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Abstract

Based on experimental data, we introduce and analyze a system of reaction-diffusion
equations for the regeneration of planarian flatworms. We model dynamics of head and
tail cells expressing positional control genes that translate into localized signals which
in turn guide stem cell differentiation. Tissue orientation and positional information
are encoded in a long range wnt-related signaling gradient. Our system correctly
reproduces typical cut and graft experiments, and improves on previous models by
preserving polarity in regeneration over orders of magnitude in body size during growth
phases. Key to polarity preservation in our model flatworm is the sensitivity of cell
differentiation to gradients of wns-related signals relative to the tissue surface. This
process is particularly relevant in small tissue layers close to cuts during their healing,
and modeled in a robust fashion through dynamic boundary conditions.

1 Introduction

Planarians are nonparasitic flatworms commonly found in freshwater streams and
ponds (Reddien and Alvarado 2004; Rink 2018) with a body size in the mm-scale. The
best experimental data is available for the species “Schmidtea mediterranea”, which
is 1-20 mm long and consists of 100.000 to more than 2.000.000 cells. Planarians
possess the ability to regenerate after rather severe injuries to their body. When small
tissue parts are cut from the flatworm—in extreme cases just 0.5% of the original
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size—these can regenerate to a fully functioning and intact organism (Reddien and
Alvarado 2004) with head and tail positioned such that the original orientation of the
tissue fragment is respected. When tissue parts are cut from a donor and grafted into a
host, the newly created planarian integrates the old positional information of the tissue
fragment from the donor with the new positional information it obtains from the host.
A better understanding of these processes has a far reaching potential for regeneration
in general.

Here, we present a minimal mathematical model, informed by experimental data,
that reproduces this fascinating behavior. To the best of our knowledge, our system
of reacting and diffusing species is to date the only model that correctly recovers
most of the typical cutting and grafting experiments, and preserves polarity during
regeneration, even of small tissue fragments. The proposed mechanisms resolve a
conundrum in modeling efforts. Many models of spontaneous formation of finite-size
structure in unstructured tissue so far, allude to a Turing type mechanism to select
a finite wavelength. Activator-inhibitor systems (Meinhardt 2012), have often been
discussed, for instance in the context of regeneration in hydra, which is similarly
robust as planarian regeneration. Turing’s mechanism however does (intentionally)
not scale across several orders of magnitude, nor does it incorporate robust selection
of polarity.

1.1 The mathematical model

We focus on the ante-posterior (AP) axis of planarians and consider a one-dimensional
domain x € [—L, L], populated by different cell types and signals. Head cells h and
tail cells d generate corresponding signals up and uq, which activate the respective
differentiation of stem cells s. A long-range wnt-related signal w, in short wnt-signal,
encodes orientational information through its gradient. It is produced by tail cells in a
saturating fashion, and degraded by reactions with head cells:

0rs = DysOxxs + ps(s) — phutns — pauds, (1.1)
0th = Dpdxxh + ppups — nuh, (1.2)
0:d = Dgdyrd + paugs — nad, (1.3)
duup = Dy, dxxt + h*(ro — riup) — roupd — r3up, (1.4)
ditg = Dy, dxxttg + d*(ro — riug) — raugh — r3uq, (1.5)
0w = Dydxxw — pphw + pupd(l —w). (1.6)

Stem cells proliferate with saturating rate and undergo apoptosis (Baguii et al. 1990),
which is encoded in pg(s) = pSlL—I—s — nss. Stem cells also differentiate irreversibly
into head and tail cells, guided by positional control genes, which are modeled by the
respective related localized signals uy, uy. Those signals are produced by head and
tail cells up to a saturation level, with rates ro and r; and decay with rate r3. This
interaction works during both, normal tissue turnover and regeneration (Reddien and
Alvarado 2004). Head and tail cells result from stem cell differentiation and do not
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proliferate. They undergo apoptosis and degrade the signal associated with the other
cell type with rate r;.

The quadratic dependence of the production of uj and u4 on h and d corresponds to
higher order molecular kinetics, quadratic here in their simplest form. Replacing these
reactions by first-order kinetics, linear in &, d, would result in spontaneous growth of
head and tail regions caused by a linear instability of the zero state; see (4.1) in our
analysis and model reduction in Sect. 4 based on tristability, that is, linear stability
of head-only, tail-only, and zero states. The quadratic dependence postulated here
suppresses this instability and we suggest that some effective higher-order kinetics are
indeed crucial there. We used the same parameter p,, for production and degradation
of w, since differing rates showed qualitatively similar outcomes in our simulations.
Finally, random motion of cells and diffusion of signal molecules are modeled through
the diffusion coefficients D;.

Writing U(t, x) = (s, h,d,up, uqg, w)(t, x), D = diag (Dy, Dy, Dg, Dy, Dy,
Dy) and F = (F§, Fy, Fy, Fy,, Fy,, Fy) in the system (1.1)—(1.6), we find

U = DUy + F(U). (1.7)

We prescribe inhomogeneous Dirichlet boundary conditions Uy—+; = U4 and evo-
lution equations for the time dependent Dirichlet data

d 1
U= —;D 0WUlx=xr + F(Us) + B, (1.8)

where 0,U|,—+; = + 9,U (¢, x)| =+, denotes the normal derivative. We think of
U as concentrations in a boundary compartment of length y where concentrations are
spatially constant. Fluxes —%D d,U|,—4 ensure mass conservation up to kinetics,

d d
m (/U+§in> = /f(U)+§ (Davwﬂ +y5Ui>

- [For+r L Fwn +5).
+

Kinetics here are identical to those in the bulk of the domain up to a new term B,
present in the dynamics for sy, A+, and d4, that represents a boundary-specific stem-
cell differentiation mechanism through rates lllhj; 4

d 1 N

o= —;DS doSlymns + Fs — Whs —Wis (1.9)
_h:i: = ——Dh avh|x::|:L + Fh + lI/h s, (110)
dr y

d 1 N

3= —;Dd dvdly—gp + Fa+ s . (1.11)
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Fig. 1 Schematic plot of the smoothed indicator functions x ¢ that detect positive and negative values of
the gradient, respectively, with offset & and sensing thresholds &

The differentiation is triggered by lack of head or tail cells, and directed according to
the sign of 9, w, explicitly through lI/hi/d =Wq(h,d, dyw)|y=+r,

Uy=1t(1-hA-d)xs,0w), and ¥y=1(1—h)A—-d)x_,@w).

Here T > 1 is the rate of differentiation, and the x® are smoothed versions of the
characteristic function, for example

1

120 (®) = 5[ tanh((§ — e6)/e) + 1]

xE_p(€) = [tanh(—(é +¢€0)/e) + 1] ; (1.12)

SNl S

see Fig. 1 for an illustration.

The steepness ¢! of the smoothed characteristic function can be interpreted as a
sensitivity of differentiation with respect to small gradients. The offset & measures
minimal detectable strength of the gradient at the body or wound edge in e-units.
Overall, the kinetics F; in (1.1) regulate a near-constant supply of stem-cells. As a
result, a healthy planarian consists of a high concentration of # near x = —L, a high
concentration of d near x = L, and a near-constant gradient of winx € (—L, L); see
Fig. 2.

1.2 Boundary dynamics

Differentiation rates in 'J/hﬂ; 4 do not depend on w itself. In particular, concentration
levels of the wnt-related (or other long-range) signal w are not converted into positional
information that in turn directs the differentiation process. Such a direct conversion
of signals is often referred to as a French-flag model [see (Wolpert 1969, 1994) and,
for planarians, (Rink 2018)] but intentionally not used here:

(1) Positional information is inherently incapable of explaining preservation of polar-
ity. Since regeneration and polarity are robust with respect to the location of cut
out tissue fragments, near head, tail, or from the central body region, absolute
levels of w play apparently little role in their regeneration.

(2) Positional information is not necessary in the early stages of regeneration, but
seemingly relevant only later when the size of functional regions like head or tail
are regulated; see Sect. 6.

