
1. Introduction

Green storm water infrastructure (GSI) provides many benefits beyond the retention and detention of ur-

ban storm water flows (Walsh et al., ), including improved water quality, urban heat mitiga2005 2012, -

tion, habitat creation in support of  urban biodiversity, carbon sequestration, recreational opportunities, 

and mental health (BenDor etal., ; Engemann etal., ; Grant etal., ; Grebel etal.,2018 2019 2012 2013, 2013; 

Keeler etal., ; National Academy of Sciences, Engineering, and Medicine, ; Raymond etal.,2019 2016 2017; 

Walsh etal., ). In this study, we focus on the water quality benefits of an increasingly popular form of 2016
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GSI called biofilters, also known as bioretention systems or rain gardens. As illustrated in Figure , these 1a

vertically oriented systems filter water through planted soil or sand-based media and are easily integrated 

into the urban landscape over a range of  scales (Grant etal., ; Roy-Poirier etal.,2013 2010; Wong,2006). 

Their possible features include: (1) a ponding zone that retains water prior to infiltration; (2) biological 

components including upright vegetation and naturally colonizing soil invertebrates and microorganisms; 

(3) engineered filter media (sand, sandy loam, or loamy sand with or without media amendments [e.g., bio-

char; Boehm etal., ; Mohanty & Boehm, ]); (4) a coarse sand transition layer; (5) a drainage layer 2020 2014

consisting of coarse sand or fine gravel which can be lined or unlined and with or without an underdrain; 

(6) an overflow structure that releases excess storm water; and (7) a raised outlet to facilitate the formation 

of a permanently wet “submerged zone” (Clar etal., ; A. P. Davis etal, ; H. Kim etal.,2004 2009 2003; Payne 

etal., ; Rippy, ).2015 2015

The water quality benefits attributable to GSI are often quantified based on the fraction of  storm water 

pollutants (measured on a concentration or mass basis) removed during laboratory or field challenge ex-

periments (Bedan & Clausen, ; A. P. Davis etal., ; Feng etal., ; Hatt etal., ; Kranner 2009 2009 2012 2009

etal.2019; L. Li & Davis, ; Y. Li etal., ; Parker etal., ; Ulrich etal., ). Much of  this re2014 2012 2017 2017 -

search has focused on the link between system design and pollutant removal, for example how the choice 

of plant species and the presence or absence of a submerged zone influences the removal of nutrients (e.g., 

H. Kim etal., ; Payne etal., ; Read etal., ; Read etal., ; Rycewicz-Borecki etal.,2003 2018 2008 2009 2017) 
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Figure 1.  (a) Schematic diagram of transport processes that may influence solute transport through the lined biofilter used in our field experiments, including 
lateral infiltration and exfiltration with the surrounding soil (i–iii); outflow by evapotranspiration, gravitational drainage through the filter media, and short-
circuiting (iv–vi); diffusive exchange of water and solutes between pore spaces and micro-porosity within individual grains or organic material (vii), and uptake 
of water and solutes by plant roots (viii). (b) Photographs of the experimental set-up at the OCPW Low Impact Development Demonstration Facility (left), and 
the programmable controller and valve (top and bottom right). (c) Detail of the storm simulation experiments, including the vertical and horizontal positions of 
inflow and outflow tanks, control valve, biofilter test cell, and sampling set-up in the outflow tank (not to scale). OCPW, Orange County Public Works.

(a) (b)

(c)
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and how media amendments influence the removal of microbial contaminants and heavy metals (e.g., Y. 

Li etal., ; Mohanty & Boehm, ; L. Zhang etal., ). The effects of transient unsaturated flow, a 2016 2014 2010

defining feature of  biofilters and GSI generally, are less often considered. Occasionally, transient unsatu-

rated flow is indirectly acknowledged through experimental designs that incorporate an antecedent dry 

period between storm water dosing events (Chandrasena, Pham, etal., ; Payne etal., ). Similarly, 2014 2014

biofilter design guidelines often recommend the inclusion of a submerged zone so that a portion of storm 

water passing through the biofilter spends a longer time undergoing treatment (e.g., nitrogen removal by 

denitrification) between storms (LeFevre etal., ; Payne etal., ). Yet, a detailed understanding of  2015 2015

how transient unsaturated flow influences contaminant removal remains elusive.

Part of the problem is that transient unsaturated flow imposes severe challenges for predictive modeling. 

