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Abstract Many water quality and ecosystem functions performed by streams occur in the benthic

biolayer, the biologically active upper (~5 cm) layer of the streambed. Solute transport through the

benthic biolayer is facilitated by bedform pumping, a physical process in which dynamic and static pressure

variations over the surface of stationary bedforms (e.g., ripples and dunes) drive ow across the

sediment water interface. In this paper we derive two predictive modeling frameworks, one advective and

the other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks

closely reproduce patterns and rates of bedform pumping previously measured in the laboratory, provided

that the diffusion model's dispersion coef cient declines exponentially with depth. They are also

functionally equivalent, such that parameter sets inferred from the 2D advective model can be applied to the

1D diffusive model, and vice versa. The functional equivalence and complementary strengths of these two

models expand the range of questions that can be answered, for example, by adopting the 2D advective

model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on

ow dependent processes and the 1D diffusive model to study problems where multiple transport

mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 2D advective and 1D

diffusive descriptions of bedform pumping, our analytical results provide a straightforward and

t ti ll f i t h f di ti d b tt d t di l t t t i th b thi
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computationally ef cient approach for predicting, and better understanding, solute transport in the benthic

biolayer of streams and coastal sediments.

Plain Language Summary How far and fast pollutants travel downstream is often conditioned
on what happens in a thin veneer of biologically active bottom sediments called the benthic biolayer.

However, before a pollutant can be removed in the benthic biolayer, it must rst be transported across the

sediment water interface and through the interstitial uids of these sur cial sediments. In this paper we  

demonstrate that one important mechanism for transporting solutes to, and through, the benthic biolayer—

bedform pumping can be interchangeably represented as either a two dimensional advective process or a— 

one dimensional dispersion process. The complementary nature of these models expands the range of

benthic biolayer processes that can be studied and predicted with the end goal of improving coastal and

stream water quality.

1. Introduction

The movement of water into and out of the hyporheic zone, or hyporheic exchange, occurs over a wide“ ”

range of spatial (and temporal) scales, from >10 km (>1 year) to <1 m (<1 hr) (Boano et al., 2014;

Gomez Velez & Harvey, 2014; Wörman et al., 2007). This >10
3

range of temporal and spatial scales raises

trade offs relative to residence times, reaction times, and exchange rates that can in uence the hypor- — — 

heic zone's ability to process nutrients and other pollutants (Harvey et al., 2013). For example,

Gomez Velez et al. (2015) evaluated the residence time/exchange rate trade off for aerobic respiration and 

denitri cation in the Mississippi River Network, calculating for each reach a so called reaction signi cance   

factor (RSF) (Harvey et al., 2013). In the RSF framework, more nutrients are removed when hyporheic zone
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Figure 1. (a) Conceptual diagram of hyporheic exchange induced by advective ow across stationary bedforms. Shown

are bedform morphology, streamlines through the sediment, pressure variation over the surface of the SWI, and

upwelling and downwelling zones (upward and downward facing arrows). (b) A simpli ed analytical model of this

process, the bedform pumping model (BPM), assumes a sinusoidal pressure head variation over a Toth domain

representation of a rippled bed (see main text). Streamlines through the sediment consist of repeating identical
(or mirror image) unit cells (a single unit cell is indicated by the two red vertical dotted lines). (c) Blow up of the unit cell

extending from x ¼ −π=2 to x ¼ π=2. Each streamline in the unit cell is uniquely identi ed by where it enters the

sediment at x x¼ 0 , 0 < x 0 < 2. Shown are the solute concentrations at the entrance,π= C w ( ), and exit,t C w t x− τ 0ð Þð Þ,

locations of a single streamline, where τ x 0

ð Þ is the residence time of the streamline that enters the sediment at x x¼
0 .
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residence times are comparable to reaction times and the uptake length is short compared to the reach
length (i.e., the RSF is large). These authors found that the smallest scales of hyporheic exchange are the

most important for nutrient processing in streams, with RSFs consistently larger for vertical exchange

over submerged ripples and dunes (length scales of the order of 10
0

m) compared to lateral exchange over

larger geomorphic features such as river bars and meandering banks (length scales of the order of 10
2

to

10
3

m). This conclusion, which is based on physical arguments, is reinforced by ndings that microbial

biomass and nitri cation and denitri cation potential tend to be concentrated in the upper 5 cm of the 

streambed, a region of the hyporheic zone known as the benthic biolayer (Caruso et al., 2017; Knapp“ ”

et al., 2017; Tomasek et al., 2018). Collectively, these results underscore the importance of elucidating

physical mechanisms responsible for hyporheic exchange at the scale where nutrient transformations

primarily occur, that is, in the benthic biolayer.

At the scale of the benthic biolayer, one important driver of hyporheic exchange is bedform pumping, which

occurs when dynamic and static pressure variations over the surface of bedforms (e.g., ripples and dunes)

drive ow across the sediment water interface (SWI) in spatially isolated upwelling and downwelling zones 

(Azizian et al., 2015, 2017; Cardenas et al., 2008; Elliott & Brooks, 1997a, 1997b; Fleckenstein et al., 2010;

Grant et al., 2012, 2014; Thibodeaux & Boyle, 1987) (Figure 1a). Since its discovery in 1987 (Thibodeaux &

Boyle, 1987), analytical models have been proposed to describe bedform pumping and its in uence on

stream water quality (reviewed in Boano et al., 2014). Generally, these models can be grouped depending

on whether they conceptualize bedform pumping as an advective or diffusive process. Advective models

are notable for their relatively faithful representation of the laminar ow elds generated by bedform pump- 

ing (Elliott & Brooks, 1997a, 1997b). An advantage of diffusive models is their ability to incorporate multiple
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mechanisms for mass transport across the SWI (i.e., not just bedform pumping) including molecular diffu-

sion, turbulent diffusion, and turbulent dispersion (Chandler et al., 2016; Bottacin Busolin, 2017; Grant,

Azizian, et al., 2018; Grant, Gomez Velez, & Ghisalberti, 2018; Grant et al., 2020; Roche et al., 2019;

Voermans et al., 2017, 2018).

As commonly implemented, both types of analytical models rely on multiple assumptions that limit their

practical utility: (1) Solute concentration in the overlying water column is assumed constant in time;

(2) two way coupling across the SWI whereby mass transfer out of the streambed alters mass concentra- —

tion in the overlying water column which, in turn, alters mass transfer into the streambed, and so on is—

not accounted for; (3) diffusive mixing in the streambed is constant in depth, while the interstitial ow eld 

generated by bedform pumping decays exponentially (Elliott & Brooks, 1997a); and (4) some published dif-

fusive models fail to account for the nite porosity of the streambed, a violation of mass balance that can bias

estimates of the diffusivity downwards by a factor of 10 (Grant et al., 2012).

In this paper we derive two parallel analytical frameworks, one advective and the other diffusive, that collec-

tively address the model limitations noted above. The paper is organized as follows. In section 2 we review a

canonical 2D analytical model for advective bedform pumping originally developed by Elliott and

Brooks (1997a, 1997b) (section 2.1), show that its residence time distribution (RTD) closely follows the

extreme value Fréchet distribution (section 2.2), and derive from this result a set of fully coupled solutions

for the evolution of solute concentration in the water and sediment columns of a closed system (section 2.3).

In section 3 we derive a parallel 1D diffusive analytical framework for bedform pumping (section 3.1), show

how the choice of a diffusivity pro le (constant or exponentially declining) leads to different Green's func-

tion (Leij et al., 2000) representations of mass transport in the streambed (section 3.2), and then derive from

these Green's functions a set of fully coupled solutions for the evolution of solute concentration in the

water and sediment columns of a closed system (section 3.3). We test these models against previously

published measurements of unsteady solute transport across arti cial and natural bedforms in a recircu-

lating ume (section 4). Discussion of these results is presented in section 5 and conclusions in section 6.