(3) There is little evidence thus far on the nature of robust biological mechanisms
that would translate wnt-signal levels into differentiation of stem cells. Postulating
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Fig.2 Typical experiments and their representations in terms of our mathematical model. Top left: Schematic
illustration of head grafting and regeneration of a two-headed planarian. Top right: Head grafting and
regeneration into anormal planarian with one head and tail. Middle row: Cutting experiment and regeneration
of eight planarians. Bottom row: Schematic illustration of experiments on planarians and associated spatial
distribution of concentrations &, d, w, s, uj, ug. Homeostasis (left) has head cells concentrated on the left,
tail cells concentrated on the right, a wnr-gradient directed towards wnt-production in the tail, roughly
constant stem cell population with a slight decrease where differentiation into head and tail cells occurs.
Head and tail signals are closely mimicking the distribution of head and tail cells. Grafting (center): The
head region of a donor is grafted into a host, retaining roughly the distribution of cell concentrations and
signaling molecules from its original location. Cutting (right): A thin fragment (here from the trunk region)
retains a small wnz-gradient but no head or tail cells. Regeneration in this context refers to reestablishing
head and tail cell populations while preserving polarity

such mechanisms would simplify the task of reproducing observed phenomena at
the (unnecessary) expense of adding a somewhat poorly substantiated regulatory
mechanism.

Cutting experiments eliminate head and/or tail cells, thus influence the wnz-pathway
and destroy the associated signaling gradient. The terms 5 in (1.8) model the strong
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local peak of differentiation of stem cells (Wenemoser and Reddien 2010), at wounds
inside a formed blastema, guided by wnt-signaling (Adell et al. 2010). This reaction,
which is specific to wounds with loss of tissue, is not completely understood (Owlarn
and Bartscherer 2016), and occurs in our model in regions at the ends of [—L, L].
We crucially rely on the detection of the orientation of the wnt-gradient relative to the
respective body edge. We view this as an in some sense necessary, minimal informa-
tion, to guide regeneration while at the same time preserving polarity. Looking at the
boundary after cutting in Fig. 2, one readily sees that the sign of 9, w gives clues as to
whether differentiation towards head or tail cells should occur.

One can envision several scenarios that enable stem cell differentiation to be guided
by gradients of a chemical signal, for instance through comparing signal strength
spatially or temporally; see (Alt 1980; Iijima et al. 2002). We do not attempt to model
details of this sensing process in the present paper, but simply include a lumped reaction
term for differentiation, that depends sharply on the sign of 9, w.

We shall see that our somewhat non standard dynamic (or Wentzel) boundary con-
ditions cannot be readily replaced by, say, Robin boundary conditions. Formally, one
could for instance let rates of boundary dynamics tend to infinity or the mass fraction
of the boundary compartment y tend to zero. In the latter case, assuming at the same
time rapid reactions V1, in

d 1 1
—Us=—-DoUl=sr +N, N=-N+N;,
dr 14 4

one finds in the limit the mixed boundary condition D3, U = Nj(U). In Sect. 4.4,
we will see that, in this limit to “instantaneous” boundary conditions, the model does
not correctly reproduce the phenomena of regeneration. This mathematical curiosity
implies for instance the presence of distinguished body regions relevant in regeneration
and may relate to the concept of poles separating head and tail regions from the trunk
as discussed in Rink (2018) where it is attributed a key role in regeneration.

In another interpretation of dynamic boundary conditions, we can think of compart-

ments for the main body on auniform grid x(V, ..., x™™ withsize xU+D —x() = dx
and associated concentrations UV, ..., U™ such that individual compartments carry
masses dx U, We now add separate boundary compartments U® = U_ and

UWN+D = U, carrying (larger) masses yU©, y U™+ independent of dx, and
impose no-flux boundary conditions on this inhomogeneous spatial grid. Fixing y and
letting dx — 0 we arrive at our dynamic boundary condition. Letting y — dx, we
loose the concept of dynamic boundary conditions and should interpret the additional
reaction terms /3 as nonlinear fluxes. We are not aware of a systematic analysis of such
limits, connecting discretization, nonlinear fluxes, and dynamic boundary conditions.

1.3 Outline of the paper

We review biological experiments that motivate our model in Sect. 2 and describe
numerical simulations that mimic planarian regeneration in various scenarios in Sect.
3.1In Sect. 4, we present analytical results that reduce dynamics to an order parameter ¢
that lumps concentrations of head and tail cells, coupled to the long-range wnz-related
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signal w. This reduction clearly illustrates how the nonlinear boundary fluxes restore
head and tail cell concentrations in dependence on the normal derivatives of w, and
initiate and organize regeneration. We outline a (in)stability analysis and pinpoint to
failure of regeneration, i.e. no recovery of the wnt-gradient, when dynamic boundary
conditions are relaxed.

In a drastic oversimplification, the key feature, namely restoration of a signal gra-
dient through body edge sensing, is distilled in a scalar model for w. Again we outline
the limits of regeneration and point to oscillations, caused by coupling of the scalar,
non-oscillatory dynamics in the boundary to the diffusive signal field in the bulk and
the resulting delayed feedback mechanism. Finally, we remark on other models in the
existing literature in Sect. 5 and end with a discussion of our results.

2 Planarian regeneration—experiments

Planarians consist of three tissue layers (Lobo et al. 2012), and exhibit a bilateral
symmetry, three distinct body axes, a well-differentiated nervous system including a
brain, a gastrovascular tract, and a body-wall musculature. Pluripotent adult stem cells
(neoblasts), about 30% of the total cell population (Baguiia and Romero 1981), are the
source of all cells (Tasaki et al. 2011), and cell types. Neoblasts divide and differentiate
constantly. Differentiated cells die after some time. During this dynamic steady state,
the flatworm maintains cell type proportions. Planarians and hydra are among the
few species that seem to possess a nearly unlimited regenerative ability, recovering
from practically every injury, and regenerating when aging. Some asexual planarian
species even reproduce by tearing themselves apart and subsequently develop into
two intact worms (Lobo et al. 2012). The ability to replace lost or damaged tissue in
humans is very limited. Examples in animals include regeneration of deer antlers, fins
of fish, tails of geckos, or complete limbs in some crabs or salamanders. The study
of regeneration in biological model organisms holds tremendous appeal and potential
for a better understanding of regeneration of human tissue, such as parts of the heart
muscle after an infarct.

2.1 Cutting

Cutting tissue off a planarian results in regeneration of both parts into an intact organ-
ism, more or less independent of position, size, or direction of the cut, with a few
exceptions. Each strip of a transverse dissection of the AP-axis will regenerate into a
complete flatworm, including an intact brain. In cuts close to head or tail, regeneration
of a new head occurs in 3 — 4 weeks. Complete restoration of the right proportions,
usually requires 2 — 3 months, (Morgan 1898). Tissue cut from close to head or tail
lacks a pharynx, and draws resources from itself, shrinking to as little as a tenth of
its original size, while restoring its basic functions first. Since polarity is preserved,
even in small tissue fragments, neighboring cells will regenerate as either head or
tail accordingly, after they have been separated by a cut! Exceptions are very long
or short fragments, which sometimes regenerate a second head instead of a tail. Too
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small or too thin cuts are not able to regenerate at all. See Fig. 2 for the schematics of
experiments and the respective representation in our model.

2.2 Grafting

Cutting out tissue of an intact donor planarian and transplanting it into another healthy
host, the donor usually regenerates as described before, whereas the host may develop
new phenotypes; see Fig. 2. When transplanting parts of the head of the donor into
different positions within the host, regeneration depends on the size and position of
the donor head tissue within the host. Either a normal flatworm develops, with the
grafted second head vanishing, or a second axis is generated at the position of the
transplant such that two heads and one tail result, or a two-headed planarian without
tail. Outgrowth seems more likely for a larger distance between the head transplant
and the host’s head. This is similar for larger head transplants and for tissue taken
closer to the donor’s head. Transplanting a donor tail into the upper part of a host,
sometimes results in a second pharynx in opposite direction, possibly also leading
to outgrowth. Transplanting a complete tail fragment below the head fragment of a
bisected host, such that just an intermediate strip for a complete planarian is missing,
regenerates this missing strip.

