermore,
©(&) + const. is a solution of (2.5) with adjusted constant pg correspondingly in (2.4).

One class of solutions of (2.5) is that of constant states that are the solutions with constant
velocity v = (u,v). This implies that the pseudo-potential of a constant state satisfies Do = v — &
so that

ol€) = —3JEl +v £+ C, (210)

where C' is a constant. For such ¢, the expressions in (2.4)—(2.7) imply that the density and sonic
speed are positive constants p and ¢, i.e. independent of £&. Then, from (2.8) and (2.10), the
ellipticity condition for the constant state is

€ —v| <ec.

Thus, for a constant state v, equation (2.5) is elliptic inside the sonic circle, with center v and
radius c.

2.2. Weak solutions and the Rankine-Hugoniot conditions. Since the problem involves tran-
sonic shocks, we define the notion of weak solutions of equation (2.5), which admits shocks. As in
[14], it is defined in the distributional sense.

Definition 2.1. A function ¢ € VV&)’;(Q) is called a weak solution of (2.5) if
() o0 = (r =D+ 3Dp) >0 ae. in;

(ii) (p(IDel?, ¢), p(ID@|?, ©)IDel) € (L}, ()%
(iii) For every ¢ € C*(Q),

/Q (P(1Dl%. 2) Do - DC — 2p(| D, 9)C) d€ = 0. (2.11)

A piecewise C%-solution ¢ in €, which is C? away from and C! up to the C'-shock curve S,
satisfies the conditions of Definition 2.1 if and only if it is a C?-solution of (2.5) in each subregion
and satisfies the following Rankine-Hugoniot conditions across the C'-shock curve S:

[o(| D%, ) Dy - v]s = 0, (2.12)
[pls =0, (2.13)

where the square bracket [ -]g denotes the jump across S, and v is the unit normal to S. Condition
(2.13) follows from the requirement: ¢ € VVZ}JCI(Q) for piecewise-smooth ¢, and condition (2.12) is
obtained from (2.11) via integration by parts and by using (2.13) and the piecewise-smoothness of
¢. Physically, condition (2.12) is owing to the conservation of mass across the shock, and (2.13) is
owing to the irrotationality.

It is well known that there are fairly many weak solutions to conservation laws (2.5). In order
to single out the physically relevant solutions, the entropy condition is required. A discontinuity
of Dy satisfying the Rankine-Hugoniot conditions (2.12)—(2.13) is called a shock if it satisfies the
following physical entropy condition:

The density function p increases across the discontinuity in the pseudo—flow direction.  (2.14)
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From (2.12), the entropy condition indicates that the normal derivative function ¢, on a shock
always decreases across the shock in the pseudo—flow direction. That is, when the pseudo—flow
direction is from state (0) to (1), p1 > po and Y1, < Pou-

2.3. General framework and free boundary problems. Now we develop a general framework
for the transonic shocks as free boundary problems, on which we will focus our analysis in this paper.
Asin Fig. 2.1, let Q be an open, bounded, and connected domain, and 92 = Iy U1 U9, where
the closed curve segment I'gock i a transonic shock that separates a pseudo-supersonic constant
state (0) outside € from a pseudo-subsonic (non-constant) state (1) inside 2, and I'y UTs is a fixed
boundary whose structure will be specified later. The dashed ball B, (Oy) is the sonic circle of state
(0) with center Og = (ug, vp) and radius ¢g. Note that T'gpock is outside of B, (Op) because the state
(0) is pseudo-supersonic on Iypocr. A and B are the end points of the free boundary T'gpock, while 74
and 7p are the tangential unit vectors pointing into the interior of I'ghock at A and B, respectively.

"By, 01) V7

FIGURE 2.1. Free boundary problems

Denote vg = (ug,vp). Then the pseudo-potential of constant state (0) with density py > 0 has
the form:

1
Po = *5("5 —vo)*. (2.15)
Let
¢ = ¢ — 0.
Then we see from (2.6) that ¢ = ¢ — g satisfies the following equation in
(62 - ‘Pgl)ﬁb&& - 29051 9052(;55152 + (02 - (pgz)qb&fz =0, (2'16)

where ¢ = ¢(|Dyp|?, ¢, po) is the sonic speed, determined by (2.7). Along the shock curve T'gpock that
separates the constant state (0) with pseudo-potential ¢y from the non-constant state ¢ in €, the
boundary conditions for ¢ are:

¢ =0, p(|Dd+ Dol ¢+ po)D(¢+ o) - v = poDy - v on Ishock, (2.17)

from the Rankine-Hugoniot conditions (2.12)—(2.13).

Now we state the main results of this paper. We first state the following structural framework
for domain 2 under consideration.

From now on, I'’ denotes the relative interior of a curve segment I'. In particular, thock is the
relative interior of I'gpock-

Framework (A) — The structural framework for domain Q:
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(i) Domain € is open, bounded, and connected. Its boundary 0f2 is a continuous closed curve,
piecewise C'* up to the endpoints of each smooth part for some a € (0,1), and the number
of smooth parts is finite.

(ii) At each corner point of 92, angle § between the arcs meeting at that point from the interior
of Q satisfies 6 € (0, 7).

(iii) 092 = Igpock U 't U Ty, where sets Igpoek, ['1, and 'y are connected and disjoint, and both
I‘ghock and I'; UTy are non-empty. Moreover, if T'; # () for some i € {1,2}, then its relative
interior is nonempty, i.e. IV # 0.

(iv) Tgnock includes its endpoints A and B. If T'; # (), then A is a common endpoint of I'gpock
and I'y. If T'y # (), then B is a common endpoint of Igoec and T's.

If 74 # £7p, define the cone:
Con:={rra+stp : r,s € (0,00)}.
Then we have

Theorem 2.1. Assume that domain §) satisfies Framework (A). Assume that ¢ € C*(Q)NC?(QU
I'Y% a) NC3(Q) is a solution of (2.16)—~(2.17), which is not a constant state in Q. Moreover, let ¢
satisfy the following conditions:

(A1) The entropy condition holds across Uspock: p(|D|?, ) > po and ¢, < 0 along Tgpock, where
v is the interior normal to Ughock, i.€. pointing into €2;

(A2) There exist constants C1 > 0 and aq € (0,1) such that [[¢]|,,,, g < Ci;
(A3) In QUTY, .. equation (2.16) is strictly elliptic: ¢* —|D(¢ + ¢o)|? > 0;
(A4) Tgnoak s C2 in its relative interior;

(A5) T4 # £71p, and {P + Con} NQ =0 for any point P € Tgpock;

(A6)

There exists a vector e € Con such that one of the following conditions holds:
(i) Ty # 0, and the directional derivative ¢e cannot have a local mazimum point on TU{ A}
and a local minimum point on TY,
(ii) Ty # 0, and ¢pe cannot have a local minimum point on T and a local maximum point
on TY U {B},
(iii) ¢e cannot have a local minimum point on I'y UTy,
where all the local mazimum or minimum points are relative to ).

Then the free boundary Tsnoex is a convex graph. That is, there exists a concave function f € C1%(R)
such that, in some orthonormal coordinate system (S,T) in R?,

Tshock = {(S,T): S=f(T), Ta<T <Tg}, QN{T4a<T <Tp}Cc{S<f(T)} (2.18)

with f € C*°((Ta,Tg)), and shock Tgpock is strictly convez in its relative interior in the sense that,
if P=(9,T) € TY 4 and f"(T) = 0, then there exists an integer k > 1, independent of the choice
of the coordinate system (S,T), such that

Ty =0 forn=2,...,2k—1, FE(T) < 0. (2.19)

The number of the points at which f”(T) =0 is at most finite on each compact subset of thock' In
particular, the free boundary Ishocc cannot contain any straight segment.

Remark 2.2. Conditions (A2) and (A5)—(AG6) of Theorem 2.1 are the requirements on the global
behavior of solutions. In fact, (A5) ensures that there is a coordinate system in which the shock is
a graph globally. Condition (A6) allows us to deal with three different kinds of boundary conditions.
Moreover, at each of the endpoints of Usnock, the ellipticity can be either uniform or degenerate.
Some applications to each case can be found in §7.
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Remark 2.3. The assumption that ¢ is not a constant state means that ¢ cannot be of the form:
¢ = a1 + (a2, a3) - §, where aj,j =1,2,3, are constants. In fact, this assumption can be guaranteed
by the boundary conditions assigned along I'y UT'y in the applications in §7.

In the next theorem, we show that, if assumptions (A1)-(A4) and (A6) hold, then a monotonicity
condition for ¢ near thock, which is slightly stronger than condition (A5), is the necessary and
sufficient condition for the strict convexity of shock I'ghock-

Theorem 2.2. Let Q and ¢ be as in Theorem 2.1 except condition (A5). Then the fact that the
free boundary Tgpock s a strictly convex graph in the sense of (2.18)—(2.19) in Theorem 2.1 is the
necessary and sufficient condition for the monotonicity property that ¢e > 0 on thock for any unit
vector e € Con, where thock is the relative interior of I'shock -

Remark 2.4. Let Q and ¢ be as in Theorem 2.2, including that the monotonicity property (or,
equivalently, the strict convezity of Tshock) holds. In addition, assume that, for any unit vector
e € Con and any point & in the fized boundary part T'y U, ¢e satisfies that either ¢pe(&€) > 0 or ¢e
cannot attain its local minimum at §. Then ¢e > 0 in QU thock for any unit vector e € Con.

The proof of Remark 2.4 is given after the proof of Theorem 2.2 in §6. Moreover, the assumptions
of Remark 2.4 can be justified for the two applications: the regular shock reflection problem and
the Prandtl reflection problem; see §7.

Furthermore, under some additional assumptions that are satisfied in the two applications, the
shock curve is uniformly convex in its relative interior in the sense defined in the following theorem:

Theorem 2.3. Let ) and ¢ be as in Theorem 2.1. Furthermore, assume that, for any unit vector
e € R?, the boundary part I'y UTy can be further decomposed so that
(A7) Th Uy = INSIRTOI Ufg, where some offl- may be empty, I; is connected foreachi=0,1,2,3,
and all curves T'; are located along 0X) in the order of their indices, i.e. mon-empty sets f‘j
and f‘k, k > j, have a common endpoint if and only if either k = 7+ 1 or T'; = 0 for all
i=7+1,...,k—1. Also, the non-empty set I with the smallest (resp. largest) index has the
common endpoint A (resp. B) with Tshock. Moreover, if I; # () for some i € {0,1,2,3}, then
its relative interior is nonempty: f? =+ ();
(A8) ¢ is constant along Ty and T's;
(A9) For i = 1,2, if ¢e attains its local minimum or mazimum relative to Q on f‘?, then ¢e 1is
constant along fi;
(A10) One of the following two conditions holds:
(i) Either Ty =0 or Ty = 0;
(ii) Both Iy and Iy are non-empty, and fg =, so that 'y has the common endpoint B with
Cshock- At point B, the following conditions hold:
o Ifvgy(B)-e <0, then ¢o cannot attain its local maximum relative to Q at B;
o Ifug(B)-e=0, then ¢e(B) = ¢pe(Q*) for the common endpoint Q* of Iy and Iy,
where vy (B) := limpghockSPﬁB v(P), which ezists since Tgpock 15 C1 up to B.
Then the shock function f(T) in (2.18) satisfies that f"(T) < 0 for all T € (Ta,Tg); that is, Ushock
18 uniformly convexr on closed subsets of its relative interior.

Remark 2.5. By (2.17) and condition (A1) of Theorem 2.1, it follows that ¢ < 0 in Q near I'shock-
Since Ugnock 1S the zero level set of ¢, then the following statements hold (see also Lemma 3.2(v)):
(i) The convezity of Dnock 5 equivalent to the fact that ¢+ > 0 on Igpock. Moreover, by (2.19),

if or+ =0 at some P € I'gock, then there exists an integer k > 1 such that
Mp=0 forn=2,...2k—1, 0Mp >0 atP, (2.20)
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where k is the same as in (2.19). In particular, this implies that k is independent of the choice
of the coordinate system (S,T) used in (2.18);

(ii) The conclusion of Theorem 2.3 is equivalent to the following: ¢+ > 0 along thock’ where
thock is the interior points of I'shock-

Remark 2.6. If the conclusion of Theorem 2.3 holds, then the curvature of Ushock:
f'(T)
3/2
(1+ (7))

has a positive lower bound on any closed subset of (T'4,TR).

Remark 2.7. The definition of fo and fg 18 motivated by the observation that ¢e is constant along
the somic arcs in the two shock problems; see the applications in §7 for more details.

Remark 2.8. We can simplify (2.15) as follows: By the Galilean invariance of the potential flow
equation (2.16) (i.e. invariance with respect to the shift of coordinates), we assume without loss
of generality that vo = (0,0); indeed, this can be achieved by introducing the new coordinates &' =
(&1 — uo, &2 — vo). Furthermore, we choose constant pg in (2.4) to be the density of state (0). Then
the pseudo-potential of state (0) is

1
oo = —5€P (221)
We will use this form in the proof of the main theorems.

Remark 2.9. Rewrite the condition: ¢, <0 in (Al) as Dy -v < Dgq - v. Then, replacing ¢ + ¢o
by ¢ in the second equality in (2.17) and using that p > po by (A1) for py > 0, we have

DQOO v > D‘P v>0 on Ushock- (222)

The theorems stated above are proved in §3-86. In §3, we first prove some general properties of
the free boundary I'gpock, and then derive some additional properties from the assumptions in the
theorems. In §4-86, we employ all of these properties to prove Theorems 2.1-2.3. Specifically, we
prove Theorem 2.1 in §4, Theorem 2.3 in §5, and Theorem 2.2 in §6. Then, in §7, we apply the
general framework to show the convexity results for the two shock problems: the shock reflection-
diffraction problem and the Prandtl reflection problem. In the appendix, we construct paths in 2
satisfying certain properties — these paths are used in the proof of the main results.

3. BASIC PROPERTIES OF SOLUTIONS

In this section, we list several lemmas for the solutions of the self-similar potential flow equation
(2.16), which will be used in the subsequent development. Some of them have been proved in Chen-
Feldman [15] for a specific geometric situation for the shock reflection-diffraction problem. Here we
list these facts under the general conditions of Theorem 2.1, and present them in the form convenient
for the use in the general situation considered here. For many of them, the proofs are similar to the
arguments in [15], in which cases we omit or sketch them only below for the sake of brevity.

3.1. Additional properties from (A1)—(A5). Let ¢ € C(Q)NC%(QUIY  ,)NC3() be a solution
of (2.16)—(2.17). In this subsection, we use the results of Lemma 3.3 to show some properties as
the consequences of conditions (A1)—(A5) of Theorem 2.1. First, for a given unit constant vector
e € R?, we derive the equation and the boundary conditions for ¢e.

Let e be the unit vector orthogonal to e, and let (S,T) be the coordinates with basis {e, e*}.
Then equation (2.16) in the (.S, T)—coordinates is

(c* = @§)dss — 2psprdst + (¢* — T)érr = 0. (3.1)
Differentiating (3.1) with respect to S and using the Bernoulli law:
Osc” = —(v = 1)(psdss + prost);
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we obtain the equation for w = 0g¢ = Oe¢:

(2 — p2)wss — 2pspTwst + (¢ — o7 )wrr + (9s(? — %) — (v — Vpsorr)ws

— (20s(ser) — 201¢rT + (v — V)ordrr)wr = 0. (3.2)
Since the coefficients of the second order terms of (3.2) are the same as the ones of (3.1), we find that

(3.2) is strictly elliptic in Q UT? - Using the regularity of ¢ above, we find that the coefficients of

shoc
(3.2) are continuous on QUTY, . Thus, (3.2) is uniformly elliptic on compact subsets of QUTY, .

For the boundary conditions along I'ghock, We first have
¢»=0 along I'shock-

Thus, the unit normal v and the tangent vector 7 of I'gpoc are

D¢ (_8€2¢> afld))
v=1\V,)= 157 T=\TL,T2)= —"Hho
0122 = g 7172 = Dyl
Notice that, from the entropy condition, we have
D¢ 7& 07 P > Po on I‘shocka

so that (3.3) is well defined. Since (V’D(ﬁ‘)gl = D?¢peg, and (V|D(b’)52 = D?%¢pey,,

(3.3)

vy =D%pT.

Taking the tangential derivative of the second equality in (2.17) along Iy and using (3.3), we
have

(—0e,¢ Og, + 0,6 0g,) ((pDyp — poDpo) - Dp) =0 on Tsnock-
From this, after a careful calculation by using equation (2.16) (see [15, Sect. 5.1.3] for details), we
have

D2¢[T, h] =0 on FShOCk) (34)
where D?¢[a, b] := Z?,j:l a;bj0;;¢ and
P —Po
h = =25 (0 = @D)eur = (pey + poc)prT). (3.5)

Using (2.22) and conditions (A1) and (A3) of Theorem 2.1, we obtain from (3.5) that

h-v= —”p;c’;op(c? —0l)py <0 along T (3.6)

Based on equation (3.2) and the boundary condition (3.4), we have the following lemma.

Lemma 3.1. Let Q be an open domain with piecewise C' boundary, and let Tghock C 00 be C? in
its relative interior. Let ¢ € C2(QUTY )N C3(Q) be a solution of (2.16) in Q and satisfy (2.17)
on Tghock, and let ¢ be not a constant state in Q. Assume also that ¢ satisfies conditions (A1)—(A3)
of Theorem 2.1. For a fized unit vector e € R? with v -e < 0, if a local minimum or maximum of
w: = O in Q is attained at P € TY ., then ¢rr > 0 or ¢rr < 0, respectively, where v denotes
the interior unit normal on Isyoqc to €.

Proof. First, we note that the proof of [15, Lemma 8.2.4] applies in the present case so that the
conclusion of this lemma holds:

h(P) = ke at P for some k € R.

Since v - e < 0, we follow the proof of [15, Lemma 8.2.15] to obtain that k£ > 0 and

62

 kppu(c? — 92)
Thus, by ellipticity and (2.22), ¢ has the same sign as w,. Also, w satisfies equation (3.2), which
is strictly elliptic in € Urghock' Then, from Hopf’s lemma, w, (P) < 0 if w attains its local maximum

(PPer(c® — |Do|*) + pic®2) ¢rr  at P.

Wy
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at P, while w, (P) > 0 if w attains its local minimum at P. Then ¢-(P) < 0 if w attains its local
maximum at P, while ¢, (P) > 0 if w attains its local minimum at P. O

Next we consider the geometric shape of I'ghoc under the conditions listed in Theorem 2.1.

Lemma 3.2. Let Q be an open domain with piecewise C* boundary, and let Tghoax C OQ be C? in
its relative interior. Let ¢ € C(Q)NC*(QUTY ) NC3(Q) be a solution of (2.16)—~(2.17). Assume
also that conditions (A1)—(Ab) of Theorem 2.1 are satisfied. For a unit vector e € Con, which is
defined in Theorem 2.1(A5), let e+ be the orthogonal unit vector to e with e* - 14 > 0. Let (S,T)
be the coordinates with respect to basis {e,e*}, and let (Sp, Tp) be the coordinates of point P in the
(S, T)-coordinates. Note that Tg > Ty since e - T4 > 0. Then there exists fo € C1*(R) such that
(i) Tshock = {S = fe(T) : Ta < T < T}, QC{S < fe(T) : T € R}, A = (fe(Ta),Tn),
B = (fe(TB),Tp), and f € C*((Ta,Tp));
(ii) The directions of the tangent lines to Dgnocx lie between T4 and Tpg; that is, in the (S,T)-

coordinates,
Tp-€ TA-€
—0 < TR - el = fé(TB) < f(/e(T) < fé(TA) = TAiel < 0 fOT any T € (TA,TB);

(iii) v(P)-e <0 for any P € Tgpock;
(iv) ¢e > 0 on Tghock;
(v) For any T € (Ta,TR),
¢rr(fe(T),T) <0 = fI(T)>0,
while
¢rr(fe(T),T) >0 = fI(T)<0.
Proof. First, by the first condition in (2.17) and the entropy condition (A1),

=0, ¢,<0 on Ighock- (3.7)
From this, we have the following two facts:
(a) ng 7& (07 O) on 1—‘Shock;
(b) Combining (3.7) with assumption (A5), D¢ -e > 0 on Iyyocx for each e € Con.
Using facts (a)-(b) and recalling that C'on denotes the open cone, we conclude that D¢ - e > 0 on
[shock for any e € Con. Then the implicit function theorem ensures the existence of fe such that
property (i) holds.
For property (ii), from the definition that e* - 74 > 0 and the fact that {P + Con} N Q = 0, we
find that, in the (S, T")—coordinates, for any given T € (T4, Tp) and small 7 > 0,

TA-€ TR €
Foll) # TS 2 T4 7) 2 o) + 25
From this, noting that fL(T4) = 1_’:‘7_'6‘1 and the similar expression for f.(Tp) follow from the
definition of f., we obtain (ii).
; — _(fe(M),—1) _ _(LF(Ta)) _ __(Lf(Tr))
Next we show (iii). From (i), v = TR TA T e and Tp = S

Since e € Con, then e = s1(1, fo(T4)) — s2(1, fL(Tp)) for some s1,s9 > 0. Also, the condition that
T4 # —7p in (Ab) implies that fL(T4) # fL(Tg). Then

1 !/ / !/ !/
= ($51([e(T) = fe(Ta)) + s52(fe(TB) — [e(T))) <0,
i ) Th) 2 lT) — £(T)
where we have used (ii) and the fact that fL(T4) # fL(Tg) to obtain the last inequality. Now (iii)
is proved.
To show property (iv), we notice that, along Ighoek, ¢ = 0, ¢ < 0 by assumption (Al) of
Theorem 2.1, and v - e < 0 by (iii). Therefore, ¢ = (v - €)@, > 0, which is (iv).
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Finally, property (v) follows from the boundary conditions along I'ghock. More precisely, in the
(S, T)—coordinates, differentiating twice with respect to T in the equation: ¢(fe(7),T) = 0, and
using that ¢, = 0 and ¢e # 0 along Ik by property (iv), we have

s(py_  D*ID 6. D o  $26rr
(¢e)? X
Now property (v) directly follows from (3.8) and properties (iii)—(iv). This completes the proof. [

(fe(T)aT) =

(fo(T).T). (3.8)

In order to show Lemma 3.4 below, we first note the following property of solutions of the potential
flow equation:

Lemma 3.3 ([15], Lemma 6.1.4). Let Q C R? be open, and let Q be divided by a smooth curve S into
two open subdomains QF and Q~. Let o € C%1(Q) be a weak solution in Q as defined in Definition
2.1 such that p € C2(QF)NCYQTUS). Denote oF := @‘Qi. Suppose that @ is a constant state in
Q™ with density p— and sonic speed c_, that is,

(6) = el +v_ £+ A,

where v_ is a constant vector and A~ is a constant. Let P, € S, for k = 1,2, be such that
(1) o~ is supersonic at Py: |Dyp~| > c_ = c(|Dyp~ |2, 07, po) at Py;
(ii) Dy~ -v > D" -v >0 at Py, where v is the unit normal vector to S oriented from Q™ to
Qt;
(iii) For the tangential line Lp, to S at Py, k =1,2, Lp, is parallel to Lp, with v(P) = v(P);

(iv) d(P1) > d(P»), where d(Py) is the distance between line Lp, and center O~ = v_ of the
sonic circle of state ¢~ for each k =1,2.