2. Advective Bedform Pumping Model

2.1. Canonical Solution by Elliott and Brooks

A canonical 2D advective model of bedform pumping (originally solved by Vaux, 1968, and expanded on by

Elliott & Brooks 1997a 1997b) hereafter referred to as the bedform pumping model (BPM) adopts the Toth
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Elliott & Brooks, 1997a, 1997b), hereafter referred to as the bedform pumping model (BPM), adopts the Toth
approach (Toth, 1962) of approximating hyporheic exchange across a rippled streambed with a sinusoidal
pressure head variation over a rectangular domain (cf. Frie et al., 2019) (Figure 1b). The wavelength (L)λ
of the pressure wave corresponds to the wavelength of the bedform, and the trough and peak of the pressure

wave correspond to where the velocity boundary layer detaches (at the bedform crest) and reattaches (on the

lee side of the bedform), respectively (Cardenas & Wilson, 2007a, 2007b; Sawyer & Cardenas, 2009) (all vari-

ables in this paper are de ned in Table 1). If the hydraulic conductivity K h (L T−1) and porosity ( ) of theθ 

streambed are constant, Darcy's law and the continuity equation can be jointly solved to yield the BPM's

well known formulae for the two dimensional pressure head distribution and velocity eld in the interstitial  

pores of the hyporheic zone (Equations R1 R5, Figure 1b) (Elliott & Brooks, 1997a, 1997b).–

As documented in Supporting Information (Text S1), if the sediment bed is initially solute free (at t adv ¼ 0)

and the solute in question is conservative (i.e., inert and does not adsorb to sediments), the average advective

ux, J adv t advð Þ(M L
−2

T
−1

), of mass into the streambed can be represented as a convolution over all past

water column concentrations, C w tadvð Þ (M L−3
):

J adv t advð Þ ¼ u m

π
C w t advð Þ−

t adv

0

Cw t adv − τð Þf RTD τð τ

2

64

3

75 (1a)

f RTD τð Þ ¼
sin x 0 τð Þ½ cos x 0 τð Þ½ 
1 þ x0 τð Þtan x 0 τð Þ½ 

(1b)
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Table 1

De nition of Variables Appearing in the Paper (Roughly in Order of Appearance)

Variables De nition

Adv.
model

Diff.
model

λ , Bedform wavelength and height (L) XH

x x y¼ 2π =λ, adv ¼ 2 Advective model's normalized horizontal and vertical coordinates (π λy= ) X

Kh , Sediment hydraulic conductivity (L Tθ
−1) and porosity () X X

u m , h m Maximum Darcy ux (L T
−1

) and pressure head amplitude (L) X

h SWI xð Þ Pressure head variation at the sediment water interface (L) X

h h h¼ = m , ux ¼ u x =u m ,

u y ¼ uy=u m

Normalized pressure head amplitude and normalized Darcy uxes along horizontal and vertical

coordinates ( )

X

uk k Modulus of the normalized Darcy ux ( ) X

τ Residence time of a water parcel transiting through the hyporheic zone (T) X

Cw , Cs , Solute concentration (M Lt
−3 ) in the water column and interstitial uids of the sediment bed, and calendar

time (T)

X X

C0 , ,M Vw , A b, d b, , Initial solute concentration (M Ld V
−3

) and mass (M) in the water column, volume of water (L
3

) above the

sediment bed and in recirculating ume pipes, bed area (L
2

), bed depth (L), water depth (L), and
stream velocity (L T−1 )

X X

tT = /(λθ πu m ) Advective timescale for bedform pumping X

tadv ¼ t t= T , τ τ¼ =tT ,

x0 ¼ 2πx0 =λ

Advective model's normalized calendar time and residence time ( ), and normalized starting position (on

the sediment water interface) of a water parcel transiting through the hyporheic zone ( ) 

X

FRTD τð Þ Fraction of water circulating through the hyporheic zone with normalized residence time, , or younger (τ ) X

f RTD τð Þ
¼ dF RTD= τ

Fraction of water circulating through the hyporheic zone with residence within dτ τof () X

f RTD log 10τð Þ

¼ dF RTD

dlog10 τ

Fraction of water circulating through the hyporheic zone with residence times within logd 10τ of log 10τ () X

Jadv Advective ux of solute into the bed (M L
−2 T−1 ) X

J0 = C 0u m/ Initial advective ux of solute into the bed (M Lπ 
−2

T
−1

) X

h w = V w /Ab Effective depth of the water column (L) X X

Cw ¼ C w =C0 , C s ¼ C s =C 0 ,

C eq ¼ C eq =C0

Normalized solute concentrations in the water column, in the sediment column, and in both the water and
sediment columns under equilibrium conditions ( )

X X

T h= wπ/um, T T t¼ = T Dimensional (T) and normalized ( ) timescale for water in the overlying water column to undergo

hyporheic exchange

X

L L[·],
−1

[·] Laplace transform and inverse Laplace transform X X

d d t T N li d L l t f i bl ( d ti d l) ( ) X
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sadv ¼ s adv t T Normalized Laplace transform variable (advective model) () X
β , Fréchet distribution parameters ( ) X

γ , Exponent ( ) in Fehlman's formula for the pressure head amplitude, and gravitational acceleration (L Tg 
−2

) X
ydiff ¼ ay a, Normalized depth into the streambed ( ) and the inverse depth scale over which diffusivity decays (L

−1
) X

Deff( ) Depth dependence of the effective diffusivity (Ly
2

T
−1

) X

E ydiffð Þ ¼ E 0e − y diff Exponential model for the dispersion coef cient (L
2 T−1 ), where E 0 (L2 T−1) is the dispersion coef cient at

ydiff ¼ 0

X

tc ¼ tc =t E Normalized critical time at which mass transfer across the SWI deviates from a square root dependence on

time ( )

X

Jdiff Horizontally averaged diffusive ux (M L
−2 T−1) X

tE = 1/(a
2 E0 ) Timescale for diffusive mixing in the streambed (T) X

tdiff ¼ t t= E The diffusive model's normalized calendar time () X

H(·) Heaviside step function ( ) X

hw ¼ ahw =θ Normalized form of the effective water depth () X

C
A

s ¼ C
A

s =C0
Normalized auxiliary solution for solute concentration () X

sdiff ¼ st E Normalized Laplace transform variable (diffusive model) X

G ydiff ; t diffð Þ ¼ G y diff ; tdiffð Þt E Green's function normalized by the timescale for diffusive mixing in the streambed () X

GE ydiff ; t diffð Þ, G C ydiff ; t diffð Þ Normalized Green's functions for the exponentially declining and constant diffusivity models () X

mE tdiffð Þ, mC t diffð Þ Normalized mass transferred out of the sediment bed after an impulsive input, assuming an exponentially

or constant diffusivity pro le ( ) 

X

eG ydiff ; sdiffð Þ ¼ L G ydiff ; t diffð Þ
 

Laplace domain solution of the Green's function for diffusive mixing in the streambed () X

ReK ¼ u *

ffiffiffiffi
K

p
=υ Permeability Reynolds number ( ) depends on the shear velocity u* (L T−1 ), sediment permeability (L 2),

and kinematic viscosity (L
2

T
−1

)

X X

f D ¼ 8u 2
* =V2 Darcy Weisbach friction factor ( )  X X
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τ ¼ x0 τð Þ
cos x 0 τð Þ½ 

(1c)

The function f RTD τð Þ ( ) is the probability density function (PDF) form of the BPM's RTD, de ned such 

that the quantity f RTD τð τ is the fraction of water circulating through the hyporheic zone with dimension-

less residence times in the range τ τ τto þ . The variable um appearing on the right hand side of

Equation 1a is the maximum Darcy ux of water across the SWI, and calendar time and residence time

(t adv ¼ t t= T and τ τ¼ =t T , respectively) have been scaled by an advective timescale for the transport of

solute through a bedform: t T = /λθ πum (BPM variables de ned in Figure 1).

2.2. The Fréchet Distribution and the BPM's RTD

Figure 2. (a) CDF representation of the BPM's RTD (thin black curve) plotted against log transformed dimensionless

residence time. Optimized CDFs for ve analytical probability distributions are shown. (b) The PDF form of the same

distributions shown in (a). The vertical axis represents the change in probability density per (base 10) logarithmic

change in dimensionless residence time, f RTD log10 τð Þ (see Equation 2a and discussion thereof).
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2.2. The Fréchet Distribution and the BPM s RTD

For any choice of the dimensionless residence time τ, numerical evaluation of the BPM's RTD requires two
steps. First, the dimensionless starting position, x 0 τð Þ ( ), of the streamline in the unit cell with dimensionless

residence time τ (see Figure 1c) is obtained by numerically solving the implicit expression for x0 τð Þ
(Equation 1c). This estimate of x 0 τð Þ is then substituted into the RTD formula (Equation 1b) to obtain the

fraction of ow leaving the hyporheic zone with that dimensionless residence time. Because hyporheic zone

residence times vary over multiple orders of magnitude, it is convenient to divide the unit area under the

RTD into evenly spaced logarithmic increments of dimensionless residence time (Azizian et al., 2017):

f RTD log10τð Þ ¼
dF RTD

dlog 10τ
¼ 2 303: τf RTD τð Þ (2a)

F RTD τð Þ ¼ 1 cos− x 0 τð Þ½  (2b)

The cumulative distribution function (CDF) form of the RTD appearing in Equation 2b, F RTD τð Þ ( ), is

de ned as the fraction of water circulating through the hyporheic zone with dimensionless residence time

of τ or younger; the PDF and CDF forms of the RTD are related in the usual way: f RTD τð Þ ¼ dF RTD τð Þ= τ.