2.3 Growth and shrinking

Adult planarians of the species “Schmidtea mediterranea” are roughly 20 mm long
if well fed, and can shrink to about 1 mm if starved. When food supply is restored,
they regrow while keeping relative proportions and ratios of cell populations intact
(Bagufia and Romero 1981). For more details on planaria; see (Bagufia and Romero
1981; Baguiia et al. 1999; Baguifia 1976; Bardeen and Baetjer 1904; Bowen et al. 1974;
De Vries et al. 1984; Sal6 and Bagufia 1985; Morgan 1904; Randolph 1892, 1897,
Santos 1929; Smales and Blankespoor 1978; Newmark and Alvarado 2002; Morgan
1905, 1898; Sal6 and Bagufa 1984).

The freshwater polyp hydra, shows a similarly robust regeneration behavior, see
(Webster 1966; MacWilliams 1983; Shostak 1972; Shimizu et al. 1993; Bode 2003;
Wilby and Webster 1970). But stem cells in hydra are distributed exclusively inside
the body region, below the epithelium. Therefore a tissue fragment consisting only
of head or foot cells will not regenerate. See Achermann and Sugiyama 1985 for a
quantitative study on induction of additional foot or tail axes. When tissue of hydra
is dissociated by pressing it through a net and the resulting fragments are reorganized
randomly, a bulb of hydra tissue arises, which subsequently regenerates head and foot
structures. Depending on the number of involved cells, several head and body axes
occur that will separate only later (Noda 1971). Compare Fig. 7 for a related set-up in
our model, which has not yet been described for planarians.
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2.4 Genetics

Measuring the amount of RNA produced from specific genes during protein synthesis,
e.g. through in situ hybridization or northern blot (Niisslein-Volhard and Wieschaus
1980), one can identify, which genes are mainly expressed close to head, tail, or after
wounding or feeding in planarians. Via RNA interference, short pieces of RNA interact
and neutralize targeted mRNA molecules. Thus synthesis of messenger molecules
stops at an earlier point in time, and it can be decided, which of the genes being
expressed within the head region are actually necessary to regenerate a head. This
allows for some analysis of the production dynamics and functioning of related signals
(up, ug in our model), even though the corresponding messenger molecules can not
be tracked directly so far. Corresponding antibodies are not yet available. We refer to
Owlarn and Bartscherer (2016); Rink (2018) for reviews on biological results pertinent
to our mathematical model.

2.5 Gene expression sites

The three main body axes in planarians are organized by different signaling systems,
which seem to act quite independently (Reddien 2011). This justifies a 1 D-model, and
we therefore focus on genes which organize the AP-axis. More details can be found in
Adell etal. (2010), Reddien (2011), Petersen and Reddien (2008), Gurley et al. (2010),
Almuedo-Castillo et al. (2012), Gagliardi et al. (2014) and Reuter et al. (2015).

Among the genes which are expressed close to the head are nofum, sFRP-1, and
SFRP-2. Notum and sFRP-1 are expressed more locally, while expression of sFRP-2
extends from the planarian head tip to its center. Genes which are expressed closer to
the tail include wntl, and wntl1-5 (or wntP-2). Here wntl is expressed very locally,
while wntl1-5 is expressed from the tail tip to the center region in a graded fashion.
By local expression we mean a few cells producing molecules at the very tips of the
planarian, most likely subepidermal muscle cells (Witchley et al. 2013).

The time dynamics of gene expression after wounding are described in Almuedo-
Castillo et al. (2012), Petersen and Reddien (2009), Wenemoser et al. (2012) and
Petersen and Reddien (2011); wntl, wntl -5, notum, and sFRP-1 are expressed very
early; wntl is expressed first at all wound sites and then normalizes to the behavior
described above. Among 128 wound induced genes only notum shows a polarized
expression (Wolpert 1994), i.e. it is expressed at wounds that face missing head struc-
tures. Only the cell-internal downstream factor of wnt-signaling, B-catenin (Gagliardi
et al. 2014), seems to influence this asymmetric expression (Scimone et al. 2014).

Inhibition of notum and head amputation prevents head regeneration, while inhi-
bition of wnt/ and tail amputation prevents tail regeneration. The flatworm will
regenerate with two tails or two heads, respectively. Thus wnt] and notum are expressed
very early after wounding and act in an antagonizing manner (Kakugawa et al. 2015).

The canonical wnt-pathway is crucial for establishing and maintaining the polarity
along the AP-axis. High levels of wnt signaling correlate with high levels of g-catenin
within the cytoplasm. Inhibiting B-catenin leads to different phenotypes (Adell et al.
2010). If low doses of inhibitor dsRNA are injected into a planarian and the tail is

@ Springer



6 Page100f31 A.Scheel et al.

removed, the wound closes but no tail regenerates. Higher doses will lead to regen-
eration of a second head at the tail wound with a second opposing pharynx in the
middle of the planarian body. If the doses are further increased, the pharynx (both)
disorganize and ectopic eyes appear. Complete inhibition of B-catenin leads to a radi-
ally shaped planarian with head-related structures (nerve cells, eyes, etc.) everywhere,
even without tail amputation. An organizing B-catenin concentration gradient, with
maximum at the head and minimum at the tail has been confirmed experimentally
(Sureda-Goémez et al. 2016; Stiickemann et al. 2017).

Much of the current understanding of planarian regeneration rests on the idea of
a full body gradient of wnt-signaling (Adell et al. 2010), although details are not
completely understood. Expression of wntl at tail identities (Petersen and Reddien
2009) leads to accumulation of B-catenin inside the cells (Cramer von Laue 2004).
The expression of the wnt-antagonist notum (Kakugawa et al. 2015), is exclusively
affected by B-catenin signaling (Scimone et al. 2014; Petersen and Reddien 2011). It
is expressed locally at the tip of the head (Reddien 2011), and required for head regen-
eration. These mutual dependencies of S-catenin and members of the wnt-signaling
family together with its inhibitors appear to form a wnz-related signaling gradient over
the planarian body.

In our mathematical model the gradient of w is retained in body fragments, pro-
viding clues for polarization in regeneration. We do not take into account S-catenin
or notum, since the additional information would be equivalent to 1 — w and therefore
not contribute in a mathematically essential way.

The hydra homologues of the above mentioned genes wnt, disheveled, gsk3, tcf and
B-catenin seem to act in a comparable way; see (Plickert et al. 2006; Hobmayer et al.
2000; Philipp et al. 2009; Lengfeld et al. 2009; Gee et al. 2010). These similarities
lead us to suggest that our model for planarians does carry implications also for hydra.
The wnt-pathway appears to be even more widely conserved during evolution, beyond
hydra and planaria.

3 Simulations of cutting, grafting, and growth

Our numerical simulations of system (1.1)—(1.6), (1.9)—(1.11) illustrate homeostasis,
cutting, grafting, and growth, confirming and expanding on the schematic representa-
tion in Fig. 2.

3.1 Parameter values

Our default parameter values in Table 1 roughly represent expected orders of magni-
tude within the system. In Tenbrock (2017) a non-dimensionalization was performed
for a closely related model. Most parameter values do not have a significant effect on
the outcome of our simulations and can be changed by several orders of magnitude,
with notable exceptions discussed below.

Random motion of stem cells is of order one as they move fairly freely through
the body. Random motion of head and tail cells is very slow. Similarly, the localized
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Table 1 Parameter values used

in simulations throughout, Ds 1 Ps 200 o 18 Ns 100
unless noted otherwise Dy, 1073 Ph 1 r1 12 N 1

Dy 103 Pd 1 &) 6 Nd 1

Dy, 1072 py 10 36 T 0.5

Dy, 1072y 0.3 0 3

Dy 1 L 10 e 21073

A discussion on the biological measurements and non-
dimensionalization can be found in Tenbrock (2017)

signals uy /4 diffuse slowly, while the long-range wnt-related signal w has a diffusion
constant of order 1. We work on domains of length 10 and attribute a mass fraction
y = 0.3 to the boundary. We assume very fast proliferation of stem cells p; > 1 and
fast signaling dynamics r; relative to cell differentiation. Cell differentiation py/q4,
apoptosis 1,,/4, and differentiation at the tissue edges during wound healing T occur
on a time scale of order 1. The production rate of wnt-related signals p,, is faster in
comparison.