The Richards equation, which describes transient unsaturated flow through porous media, can be solved 

to estimate time varying flow and saturation through biofilters in one-, two-, or three-dimensions (e.g., 

using the numerical package Hydrus [Simunek etal., ]). These solutions can be coupled to the advec2008 -

tion-dispersion equation (ADE) and one or more hypothesized pollutant removal mechanisms, to estimate 

pollutant removal in biofilters and analogous vadose zone systems (Massoudieh etal., ; Radcliffe & Si2017 -

munek,2010; Simunek etal.,2008). While this approach may work well as a theoretical exercise (Alikhani, 

etal.,2020; Dos Santos etal.,2013) and under highly controlled conditions in the laboratory (Al-Mashaqbeh 

& McLaughlan, ; Behroozi etal.,2012 2020 2009; Henrichs etal., ; Horel etal., ; Saiers & Lenhart,2015 2003; 

Trenouth & Gharabaghi,2015 2006 2010 2017) or field (Boivin etal., ; S. Jiang etal., ; Massoudieh etal., ), its 

general application is limited by the information required (boundary conditions, soil hydraulic properties, 

root profiles, and etc.) and the fact that biofilters, like the catchments they are nested within, are “complex, 

heterogeneous, and poorly characterized by direct measurement” (Kirchner, ).2009

Alternatively, mass balance over a control volume drawn around the biofilter media—so-called “bucket 

models”—can track the temporal evolution of soil moisture and solutes in these systems. Daly etal.(2012) 

used a bucket model to derive the probability density of water volume stored in a biofilter based on a sto-

chastic description of  rainfall together with biophysical models for gravitational drainage and evapotran-

spiration (ET). The power of bucket models lies in their simplicity; an enduring challenge has been how to 

leverage their output into estimates of pollutant removal. Daly etal.( ) bridged this gap by relating the 2012

pore fluid total nitrogen concentration in a biofilter to degree of soil saturation (estimated from the bucket 

model) on the premise that low saturation levels are associated with “a reduction in nitrogen plant uptake 

and denitrification with a consequent accumulation of nitrogen in the filter media that is then washed out 

during the next inflow event.” While clever, this approach does not address the more general problem of 

predicting pollutant removal as storm water passes through a biofilter or other GSI. Further, Daly etal.'s 

bucket model was implemented at a daily time step, and consequently within-storm processes (such as 

pollutant breakthrough curves) cannot be resolved. Randelovic etal.( ) proposed a hybrid approach 2016

in which the unsteady water balance is solved with a bucket model while pollutant removal in the filter 

media and submerged zone is predicted with the one-dimensional ADE coupled with one or more pollut-

ant removal mechanisms. Their framework accurately predicts micropollutant removal in field-scale storm 

water biofilters (Randelovic etal., ) but at the cost of significant complexity—the model consists of 25 2016

coupled equations and requires the specification of 32 variables. Refinements of this model continue to be 

published (Shen etal., ; K. Zhang etal., ) and incorporated into practice oriented GSI design soft2018 2019 -

ware (e.g., MUSIC [eWater Ltd., ]) (reviewed in Jefferson etal.,  and C. Li etal., ).2020 2017 2017

In this paper we propose and test an entirely new approach for predicting unsteady solute transport through 

GSI: unsteady transit time distribution (TTD) theory. TTD theory combines the simplicity of bucket models 

with the temporal resolution and physical insights provided by process-based models of  solute fate and 

transport in transiently unsaturated flow systems. The theory was developed by hydrologists to characterize 

the myriad transport pathways and timescales associated with water and solute transport through catch-

ments to streams (Rinaldo etal.,2011 2015, ) but has since been applied to a diverse array of environmental 

problems (e.g., Metzler etal., ; Smith etal., ). In place of  a mass conservation equation (such as 2018 2018

the ADE), TTD theory is premised on an unsteady conservation equation for the age distribution of water 

entering, stored in, and leaving a system. These age distributions, in turn, encode all information needed 

to estimate solute breakthrough concentrations, including the time history of inflows (e.g., in the case of a 
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biofilter, the magnitude and timing of  storm events) and the transformation reactions that occur as water 

flows through the system along diverse flow paths. In short, TTD theory elegantly links hydrologic process-

es to water quality outcomes (Hrachowitz etal., ).2016

There are at least two reasons why TTD theory is a potentially important advance over current approach-

es for modeling pollutant removal in GSI: (1)  and (2) parsimony extensibility. The unsteady TTD model 

presented later requires the specification of just one unknown parameter, the effective size of the biofilter 