As demonstrated in the Supporting Information (Text S2), our de nition of F RTD τð Þ is mathematically con-

sistent with the one derived by Elliott and Brooks (hereafter, EB) in their original publication of the BPM

(Elliott & Brooks, 1997a).

The BPM's RTD spans a thousand fold change in dimensionless residence times, from τ < 0 :1 to τ > 100

(black curves in Figures 2a and 2b). The BPM's RTD was compared to ve common analytical distributions

(Fréchet, Pareto, Log Normal, Gamma, and Exponential). These analytical probability distributions were

optimized by randomly sampling the BPM's RTD 10,000 times and employing maximum likelihood
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estimation to infer distribution parameter values from these realizations (Ang & Tang, 2007) (see Table 2 for

mathematical de nition of each distribution and optimized parameter values). The BPM's RTD is well

described by both the Fréchet and Pareto distributions, reasonably well described by the Log Normal

distribution, and poorly described by the Gamma and Exponential distributions (colored curves in

Figure 2). The remarkable similarity between the BPM's RTD and the Fréchet distribution a—

heavy tailed extreme value distribution (Kotz & Nadaraj, 2000) has not, to our knowledge, been noted in —

the literature. More commonly, the power law or Pareto distribution is adopted to represent hyporheic

exchange (Bottacin Busolin & Marion, 2010). However, the three parameter version of the Pareto 

distribution was required to obtain a reasonable match to the BPM's RTD, and, even then, the Pareto

distribution ranked second behind the (two parameter) Fréchet distribution (see Kolmogorov Smirnov 

ranking in Table 2). The Log Normal distribution, which is sometimes used to model residence times in

the hyporheic zone (e.g., Azizian et al., 2017; Wörman et al., 2002), underpredicts the RTD's heavy tail but

is otherwise comparable (green and black curves, Figure 2b). The Gamma distribution has been used to

t th RTD f t l t iti th h hill l (Ki h t l 2000 L t l 2016)

Table 2

A Summary of the Probability Distributions Trialed as Potential Descriptors of the Bedform Pumping Model's Residence Time Distribution and Their Inferred

Parameter Values

Distribution

name

PDF for the BPM's dimensionless

residence time, f RTD τð Þ Inferred parameter values

Kolmogorov Smirnov test

Statistic Rank

Fréchet β

1 − e−β =

e
−

β

 þ τ

 τþð Þ2 ; τ ≥ 0
β = 1.6, = 0.2 0.00881 1

Pareto
αk−1=γ

γ
τ1 1=γ −
 

1 þ k

τ

 
−1=γ

 !
− 1 þ αð Þ

; τ ≥ 0

k = 1.137, = 0.504, = 0.557 0.01088 2α γ

Log Normal
e
−

− −lnτ ð Þ2

2σ2

τ
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p ; τ ≥ 0

 σ= 0.891, = 1.405 0.05547 3

Gamma β−α

Γ α½ 
τα − 1 −τ

β ; τ ≥ 0
α β= 0.267, = 126.7 0.30746 4

Exponential λe− τ ; τ ≥ 0 λ = 0.03 0.62029 5
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represent the RTD of water parcels transiting through hillslopes (Kirchner et al., 2000; Leray et al., 2016)
while the Exponential RTD underpins the transient storage model, a popular hyporheic exchange
modeling framework (Knapp & Kelleher, 2020). Based on the results in Figure 2, these last two

distributions should not be used to represent the BPM's RTD. For the analysis that follows, we adopted

the optimized Fréchet distribution in place of the BPM's RTD for three reasons: (1) The Fréchet

distribution is parsimonious and closely matches the BPM's actual RTD (Table 2 and Figure 2); (2) this

approach side steps the numerical challenges associated with the two step process required to solve the

BPM's RTD (see Equation 1b and discussion thereof); and (3) the Laplace transform of the Fréchet

distribution can be computed analytically, which simpli es the mass balance analysis described next.

2.3. Unsteady Solute Concentration in the Water Column of a Closed System

An example of bedform pumping in a closed system is the recirculating ume setup illustrated in Figure 3a.

A mass of a conservative solute is added to the water column of a solute free recirculating ume at timeM  

t C= 0. After a short mixing period, the concentration in the water column is approximately 0 = /M V w where

V w is the volume of water above the sediment bed and in the recirculating pipes. At this point in time, the

second term on the right hand side of Equation 1a is negligible (because no solute has yet passed through

the hyporheic zone and returned to the stream), and therefore, the BPM predicts that the initial ux of solute

into the bed should be J 0 = C 0 um / . With increasing elapsed time ( > 0), the solute concentration in theπ t

overlying water column declines (Figure 3b), the integral term in Equation 1a becomes progressively larger

in magnitude (as solute in the streambed returns to the stream), and the net ux across the SWI asymptoti-

cally approaches zero (Figure 3c). In practice, if the experiment runs long enough, the water column solute

concentration will approach an equilibrium value, Ceq (M L
−3

), re ecting a well mixed nal state in which  
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the solute concentration is the same everywhere in the overlying water column and the interstitial uids of

the sediment bed:

C eq ¼ C eq =C 0 ¼ 1= dbθ=hw þ 1ð Þ (3)

New variables in Equation 3 include the effective water depth hw (L) (equal to the volume of water Vw

(M L−3 ) in the overlying water column and recirculating pipes divided by the surface area A b (L2 ) of

the bed, h w = Vw /A b), sediment bed depth db (L), and porosity ( ). As the BPM assumes that theθ 

streambed is in nitely deep, this analytical model never achieves equilibrium.

Figure 3. (a) A conceptual diagram of a recirculating ume experiment, in which stream ow over the top of stationary bedforms induces bedform pumping and 

hyporheic exchange. The water column has an effective depth“ ” h w equal to the total volume V w of water above the SWI and in the recirculation pipes

divided by the area of the SWI A b. (b) In a typical step change experiment, the concentration of a conservative solute in the overlying water column C w(t) i s

increased suddenly to C 0 at time = 0 and is everywhere equal to zero for < 0. Mixing across the SWI causest t Cw ( ) to decline toward an equilibrium value.t

(c) The advective mass ux across the SWI J adv ( ) jumps tot J0 at time = 0 and then declines toward zero over time.t
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One challenge associated with deriving a solution for the recirculating ume problem illustrated in

Figure 3a is the two way coupling of solute concentrations above and below the SWI. This two way coupling 

is evident when mass balance is performed over the recirculating ume's water column:

T

tT

dC w

dt adv
¼ −C w t advð Þ þ ∫

tadv

0

C w t adv− τð Þf RTD τð τ (4)

Here, the water column concentration has been scaled by its initial concentration at t = 0 (C w ¼ Cw =C 0 ),

and the new variable =T h wπ/um represents a characteristic timescale for all water in the overlying water

column and recirculating pipes to undergo hyporheic exchange. Two way coupling manifests mathemati-

cally as a dependence of the time rate of change of the water column solute concentration (left hand side

of Equation 4) on the entire past history of water column solute concentration ltered through the hypor-

heic zone's RTD (convolution integral on the right hand side of Equation 4). In addition to providing an

elegant interpretation of two way coupling, the convolution representation of hyporheic exchange ux 

permits an analytical solution to the overall mass balance problem. This is because the Laplace transform

of a convolution of two variables is equal to the product of their respective Laplace transforms

(Graff, 2004). Thus, after applying the Laplace transform to Equation 4, solving for the solute concentra-

tion in the water column becomes a simple algebraic exercise:

Cw t advð Þ ¼ L−1 T

s adv T þ 1 − ef RTD s adv ; β ;ð Þ

" #

(5a)

Here, the variable T T t¼ = T is a dimensionless timescale for hyporheic zone processing of water above the

streambed, s adv ¼ st T is a dimensionless form of the Laplace transform variable, (Ts
−1

), and the symbol
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L
−1

[·] denotes the inverse Laplace transform which, in practice, is solved numerically (see section 4.1 and

Mathematica codes in Supporting Information). The Laplace transform of the Fréchet distribution can be

computed analytically by applying the Right Shift rule (Graff, 2004) where K1 (·) is the modi ed Bessel

function of the second kind and is a dummy integration variable:u

ef RTD sadv;β ;ð Þ¼
e sadv

1 − e−β =
2

ffiffiffiffiffi
sadv

p
K 1 2

ffiffiffiffiffi
s adv

p 
− β∫



0 e− sadv
e−β=u

u2
du

 
(5b)