3.2 Numerical implementation

We implemented the dynamic boundary conditions as time-dependent Dirichlet condi-
tions. The system was solved with grid spacing dx = 0.01 and time stepping 5 - 10~#
using a semi-implicit Euler method. We found little changes from refining spatio-
temporal grids and also used MATLAB’S stiff solver ODE15S for comparison with
good agreement.

3.3 Results of the numerical simulations

We obtained equilibrium profiles starting with initial conditions that represent head
and tail cells in the boundary compartments at the body edges, a uniform distribution
of stem cells throughout the trunk, and a uniform wn¢-signaling gradient. Solving
the initial-value problem for a short time, we found that concentrations approached
constants in time. Specifically, we used initial conditions

ho() =0, hog=1, hyp=0, do(x)=0, d_g=0, dsg=1,

x+L
sox) =1,5_0=1, sy o0=1, wolx) = =L w_o=0 wyo=1 (3.1
andletuy, ug equal ki, d. The results match the schematics in Fig. 2. Figure 3 illustrates
the dynamic stationary profiles of healthy planarians of different body size in our
mathematical model.
The linear concentration profile in the wnt-signal is quite robust under dramatic
changes in the domain size. Fixing the width of the boundary compartment y and
varying L we found robust homeostasis between L = 0.005 (!) and L = 40. For

@ Springer



6 Page12of31 A.Scheel et al.

Homeostasis L =1, v =0.3 Homeostasis L =5, v =0.3
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1 s stem cells
——h head cells
> 05 - = =u;, head morphogen
] d tail cells
Y- ; I uq tail morphogen
-25 0 25 ——w wnit-signal

T

Fig. 3 Equilibrium profiles showing a linear wnt-signaling profile, head and tail cells concentrated near
boundaries, stem cell concentrations with small deviations from constant, and chemical signals closely
following head and tail-cell concentrations, respectively. Different scales for x represent different body
sizes of planarians. Homeostasis and cutting experiments are illustrated in the supplementary materials
CUTTING_SEQUEL.MP4

very small L, the total variation of the wnt-signal w decreases: w stays bounded away
from 0 and 1, and the gradient of w remains bounded for L — 0. In this regime, the
signals u;, and u, follow the concentrations /4 and d less closely, being much smaller
in amplitude. For very large L, the equilibrium state is sensitive to small fluctuations
since the wnt-signaling gradient is small, within [—6 - ¢, 6 - ¢] where detection of the
gradient no longer triggers differentiation. Increasing y helped stabilize dynamics, and
we found robust homeostasis for domain sizes 1, . .., 50 and boundary compartments
of sizey = 0.1, ..., 15. Very small sizes, such as y = 0.015, L = 5, were not able to
sustain a head-trunk-tail profile, consistent with our discussion in Sect. 4. Whenever
we saw homeostasis, we tested robustness against small amplitude perturbations and
found recovery within expected limits, excluding for instance perturbations that alter
the sign of the wnt-signaling gradient near the boundary.

The localization of the regions occupied by head and tail cells depends first on the
strength of random motion D, Dj, and diffusion rates of their associated morphogens;
see Fig. 4. Changing production and degradation rates ro, 71, 12, r3 for u; /4, one can
trigger a spontaneous expansion of the region for head and tail cells, where now the
rate of expansion depends on these rates and the diffusivities.

3.4 Cutting

Part of the homeostatic state in the central region of the domain is chosen as initial
condition

w=yy+ax+L)/Q2L), s=1, h=d=up,=us3=0. 3.2)

Here, o represents the fraction of the fragment cut, and yg € [0, 1] the concentration of
w at the left edge of the cut fragment, corresponding to a cutting location xo = L(2yy—
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Head/tail growth D), =0.01, D,, =0.1,7 = 12,120 Head/tail shrink Dj, =0.01, D,,, =0.1,T = 12

0 0 j
-5 0 5 -5 0 5
Head/tail diffusion Dy, =0.3,D,, =1,T7 =10
1 s stem cells
——h head cells
2 05 ¢ 4 - - —uy, head morphogen
——d talil cells
0= - 44 ug tail morphogen
-5 0 5 ——w wnt-signal

x

Fig. 4 Growing/shrinking of head and tail cell regions (left/right) with ro = 16, r3 = 4 (top left) and
ro = 18, r3 = 10 (top right); initial conditions as in (3.1). Expansion of head and tail regions (top left)
with snapshots at 7 = 12 (translucent) and 7 = 120 (solid); shrinking (top right) terminates at 7 = 12
and homeostasis is reached. Influence of strong random motion and diffusion on homeostasis (bottom left).
Other parameters are as in Table 1. See also supplementary material CUTTING_SEQUEL.MP4

1) e [-L, L]. Thusa = 0.02 corresponds to a cut of 2% of body length, and yo = 0.75
to a cut at three quarters of the body lengths distance from the head. Boundary data is
chosen compatible U+ = U(%L) at t = 0. Figure 5 shows regeneration from cuts of
2% and 4% of body length. Recovery is more sensitive if segments are cut out from
tail or head regions. Regeneration depends on the sensitivity e~ and the threshold
6. Smaller values of ¢ and 6 increase sensitivity and enhance regeneration, but also
vulnerability to noise. Smaller mass fractions y < 0.03 in the boundary compartments
for L = 5 prevent regeneration even for medium-size cuts, to the same extent as
homeostasis breaks down. Generally, for cuts near the tail, the head regenerates first,
and vice-versa. Polarity is consistently preserved.

In our numerical simulations, we observed an initial strong burst in differentiation
triggered by the boundary sensing lI/hj; 4- This is compensated for by the strong pro-
liferation of stem cells p;. Still the stem cell population decreases at the boundary,
St < ﬁ f s, an effect that is more pronounced for smaller values of p; or larger t,
thus quantifying the experimentally observed strong proliferation of stem cells during
wound healing in our model.

3.5 Grafting

Results of homeostasis simulation are used as basis for initial conditions. In a region
of a size of 10% of the length of the organism, the concentration of head cells & and
uj, is increased to 1, and wnr-signaling is eliminated, i.e. w = 0, in order to mimic
grafting of a head. The head region survives and changes the profile of w. Numerically
grafting head cells of a donor close to the head region of the host leads to merging
of the two head regions. Grafting donor head cells near the tail of the host preserves
the tail, unless tail cells are significantly destroyed during grafting; see Fig. 6. The
different outcomes reflect the dichotomy seen in experiments where an additional head
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Cutting o =0.02,yy =0.7,7 = 0.8,2.4,10 Cutting o =0.04,yo =0.81,7 = 0.8,2.4,10
1 J’ 1 r
2 0.5 ¢ i1 > 0.5 ,i |
; ;‘
0 0F ; i
-5 0 5 -5 0 5
T
Cutting a =0.04, yo =0.95,7 = 0.8,2.4,10
1 s stem cells
——h head cells
2 05 ] - = =y, head morphogen
——d tail cells
0 ug tail morphogen
5 0 5 —— w wni-signal

T

Fig.5 Regeneration after cutting 1/50th from trunk region yg = 0.7 (top left), 1/25th close to tail yg = 0.815
(top right) and from tail y = 0.95 (bottom left); see (3.2) for initial conditions. Regeneration failure and
emergence of heads on both sides, loss of the wnr-signaling gradient (bottom left), for a cut very close to
the tail region. Parameters are as in Table 1; translucent curves show concentrations at earlier snapshots as
listed in the title. Compare video CUTTING_SEQUEL.MP4 in the supplementary materials

may grow out of a graft or the graft disappears; see the discussion in Sect. 2 and Fig.
2.