Then
(bj/_(Pl) < ¢i_(P2)v
where ¢T(€) = %’5’2 + " (8).

Now we prove a technical fact used in the main argument of the paper.

Lemma 3.4. Let Q, T'ghock, and ¢ be as in Lemma 3.2. For the unit vector e € Con, let (S,T) be
the coordinates defined in Lemma 3.2, and let fo be the function from Lemma 3.2(i). Assume that,
for two different points P = (T, fo(T)) and Py = (T, fe(T1)) on Usnock,

fo(T) > fo(T1) + f(TNT —T1),  fo(T) = fo(T1).
Then

(i) d(P) := dist(Og, Lp) > dist(Og, Lp,) =: d(Py), where Oq is the center of sonic circle of state
(0), and Lp and Lp, are the tangent lines of Ishock at P and Py, respectively.

(i) ¢e(P) > de(1).
Proof. First, since fJ(T) = fL(T1), denote v := v(P) = v(P;) and 7 := 7(P) = 7(P1). In addition,
d(P) = dist(Oyp, Lp) = POy - v, d(Py) = dist(Ogp, Lp,) = P1Og - v.
Therefore, it suffices to find the expression of vector POy in terms of vector P;Og.

From the definition of the (.S, 7)—coordinates and the shock function fe in the previous lemmas,
we have

(T, fe(T)) = (T1, fe(T1)) + (fe(T) - fe<T1>)e + (T - Tl)ej_a
so that

(T, fe(T)) = (T, fo(T1)) + (fo(T) = fo(T1) = fo(T1)(T = Th))e + (T = Ta) (e* + fo(T1)e).
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Since (e* + f4(T1)e) - v =0,

POy -v = (09— (T, fe(T))) v =POg-v — (fe(T) = fo(T1) — fo(T1)(T — T1))e - v.
From Lemma 3.2(iii) and the fact that fe(T) > fe(Th)+ fL(T1)(T —T1), we conclude that POgy-v >
P10g - v. This implies
d(P) = diSt(Oo, Lp) > diSt(Oo, Lpl) = d(Pl)
Thus (i) is proved.
Now we prove (ii). By (i) and Lemma 3.3,

Qbu(P) < ¢V(P1)-
Also, 0r¢ = 0 on I'ypock by the first condition in (2.17). Thus, 0r¢(P) = d-¢(P1) = 0. Then, using
e v < 0, we obtain
D¢(P)-e=0,0(P)v-e>0,¢(P1)v-e=Do(P) - e,
which is (ii). O
3.2. Real analyticity of the shock and related properties. In this subsection, we show that

the shock F(S)hock is real analytic and ¢ is real analytic in Q2 U thock. To see that, we note that the

free boundary problem (2.5) and (2.12)—(2.13) can be written in terms of ¢ = ¢ — o with v = %

in the form:

N(D?*¢, D¢, $,€) =0 in @, (3.9)
M(D¢7 ¢a E) =0 on Fshock7 (310)
¢ =0 on Fshock7 (311)
where, for (r,p, z,£) € $2%2 x R? x R x Q with S$?*2 as the set of symmetric 2 x 2 matrices,
N(r,p,z,€) = (¢ — (p1 — &1)*)r11 — 2(p1 — &)(p2 — &)1z + (¢® — (P2 — &2)?) 22, (3.12)
M(p,2,8) = (p(p, 2,€) (b + Do) = poDivo) (3.13)
with

Apz€)=p  —(r-D(z-&p+ %!p\Q), p(p,2,€) = c(p, 2, €)7 1.

Equation (3.9) is quasilinear, so that its ellipticity depends only on (p, z,£). By assumption, the
equation is strictly elliptic on solution ¢, i.e. for (p, z,€&) = (D¢(P), ¢(P), P) for all P € QUTY .
Furthermore, it is easy to check by an explicit calculation that the ellipticity of the equation and
the fact that v = % on I'Y, . imply the obliqueness of the boundary condition (3.10) on T'Y
for solution ¢:
DM (D¢, ¢, &) -v >0 on 'Y .

Moreover, from the explicit expressions, N(r,p, z, ) is real analytic on S22 x R? x R x Q, and
M(p, z,&) is real analytic on

{(p,2,€) : pg_l—(v—l)(z—ﬁ‘er%!p\Z) > 0}.

Since g is pseudo-supersonic, ¢ is pseudo-subsonic on Iyyock, and conditions (2.12)—(2.13) hold,
then

p(D¢7 ¢:£) > pPo for all E € I‘ShOCka

so that

- 1 -
Y 1—(7—1)(z—£-p+§\p!2)>p3 !
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for all (p, z,&) = (D@(E), #(&), &) with € € Tgpock. That is, M (p, z, &) is real analytic in an open set

containing (p, z,£) = (D¢(§), ¢(£), &) for all £ € T'ghock-
Then, by Theorem 2 in Kinderlehrer-Nirenberg [33], we have the following lemma:

Lemma 3.5. Let ), Ishock, and ¢ be as in Lemma 3.2. Then thock 1s real analytic in its relative
interior; in particular, fe is real analytic on (T4, Tg) for any e € Con. Moreover, ¢ is real analytic
i 0 up to shock thock'

We remark here that the assertion on the analyticity of the solution up to the free boundary is
not listed in the formulation of Theorem 2 in [33], but is shown in its proof indeed.

Now we show the following fact that will be repeatedly used for subsequent development.

Lemma 3.6. Let 2, Ighock, and ¢ be as in Lemma 3.2. Assume that ¢ is not a constant state in
Q. Let e € Con, and let Ta,Tp, and fe be from Lemma 3.2(1). Then, for any Tp € (Ta,Tg), there

exists an integer k > 2 such that fék) (Tp) # 0.

Proof. In this proof, we use equation (3.4) in the (S, T')—coordinates with basis {v, 7} = {v(P), 7(P)}
(constant vectors).

We argue by a contradiction. Assume that P = (fe(Tp),Tp) € thock is such that fél) (Tp) =0
for all ¢ > 1. From (3.8) and its derivatives with respect to T', we use assumption (A1) of Theorem
2.1 to obtain

OLp(P) =0 for all i > 1.

Writing (3.4) in the coordinates with the basis of the normal vector v and tangent vector T on
Cshock at P, and writing vector h given in (3.5) as h = hy,v + hyT, we have

hrrr + hydyr =0 at P, (3.14)

From (3.6), h, = h-v < 0 at P so that ¢-r = 0 implies that ¢, = 0. Now, from equation (3.1)
and assumption (A3) of Theorem 2.1, we obtain that ¢,, = 0, so that

Grr = Qur = P =0 at P. (315)

Continuing inductively with respect to order k of differentiation, we fix k¥ > 2, and assume that
Di¢p(P) =0, for j =2,...,k— 1. With this, taking the (k — 1)-th tangential derivative of (3.4), we
obtain

hrOF¢ + h, 0810, =0 at P.
Thus, from 0k¢(P) = 0, we have
19,0 =0 at P.

Then, using the 94 2-derivative of equation (3.1), we obtain that 95-292¢(P) = 0. Furthermore,
using the 94 3dg-derivative of equation (3.1), we see that X 393¢(P) = 0, etc. Thus, we obtain
that all the derivatives of ¢ of order two and higher are zero at P. Now, from the analyticity of ¢
up to F(S)hock 5> P, we conclude that ¢ is linear in the whole domain €2, which is a contradiction to
the condition of Theorem 2.1 that ¢ is not a constant state. 0

3.3. Minimal and maximal chains: Existence and properties. In this subsection, we assume
that Q C R? is open, bounded, and connected, and that 9 is a continuous curve, piecewise C1'* up
to the endpoints of each smooth part and has a finite number of smooth parts. Moreover, at each
corner point of 02, angle 6 between the arcs meeting at that point from the interior of €2 satisfies
0 € (0,7). Note that Theorem 2.1 requires all these conditions.

Let ¢ € C(Q)NC2(QUTY ) NC3(2) be a solution of equation (2.16) in £ satisfying conditions
(A2)-(A3) of Theorem 2.1. Let e € R? be a unit vector.
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Definition 3.7. Let Eq, Ey € 0). We say that points E1 and Es are connected by a minimal (resp.

mazximal) chain with radius r if there exist v > 0, integer k1 > 1, and a chain of balls {BT(C’i)}f;O

such that

(a) CO=FEy, C*M = Ey, and C* € Q fori=0,...,ky;

(b) O e B.(CHYNQ fori=0,...,k —1;

(C) ¢e(0i+1) = minmqbe < ¢e(cl) (resp. ¢e(ci+1) = maxm¢e > Cbe(cz)) for i =
0, ey k?l - 1;

(d) ¢e(0k1) = minm Pe (resp. ¢e(0k1) = maxm¢e)'

For such a chain, we also use the following terminology: The chain starts at E1 and ends at Eo, or

the chain is from E1 to Fs.

Remark 3.8. This definition does not rule out the possibility that B,(C*)NOQ # B, or even C* € 052,
for some or alli=0,... k — 1.

Remark 3.9. Radius r is a parameter in the definition of minimal or maximal chains. We do not
fix v at this point. In the proof of Theorems 2.1-2.3, the radii will be determined for various chains
i such a way that Lemmas 3.14-3.18 below can be applied.

We now consider the minimal and maximal chains for ¢e in 2. In the results of these subsections,
all the constants depend on the parameters in the conditions listed above, i.e. the C»®-norm of
the smooth parts of 982, the angles at the corner points, and HqﬁHCl,a@), in addition to the further
parameters listed in the statements.

We first show that the chains with sufficiently small radius are connected sets.

Lemma 3.10. There exists v* > 0, depending only on the C’l’o‘fgorms of the smooth parts of OS2
and angles 0 € (0,7) in the corner points, such that, for any E € Q and r € (0,r*],

(i) Br(E)NQ is connected;

(ii) For any G € B,(E)NQ, B.(E)N B:(G) N is nonempty.
Proof. We only sketch the argument, since the details are standard.

We first prove (i). Denote Q, := (—Lr,Lr) x (—r,r). The conditions on 92 imply that there
exist L, N > 4 such that, for any sufficiently small r > 0, the following holds:

(a) If P € 0N has the distance at least Nr from the corner points of 9f2, then, in some orthonormal
coordinate system in R? with the origin at P,

QNQa ={(s,t) €Qar : s>g(t)}, IVNQ2 ={(s,t) € Qa2 : s=g(t)} (3.16)
for some g € CH%(R) with g(0) = ¢/(0) = 0;

(b) If P € 09 is a corner point, then, in some orthonormal coordinate system in R? with the origin
at P,

QN Qunr = {(S,t) € Qunr @ 8> max(gl(t),gg(t))},

(3.17)
00N Qanr = {(5,1) € Quny : s =max(g1(t), g2(t))}
for some g7 and g9 satisfying
g1,92 € Cl,a(R)7 gl(o) = 92(0) = 07 gi(O) < 07 gé(O) > 07 (3 18)

g1(t) > g2(t) for t <0, g1(t) < ga(t) for t > 0.

Note that, in order to obtain (3.17)—(3.18), we use the conditions that angle 6 at P satisfies
6 € (0,m).
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Let E € Q. Without loss of generality, we assume that dist(F,9Q) < r; otherwise, (i) already
holds.

The first case is that the distance from F to the corner points is at least 2Nr. Then, denoting
by P the nearest point on 0f2 to E, it follows that P satisfies the condition for Case (a) above, so
that P is the unique nearest point on Jf2 to E, and E = (s*,0) with s* € [0,7) in the coordinate
system described in (a) above. Then, denoting f*(t) := s* & /72 — 2 on [—7,7], and using that
|’ (t)] < Ct* and |g(t)] < Ct1** on [—r,r] for C' depending on the C**norm of the smooth parts
of 99, we obtain that, if r is small, there exist t* € (%7, 7] and t~ € [—r, —1%7“) such that

10
ff>g on (t,th), fr<g on[-rr]\[t,t"], (3.19)
where the last set is empty if t* = 7, and
QN B.(E) ={(s,t) : max(f~(t),g9(t)) <s< fT(t), t~ <t<t'} (3.20)

which is a connected set, by the first inequality in (3.19) and the fact that f~ < f* in (=7, 7).

In the other case, when the distance from E to the corner points is smaller than 2/Nr, we argue
similarly by using the coordinates described in Case (b) above, related to the corner point P that
is the nearest to E. The existence of such a coordinate system and the fact that dist(E, P) < 2Nr
also imply that the nearest corner P is unique for E. Then, in these coordinates,

E = (s*,#*) € 0N Qanr.

Let
QF) = (s> ¢® (1), teR}, TW.={s=g¢®), teR} for k=1,2.
Then, by (3.17),
QN Qunr = QW N O N Quns. (3.21)
If r is sufficiently small, we deduce from (3.18) that there exists A € (0,1) such that
1 1
TS SN A<gb) < g for all t € (—4Nr,4NT). (3.22)

Let P%) = (s() ¢()) be the nearest point to E on T'*). Then P%*) e I'*) N Qqp,-.
Assume that dist(E,T'M) < r. Then E € B,(PW). Using (3.22), ¢;(t™")) < 0. Then, reducing r
depending on the C® norm of gy, rotating the coordinate system (s,t) by angle arctan(|g} ("))

clockwise, and shifting the origin into P, we conclude that, in the resulting coordinate system
(5,T),

QO NQ, ={(5T) €@ : S>G(T)}, TWNQ,={(5,T)€Q, : S=G(T)},

for some G € CH*(R) with G(0) = G’(0) = 0, which is similar to (3.16). Then, arguing as in
Case (a), we obtain an expression similar to (3.20) for Q) N B,(E) in the (S, T)coordinates.
Changing back to the (s,t)—coordinates and possibly further reducing r depending on A, we obtain
the existence of ¢t~ € [t* — r,t*) such that

ff>g on (t,t*"+7), fr<g on[tr —rt*+7]\ [t ,t" +7], (3.23)
where the last set is empty if t~ = t* — r, and
QW N B.(E) = {(s,t) : max(f~(t),g1(t)) < s < fT(t), t~ <t <t 47}, (3.24)

where f*(t) := s* ++/r2 — (t — t*)2 on [t* —r,t*+r]. Note that (3.24) also holds if dist(E, T(M) > 7
Indeed, in this case, Q) N B,.(E) = B,(E) and g1(t)) < f~(t) on [t* —r,t* 4 7], so that (3.24) holds
with t7 =¢* —r.

By a similar argument, we show the existence of ¢t € (t*,¢* + r| such that

fT>go on (t* —r,th), [T <go on[t* —rt* +r]\ [t* —rt], (3.25)
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where the last set is empty if tT = t* +r, and

QP N B.(E) = {(s,t) : max(f~(t),g2(t)) <s < fr(t), t* —r <t <tt}. (3.26)
From (3.21), (3.24), and (3.26), we obtain
QN B.(E) ={(s,t) : max(f~(t),q1(t),q2(t)) <s < fT(t), t <t <tt}, (3.27)

which is a connected set, by the first inequalities in (3.23) and (3.25) and the fact that f~ < f* in
(t* —r,t* + 7).
Now we prove assertion (ii). We can assume that G € B,(E) N 0€; otherwise, (ii) already holds.

Then we again consider two cases, as above, and use expressions (3.20) and (3.27) to conclude the
proof. O

Remark 3.11. The condition that the interior angles 6 at the corner points of OS2 satisfy 0 € (0,7)
is necessary for Lemma 3.10. Indeed, let 0 € (mw,2m) at some corner Q € 0. For simplicity,
consider first the case when 02 N Bsr(Q) consists of two straight lines intersecting at Q for some
R > 0. Then it is easy to see that, for any E € 0 with d := dist(E, Q) € (0, R], B,(E) N Q is not
connected for all v € (dsin(2w — 0), d). With the assumption that O is piecewise CH up to the
corner points (without assumption that 0 N Bsr(Q) is piecewise-linear), the same is true for all

r € (dy,d) for some dy € (dsin(2w — 6),d) if d is sufficiently small.
Lemma 3.12. There exists r* > 0 such that any chain in Definition 3.7 with r € (0,7*) satisfies
(1) Uf;o (B, (C")YNQ) is connected;
(ii) There exists a continuous curve S with endpoints C° and C*' such that
SCc UL, (BA(CHNQ), dist(S,,09) >0 for all T > 0,

where S, =S\ (B,(C°) U B,(C*')), and S denotes the open curve that does not include the
endpoints. More precisely, S = ¢([0,1]), where g € C([0,1];R?) and is locally Lipschitz on
(0,1) with g(0) = C°, g(1) = C*, and g(t) € UM, (B(C)NQ) for allt € (0,1).

Proof. We use 7* in Lemma 3.10. We prove (i) by induction: We first note that B.(C') N is
connected by Lemma 3.10(i). Suppose that, for m € {1,2,..., k1 — 1}, A, = UL (B,(C") N Q) is
connected. We note that A,, has a nonempty intersection with B,(C™*!) N Q by Definition 3.7(b)
and Lemma 3.10(ii). Also, B,(C™+')NQ is a connected set. Then it follows that U} (B(CHNQ)
is connected. This proves (i).

Assertion (ii) with reduced r* follows from Lemmas A.1 and A.3. O

Remark 3.13. Lemma 3.12(ii) implies that S° lies in the interior of (.

Now we show the existence of minimal (resp. maximal) chains. We use r* from Lemma 3.12 from
NOW On.

Lemma 3.14. If Ey € 99 and is not a local minimum point (resp. mazximum point) of ¢e with
respect to Q, then, for any r € (0,r*), there exists a minimal (resp. mazimal) chain {Gi}fio for
de of radius T in the sense of Definition 3.7, starting at Ey, i.e. G° = E,. Moreover, GF' € 9Q
is a local minimum (resp. mazimum) point of e with respect to Q, and ¢pe(G*') < ¢o(E1) (resp.

¢e(le) > ¢e(E1))

Proof. We discuss only the case of the minimal chain, since the case of the maximal chain can be
considered similarly. Thus, F4 is not a local minimum point of ¢ with respect to €.

Let G = Ey. Choose Gt to be the point such that the minimum of w = ¢e in B.(G*) N Q
is attained at G**1, provided that w(G*1) < w(G?); otherwise (i.e. if the minimum of w = ¢, in
B, (G) N Q is attained at G itself), the process ends and we set ki := 1.
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In order to show that {G"}f’lo is a minimal chain for r € (0,7*), it suffices to show that G*1 € 9%
and that k; is positive and finite. These can be seen as follows:

(i) Since G = Ej is not a local minimum point relative to €, it follows that G! # G° so that
k1 > 1 and ¢e(G?) < ¢o(G1).

(ii) There is only a finite number of {G’}. Indeed, on the contrary, since domain €2 is bounded,
there exists a subsequence {G*™} such that G*» — C as m — oo, where C'is a point lying in Q.
Thus, for any € < r, there is a large number N such that, for any j, m > N, dist{G%, G'"} < e.
On the other hand, by construction, for any j < i — 1, G* cannot lie in the ball centering at
G7 with radius 7 so that dist{G?, G/} > r for any j < i — 1. This is a contradiction.

(iii) G*1 € 99. Otherwise, G € Q is an interior local minimum point of ¢, which contradicts the
strong maximum principle, since ¢, satisfies equation (3.2) that is strictly elliptic in 2, and ¢e
is not constant in {2 by the assumption that ¢ is not a uniform state.

Therefore, {GZ 1, is a minimal chain with GF1 € 9. Also, from the construction, G*! is a local
minimum point of w with respect to Q with w(G*) < w(Ey). O

Lemma 3.15. For any § > 0, there exists r{ € (0,r*] such that the following holds: Let C C 0

be connected, let E1 and Eo be the endpoints of C, let there be a minimal chain {E’}f;o of radius
r1 € (0,77 which starts at Ey and ends at E2, and let there be Hy € C* = C\ {FE1, E2} such that

¢e(H1) > ¢e(E1) + 6.

Then, for any ro € (0,71], any mazimal chain {HJ 2o of radius ro starting from Hi satisfies

H*2 ¢ C°, where C° denotes the relative interior of curve C as before.
Proof. Using the bound: |¢[,,,, g < C by condition (A2) of Theorem 2.1, we can find a radius
€ (0,7*] small enough such that
1) —
oscp *(P)mmﬁe < 1 for all P € Q.