Because the Fréchet distribution parameters ( , ) were previously optimized (see Table 2), we can inferβ 

from Equation 5a that Cw tð Þ depends on a single dimensionless parameter, T T t¼ = T . The two timescales

appearing in this dimensionless parameter depend on physical characteristics of the recirculating ume as

follows:

t T ¼ λ2θ

2π2 K hh m
(6a)

T ¼
hwλ

2K hh m
(6b)

Therefore, implementation of this analytical solution requires knowledge of the bedform wavelength ,λ

streambed porosity , streambed hydraulic conductivityθ K h, the effective depth of the water column h w ,

and the half amplitude of the pressure head variation hm . With the exception of h m, these parameters

can be measured or estimated; for example, bedform wavelength and height can be estimated from eld

measurements of ow depth, ow velocity, and median grain size using bedform stability diagrams and 

hydraulic criteria (cf. Zheng et al., 2018) while hydraulic conductivity can be estimated using standard

relationships (such as the Kozeny Carman equation, McCabe et al., 2010) or machine learning algorithms

(Stewardson et al., 2016). To estimate hm , the widely cited empirical formula proposed by EB (based on

pressure measurements over a triangular bedform reported by Fehlman, 1985) can be employed:

hm

¼ 0:

V 2

2g

H d=

0 34: 
γ

(7)
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 

The variables (L TV
−1

) and (L) represent, respectively, the average velocity and depth of the overlyingd
stream, (L) is bedform height, and the empirical exponent is taken as either = 3/8 (if / < 0.34) orH γ H d
γ = 3/2 (if / 0.34). The value of the multiplicative constant (0.28) on the right hand side of Equation 7H d ≥  

can be adjusted depending on the height to wavelength ratio of the bedform (Fox et al., 2014; Shen 

et al., 1990).

2.4. Unsteady Interstitial Solute Concentration in the Sediment Column of a Closed System

A corresponding analytical solution can be derived for the spatiotemporal (2D) evolution of solute concen-

tration in the interstitial uids of the sediment bed. The solution is premised on the idea that the interstitial

concentration of a conservative solute at any dimensionless time t adv is equal to the concentration that was

present in the water column some location dependent dimensionless residence time ago: Cs x y; adv ; tadvð Þ ¼
C w t adv − τ x y; advð Þð Þ. New variables appearing here include the dimensionless interstitial solute concentra-

tion, C s ¼ C s x y; adv ; t advð Þ=C0, where C s x y; adv ; t advð Þ (M L−3) is the solute mass per unit volume of interstitial

uid (i.e., as opposed to per bulk sediment volume) and τ x y; advð Þ ¼ τ x y; advð Þ=t T is a dimensionless form of

the location dependent residence time function, τ x y; advð Þ (T), de ned as the time it takes interstitial water

parcels to travel from the SWI to any x y; advð Þposition in the sediment bed (Azizian et al., 2015) (derivation in

Supporting Information, Text S3):

τ x y; advð Þ ¼
cos−1 co x e−y adv

h i
− x

2co x e−yadv
; yadv > 0 ; = =−π 2 < x < π 2 (8a)
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The unsteady solution for the interstitial concentration of a conservative solute in the streambed directly fol-

lows from this last result, where the time dependent solute concentration in the water column, Cw tadvð Þ, is

given by Equation 5a:

Cs x y; adv ; t advð Þ ¼
Cw t adv − τ x y; advð Þð Þ; t adv ≥ τ x y; advð Þ

0; tadv < τ x y; advð Þ
; t > 0 ; y adv > 0 :

8
<

:
(8b)

It should be noted that Equation 8a is valid only within the bounds of the unit cell illustrated in Figure 1c

(i.e.,−π=2 < x < 2). Outside of the unit cell, the equation must be translated, with or without re ection,π= 

using the following substitution rule for the dimensionless horizontal coordinate: x→ −1ð Þn
x n− πð Þ, where

the integer is given byn n R¼ x =π½  and the function [·] rounds to the nearest positive or negative integerR

value. Finally, a solution for the location of the concentration front in the sediment bed at any dimension-

less time tadv can be obtained by substituting t adv for on the left hand side of Equation 8a, and numericallyτ 

solving the resulting implicit expression for y adv given , or vice versa. The implicit solution for the con-x

centration front also applies to locations outside of the unit cell (i.e., for x < −π= 2 o r x > 2) after trans-π=

lation with or without re ection, using the substitution rule presented above for x .

3. Diffusive Model of Hyporheic Exchange by Bedform Pumping

Advective models, like the BPM, are premised on the idea that pore scale advection dominates the transport

of solutes in the hyporheic zone. Over the years, researchers have also explored the possibility of employing

1D diffusive models to describe hyporheic exchange, generally, and bedform pumping, in particular

(O'Connor & Harvey, 2008). EB, for example, argued that a diffusivity for bedform pumping should take

the form of a dispersion coef cient, 0.04 E ≈ λum / (Lθ 2
T
−1

), where um / is a characteristic pore scale velocityθ 

associated with the BPM (see Equation R5 in Figure 1) and the mixing length scale is the bedform wave-

length, (from Equation 11 in Elliott & Brooks, 1997b). Applied to mass transfer in recirculating umes,λ 

the constant diffusivity model predicts that the water column solute concentration, and the penetration

depth of solute into the streambed, should both scale with the square root of time (Elliott &

Brooks, 1997a, 1997b). In their recirculating ume experiments, EB found that mass transfer across the

SWI followed the predicted square root dependence until a transition time of around, t c ≈ 8 /λθ um .

Afterward, measured mass transfer rates fell below those predicted by the constant diffusivity model.
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Similarly, Marion and Zaramella (2005) reported that constant diffusivities inferred from recirculating ume

studies decline as the timescale over which hyporheic exchange is measured increases.

From a mechanistic perspective, all these problems with the 1D constant diffusivity model can be rationa-

lized by noting that, as time increases, mass transfer across the SWI slows dramatically as the relative con-

tribution of deeper streamlines to bedform pumping increases. We hypothesize that this effect can be

represented by requiring the dispersion coef cient to decline exponentially with depth, consistent with

the exponentially declining velocity eld that underpins hyporheic exchange by bedform pumping (see

Equations R1 R4 in Figure 1) (cf. Bottacin Busolin, 2019).– 

3.1. Governing Equations for Diffusive Bedform Pumping in a Closed System

Bedform pumping generates concentration elds in the interstitial uids of the sediment bed that are at least 

two dimensional (e.g., for arti cially shaped triangular bedforms in the laboratory) and more often 

three dimensional (e.g., in natural streams). However, if the goal is to predict average rates of mass transfer

over, for example, a stream reach or a recirculating ume, knowledge of the two and three dimensional  

 ow and subsurface concentration elds are not required. Thus, for many applications, mass transport

and mixing by bedform pumping in the benthic biolayer can be conceptualized as an unsteady

one dimensional diffusion problem, for which the horizontally averaged vertical ux,  J diff( , )y t

(M L
−2

T
−1

), of solute through the sediment is described by a ux gradient process where the mixing coef -  

cient, or effective diffusivity Deff(y) (L
2

T
−1

), varies with depth in the benthic biolayer:y

J diff y t;ð Þ ¼ −D effð
∂ θC sð Þ
∂y

(9a)
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Grant et al. (2020) demonstrated that Equation 9a is a reasonable descriptor of vertical solute transport by

turbulent dispersion and turbulent diffusion through the benthic biolayer of a at streambed, provided that

the diffusion coef cient declines exponentially with depth through the sediment bed. In this paper we

hypothesize that a similar result applies to bedform pumping, but with the effective diffusivity replaced by

an exponentially declining dispersion coef cient, Deff( (y) = E y) = E 0e−ay. New variables include a sur cial

dispersion coef cient, E0 (L 2 T−1), and an inverse length scale, (La −1 ); the former characterizes the disper-

sion coef cient at the SWI, while the latter characterizes the depth over which the dispersion coef cient 

decays. These two parameters are emergent properties of the two and three dimensional ow and concen-  

tration elds that drive bedform pumping; that is, they are determined by spatial correlations between the

time averaged vertical component of the velocity eld and the local mean solute concentration (Voermans 

et al., 2017). The corresponding one dimensional mass balance equation can be written as follows:

∂

∂t
θCsð Þ ¼ ∂

∂y
E ð

∂ θC sð Þ
∂y

 
(9b)

Equation 9b equates the accumulation of mass in a differential horizontal slice of the sediment bed

(left hand side) to the vertical diffusive transport (right hand side) of a conservative (non reactive and  

non adsorbing) solute (Incropera et al., 2007). The coordinate increases with depth into the streambed, y

and its origin (at = 0) is positioned at the horizontal plane of the SWI.y

Substituting the proposed exponential form for the dispersion coef cient into Equation 9b and assuming

streambed porosity does not vary substantially over the vertical dimension of the benthic biolayerθ