We caution here that our simulations rely to some extent on astute choices of
production rates for head and tail cells and the associated morphogen, as well as the
choice of diffusivity. The boundary between head and trunk cells is nearly stationary
and sharply localized. Roughly speaking, an open set of parameter values will lead
to expanding head (or tail) regions, a complementary open set will lead to shrinking
head (or tail) regions. At the boundary of these parameter regions, head and tail regions
will remain nearly stationary, subject only to a slow coarsening interaction as seen in
the head-to-head grafting. Stronger diffusivities will enhance both speed of growth
and shrinking as well as the slow coarsening. Our parameters are close to the critical
values, where head and tail regions neither shrink nor expand. We emphasize that for
parameters where head- or tail regions shrink, grafted regions will slowly disappear,
but the head- and tail regions near the boundary will persist due to the wnt-related
gradient triggered differentiation of stem cells.

Since regions between two heads (two tails) do not generate a wnt-signaling gra-
dient, our prediction is that secondary cuts from such regions will neither regenerate
consistently, nor preserve polarity. These results should be further compared to exper-
iments where possible. Mimicking dissociation experiments in hydra, see Fig. 7, we
inserted head and tail fragments of roughly 3% of body length randomly at various
locations. Larger pieces persist as head and tail regions; smaller pieces eventually
disappear.
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Grafting head to center T = 0.8,2.4,10 Grafting head to head T = 0.4,2.4,20
1 iC ‘
~‘ :
0k : )‘ 0 /
-5 0 5 -5 0 5
T
Grafting head to tail T'=0.4,2.4,20
1 . i s stem cells
] ——h head cells
> 05 ¢ - - -y, head morphogen
——d tail cells
0 — u, tail morphogen
-5 0 5 —— w wnt-signal

Fig. 6 Regeneration after grafting head tissue into center of body (top left), head region (top right), or
tail region (bottom left). Parameters are as in Table 1; translucent curves show concentrations at earlier
snapshots. Persistence of the grafted head (left panels). Merging (and eventual vanishing) of the graft (top
right). Compare also supplement GRAFTING.MP4

Random grafting 7' = 0.4,4.8,40 Random grafting 7" = 0.4,4.8, 40

> 0.5
0
-5 0 5
T T
Random grafting T = 0.4, 4.8, 40
10 u s stem cells
‘ﬂ i ——h head cells
= 0.5 it !Ii - — —uy, head morphogen
E ( hh E! Ea ! F! | ——d tail cells
0 “ LSRRI 1 | ug tail morphogen
20 0 20 w wnt-signal

Fig. 7 Regeneration after grafting multiple head and tail regions for L = 10, 20, 40. Parameters are as in
Table 1; translucent curves show concentrations at earlier snapshots. Annihilation of all grafts (top left).
Multiple persistent regions for larger domains (top right, bottom left)

3.6 Growth

In our simulations for a growing flatworm, the body size expands uniformly at a con-
stant speed ¢ = 0.3, 1.5, 3 and we monitor the concentration profiles; see Fig. 8. More
precisely, we assume x(¢) = x(0)(Lo + ct)/Lo, where (—Lo, Lo) is the body size
attime t = 0 and (—Lo — ct, Lo + ct) at time ¢t. Mass conservation in the extended
domain, in absence of reaction terms, then forces the dilution 9, U (¢, x) = p(£)U (z, x),
with p(t) = —c/L(t). Transforming back to a fixed domain via the coordinate
change x — xLo/L(t) gives a diffusion equation on (—L, L) with diffusion matrix
L3D/L(t)*. Therefore in (1.7) we amend the diffusion constant and add a dilution
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Growth ¢ =0.3, T = 30,60, 100 Growth ¢ =1.5, T = 10,25,40

505 f{ o5 N

Growth ¢ =3, T =10,25,40

s stem cells

——h head cells
- = -=u;, head morphogen

\
\
2 0.5 1\
‘\ ——d tail cells
1

uq tail morphogen

50 0 50 —— w wnt-signal

T

Fig.8 A healthy planarian under uniform linear growth with speeds ¢ = 0.3, 1.5, 3. Concentration profiles
are plotted in actual coordinates, such that they occupy only part of the final domain at earlier times (faded
curves terminate at (Lo + ¢T')). Profiles are well maintained close to homeostasis for slow (top left)
and moderate (top right) growth speeds. For larger speeds (bottom left) dilution of w reduces the overall
concentration. The gradient at the left boundary (where w ~ 0) falls below the sensing threshold, the
concentration of head cells decreases, and a second tail appears

term to model the system on the growing domain,
U =DW)Urx + FWU) + p(OU, D) = DL§/L1)*, p(t) = —c/L(1). (3.3)

The relative size of the boundary compartments is preserved, i.e. y = y(t) =
y(0)L(t)/Lo, thus introducing the same dilution term in (1.8). Fluxes need to be
adjusted to — % d,U. See (Tenbrock 2017) for more details on different growth laws
and further references.

The resulting system is simulated on a fixed grid corresponding to scaled x-
coordinates, but plotted in the actual unscaled x-variables, see Fig. 8. Parameters
are chosen according to Table 1. For slow and moderate growth speeds, the concentra-
tion profiles resemble the homeostatic profiles at a given length. Key features do fail
only for rapid expansion. Here ¢ = 3 corresponds to a doubling of a flatworm of length
18 in 3 time units, while cell differentiation happens with rate 1, generating at most
1 unit volume of head or tail cells from stem cells in 1 time unit. This failure at rapid
growth can be attributed to the dilution of the wnt-related signal that is not adequately
compensated for by production through tail cells and diffusion, resulting in a very
small wnt-signaling gradient in the head region. With a gradient close to the sensing
limit determined by € and 0, sensitivity to perturbations increases dramatically.

Our externally imposed growth is clearly not entirely appropriate for actual growth
of planarians while feeding. Also, it cannot yet characterize the shrinking dynamics
under starvation conditions. The negative dilution term results in an overcrowding of
cells with sometimes unstable signaling gradients near the boundary. In an improved
model one would like to relate growth laws to proliferation and food supply. Neverthe-
less, we demonstrated here that our model replicates correctly inherent independence
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of patterning from body size, and robustness during growth in this simple, first mod-
eling approximation.

4 Analysis via model reduction
4.1 Eliminating stem cells and short-range signals

Proliferation of stem cells in (1.1) is much faster than differentiation, p; = 200, p;, =
pa = 1. Thus equilibrium concentrations depend only marginally on differentiation,
that is, on the concentrations of uj /4. Solving for equilibria by setting p;(s) = 0, we
obtain s = (ps — ns)/ns which in our choice of parameters gives s = 1. Note that our
simulations all support this approximation. Having set s = 1, we notice that the signal
production rates r; are larger than the cell differentiation and death rates pj /4 and
nn/4- Using an adiabatic reduction for the kinetics, one then equilibrates the reaction
rates for uy/4 and finds u, /4 as functions of 4 and d,

r0h2 r()d2
Up = —————, U= . (4.1)
rih* +rad +r3 rid*+rnh+r;

Similar to the case of stem cell dynamics, the reduction for the kinetics is valid under
suitable bounds on gradients, and we shall demonstrate below that such reduced sys-
tems capture the key structure of the dynamics quite well. In summary we obtain

9h = Dydch + roh” h

1t = LUpOxx phr1h2+r2d+r3 nnn,
r0d2

0;d = Dgoxxd + pa — nqd,

}’]d2 +rmh+r3
ow = Dy 0w — pyhw + pyd(l — w), with boundary data

4 = —Lpans + rohi hy +wE

uET y hovht phrlhzi—i-rzdi—i-m Npht ,

d 1 rod? +

—d4+ = ——Dy0,d+ + —ngdy+ + V¥,

a ” 4 0vd+ pdrldi+r2hi+r3 Nad+

d 1

d—twi = ——Dydywt — pphrwyt + pyde(l —wy), where again
14

Wy(h,d, dyw) = t(1 —)(1 —d)xL((w),
Yy(h,d,d,w) =11 —h)(1 —d)xZ,(0,w). 4.2)