We fix this 7 and assume that the minimal chain {E*}¥! from Ej to Ej is of radius r; € (0, rl]

Recall that, from Definition 3.7 for the minimal and maxunal chains, ¢o(E1) > ¢e(E?) for i =
k1, and ¢e(H1) < ¢pe(H?) for j =1,...,ko. Then, for each i =0,..., k1, and j = 0,...,k2,

1) ) ) 0 )
min = ¢ > ¢e(H9) - = > ¢e(H1) — = > de(En) + > (ﬁe(E’) +—=> max ¢e+ —,
By (H7)NQ 2 By B, (EH)NQ 4
where we have used that By = E°, H; = H°, and 0 < r; < r]. Then
B, (H)YNQN B (EH)YNQ=10 for each i =0,...,k;, and j =0,..., ko. (3.28)

From this, .
B, (H)NQCQ\A for each j=1,..., ko,
where A := U™ B, (E) N Q.

Since B,, (H')NQ is a connected set, then one of connected components of set Q \ A contains
B, (H') N Q. We denote this component by Kj. Since Q2 is a connected set, then it follows from
(3.28) and Lemma 3.12(i) applied to chain {H7} that

U2 o Bry (H)) NQ C K.

Thus, H* € 0K, N 0N. It remains to show that K7 N O lies within C.

Notice that H; € 0K7 NC so that 0K; ne # (. Also, K; is a connected set with K1 N A = (.
From Lemma 3.12(ii) applied to chain {E"}, we obtain the existence of a continuous curve & C A
connecting F to Fy with the properties listed in Lemma 3.12(ii). Combining these properties and
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noting Remark 3.13, we see that K; C €y, where € is the open region bounded by curves S and
C. Notice that Q; C Q. Thus, 0K N 0N lies within 9Q; N 9 = C, which implies that H*? € C.
Moreover, the definition of minimal and maximal chains and our assumptions in this lemma imply

¢e(Hk2) > ¢e(H1) > ¢e(E1) > ¢e(E2)-
Thus, H*2 € C°. O

Remark 3.16. In Lemma 3.15, we have not discussed the existence of the maximal chain {Hj}fio

of radius ro starting from Hy. If Hy is not a local maximum point of ¢e with respect to Q, such an
existence follows from Lemma 3.14.

We also have a version of Lemma 3.15 in which the roles of minimal and maximal chains are
interchanged:

Lemma 3.17. For any § > 0, there exists r{ € (0,7*] such that the following holds: Let C C 02 be
connected, let Ey and Fo be the endpoints of C, let there exist a maximal chain {Ez}go of radius
r1 € (0,7] which starts at E1 and ends at Es, and let there exist Hy € CY such that

¢e(Hl) S ¢9(E1) — 5.

Then, for any r2 € (0,71], any minimal chain {H7 ;?2:0 of radius ro, starting from Hy, satisfies that
H*2 e 0.

The proof follows the argument of Lemma 3.15 with the changes resulting from switching between
the minimal and maximal chains and the correspondingly reversed signs in the inequalities.

Lemma 3.18. For any r1 € (0,r*], there exists r5 = r5(r1) € (0,7*] such that the following holds:
Let C C 09 be connected, let Fy and Es be the endpoints of C, let there exist a minimal chain
{E’i};go of radius r1 € (0,7*] which starts at By and ends at Eo, and let there exist Hy € C° such
that
¢e(H1) < ¢e(E2)-

Then, for any o € (0,73], any minimal chain {Hj};?io of radius ro, starting from Hi, satisfies that
H* e 0.

Proof. As in the proof of Lemma 3.15, we need to show (3.28). Set 0 = ¢e(E2) — ¢e(Hi). Then

6> 0.
Using condition (A2) of Theorem 2.1, we can find a radius 75 € (0,7*] small enough such that

08¢ , (P)nPe < g for all P € Q. We fix this 75 and assume that the minimal chain {H’ }?2:0
)
starting at Hp is of radius ro € (0,73]. Then, using properties (¢)—(d) in Definition 3.7 for the
minimal chains, we have
pe(B2) = ¢po(EM) = __min e < ¢po(E" )= min  ¢e< -+,
By, (EF1)NQ By (EF1—1HNQ
that is,

Pe(F2) <  min _ ¢e for i =0,..., k1.
By, (ENNQ

Then, for i =0,...,k and j =0,..., ko,
1)

< min ¢ — —.
By, (EN)NQ 2

N S

0 o
ma?( ¢e < d)e(Hj) + 5 < ¢e(H1) + 5 = ¢e(E2) -
By (HI)NQ

This implies (3.28). Then the rest of the proof of Lemma 3.15 applies without changes. U
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4. PROOF OF THEOREM 2.1

In this section, we first prove Theorem 2.1, based on the lemmas obtained in §3.
We use the (S, T)—coordinates from Lemma 3.2 for a unit vector e € Con chosen below so that
it suffices to prove that the graph of f7 is concave:

(T) <0 for all T' € (T4, TB),

and satisfies the strict convexity in the sense of Theorem 2.1.
In the following, we denote all the points on I'goqc With respect to T'; that is, for any point
P € T'shock, there exists Tp such that P = (fe(Tp),Tp) in the (S, T)—coordinates.

The proof of Theorem 2.1 consists of the following four steps, where the non-strict concavity of
2 is shown in Steps 1-3, while the strict convexity is shown in Step 4:

Step 1. For any fixed e € Con, if there exists P € I o With f&(Tp) > 0, we prove the existence of
a point C € I'Y ., depending on e, such that f2(T¢) > 0, and C is a local minimum point
of ¢e along gphock, but C' is not a local minimum point of ¢e relative to €.

Step 2. We fix e € Con to be the vector from condition (A6). Then we prove the existence of

C € thock such that there exists a minimal chain with radius r; from C to Cj.

Step 3. Let e € Con be the same as in Step 2. We show that the existence of points C' and Cj
described above yields a contradiction, from which we conclude that there is no P € tho ok
with f¢ (Ts) > 0. More precisely, it will be proved by showing the following facts:

e Let Az be a maximum point of ¢e along I'spock lying between points €' and €. Then
Ag is a local maximum point of ¢e relative to €2, and there is no point between C' and
C1 on I'ghoek such that the tangent line at this point is parallel to the one at As.

e Between C and Ay, or between C; and As, there exists a local minimum point C5 of
pe along T'yhock such that Co # C, or Cz # C1, and Cy is not a local minimum point of
¢e relative to domain €.

e Then, by applying the results on the minimal chains obtained in §3.3 and the facts
obtained above in this step, and iterating these arguments, we can conclude our con-
tradiction argument.

Step 4. Fix e € Con. We show that, for every P € I'% ., either fZ(Tp) < 0 or there exists an

even integer k > 2 such that fez)(Tp) =0foralli=2,...,k—1, and fék)(Tp) < 0. This
proves the strict convexity of the shock. We also note that & is independent of the choice of
e € Con, since, by Lemma 3.2, the above property is equivalent to the facts that 0L¢(P) = 0
forall i =2,...,k— 1, and 0%¢(P) > 0.

Now we follow these steps to prove Theorem 2.1 in the rest of this section.

4.1. Step 1: Existence of a local minimum point C € F[S)hock along I'yhocc in the convex
part. We choose any e € Con and keep it fixed through Step 1.

Assume that
There exists a point P € TY _ such that fe(Tp) > 0. (4.1)

Then, in this step, we prove that there exist points A, B,C € thock such that T € (T4,T5) with
o(Tc) >0, fi(T) <0 for all T € (T, Tp) which are sufficiently close to T'; and T}, and

¢e(C): min }¢e(fe(T)>T)-

TE[T;,Ty
Moreover, the minimum at C' is strict in the sense that

de(fe(T),T) > ¢pe(C) for all T € (T';,Ty) with fJ(T) < 0.
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Lemma 4.1. Let
IT:=TH(P) = (Ty+,T+)
be the mazximal interval satisfying
IT C (T4, Tg),
T]s S I+,
fl(Tp) >0 forall Tp € I,

Magzimality: If (Tp,,Tp,) C (Ta,Tg) such that P € (Tp,,Tp,) and f'(Tp) > 0 for all
Tp € (Tp,,Tp,), then (Tp,,Tp,) C It.

Note that such I exists and is nonempty because P € T9, . and fe(Tp) > 0. Then
(i) Ta < Tp+ <Tp+ < T,
(i) fe(Ta+) < fe(Tp) < fe(Tp+) and fo(Ta+) < fA(T) < fe(Tp+) for all T € I,
(iii) There exists an open interval J* C (Ta,Tg) such that [Ty+,Tg+] C J* and
e (T) <0, fe(Ta+) < fo(T) < fo(Tps)  forallT € J&\IF, (4.2)

where JY\IT is non-empty, since I'™ C J* and J* is open.

Proof. Assume that T4+ = Ta. By the definition of I*, fe is convex on I'". From condition (A4) of
Theorem 2.1, fo € C?((Ta,Tp)) N C*([T4,Tp]). Combining these facts with f2 (1) > 0, we have

fe(Tp) > fe(Ta) + fe(Ta)(Tp — Ta).
By Lemma 3.2(i), this implies that (A 4+ Con) N Q # (), which contradicts (A5). Then Ty+ > Ta.
Similarly, Tg+ < T. This proves (i).
Property (ii) follows directly from the definition of I* and the fact that fJ(75) > 0, by combining
with regularity fo € C%((Ta,T5)).
It remains to show (iii). We first show that

there exists 74 € [T, Ts+) such that fg <0 on (T ,Ts+), (4.3)

where T4 < T4+ by (i). Suppose (4.3) is false, then there exists a sequence {T;"} C (T4, Ty+) such
that lim; Tf =Ty+ and [ (Tf) > 0 for all 4. Also, from the maximality part in the definition
of I't, there exists a sequence {T; } C (Ta,Ts+) such that lim; oo T, = T+ and fJ(T; ) < 0 for
all 7. From this, using the regularity of fe in Lemma 3.5, it is easy to see that fék)(A+) = 0 for
k=2,3,..., which contradicts Lemma 3.6. This proves (4.3).

Moreover, by property (ii), there exists T € [T ,Ty+) satisfying fo(T;) < fo(Tp+). Now,
since fg < 0 on (T ,Ts+), we obtain that f¢(T) < 0 and fo(Ta+) < fo(T) < fe(Tp+) for all
T € (TA’ TA+).

Similarly we show that there exists T5 € (Tp+, T] such that fJ(T) < 0 and f{(Ts+) < fo(T) <
fe(Tp+) for all T € (Tp+,Ty).

Now (iii) is proved with J* = (T4, T3). O

Clearly, the interval, J¥, satisfying properties in Lemma 4.1(iii) is non-unique. From now on, we
choose and fix an interval:
Tt = (T4, Tg) (4.4)
satisfying properties stated in Lemma 4.1(iii). o
Now we show the existence of a local minimum point C € It along Igpock.

Proposition 4.2. Set
W = de.
Then
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i) There exists Tc € IT such that
(i)

w(C) = [mln]w(fe( ), T).

(ii) C € TY 4 with f2(Tc) >0
(iii) Furthermore,

w(P) > w(C) for all Tp € (T3, Ty) \ [Ta+, Tp+).

Proof. Let J* be the open interval from (4.4), which satisfies the properties in Lemma 4.1(iii). Also,
recall that [T = [Tay,T+]. Then, from (i) and (iif) of Lemma 4.1, we obtain that T; < Tay <
TB+ < TB'

Fix Tp € JT \ IT. Then f.(Ta+) < f.(Tp) < f.(Tg+) by Lemma 4.1(iii). Thus, there exists
Tp, € I = [Tay, Tg+] such that fi(Tp,) = f4(Tp). In addition, since fZ > 0 in I+ by the definition
of IT)and f! < 0in J*\ [Tay,Tg+] by Lemma 4.1(iii), then

o If Tp € [T+, Ty, fo(T) > fe(Tp,) for all T € [Tp,,Tp], with strict inequality fi(7) >
fé(Tpl) for T € (TB+,TP)

o If Tp € [T4,Ty+), fE(T) < fo(Tp,) for all T € [Tp,Tp,], with strict inequality fi(T) <
f(la(TP1) for T € (TP, TA*)

Thus, defining the function:
g(T) = fe(T) - fe(TPI) - fé(Tpl)(T - TP1)7
we obtain in the two cases considered above:

o If Tp € [TB+7TB]7 then

> for T € [Tp,, T
J(T) >0 or T € [Tp,, Tp],
>0  forT e (Tg+,Tp).

o If Tp € [TA,TA+], then

<0 for T € [Tp,Tp,],
gl(T) [ 1]
<0 for T € (TP,TA+).

Therefore, in both cases, g(T») > ¢g(Tp, ), which implies

fe(Tp) > fe(Tp,) + fe(Tr)(Tp — Thy).
Now, by Lemma 3.4,
w(P) > w(Pr). (4.5)

Thus we have proved that, for any Tp € J* \ I, there exists Tp, € IT such that (4.5) holds
for P = (fe(Tp),Tp) and Py = (fe(Tp,),Tp,). This implies that there exists T¢ € I+ such that
w(fe(T),T) attains its minimum over J+ = [T';, T3] at Tc. This proves assertion (i).

Moreover, we find from T € IT C J T that C € I .. Also, from (i) and It C J* = (T, Tp),
fY(Te) > 0. This proves assertion (ii).

Assertion (iii) follows from the strict inequality in (4.5) for all Tp € (T4,T) \ [Ta+, Tp+]- O

We derive a corollary of Lemma 4.2(ii). The property, C' € thock’ guarantees the strict ellipticity

of equation (2.16) at C, where we have used assumption (A3) of Theorem 2.1. Then the property:

J(Tc) > 0 and Lemma 3.2(v) imply that ¢--(C) < 0. Thus, from Lemma 3.1 and Lemma 3.2(iii),
we obtain

Corollary 4.3. C is not a local minimum point of ¢e with respect to Q.

This means that, for any radius r > 0, there is a point C, € B,.(C) N such that w(C,) < w(C).
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4.2. Step 2: Existence of T¢, € (T'4,Tp) \ [T, T3] such that C; and C are connected by a
minimal chain with radius 7, for vector e from condition (A6). In the argument, we use
the minimal and maximal chains in the sense of Definition 3.7.

Through §4.2-84.3, we fix e € Con to be the vector from condition (A6) of Theorem 2.1, and
use points A, B,C € thock from Step 1 (which correspond to this vector e) and constant r* from
Lemma 3.10. In this step, we prove the following proposition:

Proposition 4.4. Let e € Con be the vector from condition (A6) of Theorem 2.1, and let C be
the corresponding point obtained in Proposition 4.2. Then there exists 71 € (0,7*] such that, for

any 1 € (0,71) and any minimal chain {C}*!

izo of radius v for w = ¢e starting from point C, its
endpoint C, == C*' is in thock, .e. C1 € thock. Moreover, C7 is a local minimum point of w
relative to ) such that

w(Cl) < U)(C)

In order to prove Proposition 4.4, we first notice that, by Corollary 4.3 and Lemma 3.14, for any
r1 € (0,7%), there exists a minimal chain {C”}f;o of radius 71 for w = ¢ in the sense of Definition

3.7, starting at C, i.e. C% = C. Moreover, C*1 € 99 is a local minimum point of w with respect to
Q, and w(C*) < w(0O).
Now, in order to complete the proof of Proposition 4.4, it suffices to prove the following lemma.

Lemma 4.5. There exists 71 > 0 such that, if r1 € (0,71], then C*1 € T .

Proof. On the contrary, if C¥1 € T UTy, we derive a contradiction for sufficiently small 71 > 0.
Now we divide the proof into five steps.

1. We first determine how small 71 > 0 should be in the minimal chain {C*}. Choose points
A1, By € Ighock such that

TAl € [TAa TC]a ¢e(A1) = TG[mTj,XTC] ¢e(f9(T)7 T)v

Tp, € [Tc,TB], ¢e(B1) = e Pe(fe(T),T).

Note that the definition of points A; and B is independent of the choice of the minimal chain {C*}
and its radius. Also, from Proposition 4.2(iii), it follows that ¢e(A1) > ¢e(C) and ¢e(B1) > ¢e(C).
Let
4 1= min {¢e(A1) - Qbe(c)a ¢e(Bl) - ¢e(c)}
Then ¢ > 0. Lemma 3.15 determines 7 (d), so that r; € (0,r](d)) is assumed in the minimal chain
{c.
2. We start from Case (i) of condition (A6).

Claim: Under the condition of Case (i), A; cannot be a local maximum point of w = ¢ relative
to Q.

In fact, for Case (i), if A1 = A, then A; cannot be a local maximum point. On the other hand,
if A; # A, and A; is a local maximum point, then

"(T4,) >0  in the (S,T)-coordinates,
by Lemmas 3.1-3.2. Thus, we consider the function:
F(T) = fe(T) = fe(Ta,) = fo(Ta, (T — Ta,).

Then F(T4,) =0, F'(Ta,) =0, and F”(T4,) > 0 so that F(T) > 0 near T4,. Let the maximum of
F(T) on [Ta,Ta,] be attained at T4~. Then F(T4-) > 0, which implies that T4« # T4, .
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If Ta« # Ta, then F'(T4+) = 0, which implies that fJ(Ta+) — fL(Ta,) = 0. If T4~ = T4, then,
using f4(Ta) > fL(T4,), condition (A5), and F'(T4) < 0 (since Ty = T4+ is a maximum point of
F(T) on [Ta,T4,]), we conclude that fL(Ta+) = fL(Ta) = fL(T4,). Thus, in both cases,

fe(Tar) = fe(Ta,) = 0.
Also, F(T4+) > 0 implies

fe(Tax) > fe(Ta,) + fo(Ta,)(Tax — Ta,).

Then, from Lemma 3.4, ¢e(A*) > ¢e(A1), which contradicts the definition of A;. Now the claim is
proved.

3. In this step, for Case (i) of condition (A6), we obtain a contradiction to the assumption that
Cch eI’y UTs.

Since CkM € T1UTy is a local minimum point of ¢e, the condition for Case (i) implies that
Ch eT1U{B}.

We first consider the case that C¥1 € T'y \ {A4}. Since A; is not a local maximum point of w = g,
and r; € (0,7*], then, by Lemma 3.14, there exists a maximal chain {A7 }52

o of radius 7 for w in the
sense of Definition 3.7, starting at A, i.e. A = A;. Moreover, A*2 € 99 is a local maximum point
of w with respect to 2, and w(A*?) > w(A;). Furthermore, by Lemma 3.15 and the restriction for
r1 described in Step 1, it follows that one of the following three cases occurs:

(a) AF2 lies on T'Y between C* and A;
(b) A*2 = A;

(c) A2 lies on T'Y . strictly between A and C.

Since A" is a local maximum point of @e, then it cannot lie on I'{ U {A} by the condition of
Case (i). Thus, only case (c) can occur, i.e. A*? lies on T'Q ., between A and C. However, the
property that w(A*?) > w(A;) contradicts the fact that T4, is the maximum point of ¢e(fo(T),T)
on [Ta,Tc]. Thus, the case that C*1 € Ty \ {A} is not possible.

Next consider the case that C¥* = A. Then

(Z)e(c) > ¢e(ck1) = ¢e(A)a

so that the definition of A; implies that A; # A. Combining with the fact that Ay # C proved
above, we conclude that A; lies on thock strictly between C' and C*1 = A. Then we obtain a
contradiction by following the same argument as above.

The remaining case, C*¥* = B, is considered similarly to the case that C*' = A. Indeed, in that
argument, we have not used the condition that A cannot be a local maximum point. Thus, the
argument applies to the case that C*1 = B, with only notational change: points B and B are used,
instead of A and Aj.

This completes the proof for Case (i) of condition (A6) of Theorem 2.1.

4. The proof for Case (ii) of condition (A6) of Theorem 2.1 is similar to Case (i). The only
difference is to replace both A and A; in the argument by B and Bj.

5. Consider Case (iii) of condition (A6) of Theorem 2.1, i.e. when ¢e cannot have a local minimum
point on I'; UT. For the local minimum point C*1 € Ty UT, this implies that C** € {A, B}. Then
the argument is the same as for the cases: C** = A and C* = B, at the end of Step 3.

Proposition 4.4 with C; = C*! follows directly from Lemma 4.5. U
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4.3. Step 3: Existence of points C' and (] yields a contradiction. In this section, we continue
to denote by e € Con the vector from condition (A6) of Theorem 2.1, and use points A, B,C e Y%
from Step 1 which correspond to this vector e. Then, for each 1 € (0,71], the corresponding point
(' is defined in Proposition 4.4. In this step, we will arrive at a contradiction to the existence of
such C and C if r is sufficiently small. This implies that (4.1) cannot hold for e from condition
(A6), which means that fe() is concave, i.e. I'gpock is convex.

For Ei,Ey € Tk, denote by Dghoek|E1, E2| the part of T'ghock between points Ep and Eo,
including the endpoints.