(approximately 5 cm) (Knapp et al., 2017), we arrive at the following mass balance equation for interstitial

solute transport in the sediment bed:

Cs

tdiff
¼ e−y diff

∂2 Cs

y 2
diff

− e−y diff
C s

ydiff

; ydiff > 0 ; tdiff > 0 (9c)

In Equation 9c, calendar time, tdiff ¼ t t= E, has been normalized by a characteristic timescale for dispersive

mass transport through the benthic biolayer, t E = 1/a
2 E 0 , depth into the streambed has been normalized

by the diffusivity's inverse length scale, y diff ¼ ay, and the interstitial solute concentration has been nor-

malized by the initial concentration in the overlying water column, Cs

¼ C

s =C 0 (same as for the BPM, see

section 2.3). By analogy to the BPM, we also assume that the streambed is initially solute free

(Equation 9d) solute concentration drops off to zero deep in the streambed (Equation 9e) and the inter
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(Equation 9d), solute concentration drops off to zero deep in the streambed (Equation 9e), and the inter-
stitial solute concentration at the top of the streambed equals the solute concentration in the overlying
water column (Equation 9f) where H tð Þ ( ) is the Heaviside function (included here to satisfy the require-

ments of Duhamel's theorem described later):

C s y diff ; tdiff ¼ 0ð Þ ¼ 0 (9d)

Cs ydiff→∞; tdiffð Þ ¼ 0 (9e)

Cs y diff ¼ 0; t diffð Þ ¼ C w tdiffð ÞH t diffð Þ; H t diffð Þ ¼
0; t diff < 0

1; tdiff > 0

:
(

(9f )

In writing Equation 9f we have assumed that the interstitial concentration at the SWI is equal to the solute

concentration in the overlying water column, which implies that mass transfer into the streambed is not

rate limited by convective mass transfer across the concentration boundary layer above the streambed;

that is, the dimensionless Biot number, the ratio of timescales for diffusive mixing in the streambed and

convective mass transfer across the turbulent boundary layer above the streambed, is much greater than

unity (Incropera et al., 2007).

For a closed system with a well mixed water column, like the recirculating ume illustrated in Figure 3a, 

mass balance over the water column takes the following form:

Ab h w

dC w

dt
¼ AbθE0

∂Cs

∂y


y t¼0;

(10a)

In this equation, the change of solute mass in the overlying water column and recirculation system of the

ume (left hand side) equals the mass transfer rate across the SWI by bedform pumping (represented
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here as a dispersive process, right hand side). Streambed porosity appears on the right hand side of the θ 

equation to account for the abrupt change in area over which solute mass transport occurs above and

below the SWI (Grant et al., 2012). Expressing Equation 10a using the dimensionless variables introduced

above for the diffusion equation, we obtain Equation 10b where hw is a normalized form of the effective

water depth.

dCw

tdiff
¼

1

hw

Cs

y diff y diff¼0; tdiff

(10b)

hw ¼
ahw

θ
(10c)

3.2. Duhamel's Theorem and Green's Functions

As detailed in Grant et al. (2020), we can link the mass balance equations above (Equation 10b) and below

(Equation 9c) the SWI and thereby account for two way coupling across the SWI, using Duhamel's theorem,

an analytical approach for solving the diffusion equation in cases where the forcing function at one bound-

ary is a piece wise continuous function of time (Guerrero et al., 2013). Duhamel's theorem allows us to

express the evolution of interstitial solute concentration in the sediment bed as a convolution of the water

column concentration C w t diffð Þ and a so called auxiliary function C A
s y diff ; tdiffð Þ where is a dummy integra-v

tion variable (Guerrero et al., 2013):

C s y diff ; tdiffð Þ ¼
tdiff

0

C
A

s ydiff ; tdiff − vð
d

dv
Cw vð ÞH vð Þ
 

dv (11a)

The auxiliary function is a solution to the same system of equations (Equations 9c 9f), but with the inho-–

mogeneous term replaced by the Heaviside function (cf. Equations 9f and 11e):

∂C
A

s

∂t diff ¼ e

−ydiff
∂

2 C
A

s

∂y 2
diff

− e−ydiff
C

A

s

∂ydiff

(11b)

A
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C
A

s y diff; t diff ¼ 0ð Þ ¼ 0; ydiff ≥ 0 (11c)

C
A

s y diff→∞; t diffð Þ ¼ 0 (11d)

C
A

s y diff ¼ 0; tdiffð Þ ¼ H t diffð Þ (11e)

Substituting the coordinate transformation, ξ ¼ e y diff , into Equation 11b (Yates, 1992) and solving the sys-

tem of equations in the Laplace domain, we arrive at the following analytical solution for the auxiliary

function where s diff ¼ stE is a dimensionless form of the Laplace transform variable and K1 [·] is the

modi ed Bessel function of the second kind:

eCA
s y diff ; sdiffð Þ ¼

ffi ffiffiffiffi
e ydiff

p

s diff

K 1 2
ffiffiffiffiffiffi ffiffiffiffi

s f eydiff

p 

K 1 2
ffiffiffiffiffiffi

sdiff

p  (12)

Duhamel's theorem (Equation 11a) can also be expressed as a convolution of the dimensionless water col-

umn concentration, C w t diffð Þ, and a so called Green's function, G ydiff ; t diffð Þ (T−1), which is normalized here

by the dispersive mixing timescale tE , G y diff ; tdiffð Þ ¼ tEG y diff ; t diffð Þ:

C s y diff ; t diffð Þ ¼
t diff

0

G y diff ; τð Cw t diff − τð Þ τ (13a)

G y diff ; t diffð Þ ¼
C

A

s

∂tdiff
(13b)
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Substituting Equation 12 into Equation 13b yields a Green's function

speci c to the exponentially declining diffusivity pro le (denoted here 

by the subscript E ):“ ”

G E ydiff ; t diffð Þ ¼
ffi ffiffiffiffi
ey diff

p
L
−1

K 1 2
ffiffiffiffiffiffi ffiffiffiffi

f ey diff

p 

K 1 2
ffiffiffiffiffiffi

sdiff

p 

2

4

3

5 (13c)

The similarity between Equation 13a and the convolution integral

derived earlier for the BPM (Equation 1a) is striking. In both cases,

the water column concentration is convolved with a function (Green's

function in the case of the 1D diffusive model and an RTD function

in the case of the 2D advective model) that captures the response of

the streambed to an impulsive injection of mass into the SWI at dimen-

sionless time tdiff ¼ 0 , C w t diffð Þ ¼ δ t diffð Þ, where δ t diffð Þ ( ) is the Dirac

delta function.

The Green's function above (Equation 13c) is speci c for the choice of an

exponentially decaying diffusivity pro le. For the same set of initial and

boundary conditions, a second Green's function can be derived for a con-

stant diffusivity pro le (the so called signaling problem, se oren  o &

Mainardi, 1998): GC y diff ; tdiffð Þ ¼ ydiff e − y
2
diff= 4t diffð Þ= 2 tdiff

ffiffi ffiffiffiffiffi
πt diff

p 
. With

these two Green's functions, we can interrogate how the choice of a

diffusivity pro le (i.e., exponentially declining or constant) in uences 

the temporal scaling of mass remaining in the sediment bed following an impulsive input of mass at the

SWI at time t diff ¼ 0 . This is because, for t diff > 0 , the upper boundary condition for these two Green's

functions is zero, Cw t diff > 0ð Þ ¼ δ t diff > 0ð Þ ¼ 0, and therefore, the normalized solute mass in the sediment

bed, m tdiffð Þ ¼ ∫
∞

0 G ydiff ; t diffð ydiff , will diffuse back into the water column after its injection at time t diff ¼ 0

(the subscripts E and C denote exponentially declining and constant diffusivity pro les, respectively):“ ” “ ”  

Figure 4. Scaling behavior for mass remaining in the streambed after an
impulsive injection of mass at the SWI at time tdiff ¼ 0. Green's function

predictions for the constant diffusivity and exponentially declining

diffusivity models are shown (see Table 1 for variable de nitions).
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mE tdiffð Þ ¼ L−1 0 2
ffiffiffiffiffiffi

sdi
p 

ffiffiffiffiffiffi
s diff

p
K 1 2

ffiffiffiffiffiffi
s diff

p 
" #

(14a)

mC tdiffð Þ ¼ ffiffi ffiffiffiffiffi
πtdiff

p (14b)

As might be expected based on the discussion at the beginning of section 3, the constant diffusivity

model predicts that solute mass remaining in the sediment bed declines inversely with the square root

of ti e (Equation 14b). The exponentially declining diffusivity model (Equation 14a) exhibits this same

1=
ffiffiffiffiffi

t diff

p
scaling initially but falls off more rapidly after t t t¼ = E ≈ 0 3 (Figure 4). This result can be:

rationalized by noting that, for an exponentially declining diffusivity pro le, deeper portions of the

streambed are relatively inaccessible to solute injected at the SWI at t diff ¼ 0 and consequently contri-

bute little to the release of stored mass at long times. The similarity between the scaling behavior

illustrated in Figure 4 and the scaling behavior described earlier for mass transfer across the SWI in

recirculating umes (see preamble to section 3) is the rst indication that our overarching hypothesis 

— —that bedform pumping can be represented by an exponentially decaying diffusivity may be valid.