(taking lateral exchange of water and solutes with the surrounding soil into account). TTD models can be 

linked in series and parallel (Bertuzzo etal., ; Hrachowitz etal., ) to represent GSI networks and 2013 2016

hydrological response units (e.g., hillslopes, groundwater, wetlands, and rivers) in urban catchments. Thus, 

TTD theory directly addresses a significant limitation with existing GSI modeling frameworks; namely, 

their “uncertainty in simulating the propagation of flows through pathways such as storm water networks, 

pervious runoff, and subsurface flows” (C. Li etal., ).2017

The paper is organized as follows. We begin by developing the TTD modeling framework needed for GSI 

applications (Section ). A field-scale test of  the TTD theory is then described (Section ) followed by ex2 3 -

perimental and modeling results (Section ), a discussion of  water quality implications (Section ), and 4 5

conclusions (Section ). All variables are defined in Table .6 1

2. Modeling Framework

The application of TTD theory to GSI entails three steps: (1) a control volume is drawn around the feature of 

interest, in our case the soil media component of a biofilter; (2) an unsteady water balance is performed over 

the control volume, taking into account time-varying inflows, outflows, and change in water storage; and (3) 

the age distribution of water in the control volume, and in water leaving the control volume by gravitational 

drainage and ET, is estimated from TTD theory, along with any water quality metrics (e.g., solute break-

through curves) of interest. In this section we begin by describing two different approaches for preparing 

the unsteady water balance, including a simple bucket model (Section ) and a numerical solution of the 2.1

Richards equation coupled with soil hydraulic functions (Section ). We then solve the age conservation 2.2

equation (Section2.3.3) and derive a set of expressions for the age distribution's central tendency and spread 

(Section ) and the breakthrough concentration of a conservative solute (Section ).2.3.4 2.3.5

2.1. Bucket Model Water Balance

Equation1a is an unsteady water balance over a control volume drawn around the biofilter media, where 

the variable  [T] is time and the functions ) [L], t S t( J t( ) [L T1], (Q t) [L T1], and ET(t) [L T1] represent, 

respectively, the time-varying volume of water in storage, infiltration rate of water into the biofilter from the 

ponding zone, gravitational discharge of water out of the biofilter, and ET across the top boundary of the 

biofilter (Daly etal., ). All volumes and flows are normalized by the biofilter's surface area.2012

        ET
S

J t Q t t

t
 (1a)

 
00S t S  (1b)

The initial condition (Equation1b) stipulates that the area-normalized water in storage at time =0 is t S S= 0 

[L]. To solve Equation  we must first specify the storage dependence of all terms on the right-hand side. 1a

These are discussed in turn.

2.1.1. Dependence of Infiltration on Storage

For the field experiments described later, the biofilter is lined and outfitted with an underdrain open to the 

atmosphere. Under these conditions, a parsimonious description of  the infiltration rate can be written as 
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Variable Definition Units

Hydrologic Variables

t Time T

S t( ) Area-normalized volume of water in storage in the biofilter L

J t( ) Area-normalized infiltration rate of water into the biofilter from the ponding zone L T1

Q t( ) Area-normalized gravitational discharge of water out of the biofilter L T1

ET(t) Area-normalized evapotranspiration across the top boundary of the biofilter L T1

S 0 Area-normalized volume of water in storage at time =0 Lt

I t( ) Area-normalized inflow of storm water to the ponding zone of the biofilter L T1

Ksat Average saturated hydraulic conductivity of biofilter media L T1

S max Area-normalized maximum water storage of the biofilter L

a b, Empirical constants for the power-law stream flow recessional model -

S min Area-normalized residual storage at which all gravitational discharge ceases L

g Power law exponent relating gravitational discharge and storage -

db Depth of biofilter media L

Porosity of biofilter media -

Residual soil water content -

l Tortuosity parameter -

αvg,nvg Van Genuchten shape parameters L, -

α Fraction of gravitational discharge that is routed to the biofilter underdrain -

s0 Initial biofilter moisture content -

Transit Time Distribution Variables

T Water age T

S T( , ) Age-ranked storage, equal to area-normalized volume of water stored in the biofilter media at any time  with ages  or younger LT t t T

PRTD( , ) CDF for the fraction of stored water with ages less than or equal to  at time  (the unsteady RTD of water in storage) -T t T t

T0 The age of water in storage at time =0 Tt

Heaviside function -

CDF for the fraction of water exiting the biofilter as gravitational discharge with ages  or younger at time -T t (backward TTD)