Fix r1 € (0,71]. This choice determines Cy. Let Ay € Iy [C, C1] be such that

Peldz) = | pmax oy PeE) (46)

Lemma 4.6. There exists 6 > 0 such that, for any r1 € (0,71], the corresponding points C, C1, and
Ay defined above satisfy

Qbe(AQ) > ¢e(C) +6> Qbe(cl) + 0. (4'7)
Proof. We employ Proposition 4.2 for vector e from condition (A6). Then, using that ¢e(C) >

¢e(C1) by Proposition 4.4, it follows from Proposition 4.2(i) that T¢, ¢ [T, Tp].
Using this and (4.6), we conclude that (4.7) holds with

6 = min { max  ¢e(P), max ¢e(P)} — ¢e(C), (4.8)
Pershock[Avc} Pershock[BvC}

where 6 > 0 by Proposition 4.2(iii). Notice that the definition of points A, B, and C is independent
of r1; see (4.4) and Proposition 4.2(i). Then the right-hand side of (4.8) is independent of r; > 0,
so that > 0 is independent of rq. O

The rest of the argument in this section involves only part Iynok[C, Ci] of the shock curve,
independent of the other parts of Q2. Without loss of generality, we assume that C; € T'gpock[A, C]
so that

To, € [T4, To). (49)
Indeed, if Cy € Tgpock[B, C], we re-parameterize the shock curve by

Fshock = {(]Ze(T)aT) : =T <T < _TA}7

where fo(T) = fo(=T), and T4 and T are the T-coordinates of A and B with respect to the original
parameterization, and then switch the notations for points A and B. Then (4.9) holds in the new

parametrization.
Now (4.6) has the form:

Pe(A2) = Te[rir“lfl},(Tc} pe(fe(T), T). (4.10)

In particular, T4, € (Tc,,Tc).
From Lemma 4.6 and Proposition 4.4, we obtain that, for any r € (0, 71],
¢e(A2) > d’e(c) +4> Qbe(cl) + 4. (4'11)

Now we prove

Lemma 4.7. If r1 is sufficiently small, then
(i) As is a local mazimum point of e with respect to Q,

(ii) There is no point Q # As between C' and Cy along the shock such that the tangent line at Q is
parallel to the one at As.
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Proof. The proof consists of two steps.

1. In this step, we prove (i). We first fix r; > 0. Let § be from Lemma 4.6, and let 77 > 0 be the
constant from Lemma 3.15 for this . We fix r; = r], and denote C; and Ay as the corresponding
points for this choice of r;. Suppose that As is not a local maximum point of ¢e with respect to €.
Using (4.11) and the existence of a minimal chain of radius r; from C to C}, we can apply Lemma
3.15 to obtain the existence of a maximal chain { A7 };?2:0 of radius ry starting from Ag (i.e. Ay = A)
such that A*2 is on T'yoac between C' and C). Since ¢e(A2) < ¢o(A*?), we obtain a contradiction
to (4.6). Thus, As is a local maximum point with respect to Q.

E Tshock Fshock

Tc, To Ta, Ic Te, Ia, Tc

FiGuRrE 4.1

2. Now we prove (ii). We use (4.9). Assume that there is a point ) # Az between C' and C such
that the tangent line at @ is parallel to the one at As. Since As is a local maximum point of ¢e
with respect to Q) as shown in Step 1 in this proof, we find that f7(T4,) > 0, by Lemmas 3.1-3.2.
Define

F(T) := fe(T) = fe(Tay) = f&(Ta,)(T = Ta,).
Then
F(Ta,) = F'(Ta,) =0, F"(Ta,) >0, (4.12)
and there is a point Tg € (T¢,,Ta,) U (Ta,, Tc) such that F'(Tg) = 0.

If F(Tq) > 0, then, by Lemma 3.4, we conclude that ¢e(Q) > ¢e(A2), which contradicts (4.10).

If F(T) < 0, consider first the case: @ € (T¢y, Ta,). Using maxrer, 7,,) F(T) > 0 by (4.12) so
that this maximum is attained at some point Ty, € (Tg,Ta,), we obtain

F(TQl) >0, FI(TQl) =0,

so that Lemma 3.4 can be applied to obtain that ¢e(Q1) > ¢e(A2), which is a contradiction. The
case that Q € (Ta,,T¢) is considered similarly.
Therefore, point ) does not exist. O

FIGURE 4.2. Proof of Step 3 of Theorem 2.1

With the facts established in Lemma 4.7, we can conclude the proof of the main assertion of
Step 3 by a contradiction for sufficiently small 1 > 0. The main idea of the remaining argument is
illustrated in Fig. 4.2. We first notice the following facts:



26 GUI-QIANG G. CHEN, MIKHAIL FELDMAN, AND WEI XIANG

Lemma 4.8. fo(T) satisfies the following properties:

(;/(Tcl) <0, g(TA2) >0, (4'13)
fo(T) < fo(Ta,)  for all T € [To,, Ta,), (4.14)
fé(T) > fé(TA2> for all T € [TAQ,TcL (4.15)

Proof. Property (4.13) follows from Lemmas 3.1-3.2, since Ay and C; are the local maximum and
minimum points of ¢e with respect to 2, respectively.

To show (4.14), we note from f/(T4,) > 0 that fL(T) < fi(Ta,) in (Ta, — &, Ta,) for some
e > 0. Then, if fl(Tg) > fiL(Ta,) for some Ty € [Ty, Ta,), there exists Tp € (T, Ta,) with
fL(Tp) = fL(T4,), which contradicts Lemma 4.7(ii). Thus, (4.14) holds. Finally, (4.15) is proved
by similar argument. O

Now we choose T¢, € [Tc,,Ta,] such that

e(Ca) = min e(fe(T),T). 4.16
0o(C) = _min 0l £oD).T) (4.16)
We show that

$e(Ca) < ¢e(C1), and Cy is not a local minimum point of ¢e relative to domain €. (4.17)

To prove (4.17), we first establish the following more general property of I'gpock (Which will also be
used in the subsequent development):

Lemma 4.9. Assume that there exist points E1, Es, and E3 on Ughock such that
(i) TE1 < TE2 and TE3 S [TE17TE2]7
(i) f&(Tr,) <0,
(iii) fe(Tr,) < fi(TB,),
(iV) ¢e(E1) < ¢e(E2)a
(V) de(E3) = IninTE[TE1 Te,] pe(fe(T),T).
Then ¢e(E3) < ¢o(E1), and E3 is not a local minimum point of ¢e relative to domain ).

Proof. We divide the proof into two steps.
1. We first show that ¢e(FE3) < ¢e(E1). By condition (v), this is equivalent to the inequality:

Pe(E1) > Te[ﬁilr,lTEQ] Pe(fe(T),T).

Thus, it suffices to show that it is impossible that

Pe(E1) = TG[II“I;iII,lTEZ] pe(fe(T),T). (4.18)

Assume that (4.18) holds. Consider the function:
F(T) = fe(T) = fe(Tr,) — fo(Te,)(T — Tg, ).

Then F(Tg,) = F'(Tg,) = 0, and F"(Tg,) = fJ(Tg,) < 0 by condition (ii). This implies that
F(T) < 0in (Tg,,Tg, + 9) for some small § > 0. Denoting by Tg a minimum point of F(T') in
[T, ,Tk,), then F(Tg) < 0. This implies that @ # E;. Now we consider two cases.

If Q # Es, then F'(Tg) =0, i.e. fi(Tg) = f&(TE,). With this, F(Ty) < 0 can be rewritten as

fe(Tr) > fe(Tq) + fe(1Q)(Ts, — Tq)-

Then, by Lemma 3.4(ii), we obtain that ¢e(E1) > ¢e(Q), which contradicts (4.18).
If Q@ = Es, then F'(Tg,) < 0. Notice that F'(Tg,) = fi(Tg,) — fo(Tr,) > 0 by condition (iii).
Thus, F'(Tg,) = 0, which means that fi(Tg,) = fi(Tg,). Then, using F(Tg,) = F(Tg) < 0 and
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arguing similar to the previous case, we employ Lemma 3.4(ii) to obtain that ¢e(E1) > ¢e(E2), a
contradiction to (4.18).

Thus we have proved that (4.18) is false. This implies that ¢e(E3) < ¢e(E1) as we have shown
above.

2. We now show that E3 cannot be a local minimum point of ¢e relative to domain . We have
shown in Step 1 that E3 # Ey. Also, E3 # E» by conditions (iv)—(v). Thus, Tg, € (Tg,,TE,), i.e.
E5 € thock. If E3 is a local minimum point of ¢, relative to , we obtain by Lemmas 3.1 and 3.2(v)
that fJ(Tg,) < 0. Let

G(T) := fe(T) = fe(Try) — fo(TE)(T — Tgy).
Then G(Tg,) = G'(Tg,) = 0 and G"(Tg,) = fJ(Tg,) < 0. This implies that G(T') < 0in (Tr,, Tr, +
9) for some 6 > 0. Assume that Ty, is a minimum point of G(T') in [Tg,, TE,]. Then, repeating the
argument in Step 1 (with E3, G, and Ty, instead of Eq, F, and T, respectively), we obtain that
¢e(E3) > ¢e(Q1), which contradicts condition (v). O

Lemma 4.9 also holds if T, > Tg,, with only change in the condition that fL(Tr,) < fL(Tk,)
that is now replaced fL(Tr,) > fo(TE,). More precisely, we have
Corollary 4.10. Assume that there exist points Ey, Eo, and E3 on Ighocc such that

(i) T, > Tg, and Tg, € [Tg,, Tr, ],

(ii) (la/<TE1) <0,

(it)) fe(Try) > fo(TEy),

(iv) ¢e(E1) < de(E2),

(v) do(Es) = mingeiry, 1y, Selfol(T), T).
Then ¢e(E3) < ¢o(FE1), and E3 is not a local minimum point of ¢e relative to domain 2.

fe
e
e

Proof. We prove this by directly repeating the argument in the proof of Lemma 4.9 with some
obvious changes. Alternatively, by re-parameterizing the shock curve by

Tahock = {(fe(T),T) : —Tp <T < —Ta}

so that fe(T) = fe(=T), and T4 and Ty are the T-coordinates of A and B with respect to the original
parameterization, then we are under the conditions of Lemma 4.9 in the new parameterization. [

Proof of (4.17). Using (4.9)—(4.11), (4.13)—(4.14), and (4.16), we can apply Lemma 4.9 with
E1 == Cl, E2 == Ag, and E3 == 02 to obtain (417) ]

Let r1 be the constant from Lemma 4.7, and 75 € (0,71). Since C9 is not a local minimum point
by (4.17), we use Lemma 3.14 to obtain the existence of a minimal chain {C} }?2:0 with radius rg;
see Fig. 4.2. Next, we restrict 72 to be smaller than 3 from Lemma 3.18 defined by r; fixed above.
Then, recalling that there is a minimal chain of radius r; which starts at C' and ends at C, and
noting that ¢e(C2) < ¢e(C1) by (4.16)—(4.17), we obtain that Cé” lies on I'ghock between C' and Cf.
Now, using (4.16) and noting that ¢e(C5?) < ¢e(CY) = ¢(Cs), we conclude that C5? lies on part
[Ta,, Tc] of Tshock; see Fig. 4.2. Denote C3 := C’é” and notice that C3 is a local minimum point of
be relative to €.

From this construction, point Ay (defined by equation (4.6) so that (4.10) holds) satisfies T4, €
(TCQ’TCS) C (T017TC)- Then

Pe(A2) = TG[ITI“?f,(Tc] Pe(fe(T),T) = Te[%??(TC:,,] Pe(fe(T),T).

Also, from (4.11), (4.16), and the definition of C3 as the endpoint of the minimal chain from Cy, we
have

Pe(A2) > ¢e(C2) > ¢e(C3), fE(C3) <0,
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where the last property holds by Lemmas 3.1-3.2, since Cj3 is a local minimum point of ¢e with
respect to 2. Moreover, from (4.15),

fé(TC%) 2 fé(TAz)'
Choosing T¢, € [Ta,,Tc,] such that

¢e(C4) e be(fe(T),T), (4.19)
we can apply Corollary 4.10 with Ey = C5, Es = Ay, and E3 = C4 to show that ¢e(C4) < ¢e(Cs)
and C4 cannot be a local minimum point.

Then we repeat the same argument as those for the minimal chain starting from Cs. Specifically,
for any 73 € (0,73, we use Lemma 3.14 to obtain the existence of a minimal chain {C}*}*_ with
radius r3 starting from Cy, i.e. C9 = Cy; see Fig. 4.2. Next, we restrict 73 to be smaller than
r5(re) from Lemma 3.18, i.e. ry fixed above is used as 71 in Lemma 3.18 to determine 73(r2). Then,
recalling that there is a minimal chain of radius ro which starts at Cs and ends at Cs, and noting
that ¢e(C4) < ¢e(C3) as we have shown above, we obtain by Lemma 3.18 that

Cff?’ lies on I'ghoex between Cy and Cs. (4.20)

However, combining the properties shown above, we have
Cy) = min T7),T) < Cs) < Cs) = min T7),T),
Qbe( 4) TG[TAQ,TC3} ¢e(fe( ) ) ¢e( 3) Qse( 2) Te[To, Ta, Qbe(fe( ) )
so that
$e(Cs) = ~min  ge(fe(T),T).

Te [T01 7TC3]

Then the property that ¢e(Cr3) < ¢o(Cy) implies that CF cannot lie on [Te,, Tes] © [Toy, Toy).
This contradicts (4.20).

This contradiction shows that (4.1) cannot hold if e is the vector from condition (A6) of Theorem
2.1. Therefore, in the (S, T)—coordinates from Lemma 3.2 for this vector e, we must have

(T)<0 for all T' € (T4, TB).

e

We thus completed the proof of the following fact:

Proposition 4.11. Suppose that conditions (A1)—(A6) of Theorem 2.1 hold. Then the free boundary
Cshock @S a convex graph as described in Theorem 2.1.

4.4. Step 4: Strict convexity of I'y,occ. In this step, we show the strict convexity in the sense
that, for any fixed e € Con, using the coordinates and function fe from Lemma 3.2(i), for every

P €T . either f/(Tp) < 0 or there exists an even integer k& > 2 such that féi) (Tp) = 0 for all
i=2,...,k—1, and f(Tp) < 0.

Note that fJ <0 on (T4,Tg) by Proposition 4.11.

Let Tp € (T4, Tp) be such that fZ(Tp) = 0. By Lemma 3.6, there exists an integer k such that

féi) (Tp)=0 fori=2,..., k—1, ék) (Tp) is nonzero.

The convexity of the shock in Proposition 4.11 implies that & must be even and fék) (Tp) < 0. This
shows (2.19) in the coordinate system with basis {e,e*}. Moreover, using Remark 2.5, we have

Proposition 4.12. Suppose that conditions (A1)—(A6) of Theorem 2.1 hold. Then the free boundary
Tshock 18 strictly convex in the sense that (2.19) holds at every T € (Ta,Tp) with f"(T) = 0.
Moreover, (2.20) holds at every point of TS _ 4., at which ¢rr = 0.

Furthermore, we note the following fact:
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Lemma 4.13. Suppose that conditions (A1)-(A6) of Theorem 2.1 hold. Then, for any € > 0, there
is no more than a finite set of points P = (f(T),T) € T'shock with T € [T4 + ¢,Tp — €] such that
f(T) =0 (or, equivalently, ¢p-+(P) = 0).

Proof. Suppose that T; € [T4 +¢,Tp —¢] for i = 1,2,..., are such that f”(7;) = 0. Then a

subsequence of T; converges to T* € [T4 4+ ¢,T5 — ¢, and f((T*) = 0 for each n = 2,3,..., and
P* = (f(T*),T*) € TY 4. It follows that 07¢(P*) = 0 for each n = 2,3,.... This contradicts
(2.20). 0

With Steps 1-4 in §4.1-4.4, the proof of Theorem 2.1 is completed.

5. PROOF OF THEOREM 2.3: UNIFORM CONVEXITY OF TRANSONIC SHOCKS

In this section, we show the uniform convexity of thock in the sense that f”(Tp) < 0 for every
PeT? . for f(-) in (2.18), or equivalently, f2(T) < 0 on (Ta,Tg) for any e € Con.

The outline of the proof is the following: By Theorem 2.1 and Remark 2.5, ¢+ > 0 on thock.
Thus, we need to show that ¢-- > 0 on thock. Assume that ¢ = 0 at Py € thock. Then we
obtain a contradiction by proving that there exists a unit vector e € R? such that Py is a local
minimum point of ¢ along thockv but Py is not a local minimum point of ¢ relative to €. Then
we can construct a minimal chain for ¢e connecting Py to C*1 € 9Q. We show that

o O ¢ TouUTs,
o Ok §é 't Uls,
o CM Qé Cshock-

This implies that ¢, >0 on I'% . so that f”(T) < 0 on (T4,Tg); see Remark 2.5.

Now we follow the procedure outlined above to prove Theorem 2.3. In the proof, we use the

(S, T)—coordinates in (2.18). Then we have

Fahook ={S = f(T) : Ta < T < Tg}, QC{S< f(I): TeR},

"(T),1 -1, f'(T
V0 I 1 ) E
(f(1)?+1 (f(T))*+1

where we have used the convexity of I'gpocc proved in Theorem 2.1. Note that the orientation of the
tangent vector 7(P) at P € gk has been chosen to be towards endpoint B.

(5.1)

First, from the convexity and Lemma 3.1, we have

Lemma 5.1. Let ¢ be a solution as in Theorem 2.1. For any unit vector e € R?, ife-v < 0 (resp.
e-v>0)at PeTY ., then ¢e cannot attain its local mazimum (resp. minimum) with respect to
Q at this point.

We now prove the uniform convexity by a contradiction argument. From Theorem 2.1 and Remark
2.5, we know that (2.20) holds so that, if f”(Tp,) = 0 at some interior point Py of I'ypock, then

¢TT(Pd) =0, ¢TT(P) >0 for all P € [spock ﬁ-/\/’E(Pd) with P 75 Py, (5'2)

for some € > 0. First we choose a unit vector e € R? via the following lemma.

Lemma 5.2. There exists a unit vector e € R? such that, for any local minimum point Py of de
along thock, e -v(Py) < 0. In addition, Py is a strict local minimum point along thock in the
following sense: For the unit tangent vector T = 7(P) to Tshock at P defined by (5.1), ¢er is strictly
positive on Ushock near Py in the direction of T, and ¢er is strictly negative on Ugnock near Py in the
direction opposite to 7. More precisely, in the coordinates from (5.1), there exists € > 0 such that
Ty <Tp,—e<Tp,+e<Tg and

ber (f(T), T) <0 on (Tp, —¢, Tp,), ber (f(T),T) >0 on (Tpy, Tp, + €). (5.3)
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Proof. Recall that ¢(Pgq) = 0. Now we first use (3.14) at Py with h, # 0 by (3.6), and then use
strictly elliptic equation (3.1) at Py in the coordinates (S,7") with basis {v(FPy), 7(P4)} to obtain

¢VI/(Pd) = ¢VT(PC1) = ngT(Pd) =0. (54)
For any unit vector e € R?, define a function g(-) = g(e)(:) on T'Y . by
9(e)(€) = (p(c® = py)pv(e T) + (pey, + poc?) oz (e - 1)) (€). (5.5)
Then, at any point of I'Y, | ., we see from (3.14) with (3.5) that, for any unit vector e € R?,
¢rrg(e)

Ger = ¢TT(e : T) + (bTU(e : V) = (56)

G
Notice that, from the expression of g(e)(:) and assumption (A3) of Theorem 2.1,
g(t) >0, g(—1)<0 on IT'Y - (5.7)

Then we can choose a unit vector e such that e-v < 0 and g(e) = 0 at Py. We fix this vector e for
the rest of this proof. From (5.4), we have

Grr =0 =—1, ©r=0  at Py (5.8)

Below we use the (S,T")-coordinates from (5.1). From (2.17) and (5.1), we use condition (Al) in
Theorem 2.1 to obtain that ¢g > 0 on I'ghock SO that

(~or.6s) Do

[Dg| Dl
Then we can use these expressions to define 7 and v in ) near I'goc, which allows to extend
function g(e)(-) defined by expression (5.5) into this region. Since ¢ € C2(QUTY, ), the extended
7, v, and g(e)(:) are C* up to I'Y .. Then, from (5.4), D(gry7T = 0 and D(g v = 0 at point Py.
Moreover, differentiating (2.4) and (2.7), and using (5.4) yield that D(gr)p = 0 and D(S,T)c2 =0
at point Py. Therefore, differentiating (5.5), using (5.8), and writing g(-) for g(e)(-), we have

T =

g7 (Pa) = —(e-v)(pey, + poc®)

> 0.
Py

Then, by (5.1), dg(fc(l;m‘TTp =1/(f"(Tp,))? + 1g+(P4q) > 0. Thus, g(f(T),T) <0 on (ITp, —

e, Tp,) and g(f(T),T) > 0 on (Tp,, Tp, + ¢€) for some € > 0. By (5.2) and (5.6), the same is true

for ger.
Then Py is a local minimum point of ¢e along I'spock, and ¢er has the properties asserted. O

Remark 5.3. The unit vector e is not necessarily in the cone introduced in condition (A5) of
Theorem 2.1.

Lemma 5.4. Py is not a local minimum point of ¢ with respect to .

Proof. If Py is a local minimum point, it follows from Lemma 3.1 and e-v(Py) < 0 that ¢+ (Py) > 0,
which contradicts to the fact that ¢ (Py) = 0. O

Now we consider a minimal chain starting at Py. In the following argument, we use the (S,7")—
coordinates in (5.1).
To choose the radius for this chain, we note the following:

Lemma 5.5. There exist points Pf € thock such that
(i) Py lies on Dgpock Strictly between P(;r and P, that 1s,

Ty < TPJ < Tpd < TP; < Tp;
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(ii) Denoting by Tshock[P, Q] the segment of Uspock with endpoints P and Q, then
Pe(Pa) < ¢e(P) < de(Py) if P € Tsnock[Py s Pal \ {Py, Fa},
de(Pa) < ¢e(P) < 9e(F{) i P € Tanock[Pf, Pa]\ {P{, Pa;

(iii) e-v(P) <0 for all P € Tsnoek[Py , Py ]

Proof. Recall the definition of 7 in (5.1). Then we use (5.3) in Lemma 5.2 to find that, for ¢ > 0
defined there,

ST stre(Tp —e Tp), LY DD s e mp T + o).

dr dr
Thus, for points Pdi = (f(Tp, £¢), Tp, £¢), assertions (i)—(ii) hold. Furthermore, since e-v < 0
at Py, then, reducing ¢ if necessary, we obtain property (iii). O
Denote
§ = min { max  ¢o(P), max  ¢e(P)} — de(Pa). (5.10)
Pershock[Pd_vpd} Pershock[Pd) P;}

Note that § > 0 by (5.9). Now let r; be constant r] from Lemma 3.15 determined by ¢ from (5.10).
By Lemmas 3.14 and 5.4, there exists a minimal chain with radius r; which starts at Py. Denote
its endpoint by C*. Then

Cc* e 09, (5.11)
and C* is a local minimum point of ¢e relative to . Moreover,
de(Pa) > de(C"). (5.12)

Now we consider case by case all parts of the decomposition: 0 = Igocr U <U§:Ofi> defined

in Framework (A)(iii) and in assumption (A7) of Theorem 2.3, and show that C* cannot lie on
the corresponding part. Eventually, we will reach a contradiction by showing that C* cannot lie
anywhere on 0f).