3.3. Solute Concentration in the Water and Sediment Columns of Closed System

From the results presented above, a set of explicit solutions can be derived for solute concentration in the

water column and interstitial uids of a closed system (Grant et al., 2020):
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C w t diffð Þ ¼ L
−1 1 sdiff

1 −
1

sdiff h w

∂eG y=∂ diff

 

y diff ¼0; sdiff

2

664

3

775 (15a)

Cs y diff ; t diffð Þ ¼ L−1
eG ydiff ; sdiffð Þ=s diff

1 −
1

sdiff h w

∂eG y=∂ diff

 

ydiff ¼0; sdiff

2

664

3

775 (15b)

These analytical solutions are written in terms of the Laplace transform of the Green's function and its

derivative, which, in this context, are tailored to the choice of diffusivity pro le. For an exponentially

declining diffusivity pro le, they are as follows:

eG E ydiff ; s diffð Þ ¼
ffi ffiffiffiffi
eydiff

p K 1 2
ffiffiffiffiffiffi ffiffiffiffi

s f e ydiff

p 

K 1 2
ffiffiffiffiffiffi

sdiff

p  (15c)

∂eGE

∂y diff


ydiff ¼0; s diff

¼ −

ffiffiffiffiffiffi
sdiff

p
K 0

ffiffiffiffiffiffi
sdiff

p 

K 1 2
ffiffiffiffiffiffi

s diff

p  (15d)

For a constant diffusivity pro le, these two functions can be computed directly from the solution to the

signaling problem introduced earlier:

e

GC y d f ; sdiffð Þ ¼ e − y diff

ffiffiffiffi
s diff

p
(15e)

∂

e

GC

ydiff
y diff¼0; s diff

¼ −

ffiffiffiffiffiffi

sdiff

p

(15f )

4. Experimental Evaluation of Advective and Diffusion Models of
Bedform Pumping

10.1029/2020WR027967Water Resources Research

Printed by [A
G

U
 Journals - 173.079.010.140 - /doi/epdf/10.1029/2020W

R
027967] at [14/07/



4.1. EB's Bedform Pumping Data Set and Model Optimization

To test the parallel 2D advective and 1D diffusive analytical frameworks derived above, we turned to one of
the rst published recirculating ume experiments speci cally designed, along the lines of Figure 3a, to  

investigate the unsteady transfer of a conservative solute across the SWI by bedform pumping (Elliott &

Brooks, 1997b). EB's experiments were conducted with stationary bedforms (either arti cial triangular bed-

forms or natural ripples), a non adsorbing and stable uorescent dye (Lissamine), and under various ow  

velocities (8.6 to 13.2 cm s
−1

), water depths (1.14 to 2.54 cm), and shear velocities (1.3 to 3 cm s
−1

)

(Experiment IDs 8, 9, 12, and 14 17). The sediment bed, which ranged in depth from 12.5 to 22.0 cm depend-–

ing on the experiment, consisted of medium or ne grained unconsolidated sand with measured hydraulic 

conductivity Kh = 0.11 and 0.0079 cm s
−1 and porosity = 0.325 and 0.295, respectively (a summary ofθ

experimental conditions is included in the Supporting Information, Table S1). Published over 20 years

ago, EB's study remains one of the few where the evolution of dye concentration is followed both above

and below the SWI a feature we will take advantage of here.—

Experimental evaluation of our analytical models was carried out in two steps. First, we t the 2D advective

and 1D diffusive models for Cw ( ) (Equations 5a and 15a, respectively) to EB's measurements of dye concen-t

tration in the water column over time. This was accomplished using the NonLinearModelFit routine in the

Mathematica computing package (v.12, Wolfram Research, Inc.) implemented on UC Irvine's

High Performance Computing Cluster. Laplace inversions were carried out by Gaussian Quadrature in

the Mathematica package authored by Graff (2004) (code provided in Supporting Information). This tting

exercise yielded, for each of EB's experiments, inferred values for the half amplitude of the pressure head var-

iation and effective water depth (h m and h w, advective model) and the sur cial dispersion coef cient and 

inverse length scale (E0 and , diffusive model), together with the standard deviation of each parametera

GRANT ET AL. 13 of 21

/2021].



Figure 5. Advective (a) and diffusive (b) models of bedform pumping (solid black curves) conform equally well to EB's

measurements of dye concentration over time (symbols), provided that the diffusive model's dispersion coef cient
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and the model's coef cient of determination ( R
2

). For consistency, hw values inferred from the advective

model were applied to the diffusive model; all other parameters ( ,θ K h, , andλ C0 ) were reported by EB for

each experiment (see Table S1). In the second step, parameter values inferred from the water column

studies were used to predict the movement of dye through the interstitial uids of the streambed over

time (Equations 8b and 15b). These model predictions were compared to observations of the dye front in

the sediment bed, which EB recorded by periodically marking the location of the leading edge of the dye

plume on the side of their ume (the wall of the ume was transparent, and dye was visualized with a 

hand held UV light).

4.2. Evaluation of Model Predicted Water Column Solute Concentrations

Across all seven experiments, the 2D advective model (Equation 5a) and 1D diffusive model (with an expo-

nentially declining diffusivity pro le, Equation 15a) closely conform to EB's time series measurements of dye

concentration in the water column (R
2

> 0.9998 for both models, Figures 5a and 5b, also see Tables S2 and S3

in the Supporting Information). For comparison, water column concentrations for Experiment #17 were also

simulated with the constant diffusivity model; this involved substituting Equation 15f into Equation 15a and

adopting the super cial diffusivity, E 0, inferred from tting the exponentially declining diffusivity model to

decays exponentially with depth. For comparison, the constant diffusivity model's prediction for Experiment #17 is
shown (blue curve). (c) Sur cial diffusivities inferred from the diffusive model (vertical axis) correlate strongly with

sur cial diffusivities estimated by substituting values of h m inferred from the advective model into EB's dispersion

coef cient formula before (open circles) or after (blue triangles, Equation 16a) bias correction. (d) Inverse decay

length scales inferred from the diffusive model (vertical axis) correlate strongly with the inverse of the average

bedform wavelength (bottom axis, Equation 16b).
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the same data set (Table S3). The constant diffusivity model also conforms to measurements of the water col-

umn concentration until around
ffiffi
t

p
≈

ffiffiffiffiffi
30

p
min1/2 ; thereafter, the constant diffusivity model seriously

underpredicts observed concentration measurements (blue curve, Figure 5b). Water column concentrations

predicted by the constant diffusivity model decline approximately linearly when plotted against
ffiffi
t

p
, consis-

tent with EB's observations (see preamble to section 3) and the
ffiffi
t

p
scaling of the constant diffusivity's Green's

function (see Equation 14b and Figure 4).

We can also evaluate the advective and diffusive models based on how well their inferred parameter values

reproduce values expected based on theory or measurements. For example, values of the half amplitude

pressure head inferred from the advective model (ranging from hm = 0.04 to 0.57 mm) are similar (roughly

factor of 2 or better) to values estimated from EB's empirical formula (Equation 7) (ranging from hm = 0.09 to

0.31 mm, Table S2). Likewise, values of the effective water depth inferred from the advective model (ranging

from h w = 8.8 to 16.7 cm) are similar (roughly factor of 2 or better) to values estimated from reported ume

water volume (excluding interstitial uid) and streambed area ( hw = V w/A b = 11.3 to 12.5 cm) (Table S2).

Deviations between inferred and predicted (or measured) values of hm and hw do not necessarily imply that

the model inferred values are incorrect. For example, the half amplitude pressure head values predicted by 

Equation 7 are only approximately correct (Fox et al., 2014; Shen et al., 1990). Measurement errors associated

with ume water volume and bed surface area (which may be dif cult to de ne, given the undulatory nature  

of the SWI with bedforms) also contribute uncertainty and bias to experimental estimates of h w .