T
CDF for the fraction of water exiting the biofilter as evapotranspiration with ages  or younger at time -T t (backward TTD)

Ranked StorAge Selection function -

Q
Ranked StorAge Selection function for gravitational discharge -

ET
Ranked StorAge Selection function for evapotranspiration -

,
T

S T t

Age-ranked storage under uniform selection L

δ T( ) Dirac delta function T1

,P T t CDF for the fraction of stored water with ages less than or equal to  at time  under uniform selection -T t

,p T t PDF for the fraction of stored water with age  at time  under uniform selection TT t 1

,Qp T t PDF for the fraction of water exiting biofilter as gravitational discharge with age  at time  under uniform selection (backward TTD) TT t 1

ET
,

U
p T t

PDF for the fraction of water exiting biofilter as evapotranspiration with age  at time  under uniform selection (backward TTD) TT t 1

Table 1 
Table of Variables With Their Definition and Units, Roughly in Order of Appearance
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follows, where the variables represent the inflow of storm water from the surrounding catchment into the 

ponding zone, I t( ) [L T1], the biofilter media's average saturated hydraulic conductivity, Ksat [L T1], and its 

maximum water storage volume, Smax  [L] (equal to the biofilter's area-normalized void volume):

   
    

max

sat max

, 0

,

I t S t S

J t
K S t S

 (2)

This simple expression approximates the three phases of infiltration (Williams etal., ) as follows. In1998 -

filtration equals inflow during the , which begins when storm water first enters the ponding Filling Phase

zone and infiltration is dominated by capillary forces: S t( )<Smax, J t( )=I t( ). Infiltration equals the saturated 

hydraulic conductivity during the Transition Phase as the biofilter approaches full saturation: S t S( )= max, 

J t K( )= sat. During this phase, water level in the ponding zone rises whenever inflow exceeds the media's 

saturated hydraulic conductivity. Infiltration is zero during the , which commences once Draining Phase

inflow has ceased and the ponding zone has drained: S t( )<Smax, J t( )=I t( )=0. While process-based models 

of infiltration are available (e.g., Green & Ampt, ), Equation  is consistent with the field observations 1911 2

described later (see Section ) and its sole variables (4 Ksat and Smax) are easily measured biofilter design pa-

rameters (Le Coustumer etal., , ; Payne etal., ; Peng etal., ).2009 2012 2015 2016

2.1.2. Dependence of Gravitational Discharge on Storage

Kirchner(2009) posited that streamflow out of a catchment can be represented by a single nonlinear func-

tion of the catchment's water storage, Q t( )=f S t( ( )). One such functional relationship derives from the pow-

er-law recessional model for streamflow where the prefactor, , and exponent, , are empirical constants:a b

 
bQ

aQ

t

 (3a)

When coupled with an unsteady water balance over the catchment, Kirchner demonstrated that Equa-

tion -3a can be manipulated to yield an algebraic expression for streamflow as a function of storage (Equa

tion 14 in Kirchner, ). Here we adopt a rearranged form of Kirchner's algebraic relationship to describe 2009

gravitational discharge from a biofilter (Equation ), where the new variable, 3b Smin  [L], is the residual stor-

age at which all discharge ceases:

 
   

 

min
sat

max

S S
Q K

S
 (3b)
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Table 1 
Continued

Variable Definition Units

D t
Mean age of water in storage under uniform selection T

CQ ( ) Concentration of solute in water leaving the biofilter by gravitational drainage M Lt 3

CJ(t i, ) Concentration of solute in water that entered the biofilter at time T t i and exited the biofilter as gravitational discharge with age M LT 3

ti Time water and solutes infiltrated into the biofilter across its upper boundary T

C0 Concentration of solute present in water stored in the biofilter at time =0 M Lt 3

CJ m, Concentration of solute in the inflow of the -th storm M Lm 3

tm s, Start time of the -th storm's inflow Tm

tm e, End time of the -th storm's inflow Tm

fn( ) Fraction of water in storage that is younger than the oldest water from the -th storm -t n

Abbreviations: CDF, cumulative distribution function; PDF, probability density function; RTD, residence time distribution; TTD, transit time distribution.
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The constants appearing in Equations  and  are related as follows:3a 3b


1/
sat max/

g
a gK S  (3c)

 (3d)

The new variables, Smin and , are emergent properties of the transient unsaturated flow field; that is, they g

must be determined empirically based on experimental observations or numerical solutions of the Richards 

equation.