In the proof below, we note the following:

Remark 5.6. We use condition (A10) of Theorem 2.3 only in the proof of Lemma 5.10. The other
conditions of Theorem 2.3 to be used in the proof below include Framework (A), conditions (Al)-
(A6) of Theorem 2.1, and (A7)—(A9) of Theorem 2.3. These conditions are symmetric for T and
fg, for Iy and f‘g, and for points A and B. Also, § in (5.10) is defined in a symmetric way with
respect to the change of direction of T in (5.1). This allows without loss of generality to make a
particular choice between points A and B, and the corresponding boundary segments in order to fix
the notations, as detailed in several places below.

Now we consider all the cases for the location of C* on 9.
Lemma 5.7. O ¢ Fouﬁ.

Proof. On the contrary, if C* € FO U 1?3, we now show in the next four steps that it leads to a
contradiction.

1. We first fix the notations. In this proof, we do not use condition (A10) of Theorem 2.3.
Thus, as discussed in Remark 5.6, we can assume without loss of generality that CF ¢ fg and
B = T'gpock N T's.

From (5.12) and condition (A8) of Theorem 2.3,

be(Pa) > 66(C*) = 6o(B). (5.13)

We now prove Lemma 5.7 by showing the two claims below: Claims 5.7.1-5.7.2.
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2. Claim 5.7.1. It is impossible that e - v(B) < 0 at B; see Fig. 5.1 for the illustration of the
argument below.

maximal chain

Fy P Py B

FIGURE 5.1. Proof of Claim 5.7.1

We first show that, if e - v(B) < 0, then, since e - v(Py) < 0, the strict convexity of I'spock (as in
Lemma 4.13) and the graph structure (5.1) imply that v - e < 0 at any point lying strictly between
Py and B along I'ypock. Indeed, using (5.1) and writing e = (e1, e2) in the (S, T)—coordinates, we

have )
Teoy —
w(P) .oz D2 =1 for P = (f(T),T). (5.14)
(f(1)* +1
Thus,
f/(Tpd)eg —e1 < O, f/(TB)ez —e1 <0.

Using f”(T) < 0 and Lemma 4.13, we have

f/(Tpd) < f/(T) < f’(TB) forall T € (Tpd,TB).
Then it follows that

f/(T)eg —e1 <0 if T e [Tpd,TB).
Therefore, we have
v(f(T), T)-e<0 for all T € [Tp,, TR). (5.15)

Now we show that (5.15) leads to a contradiction. Let P; € T'ghock|[Pa, B] be such that

QZ)e(Pl) = PGFSEOIC&:[(Pd,B] ¢e(P)' (5'16)

Since Tgpock [Py, P;] C Dshock[P4, B] by Lemma 5.5(i), we obtain from (5.10) that
Pe(P1) > ¢e(Pa) + 9, (5.17)
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so that P; # Py. Also, by (5.13) and (5.17), we see that P; # B. Thus, v(P;)-e < 0 by (5.15).
Now, by Lemma 5.1, P; cannot be a local maximum point of ¢ relative to 2. Therefore, by Lemma
3.14, there exists a maximal chain of radius ry, starting from P; and ending at some point P, € 052
which is a local maximum point relative to 2, and ¢e(P1) < de(P%).

Next, we show that

P, lies on I'Y . strictly between Py and B. (5.18)

Indeed, recall that there exists a minimal chain of radius r1 from P; to C¥ € I's. Also, P, lies on
'Y . strictly between Py and B. Then, from (5.17) and the choice of 1 (see the lines after (5.10)),

shoc
we obtain from Lemma 3.15 that either (5.18) holds or Py lies on I's between B and C* (possibly
including B). However, we use condition (A8) of Theorem 2.3, (5.13), and (5.17) to obtain that, for

any P € fg,
¢e(P) = ¢e(B) < ¢e(Pd) < Qbe(Pl) < ¢e(P2); i.e. Py # P.
This proves (5.18).
However, (5.18) contradicts (5.16) since ¢e(P1) < ¢e(P2). Now Claim 5.7.1 is proved.
3. Claim 5.7.2. It is impossible that e - v(B) > 0; see Figs. 5.2-5.3 for the illustration of the
argument below.

Ife-v(B) > 0, then, using e-v(Py) < 0, there exists a point Py € Tshoek [Py, B] so that e-v(FPy) = 0.
Then, from (5.14),

—e1 + f/(T)ea =0 at T =Tp,.

Now, since f”(T) < 0 by the convexity of Igpock, we use Lemma 4.13 to find that the function:
T — —e1 + f'(T)ey is strictly monotone on (T4, Tr), which implies that point Py is unique.

maximal chain

minimal chain

Pd P; Pl P4 PO_i PQ P(; P3 P2 B

e-v <0 e-v>0
Tp, no max Tp, no min T

FIGURE 5.2. Proof of Claim 5.7.2: The initial step of the iteration procedure
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Recall that e - v(Py) < 0 and e - v(Py) = 0. Then, following the proof of (5.15), we have

v(f(T),T) - e<0 for all T € [Tp,,Tp,). (5.19)
Similarly, using e - ¥(FPy) = 0 and e - v(B) > 0, and arguing similar to the proof of (5.15), we have
v(f(T),T)-e>0 for all T € (Tp,, Tg]. (5.20)

From (5.19)—(5.20) and Lemma 5.1, we find that
If P €09 is a local maximum (resp. minimum) point of ¢e relative
to Q, then P ¢ (Tspock[Pa, o))" (vesp. P ¢ (Tsnock[Po, B])°). (5:21)
Next, since e - v(Py) = 0, then e = £7(F). Moreover, by (5.1), we have
f(Tp,) — f'(Th,)
VU Tr)2 + ) ((F(Tr)? +1)
because f”(T) <0 and Tp, < Tp, < Tp. Then, since v(Py) - e < 0, we conclude
e=—71(R). (5.22)

With this, recalling that ¢-r > 0 on gk, we use (5.6)—(5.7) and Lemma 4.13 to obtain the
existence of two points Py~ and Py such that P5" = (f (Tpoi), T Pgt) € Tsnoek ([Py, B])® and

v(Fa) - m(Po) = > 0,

Tp, < TPo’ <Tp, < TPJ < TR, (5.23)
¢or(P) <0  for all P € Tapour[Py , P and P # Py (5.24)
Then there exists 6 > 0 such that
$e(Py ) =6 > ¢e(Po) > de(Py) + 0. (5.25)
Moreover, combining (5.21) with (5.24), we conclude

If P € 09 is alocal maximum (resp. minimum) point of ¢e relative

_ ~ (5.26)
to €2, then P ¢ Fshock[de Pg_] \ {Pd} (resp. P ¢ Fshock[Po ,B] \ {B})
Note that (5.26) improves (5.21), which follows from (5.23).
Let P € Dghoek|Pa, Po) such that
P)= P).
Pe(P1) per, 8%, Pe(P)
By Lemma 5.5(i)—(ii) and (5.10),
Tpy <Tpr < Try, Pe(P1) > pe(Py) + 6.
Moreover, from (5.23) and (5.25), we obtain
¢e(P1) Z (be(Po_> Z ¢e(PO) + 3
Also, by (5.24), Tp, <T Py Combining all these facts, we have
Tpd < TPdJ’ < Tp1 < TP(;’ (5.27)
¢e(P1) > ¢e(Pd) + 9, (Zse(Pl) > ¢e(PO) + 0. (5'28)

From (5.26) with (5.23) and (5.27), P; cannot be a local maximum point of ¢e with respect to Q.
Therefore, by Lemma 3.14, we can construct a maximal chain of any radius ro € (0,7;] starting

from P;. We choose 73 so that it works in the argument below. For this, we use constant § from
(5.25), choose 7 the smaller constant r} from Lemmas 3.15-3.17 determined by d, and then define

ro := min{ry, 72 }.
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Fix a maximal chain of radius r9 starting from P;. It ends at some point P, € 02 that is a local
maximum point of ¢, relative to . Moreover, by (5.28), ¢e(P1) > ¢o(Py) + J; that is, (5.17) holds
in the present case. Since 19 < 71, then the proof of (5.18) works in the present case so that P» lies
on thock strictly between Py and B. Since P is a local maximum point of ¢ relative to Q, we

obtain from (5.26) with (5.23) that P lies strictly between Py" and B on I'gyoek. Combining with
(5.28), we have

Tp, € (Tpo+7 Tg) C (Tp,, TB), Pe(P2) > pe(P1) > ¢o(Fo). (5.29)
Let P5 be such that
Tp, € [Tp, Tr,], o(P3) = i o(P).
Py € [Try, T, Pe(P3) rreiy, ¢ (P)

By (5.24)(5.25) and (5.28)(5.29),
TP3 S (TPO*aTPz]a (530)

Pe(P3) < de(P) < ¢o(P) — 6 < po(P1) — 0 < d(P2) — 0. (5.31)
Then, from (5.26) combined with (5.23) and (5.29), P53 cannot be a local minimum point of ¢e
relative to Q.

Therefore, there exists a minimal chain of radius 7o starting from P; and ending at P, € 9f).
Recall that there exists a maximal chain of radius 79 from P; to P,. Also, it follows from (5.31) that
P3 # Py so that Pj lies in (Tgpock|P1, Po])°. Moreover, ¢o(Ps) < ¢o(P1) — 6 by (5.31). Using the
choice of ro and Lemma 3.17, we conclude that Py € (Ispoek[P1, P2])°, and Py is a local minimum
point of ¢e relative to Q. Then, from (5.26) combined with (5.23), (5.27), and (5.29), we obtain

P4 € (Fshock[Pla P(;])O (532)

Moreover, combining the facts about the locations of points discussed above together, we have

Tpd < ij < Tp1 < Tp4 < TPJ < TPO+ < TP3 < TP2 <Tg. (533)
Now we follow the previous argument for defining points Py, ..., P, inductively to construct
points Pygi1, ..., Pyerq for k=1,2,... as follows (cf. Fig. 5.3):

Fix integer k£ > 1 and assume that points Py._1 and Py have been constructed with the following
properties:

Pui—1 € (Dsnoek [P, B])®, P € (Dsnock[Pa, Py ])°, (5.34)
Se(Pin—1) < de(P0) = 0, (5.35)
There exists a minimal chain of radius r9 from Py;_1 to Pyy. (5.36)
From (5.23), it follows that (5.34) can be written as
Tp, <Tp, < TPO_ <Tp, < TPJ <Tp,, , <Tp. (5.37)

We first notice that, for k = 1, points P3 = Py;_1 and Py = Py satisfy conditions (5.34)—(5.36).
Indeed, for (5.34), the first inclusion follows from (5.30) combined with (5.29), while the second
inclusion follows from (5.32) combined with (5.27). Property (5.36) for P and Py follows directly
from the definition of these points above, and (5.35) for P3 follows from (5.31). Thus, we have the
starting point for the induction.

Now, for k =1,2,..., given Py;_1 and Py, we construct Pyx11, ..., Py+q4. Choose

Pt € Tanock|Pie, Po] 50 that e(Piss) = P).
wi+1 € Dshock[Pak, Po] so that ¢e(Pak+1) Persﬁiﬁlk%] ¢e(P)

Combining (5.25) with (5.35)—(5.37), we obtain
be(Parr1) = de(Py ) = de(Po) + 0 > de(Par—1) + 20 > ¢e(Pay) + 20. (5.38)
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maximal chain

minimal chain

Po  Pyp1 Pisa By Py Py Paky3 Pagyo Pag—1

F1GURE 5.3. Proof of Claim 5.7.2: The k-th step of the iteration procedure

In particular, Pyx11 # Pyx. Then, from (5.24) and (5.37),
Tpyq € (Tp%,TPJ). (5.39)
From (5.26),
P11 is not a local maximum point of ¢e relative to €. (5.40)

Thus, there exists a maximal chain of radius ry starting at Py;41 and ending at some point P92 €
0L), which is a local maximum point of ¢e relative to 2. Moreover,

Pe(Pak+2) > ¢e(Pak+1)- (5.41)

By (5.38), ¢e(Piit1) > de(Pir_1) + 25. With this, using (5.36)-(5.37), (5.39), the choice of ro,
and Lemma 3.15, we obtain

Pyiey2 € (Dshock [Pak, Par—1])°-
Since Pyyo is a local maximum point of ¢e relative to Q, we use (5.26) and (5.37) to obtain
Tpyys € (TP(;*"TPMCA)' (5.42)

Now choose

Pyi+3 € Ushock [Po, Pak+2]  so that ¢e(Pak43) = min de(P).
PeTshock [PosPar+2]

Note that TPO+ € (Try, Tpy,.,) by (5.37) and (5.42). Then, from the definition of Pyx3, (5.25), and
(5.38),

be(Piks3) < de(Py) < de(Po) — 6 < ¢o(Pars1) — 20. (5.43)
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By (5.41) and (5.43), ¢e(P4k+3) < ¢e(P4k+2) so that P4k+3 75 P4k+2. AISO, by (5.23)*(5.24),
Pyi+3 & Tshocek[Po, Py']- Then, using (5.39), we have

TP4k+3 € (TPJ7TP41€+2) C (TP4k+17TP4k+2)' (5'44)

In particular, Tp,, ., € (Tr,, Tg). Thus, by (5.26) and (5.37), Tp,,_, is not a local minimum point
of ¢e relative to Q. Then there exists a minimal chain of radius re starting at P;,3 and ending
at some point Py 4 € 0N that is a local minimum point of ¢e relative to . Since there exists a
maximal chain of radius ry from Pyi1 to Pyy2, we use (5.43)—(5.44) and Lemma 3.17 to conclude
that Pyria € (Dsnock[Patt1, Pary2])®. Since Pyy.y4 is a local minimum point of ¢e relative to 2, we
use (5.26), (5.37), and (5.39) to obtain

TP4k+4 € (TP4k+17TPO—) C (TPmTPO—)' (5'45)
From (5.44) combined with (5.42) and (5.37), Tp,, ., € (TPJWTB)' From this and (5.45), we see that
points Py,13 and P14 satisfy (5.34) with k + 1 instead of k. Also, from (5.37), (5.39), and (5.45),
Tp, < Ty < Tp4k+4 < TPO—. (5.46)
Therefore, we obtain local minimum points Py € thock, k=1,2,..., of ¢pe which satisfy (5.46)

for each k. Then there exists a limit P* = limy_,o Psr, with Tp- € [Tp,, TPJ]’ which implies

Pre 1_‘(s)hock'
Since Pyi € I'shock is a local minimum point of ¢e, Or de(Pyr) = 0, so that

dge(f(T),T)

=0 for k=1,2,....
dT ‘T:TPM or 7

From this, since {Tp,, } is a strictly increasing sequence by (5.46), we obtain

d"¢e(f(T),T) ‘
drm T=Tpx
The analyticity of functions ¢e and f(7'), shown in Lemma 3.5, implies that the function: T +—
¢e(f(T),T), is real analytic on (T'4,Tp). Then we conclude from (5.47) that ¢e(f(T),T) = const.
on (T4, Tg). By (5.22), we see that e = —7(F)), so that ¢e(Py) = ¢+(Py) = 0, where the last
equality holds by the first condition in (2.17). That is,

=0 for n=1,2,.... (5.47)

¢e =0 on Dspock-
Then, using that ¢ = 0 along T'gpock by the first condition in (2.17) and that e - v < 0 at Py by
Lemma 5.2, we obtain that D¢ = 0 at Py. This, combined with (2.21) and the first condition in
(2.17), implies that p = pg at Py, which contradicts condition (A1) of Theorem 2.1. Therefore,
Claim 5.7.2 is proved.

4. Combining Claim 5.7.1 with Claim 5.7.2, we finally conclude Lemma 5.7. U

Lemma 5.8. C* ¢ TV fori=1,2.

Proof. Since C* is a local minimum point of ¢e, then condition (A9) of Theorem 2.3 and the
regularity property ¢ € C5%(Q) imply that ¢e = const. on I;. Combining this with (A7)—(A8), we

obtain that ¢ = const. on Tg UT'; (resp. on Ty UT) if i = 1 (resp. i = 2), where one or both of I'g
and T's may be empty. Then, following Remark 5.6, we can assume without loss of generality that
Ck € Ty (i.e. i = 2). In this case, B € 'y UT'3 so that ¢e(P) = ¢o(B) for any P € I'y UT's. From
this and (5.12), we obtain that (5.13) holds in the present case.

Then we are in the same situation as in Lemma 5.7. Therefore, the proof of Lemma 5.7 applies,
which yields a contradiction. O
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Remark 5.9. Combining Lemmas 5.7-5.8, we obtain that, if condition (i) of assumption (A10)
holds, the only remaining possible location of C* is on Tgpoek. On the other hand, if condition (ii)
of assumption (A10) holds, then the remaining possible locations of C* are either on Tguoac o at
the common endpoint Q* of Iy and Ts.

Lemma 5.10. Assume that condition (ii) of assumption (A10) holds, and let Q* be the point defined
there. Then C* # Q*.

Proof. Assume C* = Q*. If ¢, attains a local minimum or maximum relative to O on fg, then
condition (A9) of Theorem 2.3 and the regularity property ¢ € C1(Q) imply that ¢e = const on

Is. Since B € Iy by condition (ii) of assumption (A10), we obtain that ¢e(P) = ¢e(B) for all

P e T5. Because of CF = Q* € I'y, we can complete the proof as in Lemma 5.8 above.
Thus, we can assume that

$e does not attain its local minimum or maximum relative to € on T9. (5.48)

Then we consider three cases, depending on whether e - vg,(B) is positive, negative, or zero. In the
argument, we take into account that I's = 0 by condition (ii) of (A10) so that I'y has endpoints Q*
and B.

If e - vg,(B) < 0, then we argue similar to the proof of Claim 5.7.1, replacing f‘3 by fg, with
the differences described below. First, we show (5.15) without changes in the argument. Next, we
choose P; € T'shock[ Py, B] satisfying (5.16) so that the proof of (5.17) holds without changes in the
present case, which implies that P, # Pyq. However, since (5.13) is not available in the present
case, we cannot conclude that P; # B. That is, we now obtain that P; € Tgnok[Pg, B] \ {Pa}-
If Pi € (Tshoek[Pa, B])?, then, by (5.15) and Lemma 5.1, P; cannot be a local maximum point of
de relative to Q. If P = B, then the same conclusion follows from condition (ii) of (A10) since
e-vg,(B) < 0. Thus, there exists a maximal chain of radius 7, starting from P; and ending at some
point P, € 92 which is a local maximum point relative to 2, and ¢e(P1) < ¢e(P»). Now, instead
of (5.18), we will show a weaker statement,

P, e FShOCk[Pda B] (549)

To prove (5.49), recall that there exists a minimal chain of radius r; from Py to Ck=Q* e L.
Also, Pi € Tahock|Pa, B] \ {Pa}. Then, from (5.17) and the choice of 73, we obtain from Lemma
3.15 that either (5.49) holds or P, lies on I') between B and C*. On the other hand, the last case
is ruled out by (5.48) since P, is a local maximum point of ¢e relative to Q. Thus, (5.49) holds.
However, (5.49) contradicts (5.16) since ¢e(P1) < ¢e(P2). Therefore, we reach a contradiction in
the case that e - v(B) < 0.

If e- v(B) = 0, we use condition (ii) of (A10) and the fact that C* = Q* to conclude

¢e(Pd) > d’e(ck) = ¢e(Q*) = ¢e(B)=

that is, we obtain (5.13). Now we follow the argument of the proof of Claim 5.7.1 via replacing I's
by I's, up to (5.18). Instead of (5.18), we can show (5.49) whose proof, given above, still works in
the present case without changes. Then, as shown above, (5.49) contradicts (5.16). Therefore, we
reach a contradiction in the case that e - v(B) = 0.

If e - v(B) > 0, then we argue as in Claim 5.7.2, via replacing I's by I's, and with modifications
similar to the ones described above. Specifically, (5.48) is used to conclude that P» ¢ f‘g From
this, we conclude that Ps lies on I'gocc between P(T and B, possibly including B. However, we now

cannot rule out the possibility that P» = B as in the proof of Claim 5.7.2 (again, since (5.13) is not
available). Thus, instead of (5.29), we have

Tp2 € (TPJ—’ TB] C (Tpo, TB], ¢9(P2) > gbe(Pl) > ¢e(P0). (5.50)
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From this, using (5.24)—(5.25) and (5.28), it follows that (5.30)—(5.31) hold. From (5.31), P3 # P,
and now (5.30) implies
TP3 € (TPJ"TP2) - (TPm TB)

Then, from (5.26) combined with (5.23), P3 cannot be a local minimum point of ¢e relative to Q.
Thus, there exists a minimal chain of radius 79 starting from Ps. The rest of the proof of Claim
5.7.2 applies without changes. Therefore, we obtain a contradiction in the case that e - v(B) > 0.
This completes the proof. O

Remark 5.11. Combining Lemmas 5.8 and 5.10, we obtain that, if condition (ii) of assumption
(A10) holds, then C* cannot lie within T9U{Q*} UTY. Combining this with Lemma 5.7, we see that,
if condition (ii) of assumption (A10) holds, the only remaining possible location of C* is at Tgnock.-

From Remarks 5.9 and 5.11, in order to complete the proof of Theorem 2.3, it remains to show

Lemma 5.12. C* ¢ Tg,0.