A more rigorous assessment of the inferred parameter values can be framed as follows: Can parameter

values inferred from the 2D advective model be translated directly into parameter values for the 1D diffusion

model and vice versa? To answer this question, we equated EB's proposed formula for a bedform pumping

dispersion coef cient to the diffusivity model's sur cial dispersion coef cient:   E0 ≈ 0.04λum / .θ

Substituting the BPM's solution for the maximum Darcy ux ( u m, Equation R5 in Figure 1), this formula pre-

dicts that the diffusive model's sur cial dispersion coef cient is directly proportional to the advective mod- 

el's half amplitude pressure head, E0 ≈ 0.08πK hh m / . When values ofθ hm inferred from the 2D advective

model are substituted into this formula, the predicted values of E0 are highly correlated with values of E0

inferred from the 1D diffusion model (Pearson's correlation coef cient, = 0.99) (open black circles, R

Figure 5c). Adjusting the equation's pre factor to correct the bias evident in the gure, we arrive at the fol- 

lowing regression relationship between the 2D advective and 1D dispersive descriptions of bedform pump-

ing (blue lled triangles Figure 5c):
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ing (blue lled triangles, Figure 5c):

E0 ≈ 0 133: πK hh m = ; :θ 0 08 ≤ K h mm s
−1 

≤ ≤1 1 0 042: ; : h m mmð Þ ≤ ≤ ≤0 11 0 295: ; : θ 0 325 (16a):

Likewise, the inverse decay length scale, , inferred from the 1D diffusion model is highly correlateda

(R = 0.95) with the inverse of the average bedform wavelength (Figure 5d):

a cm−1
 

¼ 5 28 cm: =λ ð Þ − 0 0882 8 8 cm: ; : ≤ λ ð Þ ≤ 30 (16b)

The inequalities indicate the range of EB's parameter values over which each regression was trained.

Equations 16a and 16b provide a direct link between our 2D advective and 1D diffusive descriptions of bed-

form pumping, such that a parameter set for one can be directly translated into a parameter set for the other.

The implication is that these two descriptions of bedform pumping are, in fact, functionally equivalent,

provided that the limitations with existing analytical models outlined earlier (water column concentration

constant in time, diffusivity is constant in depth, two way coupling across the SWI neglected, and the

sediment bed's nite porosity neglected) are properly addressed, as they have been in this study. Because

Equations 16a and 16b are calibrated with data from EB's study alone, they are per force restricted to a

limited range of ow and streambed conditions (indicated by the inequalities above). A meta analysis is 

underway to evaluate the predictive power of these equations beyond the set of experiments analyzed here.

4.3. Evaluation of Model Predicted Interstitial Solute Concentrations

We can also evaluate the advective and diffusive models relative to their ability to predict the unsteady trans-

port of dye plumes through the interstitial uids of the sediment bed. The progression of one such plume

beneath an arti cial triangular ripple (EB's Experiment #9) is reproduced in Figures 6a 6d (thick dashed –
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black curves). The dye plume penetrated to a depth of about 8 cm in the rst 75 min but required an

additional 575 min to progress downward another 4 cm To compare these observations with the

Figure 6. (a d) The downward migration of a dye plume in the sediment bed beneath an arti cial triangular ripple during EB's Experiment #9 (shape of the ripple– 

indicated at the top of each panel). Thick black dashed curves denote the observed location of the dye front at the elapsed times indicated (adapted from

Figure 2 of Elliott & Brooks, 1997b). Green color scale indicates the interstitial dye concentration predicted by Equation 8b after adjusting the model's vertical and
horizontal coordinates (see text). (e) Dimensionless concentration depth pro les at the same elapsed times predicted by the 1D diffusive model (dashed curves)

and horizontally averaged 2D advective model (solid curves).
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additional 575 min to progress downward another 4 cm. To compare these observations with the
advective model solution, the BPM's coordinate system must rst be aligned with EB's triangular ripple.

To this end we used the parameter values estimated from the water column optimization study of
Experiment #9 (see Table S2) to predict (with Equation 8b) the interstitial dye concentration in the

sediment bed at = 75 min, coinciding with EB's rst dye front measurement. The model's horizontalt 

coordinate was then adjusted to align the left and right edges of the observed and predicted dye fronts.

Finally, the model's vertical coordinate was adjusted so that the top of the ( at) model domain is

equidistant between the crest and trough of the triangular bedform ( nal alignment is shown in

Figure 6a). After making these adjustments, the advective model's predictions for the downward

migration of the dye plume over time closely agree with EB's observations of the dye front at = 150, 320,t

and 650 min (Figures 6b 6d).–

Two way coupling is evident in the model predicted interstitial concentration eld. Predicted dye concentra-  

tions are elevated along the front of the plume because water parcels at the front moved into the sediment

bed near time = 0 when dye concentration in the water column was near its initial (maximum) value,t

C w = C 0. As time progresses, dye concentration in the water column declines and the trailing edge of the

dye plume, which consists of younger water parcels, becomes less concentrated. This pattern high dye con-—

centration along the plume's front and low concentration along the plume's trailing edge is particularly—

striking for the simulation at = 150 min (Figure 6b). Eventually, the plume's concentration eld takes ont 

a more uniform appearance as older water parcels (with higher dye concentrations) return to the stream

along slow moving streamlines (Figure 6d).

Thus far, we have found little difference between our 2D advective and 1D diffusive models of bedform

pumping. One aspect where these two models differ substantially is their respective concentration depth

pro les (Figure 6e). The diffusivity model's depth pro les are convex in shape and characterized by a 
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diffuse concentration front that becomes increasingly smeared out over the vertical extent of the streambed

with increasing time. By contrast, the advective concentration depth pro les (generated by horizontally

averaging the two dimensional concentration elds appearing in Figures 6a 6d) are convex and  –

characterized by persistent and very sharp concentration fronts. Integration of these advective and

diffusive depth pro les over depth (at any xed time) indicates that both models transfer roughly the 

same solute mass into the streambed (within 5%, see Figure S1, Supporting Information). Thus, while the

two models appear to be functionally equivalent with respect to the transport of a conservative solute (as

in EB's experiments), their very different concentration depth pro les could lead to divergent predictions

for the transport of reactive solutes through the benthic biolayer. This begs the question: Which of these

two pro les is more representative of natural systems?

Figure 7. The downward movement of dye fronts in the sediment beneath natural ripples during EB's Experiment #17:

(a) dye fronts observed at the various elapsed times indicated (adapted from Figure 3b of Elliott & Brooks, 1997b),

(b) dye fronts predicted by the two dimensional advective model of bedform pumping, and (c) concentration depth

pro les predicted by the one dimensional diffusive model of bedform pumping. The depth of the sediment bed re ects  

actual experimental conditions for this experiment (db = 22.5 cm, see Table S1).
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two pro les is more representative of natural systems?

To answer this question, we turned to recirculating ume experiments EB conducted with stationary nat-

ural ripples. These experiments entailed operating the ume under high ow conditions (to induce sedi- 

ment transport and ripple formation) and then lowering the ow velocity (to immobilize the bedforms

and conduct he dye exchange experiments). Not surprisingly, dye plumes generated by natural ripples

are variable with respect to their horizontal extent and the depth to which dye penetrates the streambed

(Figure 7a). This variability, which arises from variations in bedform geometry (i.e., height and wave-H

length ) and the three dimensional nature of natural ripples, can be formally analyzed using spectralλ 

methods (e.g., Stonedahl et al., 2010). However, if the goal is to obtain bulk estimates for the downward

progression of solute through the benthic biolayer over time, both the 2D advective and 1D diffusive analy-

tical solutions derived in this study perform remarkably well (compare Figures 7a 7c). The sharp dye fronts–

predicted by the 2D advective model are comparable to patterns of dye penetration beneath average bed-“ ”

forms; for example, the two dye plumes located 18 to 30 cm along the horizontal axis (Figure 7a). The

smeared out dye fronts predicted by the 1D diffusive model, on the other hand, may be more representative

of the concentration pro le one would obtain by horizontally averaging the interstitial concentration eld 

across all bedforms (this hypothesis could not be tested with EB's data set because these authors recorded

the time evolution of concentration fronts, not concentration elds). What these results imply for reactive

solute transport through the benthic biolayer is an interesting topic for future study.

5. Discussion

The functional equivalence of the analytical 2D advective and 1D diffusive frameworks derived here implies

that their application can be tailored to the problem at hand. The advective model is a relatively faithful
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representation of the two dimensional interstitial ow elds associated with bedform pumping.  