Simulations of this reduced model are almost indistinguishable from the full model
and therefore not displayed here.
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Fig. 9 Schematic of the reduction from cell type to order parameter c¢. In the kinetics of the head-cell
dynamics, the w-limit set of a large ball consists of the line segments of the coordinate axis between the
origin and pure-head and pure-tail state, respectively. Restricting to this w-limit set (1) gives the joined line
segments, which one (2) bends open to (3) arrive at a straight one-dimensional line segment with dynamics
equivalenttoc ~d — h

4.2 From cell type to order parameter

In our simulations, concentration profiles of 4 and d are mostly constant, taking on
values (hy, 0), (0, dy), or (0, 0), where h, = d, = h,

Phro £/ pirg — 4nlrirs

, provided that pir§ > 4nirirs,
2npry

hy =

which we assume in the sequel. These three states are stable equilibria for the ODE
kinetics and the full PDE (4.2) for h, d, when D;, = D,. They correspond to head-
only, tail-only, and trunk-only states, respectively. The equilibria (h_, 0) and (0, 2_)
satisfy 0 < h_ < hy and are unstable threshold states, separating initial conditions
that evolve toward head cells from initial conditions evolving toward trunk-only cells.
The symmetric choice of parameter values, yields equal concentrations of pure head
and tail states, but is not necessary to reproduced the phenomena described here.
Regions of constant values of & and d are separated by interfaces (or fronts) that
propagate with a speed=speed(r«, n;, p;). The three possible fronts are, head-trunk,
tail-trunk, and head-tail. Fronts between pure head and trunk state can be understood
in the h-equation, setting d = 0.
roh?

dh = Dpdgrh n). en(h) = pp—2t
i hOxxh + gn(h),  gn(h) P

— nph.

This equation is a gradient flow related to the free energy f Dy, %hi + G (h). Here

, = —&n is the potential with critical points 0, 2. The direction of motion of the
front changes sign at the Maxwell point, when G (h+) = G5(0). For our parameters,
fronts propagate slowly toward the head region. Fronts between tail and trunk regions
can be described in an equivalent fashion. Fronts between tail and head regions do not
propagate due to symmetry if they exist. For our parameter values, such fronts in fact
do not appear but front-like initial conditions rather split into two fronts (4, 0) <
(0,0) < (0, hy), where the newly emerged state (0, 0) expands. All of those features
can be captured in a scalar reaction-diffusion equation. Somewhat formally, on the
level of the kinetics, one can envision straightening out the line segments in the 7 — d-
plane (h,,0) — (0,0) — (0, d,) into a 1D line segment —1 — 0 — 1; see Fig.
9.
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In its simplest functional form, tristability is represented by
¢t = Decxy +c(1 — cz)(c2 — /(2), withO <k <1, “4.3)

which possesses stable equilibria {—1, 0, 1} corresponding to head-, trunk-, and tail-
only states. The odd symmetry ¢ — —c, mimics the symmetry between d and % in
our simplified model. The critical “Maxwell” point is «, = 1/ \/§, such that (0, 0)
invades (1, 0) and (0, 1) for k < k4 and (0, 0) is invaded otherwise. Similarly to (4.2),
fronts between —1 and 1 alias head and tail exist in (4.3) precisely when splitting of
the front is not expected, that is, when —1 invades 0. This can be seen from the phase
portrait of the steady-state equation.

Production and degradation now occur for ¢ positive and negative, respectively,
reflected in modified w-kinetics

wy = Dywx + pulexio@d —w) + cxolc)w]. (4.4)

Gradient sensing at the body edges now is lumped together

i _ 1 _o2v2 2 +

dtci = > Deoyetr +cx(1 —ci)(cy — k%) + ¥, 4.5)
d 1 e R

V= _;Dwavwi + pu [exxZolce)( — ws) + cexolen)w]

where W =18 p(—0wler)(1 —cx) + Tx5_y@wlir)(—1 —cx). (4.6)

System (4.3)—(4.6) forms the minimal model that is able to mimic robust regeneration
under cutting, grafting, and growth.

4.3 Homeostasis, cutting, and grafting for system (4.3)-(4.6)

We simulate system (4.3)—(4.6) with parameter values D, = 0,001, D, = 1,k =
0.577, py = 10, ¢ = 0.002, t = 0.5, 8 = 3, y = 0.3, on a domain of size
2L = 10. Figure 10 illustrates prototypical experiments and regeneration with these
parameter values. Initial conditions for cutting are

w=7yo+alx+L)/2L), c=0. 4.7

Initial conditions for grafting are w = 0 and ¢ = %1 on segments of length 1.

We chose « near the Maxwell point, which prevents changes of size in grafting
experiments. Different choices of k lead to expanding or retracting head- or tail regions,
similar to the full model as shown in Fig. 4. Increasing ¢ or significantly decreasing
the mass in the body edge compartments y prevents recovery. Near critical values of
the gradient, the boundary values w4 behave non-monotonically; see Fig. 11.

As in the full model, two heads merge for grafts near the host’s head, and one head
persists for grafts sufficiently far from the host’s head. This reflects the dichotomy
between vanishing of the graft and outgrowth of a new head in experiments.
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Cutting a = 0.02, yo = 0.1, T'=04,1.2,5 Grafting head to center, T = 0.1,0.6,5
1F ‘ 7 . :
3 3
3 0 3 0
Ay ‘ 4 U
-5 0 5 -5 0 5
x

Random grafting, 7'= 0.1,0.6,5

c cell type

1 ] ——w wni-signal

-25 0 25
T
Fig. 10 Simulations of the reduced model (4.3)—(4.6) with initial conditions corresponding to cutting (top
left), to grafting where a head is grafted into the center (top right), and random grafting of head and tail
pieces (bottom left); see text for details

Cutting a = 0.02, yp = 0.1, T = 0.04,0.4,10 Cutting a = 0.02, yo = 0.1, T = 0.04,0.4,10

1K_/f ! /f
S0 29

Time-trace of w_
0.5
c cell type
3 045
—— w wni-signal
0.4
0 2 4 6 8

t

Fig. 11 Simulations of the reduced model (4.3)—(4.6) with initial conditions corresponding to cutting, for
parameters which cause difficult recovery or recovery failure. Reduction of mass in boundary compartment
y = 0.055 with ¢ = 0.002 leads to slow and non-monotone recovery: the wnt-signaling gradient first
decreases before head and tail cell populations are established (top left; associated time series of w_
bottom left). Analogously, larger ¢ = 0.012 with moderate value y = 0.3 also slows recovery (top right).
Larger ¢ together with smaller mass fraction prevents recovery

4.4 Analysis and comparison with Robin boundary conditions.

Throughout this section, let & = 0. Cutting experiments with small fragments can
be thought of as starting with initial conditions close to ¢ = 0, w = 1/2, which
is a trivial solution of (4.3)—(4.4). Regeneration and its failure can therefore be well
predicted from a stability analysis of this solution. Stability would prevent regeneration
of small fragments, while instability indicates the onset of a pattern-forming process.
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Linearizing at the trivial solution, we find

1
¢t = Decyy — K2Cs wr = Dywyyx + EC’ x| < L

d 1 , ot d 1 1
—ct = ——Dcoyclyp —k7cx + —0hwlrr, —wr=——Dydwlry + zcx.
dr y € dr y 2

After Laplace transformation, the associated eigenvalue problem can be converted into
a transcendental equation which is difficult to analyze. Numerically, one readily finds
instabilities in the relevant parameter regimes. We illustrate here the basic instability
mechanism with some formal simplifications.

Ignoring the right boundary condition by assuming for instance x € (0, c0), eigen-
functions are of the form ¢ = cpe™*, w = woe_ﬁ" + wie™"*, where p, p are
determined by A, DC,O2 = k2 42, Dw,52 = A, and w; depends on cp. Substituting
into the equations on the boundary at x = 0 yields a generalized (since p, p depend
on }) eigenvalue problem.