Proof. The proof consists of two steps.

1. Recall that Igoer includes its endpoints A and B. Thus, we first consider the case that CF is
either A or B. Note that Lemma 5.7 does not cover this case if either T'g or I's, or both, are empty.

The argument below does not use condition (A10) of Theorem 2.3. Thus, as discussed in Remark
5.6, we can assume without loss of generality that C* = B. Then, since there is a minimal chain
from Py to C* = B, we conclude that (5.13) holds. Now the proofs of Claims 5.7.1-5.7.2 apply,
with the following simplification: From Lemma 3.15 and the definition of point P, in each of these
claims, we obtain that (5.18) holds. The rest of the proofs of Claims 5.7.1-5.7.2 work without
changes. Therefore, we reach a contradiction, which shows that C* is neither A nor B.

2. It remains to consider the case that C* € thock. Notice that C* is a local minimum point
of ¢e. Then, from Lemma 5.1, we see that e - v < 0 at ;. Now the argument as in Claim 5.7.1,
with point B replaced by point C*, works without change. This yields a contradiction. Therefore,

k
¢ ¢ thock' O

Proof of Theorem 2.3. Combining Lemmas 5.7-5.8 with Lemma 5.12, we obtain that C* cannot lie
within the set: o L
G = fo U F(lJ U Fg U fg U Tshock -

Since Typock includes its endpoints, G covers all 9 except point Q* defined in Case (ii) of (A10),
if @* exists. In Case (i) of (A10), point Q* does not exist, so that G = 0%, which implies that
C* ¢ 9Q. In Case (ii) of (A10), point Q* exists, while Lemma 5.10 implies that C* # Q* so that
C* ¢ 09 in this case as well. However, the fact that C* ¢ 9 contradicts (5.11). This completes
the proof of Theorem 2.3. O

6. PROOF OF THEOREM 2.2: EQUIVALENCE BETWEEN THE STRICT CONVEXITY AND THE
MoNOTONICITY

Proof of Theorem 2.2. By the boundary condition (2.17), ¢+ = 0 on I'gpock. Also, by assump-
tion (A1), ¢ < 0 on I'ghock for the interior normal v. Then the monotonicity property ¢e > 0 in
'Y o for any unit vector e € Con means that assumption (A5) in Theorem 2.1 holds. Now it follows
from Theorem 2.1 that, under the assumptions of Theorem 2.2, the monotonicity property is the
sufficient condition for the strict convexity of the free boundary g in the sense of (2.18)—(2.19).

On the other hand, if the shock graph is strictly convex in the sense of Theorem 2.1, then, at any
point on thock, the tangential direction 7 is not in Con, where we have used the strict convexity in
the sense of (2.19) to have this property for the boundary directions of the cone. Then, using again
that ¢ = 0 and ¢, < 0 on Igpeck in (2.17) and condition (A1) in Theorem 2.1, it follows that ¢e >
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on thock for any unit vector e € C'on; that is, the monotonicity property holds. This completes the
proof of Theorem 2.2. O

Proof of the assertion in Remark 2.4. By equation (3.2) and condition (A3) in Theorem
2.1, ¢e satisfies the strong minimum principle in €2. This implies
¢e > min{ min e, min ¢e} in Q,
shock ' ul'y
where we have used the assumption in Theorem 2.1 that ¢ is not a constant state. Note that, by
the assumption of Theorem 2.2, ¢ > 0 on I'gpock, and ¢e on I'y U 'y satisfies that either ¢e > 0 or
that ¢e cannot attain its local minimum. Thus, ¢e > 0 in QU thock'

7. APPLICATIONS TO MULTIDIMENSIONAL TRANSONIC SHOCK PROBLEMS

In this section, we apply Theorem 2.1 to prove the convexity of multidimensional transonic shocks
for two longstanding shock problems.

7.1. Shock reflection-diffraction problem. When a plane incident shock hits a two-dimensional
wedge, shock reflection-diffraction configurations take shape. The incident shock Sy separates two
constant states: state (0) with velocity vo = (0,0) and density py ahead of Sy, and state (1) with
velocity vi = (u1,0) and density p; behind Sy, where p; > pp, and u; > 0 is determined by
(po, p1,7) through the Rankine-Hugoniot conditions on Sy. The shock, Sy, moves in the direction
of the x1—axis and hits the wedge vertex at the initial time. Also, the slip boundary condition:
v - v = 0 is prescribed on the solid wedge boundary, where v is the velocity of gas. Since state
(1) does not satisfy the slip boundary condition, the shock reflection-diffraction configurations form
at later time, which are self-similar so that the problem can be reformulated in the self-similar
coordinates £ = (£1,&2) = (%, ). Depending on the flow parameters and wedge angle, there may
be various patterns of shock reflection-diffraction configurations, including Regular Reflection and
Mach Reflection. Because of the symmetry of the problem with respect to the &—axis, it suffices to
consider the problem only on the upper half-plane {{; > 0}.

The regular reflection configuration is characterized by the fact that the reflection occurs at the
intersection point Py of the incident shock with the wedge boundary. Figs. 7.1-7.2 show the structure
of regular reflection configurations in self-similar coordinates. The regular reflection solutions are
piecewise smooth; that is, they are smooth away from the incident and reflected-diffracted shocks,
as well as the sonic circle P; P, for the supersonic regular reflection case across which v is only
Lipschitz.

From the description of state (1) above, its pseudo-potential is

2
p1(§) = —‘52’

A necessary condition for the existence of piecewise-smooth regular reflection configurations is the
existence of the constant state (2) with pseudo-potential ¢9 that satisfies both the slip boundary
condition on the wedge boundary and the Rankine-Hugoniot conditions with state (1) across the
reflected shock S1 := {1 = ¢2}. Owing to the constant state structure (2.10), it suffices to require
these conditions at Py. Thus, the conditions at F, are

+ui&y + Ch.

Dyps - vy =0,
P2 = 1, (7.1)
p(|D@2|?, 02)Dga - vs, = p1De1 - v,
where vy, is the outward (with respect to thle) (Wedge)) normal to the wedge boundary, 6y, is the wedge
P1—p2

[D(p1—p2)]"
for parameters (ug, v, Co) in expression (2.10) for 9. Since the piecewise-smooth regular reflection

solution must satisfy (7.1) at Py with ¢ replaced by @2, then (p, D) = (2, D) at Py, if @9 exists.

angle in the upper half-plane, and vg, = Therefore, we have three algebraic equations
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It is well-known (see e.g. [15, Chapter 7]) that, given the parameters of states (0) and (1), there
exists a detachment angle 83 € (0,%) such that equations (7.1) have two solutions for each wedge
angle 0, € (0%, %), which become equal when 6, = 64. Thus, two types of two-shock configurations

occur at Py in the wedge interval 6y, € (63, %). For each such , state (2) with the smaller density
s

is called a weak state (2). The global existence of regular reflection solutions for all 8, € (6%,%)
with (¢, Dy) at Py determined by the weak states (2) has been established in [14, 15]. Below, state
(2) always refers to the weak state (2).

If state (2) exists, its pseudo-potential is

__lep?
p2(§) = 5 T u21 + v2a + Co,

where v = ug tan 6. In particular, state (2) satisfies the first condition in (7.1) on the whole wedge
boundary (in upper half-plane {£; > 0}):

Dys vy, =0 on {& = & tan by, & > 0}. (7.2)

Depending on the wedge angle, state (2) can be either supersonic or subsonic at Py. Moreover, for
0w near I (resp. for 6, near 63 ), state (2) is supersonic (resp. subsonic) at Py; see [15, Chapter 7].
The type of state (2) at Py for a given wedge angle 6y, determines the type of reflection, supersonic

or subsonic, as shown in Figs. 7.1-7.2 respectively, when u; < ¢;.

Incident Shock

Incident Shock

Reflected Shock

Py Py
FIGURE 7.1. Supersonic regular reflection FIGURE 7.2. Subsonic regular reflection

When u; > c1, besides the configurations shown in Figs. 7.1-7.2, there is an additional possibility
that the reflected-diffracted shock is attached to the wedge vertex Ps, i.e. P, = Ps; see Figs. 7.3-7.4.

Incident Shocl
Incident Shock

Reflected Shock /"/
Reflected Shock ‘

&

Py

FiGURE 7.3. Attached supersonic
regular reflection

Py

FIGURE 7.4. Attached subsonic
regular reflection
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The regular reflection problem is posed in the region:
A=RI\{€ : & >0,0<& <& tanby},
where R2 := R*N {& > 0}.

Definition 7.1. ¢ € C%'(A) is a weak solution of the shock reflection-diffraction problem if ¢
satisfies equation (2.5) in A, the boundary conditions:

O =0 on OA (7.3)
in the weak sense (defined below), and the asymptotic conditions:
Aim o —Pllo.a\Br(0) =0, (7.4)

where

5= po  for & > &, &> &itanby,
o1 for & <&, & >0,
and &9 > 0 is the location of the incident shock S.

In Definition 7.1, the solution is understood in the following weak sense: We consider solutions
with a positive lower bound for the density, so that (7.3) is equivalent to the conormal condition:

p(IDol?, ©)dup = 0.

Thus, a weak solution of problem (2.5) and (7.3) is given by Definition 2.1 in region A, with the
following change: (2.11) is satisfied for any ¢ € C°(R?) (whose support does not have to be in A).

Next, we define the points and lines on Figs. 7.1-7.2. The incident shock is line {& = &9} with
& = ﬁ > 0. The center, Oz = (u2,v2), of the sonic circle B.,(O2) of state (2) lies on the wedge
boundary between the reflection point Py and the wedge vertex Ps for both the supersonic and
subsonic cases.

Then, for the supersonic case, i.e. when |Dgo(Fy)| = |PoO2| > ¢o with Py ¢ Be,(02), we denote
by Py the upper point of intersection of 0B.,(O2z) with the wedge boundary so that Oy € P3Py. Also,
0B, (02) of state (2) intersects line S7, and one of the points of intersection, P; € A, is such that
segment Py P; is outside Be,(0O2). We denote the arc of 0B, (O2) by I'sonic = P1Ps. The curved part
of the reflected-diffracted shock is I'shock = P1 P2, where Py € {{s = 0}. Denote the line segments
Lsym := PoP3 and I'yeqge := P3P4. The lines and curves I'ghock, I'sonics I'sym, and I'yedge do not have
common points, except their endpoints P, ..., P;. Thus, I'ghock U I'sonic U l'sym U D'yyedge is a closed
curve without self-intersection. Denote by €2 the open domain bounded by this curve.

For the subsonic/sonic case, i.e. when |Dya(Py)| = |PoO2| < ¢2 so that Py € B, (O2), the curved
reflected-diffracted shock is I'ghoex = PoP2 that does not have common interior points with the line
segments sy, = PoP3 and D'yeqge = FoP3. Then Ighoer U 'sym U T'ywedge is @ closed curve without
self-intersection, and 2 is the open domain bounded by this curve.

Furthermore, in some parts of the argument below, it is convenient to extend problem (2.5) and
(7.3), given in A by even reflection about the & —axis, i.e. defining p®™*(—£1,&) 1= (&1, &) for any
€ = (£,8&) € A. Then p®* is defined in region A®** obtained from A by adding the reflected region
A~ de. A= AU{(&,0) @ & <0}UA™. In a similar way, region Q and curve Igyoe C OS2 can
be extended into the corresponding region Q%" and curve I'S | C 9O

Now we define a class of solutions, with structure as shown on Figs. 7.1-7.2.

Definition 7.2. Let 6, € (65,%). A function ¢ € C%'(A) is an admissible solution of the regular
reflection problem (2.5) and (7.3)—(7.4) if ¢ is a solution in the sense of Definition 7.1 and satisfies
the following properties:

(i) The structure of solutions is as follows:
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o If |Dpa(Py)| > ca, then ¢ is of the supersonic reqular shock reflection-diffraction configu-
ration shown on Fig. 7.1 and satisfies:
The reflected-diffracted shock Tgnoax is C? in its relative interior. Curves Ishock, Isonic,
Iyedge, and sy do not have common points except their endpoints.
@ satisfies the following properties:

p e Co’l(A) N Cl(A \ P()PlPQ),
p € CH)NC* QN (Tsonic U {2, P3})),
po  for& > &) and & > & tan b,
Y=< 1 for & < €Y and above curve PyP) P;, (7.5)
V2 mn region PyP)Py.
o If |Dp2(Py)| < ca, then ¢ is of the subsonic reqular shock reflection-diffraction configura-
tion shown on Fig. 7.2 and satisfies:
The reflected-diffracted shock Tshock is C? in its relative interior. Curves Tsnocks [yedge:

and U'sym do not have common points except their endpoints.
@ satisfies the following properties:

p € C¥1(A) N CH(A\ Tapock),
p e CHQ)NC*Q\{Py, P», P3}),
Yo for & > §§] and & > & tan Oy,
=< ¢1 for & < € and above curve PyPs, (7.6)
wa(Py) at Py,
Dy(Py) = D2 (R).
Furthermore, in both supersonic and subsonic cases,

et is Cin its relative interior. (7.7)

(ii) Equation (2.5) is strictly elliptic in Q\ Tsonic:
Dyl < e(IDgf?,p)  in 2\ Tsonic,

where, for the subsonic and sonic cases, we have used notation Tsonic = {Po}-

(iii) dp1 > O > 0 on Dgnock, where v is the normal to Do pointing into Q.
(iv) p2 < p < ¢y in Q.
(v) Let eg, be the unit vector parallel to Sy := {p1 = @2}, oriented so that eg, - Dypa(Py) > 0:

(v2, u1 — ug)
eg, = — . 7.8
' V(U1 —u)? + 03 7:8)
Let e¢, = (0,1). Then
8e51 (p1 =) <0,  Oe(p1—¢) <0 on Isnock- (7.9)

Below we continue to use the notation convention:

Dsonic :={P}, Pr:=Py, P1:=F for the subsonic and sonic cases. (7.10)
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Remark 7.3. Since the admissible solution ¢ in Definition 7.2 is a weak solution in the sense of
Definition 7.1 and has the regularity as in Definition 7.2(i), it satisfies (2.16) classically in Q with
¢ = p — @1, the Rankine-Hugoniot conditions:

¢ =91, p|Del*,0)Dy-v =p1Dpy-v on Tshock; (7.11)
and the boundary conditions:
By =0 on Tyedge U Tsym- (7.12)
Note also that, rewriting (7.12) in terms of ¢ = ¢ — p1, we have
Oy = —uq sin by on I'yedges (7.13)
O =0 on Lsym.

Remark 7.4. An admissible solution ¢ is not a constant state in Q (recall that 0y, < 5). Indeed, if

@ s a constant state in §, then ¢ = @o in Q: This follows from (7.5) for the supersonic case since

@ is C' across Tsonic, and from the property that (p, Do) = (2, Dps) at Py for the subsonic case.

However, @y does not satisfy (7.12) on Dsyy since vo = (u2,v2) = (ug, us tanfy) with ug > 0 and

Ow € (0,5).

Remark 7.5. Let ¢ be an admissible solution and ¢ = ¢ — 1. For a unit vector e € R?, denote
W = Pe.

Then, from the reqularity in Definition 7.2(i), w € C(2) N C%(Q \ (Tsonic U {P3})), where we have

used (7.10) for the subsonic and sonic cases.

We first notice that w satisfies equation (3.2) in the (S, T)-coordinates with basis {e,e'}. Equa-
tion (3.2) has the same coefficients of the second-order terms as equation (2.6), so that (3.2) is
strictly elliptic in Q\ Tsonic by Definition 7.2(ii).

Furthermore, by [15, Lemma 5.1.3], w satisfies the following boundary conditions on the straight
segments I'yeqge and Usym:

Ife-T #0, where T is a unit tangent vector on I'yedge (resp. T'sym), then

(e-v)(c* —¥7)
wy+(e-‘r)(cg—g072-)w‘r:0 onfgvedge
v

The coefficients are continuous and hence locally bounded, which implies that these boundary condi-

tions are oblique on ngedge (resp. ngm).

(7.14)

(resp. TO ).

sym

Lemma 7.6. Definition 7.2 is equivalent to the definition of admissible solutions in [15]; see Defi-
nitions 15.1.1-15.1.2 there.

Proof. In order to show that the solutions in Definition 7.2 satisfy all the properties in Definitions
15.1.1-15.1.2 of [15], it requires to show that they satisfy:

&p <&y, Ishock € (A\ Be, (01)) N{&ip, <& < &ip}, (7.15)
Des, (p1 =) <0, g, (1 — ) <0 in Q, (7.16)

where O = (u1,0) is the center of sonic circle of state (1) and, in the subsonic reflection case (see
Fig. 7.2), we have used the notation convention (7.10). Moreover, note that the inequalities in (7.9)
hold on Tgyock, while these inequalities in (7.16) hold in the larger domain Q.

We first show both (7.16) and the stronger property:

Jes, (p1 — ) <0, Og(p1 —¢) <0 in Q. (7.17)

The argument is the same as the one in the proof of Remark 2.4 (see §6) for ¢ = ¢ — ¢ in the
present case. We only need to check for e = eg, and e = e, that, for any point £ € 90\ I‘gho o Pe
satisfies that

either ¢e(&) > 0 or ¢e cannot attain its local minimum at &. (7.18)
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Note that 92\ T 5 = Tsonic U Nyvedge U Dsymm U {P3}.

Consider first e = eg,. Since Dy(P;) = (0,0) by (7.12) and ¢ € C*(Q), we conclude that
w(P3) = 0. Next, eg, - T # 0 on I'yedge and I'symy by [15, Lemma 7.5.12]. Then, by Remark 7.5, ¢e
satisfies a homogeneous elliptic equation in © and the oblique boundary conditions (7.14) on ngedge
and ngm, so that w cannot attain its local minimum on P\(z)vedge and ngm, unless w is constant in {2
in which case w = w(P3) = 0 in Q. On Tgonic, (¢, D) = (¢2, Dp2) as shown in Remark 7.4, where
we have used notation (7.10). Also, eg, - D(p2 —¢1) = 0 by (7.8). Thus, ¢e;, = €s, -D(p2—1) =0
on Tgonic, which implies (7.18) for e = eg, .

Now we show (7.18) for e = eg,, i.e. w = ¢¢,. The argument is similar to the previous case,
with the following differences: First, eg, - 7 = 0 on I'sym, so that, instead of (7.14), we obtain
that w = 0 on I'yym by (7.13). Also, on I'sonic, We use again that Dy = Dys to obtain that
w = ¢g, = (P2 — Y1)g; = v2 > 0. The rest of the argument is the same as above, which leads to
(7.18) for e = eg,.

Repeating the proof of Remark 2.4 (see §6), in which ¢ is not a constant state by Remark 7.4,
we obtain (7.17). With this, (7.16) is proved.

Next we show (7.15). Since I'shock € A\ Be, (0O1)), then ¢ is supersonic on I'ghoek. This is a stan-
dard consequence of the Rankine-Hugoniot conditions (7.11) combined with the entropy condition
of Definition 7.2(iii).

It remains to show that {1p, < &1p, and Ispoak € {&1p, < &1 < &ip}. From (7.17), ¢¢, > 0 in
Q. Also, ¢ =0 on I'ghpek and ¢ < 0 in Q by (iv). From these properties and the regularity of curve
I'shock, it follows that any vertical line that has a non-empty intersection with I'gpoc intersects I'gnock
either at one point or on a closed interval. Moreover,

If (£1,85) € Tshock, then QN {(&1,&2) : & =&} C{(&, &) « L <&} (7.19)

From these properties, we conclude that Iypock € {min(&1p,, &1p,) < & < max(&1p, &1p,) ) It
remains to show that &1 p, < & p,. Assume that &1p, > &1 p,. Then, from (7.19) and the structure of
2 described in Definition 7.2(i), we conclude that I'spoex is contained within the following subregion
of {&1p, < &1 < &ipy )i Above Isonic on {&1p, < & < min(&1p,,&1p,)}, and above yedge o0 {&1p, <
& < &p ) if &p, > & p,- This implies that Igpock € {§2 > 0}. This contradicts the fact that
endpoint Py of Igyock lies on {& = 0}. Now (7.15) is proved.

Therefore, we have shown that the solutions in Definition 7.2 satisfy all the properties in Defini-
tions 15.1.1-15.1.2 of [15].

Now we show that the admissible solutions defined in Definitions 15.1.1-15.1.2 of [15] satisfy
all the properties of Definition 7.2. For that, we need to show that the admissible solutions in
Definitions 15.1.1-15.1.2 of [15] satisfy property (iii) of Definition 7.2. This is proved in [15, Lemma
8.1.7 and Proposition 15.2.1]. O

From Lemma 7.6, all the estimates and properties of admissible solutions shown in [15] hold for
the admissible solutions defined above. We list some of these properties in the following theorem.
Below we use the notation: For two unit vectors e, f € R? with e # +f,

Con(e,f) .= {ae+bf : a,b> 0}. (7.20)

Theorem 7.1 (Properties of admissible solutions).  There exits a constant o = a(po, p1,7) € (0, 3)

such that any admissible solution in the sense of Definition 7.2 with wedge angle 0y, € (6, 5) has

the following properties:
(i) Additional regularity:
o If |Dpa(Py)| > co, i.e. when ¢ is of the supersonic regular shock reflection-diffraction
configuration as in Fig. 7.1, it satisfies

p € C=(O\(Tsonic U {P3})) N CHHOQ\{P3}) N CH(9).
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The reflected-diffracted shock PyPy Py (where PyPy is the straight segment, and PPy =
Tahock) 35 C2P up to its endpoints for any B € [0, %), and C* except P;.

o If |Dpa(Py)| < ca, i.e. when ¢ is of the subsonic regular shock reflection-diffraction
configuration as in Fig. 7.2, it satisfies

p e CP@)NCH(Q\ {Po}) N C®(@Q\ {Po, P3})

for some B = B(po, p1,7,0w) € (0,a] which is non-decreasing with respect to Oy, and the
reflected-diffracted shock Tsnock is CYP up to its endpoints and C™ except P,.
Furthermore, in both supersonic and subsonic cases,

€ 0 U (1)),
(i) For each e € Con(eg,,eg,),
(o1 — ) <0 in €, (7.21)

where vectors eg, and eg, are introduced in Definition 7.2(v).