Consequently, this framework will be useful in cases where knowledge of ow paths through the benthic

biolayer, and their associated Darcy uxes and residence times, is required. The removal of stream borne 

particles in the benthic biolayer by deep bed ltration, for example, requires detailed information about

the interstitial ow eld. This is because, as particles move through the streambed, their ltration rate  

depends on the local ow velocity (through the contact ef ciency  η0 [ ], see Tufenkji & Elimelech, 2004)

which varies continuously along a streamline (see Equations R1 R5 in Figure 1). Another example is the–

spatial zonation of interstitial oxygen concentration beneath bedforms, including the formation of

so called anoxic chimneys in upwelling zones (Azizian et al., 2015; Kessler et al., 2012, 2013). This biogeo-

chemical zonation, which arises from the coupling between in bed redox reactions and bedform pumping

of electron donors and acceptors, can impose signi cant constraints on important streambed functions, such

as coupled nitri cation denitri cation (Kessler et al., 2013). Because the advective model's ow eld is quan-    

titatively linked to bedform geometry and stream ow (i.e., bedform height and wavelength, as well as

stream depth and velocity, see Equation 7), physicochemical (e.g., particle ltration) and biogeochemical

(e.g., nutrient transformation) functions of the benthic biolayer can be tied directly to geomorphic processes,

such as the adjustment of bedform morphology to changes in land use and ow regime, for example, as a

result of urbanization (Harvey et al., 2012).

On the other hand, a strength of the 1D diffusive model is its ability to combine multiple mechanisms for

mass transport across the SWI. As noted earlier, mixing across a at SWI can be characterized by an effective

diffusivity, Deff , that incorporates three transport mechanisms (Grant et al., 2012; O'Connor & Harvey, 2008;

Richardson & Parr, 1988; Voermans et al., 2018): (1) molecular diffusion (Dm [L
2

T
−1

]); (2) dispersion

( [LE
2

T
−1

]); and (3) turbulent diffusion (Dt [L
2

T
−1

]). The turbulent and dispersive diffusivities increase

with the permeability Reynolds number, ReK ¼ u*

ffiffiffiffi
K

p
=υ ( ), a dimensionless ratio of a permeability length

scale (

ffiffiffiffi

K
p

[L]) and the viscous length scale that governs turbulence at the surface of the streambed (ratio of

the kinematic viscosity of water [Lυ 2
T
−1

] and the shear velocity u* [L T
−1

]) (Voermans et al., 2017, 2018).

For turbulent mass transfer across a at SWI, and accounting for the exponential decay of diffusivity with

depth, the sur cial effective diffusivity exhibits different permeability Reynolds number scaling behavior

in the dispersive ( Deff 0; ∝ Re 2 5:
K ,0.01 < Re K < 1) and turbulent diffusive ( D eff 0; ∝ Re1

K , R e K > 1) regimes

(Grant et al., 2020). Our formula linking 2D advective and 1D dispersive descriptions of bedform pumping

(Equation 16a) implies that dispersive mixing by bedform pumping also increases with the permeability

2
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Reynolds number, E 0 ∝ Re2
K . This last result can be demonstrated by substituting into Equation 16a de ni-

tions for the Darcy Weisbach friction factor, f D ¼ 8u
2
* =V

2 ( ) (Sabersky & Acosta, 1989), and the streambed

permeability, =K υK h / (McCabe et al., 2010), and noting that the friction factor will likely scale with theg

fraction of the water depth taken up by a bedform, f D ∝ ( / )H d
γ

. Thus, the one dimensional diffusive frame-

work captures solute mixing through the benthic biolayer by molecular diffusion, turbulent dispersion, tur-

bulent diffusion, and bedform pumping.

Another advantage of the 1D diffusive model is that it can be readily modi ed to account for groundwater

recharge or discharge (through the addition of an advective term to Equation 9b) and the inclusion of bio-

geochemical reaction networks, such as the Monod kinetic expressions associated with nitrogen cycling in

streambeds (respiration, ammoni cation, nitri cation, and denitri cation, Azizian et al., 2017). While  

surface groundwater exchange can be factored into the 2D advective model as well (cf. Boano et al., 2008),

doing so invalidates a key requirement of the BPM analytical solution namely, that the component ofx

the velocity is everywhere constant along a streamline (see Text S1 in Supporting Information). While out-

side of the scope of this paper, it is also interesting to note that, at suf ciently high celerity, bedform migra-

tion tends to reduce the complexity of the interstitial concentration elds, in effect transforming the two and 

three dimensional concentration elds associated with bedform pumping across stationary bedforms into 

simple one dimensional vertical concentration gradients (e.g., of interstitial oxygen concentrations, Wolke

et al., 2020) that may also be amenable to analysis with a 1D diffusive modeling framework.

A bene t of analytical models (compared to numerical simulations) is the relative ease with which they can

be implemented, and the physical insights afforded by expressing the quantity of interest (e.g., interstitial

solute concentration or mass ux across the SWI) as an explicit function of key system variables. An obvious

limitation is that their derivation entails simplifying assumptions that may not be valid in practice. Key
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assumptions associated with the 2D advective and 1D diffusive modeling frameworks derived here include

the following: (1) The interstitial ow eld underlying bedform pumping is assumed to be steady state, 

although solute concentrations in the water column and interstitial uids of the streambed can vary with

time while fully accounting for two way coupling across the SWI; (2) for uniform ow over a homogeneous 

sediment bed, the stream gradient drives a stream parallel ow in the lower part of the bed, that is, an under-

 ow. Under ow, which is not accounted for in the 2D advective and 1D diffusive modeling frameworks

developed here, can reduce the depth to which advective ow paths extend into the bed (thereby reducing

mass transfer at long times, Bottacin Busolin & Marion, 2010) and possibly alter the effective diffusivity's

vertical structure. On the other hand, the general concordance of our two models with Elliott and Brooks'

data set (Figure 5) suggests that this process may exert a second order effect on measured exchange rates;

(3) the advective model is premised on a simpli ed two dimensional representation of bedform pumping, 

while in reality the interstitial ow elds responsible for hyporheic exchange across the benthic biolayer 

are three dimensional and temporally varying (e.g., due to bedform migration, Zheng et al., 2018); (4) the

solutions are speci c to closed systems (such as recirculating umes) while most hyporheic exchange pro- 

blems of practical interest are open systems (such as streams and coastal sediments); (5) the transport

properties of the benthic biolayer (such as porosity and hydraulic conductivity) are assumed constant while

in practice hydraulic conductivity varies spatially at the scale of both single and multiple geologic

facies (Tonina et al., 2016) and with time by colmation (Stewardson et al., 2016) and bioclogging

(Caruso et al., 2017); and (6) as already noted, our results assume that the solute in question is conservative

(i.e., non reactive and does not absorb to the porous matrix) while most hyporheic exchange problems of

practical interest involve reactive solutes or particles. These limitations can be addressed, to varying degrees,

within the context of our analytical frameworks, and efforts to do so are currently underway.

6. Conclusions

In this paper we derived two parallel analytical frameworks, one advective and the other diffusive, that

together relax many of the assumptions that limit the practical utility of presently available analytical mod-

els for bedform pumping. Both frameworks allow the water column concentration to vary with time while

accounting for the two way coupling of solute concentrations above and below the SWI; the 1D diffusive fra-

mework additionally allows the mixing rate, or diffusivity, to vary with depth through the sediment bed.

When applied to previously published measurements of bedform pumping in a recirculating ume (Elliott
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When applied to previously published measurements of bedform pumping in a recirculating ume (Elliott

& Brooks, 1997a), we nd that both analytical frameworks closely reproduce average patterns and rates of

hyporheic exchange, provided that the 1D diffusion model's diffusivity declines exponentially with depth.

Practical application of these two frameworks can be tailored to the problem at hand, depending on whether

detailed knowledge of the interstitial ow elds and associated Darcy uxes and residence times is required  

(2D advective model) or solute transport across the SWI is subject to multiple transport mechanisms, not just

bedform pumping (1D diffusive model). Because the advective framework is grounded in a physical

description of bedform pumping, it explicitly accounts for how changes in stream ow and sediment trans-

port (e.g., associated with urbanization) in uence bedform geometry (wavelength and height), the half

amplitude of the pressure head variation, and the hydraulic conductivity of the sediment bed. The 1D

diffusivity framework, on the other hand, lumps these geomorphic processes into a sur cial dispersion coef-

cient and an inverse decay length scale that can be directly calculated from the aforementioned advective

model parameters (see Equations 16a and 16b). These formulae also predict that the sur cial dispersion coef-

cient for bedform pumping increases with the dimensionless permeability Reynolds number, consistent

with diffusivities measured for turbulent exchange across at streambeds (Grant et al., 2020; Voermans

et al., 2018) and streambeds with bedforms (Grant, Gomez Velez, & Ghisalberti, 2018; Grant et al., 2012;

O'Connor & Harvey, 2008). Efforts are currently underway to extend these analytical solutions to open sys-

tems (e.g., stream networks), bedform turnover, unsteady ows, and the nonlinear reactions that drive nutri-

ent cycling in the benthic biolayer of streams.
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