1 T .

rcog = —;DC(—pco) — k2o + ;(,Owo + pwi), (4.8)
1 - 1

Awy = _;Dw(_pw() — pwi) + ECO' 4.9)

Key are the off-diagonal terms: * pwo from £, w in (4.8), and %co in (4.9). For A > 0,
these terms are positive hence causing a negative determinant and instability. These
off-diagonal terms encode a positive feedback mechanism. A small increase of w_
causes a positive normal derivative for w and hence an increase in c_ at the boundary
from the equation for c_. The increase in c_ translates into a further increase of w_
through %c_ in the equation for w_, thus providing the positive feedback mechanism
responsible for instability.

Here the importance of dynamic boundary conditions becomes obvious. Relaxing
them by letting reaction rates at the boundary tend to infinity, we formally obtain the
mixed Robin boundary conditions: 0 = —Kk2cy + £8vw|iL , 0=c4.

As a consequence, the c-equation decouples as a simple diffusion equation with
decay —«2c and homogeneous Dirichlet boundary from the dynamic w-boundary
condition (!). Setting ¢ = 0 thenresults in a diffusion equation for w withhomogeneous
Neumann boundary, which implies stability.

This mechanism also elucidates the failure of simpler models with instantaneous
adaptation of tail and head cell concentrations, alias order parameter c, to sign(d, w)
through nonlinear Robin (or mixed) boundary condition ¢ = sign(d,w), with a pos-
sibly smoothed out sign-function. The idea here is to link ¢4 and fluxes 9, w|y=+1,
instantaneously rather than through a time relaxation %ci of the boundary data. How-
ever, the condition ¢ = sign(d, w) will not enforce c to increase from O to 1, say, in a
cutting experiment where d,w > 0. Instead, the boundary condition is instantaneously
satisfied by slightly lowering the concentration of w in a region close to the boundary
to achieve 9, w = 0, which is compatible with ¢ = 0 at the boundary (with the con-
vention sign(0) = 0). We tested such boundary conditions numerically and observed
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this predicted decay of the w-gradient near the boundary, and eventual convergence to
¢ = 0, that is, failure of regeneration. Relating to the previous discussion, the bound-
ary condition ¢ = sign(d,w) fails to enforce regeneration since it is not explicitly
associated with a forced change in levels of ¢, but acts rather as a nonlinear flux for
the w-equation. Dynamic boundary conditions provide precisely this association and
therefore guarantee regeneration.

4.5 Recovery of the long-range signal gradient as organizing feature

In our final model simplification, we focus on experiments with only head and tail at
the respective extremity, excluding in particular grafting experiments and states with
multiple head and tail regions. Assume therefore that the order parameter ¢ mostly
vanishes in the domain, that is, head- and tail-cells are confined to the boundary
regions. Then the kinetics for w vanish inside the bulk |x| < L, and we are left with
a simple diffusion equation for w. It is then sufficient to only track boundary values
c4+ of the order parameter. Assuming further that c4 adjust rapidly according to (4.5),
we can eliminate the order parameter completely setting c4+ ~ sign d, w and obtain

1
w; = Dywyy, |x] <L, U= _;Dwava:L + ¥,

with W =1 [x2_,@yw)(—w) + x5y @w)(1 — w)]. (4.10)

4.5.1 Cutting—numerical experiments

With parameter values D, = 1, p,, = 10, & = 0.002, r = 50,6 =3,y = 0.3,
L = 10, Fig. 12 shows regeneration of small fragments cut from center- or head
regions. Recovery is slightly less robust for fragments cut near head or tail.

For increasing values of ¢, that is, for decreasing sensitivity of gradient sensing at
the boundary, we see a transition to a system state which fails to recover; see Fig. 13.

One first observes oscillatory decay toward w = 0.5, then sustained oscillations
emerge in a weakly subcritical Hopf bifurcation. The unstable periodic orbit separates
initial conditions that lead to the trivial, trunk-only state w = 0.5 from initial condi-
tions converging to large-scale oscillations. The large oscillations eventually appear
to terminate in a heteroclinic bifurcation for larger values of . A similar transitions
could be observed, for a decreasing mass fraction y instead of increasing €.

4.5.2 Analysis—equilibria and stability

For simplicity we assume that - D,, = 1 and # = 0 such that the characteristic
function takes value 1/2 at w = 1/2. At the boundary, equilibria then satisfy one of
the three conditions,

1
ew=1, d,w > 0; ew =0, d,w <O0; ow:z,auu)zO.
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Cutting o = 0.001, yo = 0.5, T = 0.04,0.4,10 Time-trace of w_
1 ' i T
0.4
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Cutting o = —0.04, yo = 0.05, T = 0.04,0.4,10 Time-trace of w_
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Fig. 12 Simulations of (4.10). Initial conditions correspond to cutting experiments, i.e. linear w with small
slopes. Top row: robust recovery for a 0.1% fragment from center region. Middle row: recovery for a 4%
fragment from head region. This cut is reflected to demonstrate independence of orientation. Bottom row:
failure of recovery for a smaller fragment cut from head region. Note the slightly different time instances
to see rapid failure of preservation of signd, w near the boundary. Right column: corresponding time series
of w_

For moderately sized domains, 1 <« L < e~ !, three equilibria result, w = 1/2,
w=(x+L)/2L),and w = (—x + L)/(2L), corresponding to only trunk, head-tail,
and tail-head solutions. Linearizing at these equilibria, we find

d T
Wy = Wyy, |X| <L, awi =—tw+ pu—0o,w, 4.11)
e

where ;& = 1 for the trunk solution w = 0, and u = 0 for the head-tail and tail-head
solutions. The head-tail and tail-head solutions are always stable. To analyze stability
of the trunk-only solution, u = 1, consider the semi-unbounded domain x > 0, set
w = eMTPY with A = pz, to find the characteristic equation

For p to be an eigenvalue, we need Re p < 0. This holds since 7, ¢ > 0. We find

e real instability T > 4¢> gives two real roots p+ < 0 and two associated real
unstable eigenvalues A+ > 0;

e complex instability 2> < T < 4&? gives two complex conjugate roots with
Rep+ < 0 and two complex conjugate unstable eigenvalues ReA4 > 0;
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Fig. 13 Simulations of (4.10) with initial conditions corresponding to a cutting experiment and sensitivity
e~ = 15. An unstable oscillation separates initial conditions that decay to w = 0.5 (top row) from initial
conditions with sustained large-amplitude oscillations (middle row) when changing «. Note the different
scales for w here. Large stable oscillations disappear in a saddle-node of periodic orbits for smaller ¢ and
in a heteroclinic bifurcation for larger &, when e~ ~ 12.5 (bottom row). Also shown are corresponding
time series of w— (right column); see text for predictions of Hopf bifurcations and implications for model
corroborations and supplementary materials SCALAR_OSCILLATIONS.MP4 for oscillations

e Hopf bifurcation 2e* = T gives two complex conjugate roots with Rep+ < 0 and
two purely imaginary eigenvalues ReAt = 0, ImAy = +2is?;
e stability T < 2 gives complex conjugate eigenvalues A+ with ReA+ < 0.

Incorporating D,,/y gives more complicated formulas with similar transitions.
The dynamics are quite different if the boundary conditions are relaxed to Robin
boundary conditions, for instance

T [xS_p@w)(—w) + xSy @w)(l —w)| =0, x==%L.
Again neglecting the flux term —1 D,,d, w, that is, with sufficiently large mass frac-
tions y, equilibria for dynamic and Robin boundary conditions coincide. Stability of

equilibria is however quite different: the linearization with Robin boundary conditions
is a Sturm-Liouville eigenvalue problem

A =wy, xe (=L, L), How—w=0, x| =L,
£

with real eigenvalues Ag > 0 > Ay > ..., Ao ~ ez/u2 for L > 1. The dynamics
generally do not allow for oscillations as observed for periodic boundary conditions.
Nevertheless, the trivial trunk-only solution is unstable in this approximation and
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we see robust recovery of small w-gradients. One can attribute the appearance of
oscillations to an effective distributed delay in the otherwise scalar equation for the
boundary dynamics of w_ caused by the coupling to the diffusive field w(¢, x) which
acts as a buffer that stores a blurred history of boundary data.