(iii) Denote by vy the unit interior normal to I'yedge (pointing into 1), i.e. vy = (—sin by, cosby,).
Then 8y, (¢ — p2) <0 in Q.

Proof. Below we use the equivalence shown in Lemma 7.6.

Assertion (i) follows from Definition 7.2(i) and [15, Corollary 11.4.7, Proposition 11.5.1, Corollary
16.6.12]. Assertion (ii) is obtained in [15, Corollary 8.2.10, Proposition 15.2.1]. Assertion (iii) follows
from [15, Lemma 8.2.19, Proposition 15.2.1], where ny, = —vy,. O

Remark 7.7. We note that vy, € Con(es,, eg,) for any wedge angle 6y, € (03, %), which is proved

in [15, Lemma 8.2.11].

Now we state the results on the existence of admissible solutions.

Theorem 7.2 (Global solutions up to the detachment angle for the case: u1 < ¢1). Let the initial
data (po, p1,7) satisfy that uy < c¢1. Then, for each Oy € (Gf}v, 5), there exists an admissible solution
of the regular reflection problem in the sense of Definition 7.2, which satisfies the properties stated
in Theorem 7.1.

Proof. The existence of admissible solutions directly follows from Lemma 7.6 and [15, Theorem 2.6.7
and Remark 2.6.8]. O

When u1 > ¢1, the results of Theorem 7.2 hold for any wedge angle 6y, from 7 until either 64 or
05, € (6%, %) when the shock hits the wedge vertex Ps.

Theorem 7.3 (Global solutions up to the detachment angle for the case: u; > ¢1). Let the initial
data (po, p1,7y) satisfy that uy > c1. Then there is 65, € [0, %) such that, for each 6y € (65,%),
there exists an admissible solution of the reqular reflection problem in the sense of Definition 7.2,
which satisfies the properties stated in Theorem 7.1.

If 05 > 04 then, for the wedge angle 0y, = 05, there exists an attached shock solution ¢ with all
the properties listed in Definition 7.2 and Theorem 7.1(ii)—(iii) except that P3 = P> (we use below

notation P3 for that point). In addition, for the regularity of solution ¢, we have

e For the supersonic case with 6y = 05,
¢ € CF(\(Tsonic U {P3})) N CHH(Q\{P3}) N C¥(Q),

and the reflected shock PyPy Py is Lipschitz up to the endpoints, C*? for any B € [0, %) except
point P3, and C*° except points P, and Ps.
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o For the subsonic case with Oy, = 05,
p € C(Q\{Py, P3}) N CH(Q\{Ps}) N C¥H(Q)

for B as in Theorem 7.1, and the reflected shock PyPs is Lipschitz up to the endpoints, C18
except point P3, and C* except points Py and Ps.

Proof. The existence of admissible solutions directly follows from Lemma 7.6 and [15, Theorem
2.6.9 and Remark 2.6.8], where we note that [15, Remark 2.6.8] applies to the case: u; > ¢; as well,
although this is not stated explicitly. ]

Now we show that the admissible solutions satisfy the conditions of Theorems 2.1-2.3.

Lemma 7.8. (i) Any admissible solution in the sense of Definition 7.2 satisfies the conditions of
Theorems 2.1 and 2.3.
(ii) Any regular reflection-diffraction solution in the sense of Definition 7.1 with properties (i)—(iv)
of Definition 7.2 and with shock Ugpocx being a strictly convex graph in the sense of (2.18)—
(2.19) satisfies property (v) of Definition 7.2.

Proof. We divide the proof into seven steps: Assertion (i) is proved in Steps 1-6, while assertion (ii)
is proved in Step 7.

1. We use A, Tt |  and ¢®** defined before Definition 7.2. Combining the structure of equation
(2.5) with the boundary conditions (7.3) on the negative {;—axis yields that the reflected/extended
function ©®** is a weak solution of equation (2.5) in A®™*. By the boundary conditions (7.3), state
(1) satisfies 0,1 = 0 on the £;—axis. Then the structure of the constant state (see §2.1) implies that
©01(—&1,&) = p1(£1,&) in R? so that p$<* = 1. We also note the regularity of ¢®! in Theorem
7.1(i). Thus, the extended shock T’ | separates the constant state 1 from the smooth solution
¢ of equation (2.5) in Q%' and the Rankine-Hugoniot conditions (7.11) are satisfied for ¢*** and
1 on Fgﬁgck‘

2. Region () satisfies the conditions in Framework (A). Indeed, for the supersonic reflection case
(see Fig. 7.1), the required piecewise regularity holds, since I'yeqge and I'sym are straight segments,
Tsonic is an arc of circle, and T'ghoex has the regularity stated in Theorem 7.1(i). The fact that all
the angles of the corners of ) are less than 7 is verified as follows:

Consider first the supersonic case. Since curve PyP Py is C? at P;, and PyP; is a straight segment,
we use that the center of sonic circle of state (2) is on ngedge and Py is outside that circle to conclude
that the angle at Py is between (%, ), and the angle at P, is 5. Also, since (7.7) shows that Tg®
is smooth near P, it follows that the interior angle to € at % is §. Finally, the angle at P is
T—0¢(5,m).

For the subsonic reflection case, the angles at P, and P3 are handled similarly. The angle at Py is
in (0,%) for the following reason: By [15, Lemma 8.2.11, Proposition 15.2.1], for any 6, € (64, %),
vy € Con(eg,, eg,) so that, using the regularity of I'gpocr in Theorem 7.2(i), property (iii) in Theorem
7.2, and ¢ = @1 on I'gyoek, we conclude that T'goc, is a graph:

Dshock = {(f(T)’T) : TP2 <T< TP0}7

of a function f(T) € C*([Tr,,Tr,)) N CYA([Tp,, Tp,]), where the (S, T)-coordinates are along the
normal and tangent directions to I'yeqge-

3. The entropy condition (Al) of Theorem 2.1 follows directly from property (iii) in Definition
7.2, where state (0) in Theorem 2.1 is state (1) in the regular shock reflection problem.

From the regularity of ¢ and I'shoex in Theorem 7.1(i), we see that conditions (A2) and (A4) of
Theorem 2.1 hold.

Property (ii) in Definition 7.2 implies that condition (A3) of Theorem 2.1 holds.
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4. Using the notations of the endpoints of I'ghoek as in Framework (A) by A := P} and B = P,
we see from the properties in Definition 7.2(i) that

TA = €5, TB = €¢,.

As we discussed in Step 2, I'yock is orthogonal to the &;—axis at P>. From this and [15, Lemma
7.5.12], e¢, # +eg,. Also, combining property (ii) of Theorem 7.1 with the fact that I'spock is the
level set ¢ — p1 = 0, we obtain that {P + Con} NQ =0 for all P € T'gock. Thus, condition (A5) of
Theorem 2.1 is true.

5. Next we discuss condition (A6) of Theorem 2.1. We recall that ¢ := ¢ — 1. All local minima
and maxima discussed below are relative to Q. Also, we discuss the supersonic and subsonic/sonic
cases together below, and use notations (7.10) for the subsonic/sonic case. Furthermore, since
conditions (A1)—(A5) have been verified, we can use Lemma 3.2 in the argument below.

Fix e = vy, where vy, is defined in Theorem 7.1(iii). By Remark 7.7, e € Con. We first notice
that, by Remark 7.5, w = ¢e satisfies equation (3.2), which is strictly elliptic in Q U thock Um U

ngedge. Furthermore, since 7 = e¢, on I'syy, so that e - 7 = —sinfy, # 0 on I'syyy,, then w satisfies
(7.14) on ngm, and this boundary condition is oblique. Thus, by Hopf’s lemma, the local maximum
and minimum of ¢, relative to Q cannot be attained on ngm, unless ¢e is constant.

Next we show the similar property on I'yedge U I'sonic- From (7.2) and (7.12), Oe(¢ — ¢2) =
Op(p — p2) = 0 on I'yedge- Also, Dy = Dy on Igonic by Definition 7.2(i). Thus, de(¢ — ¢2) = 0 on
I'wedge U I'sonic, which is the global maximum over Q by Theorem 7.1(i). Then O¢(p — ¢2) cannot

attain its local minimum at some P € I'yegge U Tsonic unless (o — ©2) = 0 in . Indeed, if
P € I'yedge U Tsonic is a point of local minimum of de(¢ — ¢2), then, since P is also a point of global
maximum and Je(@ — p2)(P) = 0 as shown above, we obtain that de(¢ — ¢2) =0 in B,.(P) N for
some 7 > 0. Since Je(p — p2) = Je( — p1) + Oe(1 — Y2) = e + uy sin By, (where we have used
that Dgs - vy, = 0) so that de(p — ¢2) satisfies the strictly elliptic equation (3.2) in €, the strong
maximum principle implies that de(¢ — p2) = 0 in Q. Recalling that de¢p = Je(p — @2) — uq sin by,
we conclude that ¢e = —uqsinf,, in  if ¢e attains its local minimum at some P € I'ywedge U I'sonic-

Combining the two cases discussed above, we conclude that, if ¢e attains its local minimum at
some P € I'yedge U I'sonic U F[S)ym, then ¢e is constant in €, specifically ¢ = —uq sinb,, =: a.

Now we show that, if e = a in €2 for an admissible solution ¢, then ¢ is a uniform state in 2. To
fix notations, we consider first the supersonic case. We use the (S, T')-coordinates with basis {e,e"}
and the origin at P for e determined as in Lemma 3.2 for e = vy, i.e. e = —(cosfy,sinfy). We
recall that A = P} and B = Py; see Step 4. Then Tp =Tp, >Tp, =0 > Tp, =T > Tp,. Also,

Fsonic - {S — fSO(T)a T S (TP45 TP1)}7 F(s)ym — {S =T tan QWa T € (TP;;) TPQ)}7

where fso € C®°((Tp,, Tp,)) and fso > 0 on (Tp,, Tp,). The function, fe, from Lemma 3.2(i) for
e = vy, satisfies that fo(7") > max(T tan 6y, 0) on (Tp,, Tp,). Also,

Q={(S,T):T € (Tp,, Tp,), max(T tanby, 0) < S < f(T)},

where f € C(Tp,, Tp,) satisfies

f=to on(Tr, Tr),  f=feon (Ip, Tp,).
Let ¢o = a in Q. Then, from the structure of Q described above, ¢(S,T) = aS + ¢(T') in Q for
some g € C*(R). Since ¢¢, = 0 on gy by (7.13), we see that ae - eg, + ¢ (T)et - e, = 0 for
all T € (Tp,, Tp,), where we have used the expression of ') in the (S,T)-coordinates given

above. Note that el - eg, = —sinf, # 0. Thus, ¢’(T) is constant on (Tp,, Tp,), which implies that
o(S,T)=aS +bT + cin Q) for some b, ¢ € R, where

Q:={(8,T):T € (Tp,, Tp,), max(Ttanb,, 0) < S < f(T)} C Q.
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Since ¢ is real analytic in 2 by Lemma 3.5, it follows that ¢(S,T) = aS + bT + ¢ in Q. That is,
© = g + ¢ is a constant state in €2, which contradicts Remark 7.4.
For the subsonic/sonic case, the argument is the same, except that the structure of 2 now becomes

Q={(S,T):T € (Tp,, Tp,), max(Ttanby, 0) < S < fo(T)}.

Therefore, we have shown that ¢ cannot attain its local minimum on Fwedge U Ceonic U Fbym
Then we define I'1 := (T'wedge U Tsonic U Tm) \ {P1} = 92\ Tshoek, and I'y := 0 in both the

sym
supersonic and subsonic/sonic cases. Clearly, I'; is connected. Now Case (iii) of condition (A6) of

Theorem 2.1 holds in both the supersonic and subsonic/sonic cases.

6. We now check the conditions of Theorem 2.3. Since the conditions of Theorem 2.1 have been
checked, the conclusions of that theorem hold; in partlcular prr > 0 on Ighock-
Let I'g := I U{ P4} in the supersonic case, and I'o := 0 in the subsonic case. Let 'y := '

{Ps}, [y := I‘Sym, and I's := (). In the supersonic case, for any nonzero e € R2, ¢ = D(p2—p1)-€

on I'sonic, i.€. ¢e is constant on f‘o. Then (A7)—(A8) hold.
Let e € R? be a unit vector. We have shown in Step 5 that ¢e is not a constant in €. Then,
by (7.14), ¢ can attain a local minimum or maximum on I'? only if e- 7 =0, i.e. € = Fvy.

wedge
In that case, by (7.13), ¢e is constant on Fwedge This verifies (A9) on I'y := Pwedge U{Ps}. On
[y:=T 0 ms (A9) is checked similarly. On To: =T . U{P;} in the supersonic case, Dy = Dy 50
that pe = 0e(Dyw2 — Dy1) = const. Now (A9) is proved.

To check condition (ii) of (A10) at point B = P», we note that, by Step 1, ¢ := @™t —
satisfies equation (2.16) in Q°* and conditions (2.17) on T'SE , . Also, we have shown above that
the original problem in 2 satisfies hypotheses (A1)—(A3) of Theorem 2.1. It follows that problem
for ¢t in Q% satisfies (A1)—(A3) of Theorem 2.1.

Now it follows that the extended problem in Q¢ satisfies the conditions of Lemma 3.1. Also, P,

is an interior point of the extended shock I'SY | . Furthermore, using (7.7), we have

v Py) = v (Pa),

U

sonic wedge

where vy, (P;) is defined in (A10). Since ¢rr > 0 on gk as noted above, which implies that
¢r+(P2) > 0 from the regularity of ¢ in Theorem 7.2, we apply Lemma 3.1 for the extended
problem to conclude that, if v, (P2) - e < 0, then ¢e cannot attain its local maximum at Pp. If
ven(P2) -e = 0, we use that vg, () = e¢, by (7.7) to conclude that e = +eg, in that case. Then we
use the C1(Q)-regularity of ¢ to conclude that ¢ = 0 on Isyy by (7.13). Thus, ¢e(P) = ¢e(Ps) if
v(P,) - e =0, so that condition (ii) of (A10) holds.

7. Now we show assertion (ii). Any admissible solution has a strictly convex shock by Theorems
2.1 and 2.3, since we have verified the conditions of these theorems in Steps 1-6 of this proof. Then
it remains to show that any regular reflection-diffraction solution in the sense of Definition 7.1, with
properties (i)—(iv) of Definition 7.2 and with shock Tgpocx being a strictly convex graph in the sense
of (2.18)—(2.19), satisfies property (v) of Definition 7.2.

Recall that (2.18) holds in the present case with A = P; and B = P, as discussed in Steps 2 and
4. Then, using the properties in Definition 7.2(i), we find that, in the coordinates of (2.18),

L LPTm) ()

I A@)l T (S (T)]
Also, from the strict concavity of f in the sense of (2.19), we obtain that f'(T4) > f'(T) > f'(TB)
and f(T) < f(Th)+ f(Th)(T—Ty) for all T, Ty € (T4, T). From this, we see that {P+Con}NQ =0
for any P € I'gpoek- Then, since ¢ < ¢ in € from Definition 7.2(iv) and ¢ = 1 on Igheek by (7.11),
we obtain that de > Oetp1 for any e € Con, which shows (7.9). g

From Lemma 7.8 and Theorems 2.1-2.3, we have
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Theorem 7.4. If ¢ is an admissible solution of the shock reflection-diffraction problem, then its
shock curve Ughock 8 uniformly convex in the sense described in Theorem 2.3.

Moreover, if a weak solution in the sense of Definition 7.1 satisfies properties (1)—(iv) of Definition
7.2, then its shock Ugpock 18 a strictly convex graph in the sense of (2.18)—(2.19) if and only if property
(v) of Definition 7.2 holds.

Proof. The uniform convexity of I'ghock for admissible solutions follows from Lemma 7.8 and Theo-
rems 2.1 and 2.3.

Moreover, if a shock solution in the sense of Definition 7.1 satisfies properties (i)—(iv) of Definition
7.2, and its shock is a strictly convex graph, then, by Lemma 7.8(ii), the solution satisfies property
(v) of Definition 7.2. O

7.2. Reflection problem for supersonic flows past a solid ramp. The second example is
the Prandtl-Meyer reflection problem. This is a self-similar reflection that occurs when a two-
dimensional supersonic flow with velocity Voo = (oo, 0), Uso > 0, in the direction along the wedge
axis hits the wedge at t = 0. The slip boundary condition on the wedge boundary yields a self-similar
reflection pattern; see Figs. 7.5-7.6.

FiGure 7.5. Supersonic Prandtl- FIGURE 7.6. Subsonic Prandtl-
Meyer reflection Meyer reflection

We consider this problem in the self-similar coordinates. Using the symmetry with respect to the
&1—axis, the problem can be posed in the region:

A=RZ\{€ : & > max(0,& tanby)}.
Denote by ¢ the pseudo-potential of the incoming state.

Definition 7.9. ¢ € C%(A) is a weak solution of the Prandtl-Meyer reflection problem if ¢ satisfies
equation (2.5) in A, the boundary conditions (7.3) on OA, and the asymptotic conditions:

P}i_fgo ¢ — @oollc(Lo\Br(0)) =0
along ray Ly := {& = & cot 0,& > 0} for each 0 € (Oy, ) in the weak sense (as in Definition 7.1).

We consider the solutions with the structure shown in Figs. 7.5-7.6. These solutions are piecewise
smooth and equal to the constant states outside region (2 described below.

The constant states are defined as follows (see [3, Section 2] for the details and proofs): Given
the constant self-similar state with velocity v = (oo, 0) and density poo which is supersonic at the
origin (the wedge vertex), there exist the detachment wedge angle 6% € (0,%) and the sonic wedge
angle 65, € (0,0%), which depend only on (peo, Us ), such that, for any wedge angle 6y, € (0,69),

(i) There exists a unique constant state @, which determines the normal reflection state of o
from the wedge boundary oW := {{; > 0,& = & tan 6y, }; that is, @ satisfies that dppa =0
on OW, half-line Sy :={€ : pn = Yoo} N{&2 > 0} lies in A and is parallel to OW, and the
Rankine-Hugoniot condition holds on Sys:

PocOuPoo = PN OLPON on Sy.
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(ii) There exists a constant state po such that dupo = 0 on OW, half-line Sp := {§ : ¢o =
Yoo} M{&2 > 0} lies in A, the wedge vertex is on Sp (i.e. 0 € Sp), and the Rankine-Hugoniot
condition holds on Se:

PocOuPoc = POOuPO on So.

In fact, there exist two states for pp, weak and strong, and we always choose the weak one
with the smaller density (so that the unique state o is often referred);

(iii) e is supersonic (resp. subsonic) at 0 for all 6y, € (0,65,) (resp. 6, € (65,,60%)). This determines

W) YW
the supersonic and subsonic Prandtl reflection configurations below.

Next, we define the points, lines, and regions in Figs. 7.5-7.6 for a given wedge angle 6, € (0,64)
as follows:

(a) The sonic arcs T% . and T'Q . are the arcs (defined below) of the sonic circles of the constant

states pn and @@, respectively, with the centers on dW, since these states satisfy the slip
boundary condition on OW:

Fé\gmc is the “upper” arc of 0B.,,(Ox) between lines OW and Sy/. It follows that I‘é\gnic C A,

since DB, (Oyr) intersects the full line Sy at two points. Denote the endpoints of T .
by P> and P3, which lie on Sy and OW, respectively.

e ArcT'? . is defined only for the supersonic reflection configurations, i.e. for 6 € (0,65,). In
@)

this case, 0B, (Op) intersects half-line Sp at two points within A, and I'g, ,_ is the “lower”
arc of dB.,(0p) between lines OW and Sp. Then I'? . C A. Denote the endpoints of

sonic

anic by P; and P4, which lie on S» and O0W, respectively.

e For the supersonic configurations, So s is segment OP;. Note that Sp g C So.
® S\ seg is the portion of Sy with the left endpoint P, i.e. Sarseg = SAr N {&1 > &1.p, }-

(b) TI'ywedge is the segment of OW between points P3 and Py for the supersonic case (resp. between
(0,0) and P5 for the subsonic case).

(c) There exists a smooth shock curve I'gpock with the following properties:
e For the supersonic reflection configurations, I'ghocc has endpoints P, and Ps.

e For the subsonic reflection configurations, ['ghock has endpoints P, and O.
(@]

Fwedge, and I‘sonic

do not have common points except at their end points.

N
L4 FShOCk? Fsonic?

(d) € is the domain bounded by the curve formed by 'gpock, Fé\gnic, I'yedge, and ro

sonic*

(e) For the supersonic reflection configurations, Q¢ is the region bounded by arc Fg?mic and the
straight segments OP; and O Py;

(f) Qur is the unbounded region with the boundary consisting of arc Fé\gmc, and the straight half-lines
OW N {& > &ipy} and Sy N {81 > &1p, )

(8) oo == A\ Qo UQUQu for the supersonic case, and Qo := A\ QU Qs for the subsonic case.

Now we define a class of solutions of the Prandtl-Meyer reflection problem with the structure as
in Figs. 7.5-7.6.

Definition 7.10. Let (poo, (Uoo, 0)) be a supersonic state in Quo, and let 0% and 05, be the corre-
sponding detachment and sonic angles. Let 0y, € (63, 5). A function ¢ € CYY(A) is an admissible
solution of the Prandtl-Meyer reflection problem if ¢ is a solution in the sense of Definition 7.9 and

satisfies the following properties:

(i) The structure of solution is the following:
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o If by, € (0,65), then the solution is of supersonic reflection configuration as in Fig. 7.5
and satisfies

¢ € CH(A\ S0 5eg UTshock U SN seg)s © € C2(Q)NCQ\T2 , UTY . ) nCH(Q),
Voo 1 Qoo,
=1 Vo in Qo, (7.22)
ON i Qs
o If O, € [65,0%), then the solution is of subsonic reflection configuration as in Fig. 7.6
and satisfies
¢ € YA\ Tonoae USivmeg)s 9 € CH@) NCA@\ ({OUT, )N C' @), (7.29)
Poo mn Qoo
=1 po(0O) atO, (7.24)
oN n Qp,
D(0) = Dyo(O). (7.25)

(i) The shock curve Tgoux is C2 in its relative interior;

(ili) Equation (2.5) is strictly elliptic in Q\(TN . . UTQ . ) for the supersonic case and in Q\(TN ..U
{O}) for the supersonic case;

(iv) Ou@oo > Oup > 0 on Tghock, where v is the normal to Ugpock pointing into €.

(V) Oegy, (Yoo — ) < 0 and ey, (poo — @) < 0 in Q, where vectors eg,, and eg,, are parallel to
lines So and Sy, respectively, oriented towards the interior of I'shock from points Py and P,
respectively;

Remark 7.11. A version of Remark 7.3 holds in the present case, with the only difference that the
potential function of the incoming state is Yoo here, instead of 1.

Remark 7.12. ¢ in ) is not a constant state. Indeed, if ¢ is a constant state in €2, then @ = Y
in Q, which follows from (7.22)—(7.23) in the supersonic and subsonic cases, respectively. On the
other hand, we obtain that ¢ = pe in Q, which follows from both (7.22) for the supersonic case
(since ¢ is C' across TS . ) and the property that (p, Do) = (p2, Dps) at O for the subsonic case.
However, po and on are two different states, which can be seen from their definitions, since line

Sx is parallel to OW (so that these lines do not coincide), while So intersects OW at point O.

Lemma 7.13. Definition 7.10 is equivalent to the definition of admissible solutions in [3]; see
Definition 2.14 there.

The proof of Lemma 7.13 follows closely the proof of Lemma 7.6 with mostly notational changes,
so we skip this proof here.

From Lemma 7.13, the results of [2, 3] for the existence and properties of admissible solutions
apply to solutions in the sense of Definition 7.2. We list some of these properties in the following
theorem.

Theorem 7.5. Let (poo, (U0, 0)) be a supersonic state in Quo, and let 03 and 65, be the corresponding
detachment and sonic angles. Then any admissible solution of the Prandtl-Meyer reflection problem
with wedge angle Oy, € (0,02) has the following properties:
(i) Additional regularity:
o If Oy € (0,6), i.e. when the solution is of supersonic reflection configuration as in Fig.
7.5, then p € CY Qo UQU Q) and ¢ € C®(Q\TC . uTN

sonic sonic ) ’
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e IfO, € [9;,0‘%), i.e. when the solution is of subsonic reflection configuration as in Fig.
7.6, then ¢ € CH(QU Q) NCHH QU QN \ {0}) and p € C=(Q\ ({O}U Fsomc)) for

some a € (0,1), depending on (poc, Uco, bw) and non-increasing with respect to Oy

(ii) The shock curve Ugpock is C™ in its relative interior.

(iii) Dshock has the following regularity up to the endpoints: In the supersonic case, the whole
shock curve So seg U shock U SN seg 5 C?*B for any B € (0,1). In the subsonic case, curve
Cahock U SN seg s C1* with a as in (i);

(iv) For each e € Con(eg,,,es,,),
Oe(oo — ) <0 in Q, (7.26)

where vectors eg,, and eg,, are introduced in Definition 7.10(v), and we have used notation
(7.20).

(v) Denote by vy, the unit normal on I'yedge, interior with respect to €2, i.e. vy = (—sinfy,cosby,).
Then Oy, (¢ — o) <0 and Oy, (p — pn) <0 in Q.

Proof. Properties (i)—(iii) are from [3, Theorem 2.16]. Properties (iv) and (v) are shown in [3,
Lemmas 3.2 and 3.6], where the results are stated in a rotated coordinate system, in which the
&o—variable is in the direction of vy. O

Theorem 7.6. Let (poo, (Uso,0)) be a supersonic state in Qs, and let 8 be the corresponding
detachment angle. Then, for any 0y € (0,0), there evists an admissible solution of the Prandtl-
Meyer reflection problem.

The existence of solutions follows from [3, Theorem 2.15].
Now, similar to Lemma 7.8, we have

Lemma 7.14. (i) Any admissible solution in the sense of Definition 7.10 satisfies the conditions
of Theorems 2.1 and 2.3.
(ii) Any global weak solution of the Prandtl-Meyer reflection problem in the sense of Definition 7.9,
with properties (i)-(iv) of Definition 7.10 and with shock Uspock being a strictly convex graph in
the sense of (2.18)—(2.19), satisfies property (v) of Definition 7.10.

Proof. We first discuss the proof of assertion (i).

Conditions (A1)—-(Ab5) follow directly as in Lemma 7.8. In particular, in (A5), Con = Con(es,,,es,,),
where we have used (7.20). Also, A= P; and B = P,, where P; := O in the subsonic/sonic case.

For condition (A6), we choose vector e = vy, where vy, is defined in Theorem 7.5(v). Then
e € (Con, which can be seen from the fact that up > 0 and vp > 0 with Z—g > tanf,, and
en = —(cos Oy, sinby,).

In the argument below, the local extrema are relative to . Also, we discuss the supersonic and
:= {0} and P, := O for the subsonic/sonic case.

subsonic/sonic cases together and define I'9
Recall the boundary conditions:

sonic

Ovp =0, Oupo=0, Oppn=0 on I‘wedge~

Also, Dy = Dpo on Fsomc by Definition 7.10(i). Thus, de(p — po) =0 on Fwedge U Fsomc, which is
the global maximum over ) by Theorem 7.5(v). Since ¢ is not a constant state, arguing as in Step
then

and arguing as above, we conclude

5 of the proof of Lemma 7.8, we find that, if ¢ attains its local minimum on I'yeqge U Fsomc,

®e is constant in ). Similarly, using that Dy = DgpN on TV

sonic

that ¢ cannot attain its local minimum on T¥V . unless ¢e is constant in . Combining all the

sonic

facts together, we conclude that, if ¢e attains its local minimum on Fé\gmc U Fwedge U Fsomc, then ¢e
is constant in Q.
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We now show that, if ¢e is constant in 2, then ¢ is a constant state in ). To fix notations,
we consider first the supersonic case. Since conditions (A1)—(A5) have been verified, we can apply
Lemma 3.2. We work in the (S, T')-coordinates with basis {e,e'} and origin O, where the orientation
of el is as in Lemma 3.2. Then T p, < Tp, < Tp, < Tp,, where we have used that A = P, and
B = P,. Also,

SOHIC = {S fO( ) T e (TP4’ TP1)}a SOIllC = {S fN( ) T e (TP23 TP3)}7
where fo € C®((Tp,, Tp,) and frr € C°((Tp,, Tp,) are positive. With this, we obtain

Q={(S,T) : T € (Tp,, Tr,), S (0, f(T))},
where f € C(Tp,, Tp,) satisfies

f: fo on (TP47 TP1)7 f: fe on (TP17 TPQ)a f: f/\/ on (TP27 TP3)7 (727)

Let ¢ = a in Q. Then, from the structure of 2 described above, ¢(S,T) = aS + ¢g(T') in Q for some
g € CY(R). Then, noting that Dy = Dpxs on N . . we obtain

sonic?

g (T) = 0.1 ¢(fn(T),T) = D(on — o) - € for all T € (Tp,, Tp,),

where we have used that D(ox — ¢oo) 18 a constant vector. Thus, ¢’ is constant on (T'p,, Tp,) so
that ¢(S,T) = aS +bT +cin Q:={(S,T) : T € (Ip,, Tr,), S € (0, fr(T))} C Q. Then, arguing
as in Step 5 of the proof of Lemma 7.8, we conclude that ¢ is a constant state in {2, which is a
contradiction. For the subsonic/sonic case, the argument is the same, except the structure of €,
where now Py = P; = O, and fp is not present in (7.27).

Therefore, Case (111) of (A6) holds with e = vy, I' := Fsomc U Fwedge uT9
case (resp. ' :==TN . U [yedge \ {P2} for the subsonic case), and I'y = 0.

sonic for the supersonic

sonic

Next, we show that conditions (A7)—(A10) are satisfied with Ty = Fé\gmc \{P}, I = ngedge,

=0, and I's = ro .. \ {P;} for the supersonic case (resp. I's = § for the subsonic case). Indeed,
then (A7) clearly holds. Also, (A8) holds since Dy = Dy on TV . and Dy = Dgo on ro . for
the supersonic case.

Condition (A9) on T} = ngedge can be checked as follows: If e-7 # 0 on Fwed -» then the argument
of Step 5 in the proof of Lemma 7.8 applies here to yield that ¢ cannot attaln the local minima or

maxima, on I'? In the other case, when e = +v, we use the boundary condition:

sonic?

wedge”

Oy =0 on I'Y

wedge

to derive that O,¢ = —us sin fy on I'yedge, similar to (7.13). Also, on Ty = somc\{PQ} Dy = Dpy
50 that ¢e = de(PN — Poo) = const. The argument on I's = T9

ic \
sonic
similar. This verifies (A9). Case (i) of (A10) obviously holds here.

To prove assertion (ii), we follow directly the argument of Step 7 in the proof of Lemma 7.8 with

mostly notational changes, e.g. now (, replaces ;. O

{P1} in the supersonic case is

Therefore, we have

Theorem 7.7. If ¢ is an admissible solution of Prandtl-Meyer reflection problem, then its shock
curve Dghock 18 uniformly convexr in the sense described in Theorem 2.3. Moreover, for a weak
solution of the Prandtl-Meyer reflection problem in the sense of Definition 7.9 with properties (i)—
(iv) of Definition 7.10, the transonic shock Uspock is a strictly convex graph as in (2.18)—(2.19) if
and only if property (v) of Definition 7.10 holds.
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APPENDIX A. PATHS CONNECTING ENDPOINTS OF THE MINIMAL/MAXIMAL CHAINS

For A C R", we denote
A, :={€ €A : dist(§,0A) > r}. (A1)

Lemma A.1. Let A C R™ be an open set such that A, is connected for each r € [0,7¢] with given
ro > 0. Let P,Q € A be such that B,(P)NA, and B,.(Q)NA, are connected for each 0 < p <1 < ry.
Then there exists a continuous curve S with endpoints P and Q such that S° C A. More precisely,
S = ¢([0,1]), where g € C([0,1];R™), g is locally Lipschitz on (0,1), g(0) = P, ¢g(1) = Q, and
g(t) € A forallt € (0,1).

Proof. We note first that, after points P and @ are fixed, we can assume that A is a bounded set;
otherwise, we replace A by A N B, where B is an open ball and P,Q € B.
We divide the proof into three steps.

1. We first note that, if P,Q € A, for some r € [0,7¢), then there exists a piecewise-linear path
S with a finite number of corner points connecting P to @) such that § C A, /5. This is obtained
via covering A, by balls B,2(&i), i =1,..., N, with each §; € A, and via noting that, since A, is
connected, then any & and &; can be connected by a piecewise-linear path with at most N corners,
each section of which is a straight segment connecting centers of two intersecting balls of the cover.

Thus, the path connecting &; to &; lies in U,iVZIBT/Q(fk) C A, /2. Then we connect P to @ by first
connecting P (resp. () to the nearest center of ball &; (resp. &;) via a straight segment that lies in
B,, (&) (resp. Br,(&5)), and next connect &; to &; as above. In this way, the whole path S between
P and Q is Lipschitz up to the endpoints and lies in A, 5. Clearly, there exists g € C%1(]0,1]; R™)
with g(0) = P, g(1) = @, and g(t) € A,/ for all t € [0,1] such that S = g([0, 1]. Therefore, this
lemma is proved for any P,Q € A.

2. Now we consider the case when P € A and Q € A. Since A is open, there exists a sequence
P,, — P with P,, € A for m =1,2,.... Then P, € A, with r, > 0 and r,, — 0. Thus, taking a
subsequence, we can assume without loss of generality that 0 < r,, < 72 for all m.

As proved in Step 1, P; can be connected to @ by a Lipschitz curve that is parameterized by

1 1
ge C’O’l([§, 1];R™) with 9(5) =P, g(1) = Q, and g(t) € A; for all t € [0, 1],

where 7 > 0. Since (B.(P)NA). = B,_.(P) N A for all € € [0, 5), then the assumptions of this

lemma allow to apply the result of Step 1 to sets B, ), (P) N A for m = 1,2,.... Thus, for each

m = 1,2,..., we obtain a Lipschitz path between P, and P,,1; which lies in B (P)N A and is
1 1

———, ———|;R"™) with

m+2 m+1

1 1 1 1
=P —) =P dg(t) € Bro(P)NAf, forallt € [ ——, ——].
)= P (=) = Pty and g(t) € B (P) N Ar, forallt € [——. ——]

Combining the above together, we obtain a function ¢ : (0,1] — R™ such that g € C([0,1;R") N
C™1((0,1]; R"™) with

loc

ro/m

parameterized by g € C%1(]

g(

tg%lJrg(t) =P, ¢g(1)=Q, g(t)eA forallte(0,1].

This completes the proof for the case when P € OA and Q) € A.

3. The remaining case for both P,Q € OA now readily follows, by connecting each of P and @
to some C € A and taking the union of the paths. O

Lemma A.2. Let Q C R? satisfy the conditions stated at the beginning of §3.3, and let r* be the
constant from Lemma 3.10. Let Q, be defined as in (A.1). Then there exists ro € (0, %] such that
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sets 2, are connected for all p € [0,7¢], and sets B.(E) N, are connected for any E € Q and
0<p<r<ry. Moreover, if 0 < p <1 <21, P €, and dist(P,00Q) < r, then

dist(E,0Q N B, (P)) < Cp for each E € 09, N B,.(P), (A.2)
where C' depends only on the constants in the assumptions on ).
Proof. Throughout this proof, C' denotes a universal constant, depending only on 2. We divide the

proof into two steps.

1. We first describe the structure of 9, for sufficiently small p > 0, and show that 2, is
connected for such p and (A.2) holds.

Denote by I';, i = 1,...,m, the smooth regions of Q2 up to the corner points. Then, for P € (,
we have

dist(P,09) = min dist(P,T}).

i=1,....m
Denote
Q; ={P e Q : dist(P,00) = dist(P, ;) }.
Using that each I'; is C1® up to the corner points, and the angles at the corner points are between
(0,7), we will show that there exists 79 > 0 such that, for any p € (0,7r9) and i = 1,...,m, the set:

I?:={P e, : dist(P,00) = p}

is a Lipschitz curve. In addition, I'? is close to I'; in the Lipschitz norm in the sense described
bellow.

Consider first a curve I' = {(s,t) € R? : s = g(t)} for some g € CL*(R). Let p > 0 and
[? = {(s,t) € R? : s > g(t), dist((s,t),[') = p}. Fix tp € R and r > 10p, and denote L :=
gl o (jtg—2rto+2r)- Then we find that, for any t1 € [to — r,to + 7], there exists s1 € [g(t1) +

p, g(t1) + pvV L? + 1] such that (s1,t1) € I'” and
I"N{(s,t) eR? : |t —to| <7, s>s1+Ljt —t;1|} =0
by noting that B,(s1,t1) NT' = . From this,
I?={(s,t) eR? : s=g¢"(t)} with ¢’ € Cpot(R) and [|g — ¢°|| oo ((_rr)) < pV L2+ L.
Moreover, fix P € I'’. Then there exists @ € I' such that dist(P, Q) = p. It follows that
B,(P)NT =0, B,(Q)NI*=04.
From this, for any € (0,1), we find that there exists 79 € (0, {5] depending only on 7, «, and
L= gl c1.e(3r,3r7) such that, if p € (0,7¢], then, for any P = (¢°(tp),tp) € I” N {t € [-r, 7]}, we
obtain that, for any ¢ € [—2r, 2r],

9°(t) > g°(tp) + g/ (tQ)(t — tp) — (Lr®)[t —tp|
> g°(tp) + ¢ (tp)(t —tp) — (L(r® + p™))[t — tpl,

where @ := (g(tg),tqQ) a point such that dist(P, Q) = p.
Then, noting that

l9(t) — g(tp) — ¢'(tp)(t —tp)| < (Lr¥)|[t —tp|  for any ¢ € [-2r, 2],
and ||g — ¢°|| oo ((_rr)) < VL2 + 1, we have
19— llcosrey < Lo+ p\/22 4+ 1.
Thus, for any ¢ € (0,1), reducing rg, we obtain

lg = 9”llcor(—rsp) <€ if p < ro. (A.3)
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From this, under the conditions of Case (a) in the proof of Lemma 3.10, when (3.16) holds, we
follow the argument in the proof of Lemma 3.10 and choosing sufficiently small ry and ¢ in (A.3) to
obtain that, for any positive p < min{r, 7o},

QNQsr ={(s,1) €Qz : s>¢°(N)}, IV NQs ={(s,1) € Qar : s=9"(1)}. (A.4)
Furthermore, under the conditions of Case (b) in the proof of Lemma 3.10, when (3.17)-(3.18)

hold, we repeat the argument there by choosing small ry and €, and conclude that, for any positive
p < min{r,ro},

QN Qsnr = {(s,t) € Qanr = s> max(g](t),d5(t))},
90 N Qsny = {(s,t) € Qanr : s =max(g{(t),g5(t))},

where g and ¢ satisfy (A.3) with g; and go respectively, and there exists ¢, € (—Cp, Cp) such that

(A.5)

gr(t) > gh(t) fort <t,, gl (t) < gh(t) fort >t,. (A.6)

We adjust ¢ so that ro < %. Then, from (A.4)—(A.6) with » = 7*, we obtain that, for each

p € (0,79], 09, is a Lipschitz curve without self-intersection. It follows that 2, is simply-connected.
Also, combining (A.4) with (3.16) and (A.5)—(A.6) with (3.17)—(3.18) for r = 1o, choosing ¢ small
in (A.3) for g, g1, and g2, and adjusting ro, we have

dist(99,,0Q) < Cp  for each p € (0,7°).
Then we conclude (A.2).

2. Now we show that B,.(E) N, is connected for any £ € Q and 0 < p < r < ry.

Assume that dist(E,0Q) < 2r (otherwise, the result already holds). Since r¢g < %, we obtain

(3.16)—(3.18) for 2r instead of r, so that (A.4)-(A.6) hold for 2r instead of r. Then, arguing as in
the proof of Lemma 3.10 and possibly reducing 7o, we obtain the following;:

o If B, (E) N Q has expression (3.20), then

QpNB(E) ={(s,1) : t€(t, 1)), max(f(t),g°(t)) < s < fT(1)},

where tf € (%,r] and t; € [~r, —%6) with \tf—ti] <Cp, ft>glon(t;,th),and f < g’

on [—r, 7]\ [t,,t}];

e If B,.(E) N has expression (3.27), then
QN Br(E) ={(s,t) : t€(t,,t;), max(f(t),97(t), g5(t)) < s < [T ()},
where t, € [t* —r,t*) and t] € (t*,t* +7] with |tf —t*F| < Cp, and f*(t) > max(g{(t), g5 (1))
on (t,,tF).
The facts above imply that sets B,.(E) N§, are connected. O

In the next lemma, we use the minimal and maximal chains in the sense of Definition 3.7.

Lemma A.3. Let Q C R? satisfy the conditions stated at the beginning of §3.3, and let o be the
constant from Lemma A.2. Let Ey, Ey € S, and let there exist a minimal or mazimal chain {E" fil
of radius r1 € (0,r9] connecting E1 to Eq in ), i.e. EY = E; and EN = E,. Denote

N
A=[JB,(E)nQ,
=0
and note that Ey, Es € OA. Then there exists 7o > 0 such that set A and points {E, E2} satisfy the
conditions of Lemma A.1 with radius 7q.
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Proof. We divide the proof into two steps.

1. We first show the existence of 7o € (0,r1) such that A, is connected for each p € (0,7]. We
recall that r; < rg < r* so that the conclusions of Lemma 3.10 hold for B,, (E?).
Since, for each P € A,

N
dist(P, 0A) = min (dist (P, (| ] B, (E"))), dist(P, 99)),
1=0
then
N .
Ay =B p(E)NQ,. (A7)
=0

By Lemma 3.10(ii) and property (b) in Definition 3.7, we see that, if 71 < r*, then B, (E%) N
B (B NQ # () fori =0,...,N — 1. Note that all the sets in the last intersection are open.
Then, recalling that 71 < ro and using (A.2) in Lemma A.2, we obtain that there exists #° € (0,r;)
such that, for any p € (0,7),

By p(EYN By p(E"™YNQ,#0  fori=0,...,N —1.

Also, from Lemma A.2, sets B,,_,(E?) N, are connected, since r; < rg. Then we obtain that
UY By, —p(E) N Q, is connected by using the argument in the proof of Lemma 3.12(i). Thus, by
(A.7), we conclude that A, is connected for all p € (0, 7).

2. Since B, (E°) NQ C A, then we use (A.7) to obtain

B.(E"YNA,=B.(E°)NnQ, for all r € (0, %%] and p € (0,7).

Sets B,(E®) N, with 7 and p as above are connected by Lemma A.2. Thus, the assumptions of

Lemma A.1 with radius 7§ hold for point 1 = E°. For point Ey = EV, the argument is similar. [
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