The transitions discussed here occur when sensitivity w.r.t. the gradient at the bound-
ary is not sufficient, i.e. when ¢ is too large, or when boundary relaxation t or the
mass fraction y are too small. This prediction is specific to this model, occurring
to some extent also in the full system and the system with order parameter. We are
not aware of experimental observations of oscillations in cases where recovery and
regeneration are severely impeded. Any such observation would clearly corroborate
our basic modeling assumptions.

5 Mathematical models in the literature

Alan Turing, (Turing 1952) studied the impact of diffusion on pattern formation
in reaction-diffusion systems, including also vanishing diffusion. He analyzed the
selection of long-, finite-, and short-wavelength patterns, as well as oscillatory,
traveling-wave patterns, depending on reaction constants. His key observation was
that the spatially extended system can be unstable even when simple kinetics do not
exhibit instability, hence the terminology of diffusion-driven instabilities and pattern
formation. He also modeled the development of tentacles in hydra (Turing 1952) but
could not finish several follow-up manuscripts on developmental processes in biology
(Turing 1978, unpublished) due to his untimely death.

Turing’s model of two reaction-diffusion equations, especially his ’proof of princi-
ple’ system, has been tremendously influential, and was used and built upon by others
to model, for instance regeneration in hydra, see (Gierer and Meinhardt 1972) where
the notion of activator-inhibitor system was introduced. For other models based on
such kind of dynamics see (Murray 2002, 2003). The main feature of Turing’s mech-
anism, the selection of a preferred finite wavelength for a fixed domain size, like for
the tentacles of hydra, turns into a drawback for the regeneration of hydra’s or the
planarian body axis. The patterns developing during its regeneration are robust over
several orders of magnitudes in body size. Attempts to address this conundrum typi-
cally built on additional species that evolve dynamically and affect reaction constants
in Turing’s mechanism in ways that change selected wavelengths. In well designed
contexts scaling invariance of patterns can be covered for large changes in domain size
(Othmer and Pate 1980; Umulis and Othmer 2013; Umulis 2009; Werner et al. 2015).
For such models on scale-independent patterning in zebra fish see Almuedo-Castillo
etal. 2018.

In planarians, regeneration necessitates establishing a monotone signaling gradient.
Generation of such monotone structures has been studied mathematically quite exten-
sively in the context of phase separation (Fife 2000) and cell polarization (Mori et al.
2008). In the reaction-diffusion context, the simplest formulations lead to 2-species
mass-conserving systems, which can exhibit patterns, albeit with a wavelength propor-
tional to the domain. Patterns of smaller wavelength are unstable against coarsening
although coarsening can be slow or even arrested for small or vanishing diffusivities.
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Motivated by a receptor-ligand binding system (Sherratt et al. 1995), regeneration
of hydra was modeled in Marciniak-Czochra (2003) via diffusion driven instabili-
ties. Introduction of hysteresis allowed to correctly recover grafting experiments in
simulations of six coupled ODEs and PDEs (Marciniak-Czochra 2006). Intuitively,
hysteresis or multistability are well suited to describe the outcome of grafting exper-
iments, as higher values of variables for head identities, are stabilized, independent
of position or domain size. The absorption of very small transplants might also be
explainable. In fact, our model contains some features of the associated multistability.
The above models though do typically not generate patterns corresponding to cut-
ting and dissociation experiments robustly. Systems of ODEs (vanishing diffusivities)
coupled to PDEs have been studied more recently w.r.t. their pattern-forming capa-
bilities (Marciniak-Czochra et al. 2017, 2018; Hérting and Marciniak-Czochra 2014;
Marciniak-Czochra et al. 2016; Li et al. 2017; Marciniak-Czochra et al. 2015), like
stable patterns and unbounded solutions developing spikes. The role of hysteresis in
diffusion-driven instabilities and de novo formation of stable patterns was investigated
in Hirting et al. (2017) and Li et al (2019).

The emphasis on separating boundary and bulk dynamics in our approach relates to
recent efforts in understanding the role surface reactions and bulk-to-surface coupling
in morphogenesis (Elliott et al. 2017; Cusseddu et al. 2018; Levine and Rappel 2005;
Rétz and Roger 2012, 2014). In such a setup, species that react and diffuse with similar
diffusion constants on a surface would not form patterns. If, however, one of the species
diffuses rapidly into, within, and back from the bulk, an effective large diffusivity for
this species ensues, which in turn enables a diffusion driven instability towards stable
patterns; see for instance (Tenbrock 2017) for a more in-depth discussion and a model
related to ours, but differing w.r.t. the boundary dynamics and gradient sensing.

We emphasize however that our model is very different in essential features from
models in the literature described here, arguably simpler, at least in the reduced forms
of Sect. 4, and possibly more versatile in regard to the experimental phenomenology
that can be robustly reproduced.

6 Discussion

We presented a mathematical model for robust regeneration of planarians which repro-
duces most cutting and grafting experiments. Our system preserves polarity after
cutting and yields robust results over organism scales differing by factors of 100.
Central are two strong indications from experiments:

(1) sharply increased activity including stem cell proliferation near wounds;
(ii) global gradients of chemical signals, related to the wnt-signaling pathway.

The first observation is translated into dynamic boundary condition, modeling changed
reaction kinetics in aboundary compartment at the body edges. The second observation
has often been discussed in connection with the regulation of tissue size, expanding
on the idea of the French-flag model. In contrast to this, we postulate that the gradient
itself, rather than absolute levels of the signal are relevant for the stem cell population
and, at wound sites, is translated into directed differentiation. We suspect that within
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a rather general modeling context, effective gradient sensing is necessary in order to
reproduce robust preservation of polarity in cutting experiments, suggesting that such
processes may indeed be relevant also in real planarians.

We incorporate these ingredients into a comprehensive model of 3 cell type popu-
lations and 3 chemical signals. Through model reduction to one order parameter for
cell types and one long-range chemical signal, only, we exhibit how the regenera-
tion process is organized. One can point to regeneration as an instability mechanism
for a trivial, unpatterned state and identify analytically limits of robust regeneration.
The process is fundamentally different from Turing type mechanisms, and driven by
boundary dynamics.

6.1 Outlook

There are several ways in which our model could be refined. First, a head over tail bias,
which is observed in experiments, could be introduced for instance through different
sensing thresholds 6 at body edges, or different differentiation and proliferation kinet-
ics. We are, however, not aware of a causal rather than a phenomenological justification
of this bias. Second, we did not attempt to model regulation of the size of the head and
tail regions. Our model relies essentially on establishing a global signaling gradient.
Thus cells could in principle obtain positional information by reading out absolute
levels of the wnt-related signal. Postulating such a w-dependence for differentiation
or apoptosis in the {s, &, d, up, ug}-subsystem, one could influence the tristability.
Front motion as described in Sect. 4.2 would then depend on w levels, and stationary
interfaces would lock into fixed w-levels, thus regulating a fixed size of head or tail
as a percentage of the full body length. In the order parameter model, this could for
instance be accomplished by

¢ = o+l = ) (e = xEog5w)) (¢ — x5 _ggsw))

which would regulate the size of head and tail to regions where w > 0.85 and
w < —0.85, respectively, about 15% of body size, each. Such effects could also model
the spontaneous formation of head cell clusters when suppressing the wnt-signaling
pathway. Lastly, one could address directed motion of stem cells or progenitors.
Migratory stages of progenitors from their place of birth to their site of terminal
differentiation are discussed in Rink (2018). Taking such effects into account could
potentially improve further, both qualitatively and quantitatively on the results pre-
sented here.
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