2.1.3. Dependence of ET on Storage

ET also depends nonlinearly on water storage, but only when storage falls below a critical value known 

as the incipient water stress (Allen etal., ; Daly etal., ). Above the incipient water stress, ET ap1998 2012 -

proaches a maximum rate (set by local environmental conditions, including wind speed, vapor pressure 

deficit, temperature, and plant-specific characteristics) called potential ET. While biofilters often operate 

at or below the incipient water stress (Hess etal., ) this was not the case for the experiments described 2019

later, which involved a sequence of back-to-back simulated storms. Accordingly, in this study we approxi-

mated ET with an hourly time series of reference crop potential ET (cPET) following FAO guidelines (Allen 

etal.,1998) and based on measurements at, or nearby, the field site together with plant-specific traits (de-

tails in TextS1 of the Supporting Information).

2.1.4. Numerical Implementation

The water balance bucket model was solved by substituting into Equation  the above expressions for 1a

infiltration (Equation ) and gravitational discharge (Equation ), along with hourly estimates of  cPET 2 3b

(Section 1min2.1.3). The model was then forced with timeseries (sampling frequency  1) of  measured 

storm water inflow and numerically integrated (details in TextS2 and FigureS1). These simulations yielded 

1min1 timeseries of infiltration, storage and gravitational discharge over the 17 simulated storm events 

described in Section .3

2.2. Numerical Solution of the Richards Equation

To calibrate the gravitational dis o as a check on the bucket model pre-

dictions described above, 1 mi  s ge and gravitational discharge were 

also simulated with the one-dime ard s 1D, Version 4.17.0140, PC-Progress, 

Prague, Czech Republic). The mode ed wi ow rates and hourly estimates of cPET 

(Section2.1.3). Gravitational discha  the bi ain was represented by a free drainage 

bottom boundary condition (C. Jiang l ). Th e , ty, and maximum storage of the biofilter 2019

were taken as, respectively, db=0.6m, , and  m (estimated from six cores of the 

biofilter media collected postexperiment with a 7.6 cm-diame on steel corer). With one exception, we 

adopted Hydrus 1D's default hydraulic soil parameters for lo and (van Genuchten shape parameters 

αvg=12.4m1 and nvg=2.28 [], residual soil water content  0.057 [], tortuosity parameter l=0.5 

[]). The exception was saturated hydraulic conductivity, Ksat, which was estimated from measurements of 

peak discharge and in situ measurements with a modified Philip-Dunne Infiltrometer (Text ).S3

2.3. TTD Theory

2.3.1. Solving the Age Conservation Equation

The age distribution of water in the control volume surrounding the biofilter's soil media is governed by the 

following age conservation equation (Botter etal., ; Harman, ):2011 2015
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ET, ET ,T T
Q

S S
J t Q t P T t t P T t

t T
 (4a)

 RTD, ,
T

S T t S t P T t  (4b)

 0, 0TS T t  (4c)

  0 0, 0
T
S T t S H T T  (4d)

 
 

  

0, 0

1, 0

x

H x
x

 (4e)

The conservation equation's dependent variable, age-ranke epresents the area-nor-

malized volume of water stored in the biofilter media contro e  with ages  or younger. T

Age-ranked storage is defined mathematically as the product  a ed volume of stored wa-

ter, (S t), and the cumulative distribution function (CDF) for th ctio ored water with ages less 

than or equal to ; that is, the stored water's residence time d ibutiT PRTD ( , ). T t) (Equation4b

As the age variable, , becomes large, the RTD's CDF tends to nity a the -ranked storage function T

collapses to the area-normalized volume of water in storage:   ,
T

S T t S t . The boundary condition 

(Equation4c) ensures that no water stored in the control volume has an age less than T=0. The initial con-

dition (Equation4d) implies that, at time =0, the volume of “original” water in storage, t S0, has a single age, 

T T= 0, where the Heaviside function is denoted by ) (EquationH x( 4e 4a). As applied to biofilters, Equation  

equates the change of age-ranked storage of water in the biofilter media (left-hand side) to the infiltration of 

storm water of age =0 (first term on right-hand side); outflow of water by gravitational discharge (second T

term) and ET (third term) with age distributions ,QP T t  and ET
,P T t , respectively; and aging of water in 

storage (fourth term).

The two CDFs appearing in the outflow terms, ,QP T t  and ET
,P T t , represent the fraction of water leaving 

the biofilter as gravitational discharge and ET with ages  or less at time . The backward arrows on these T t

CDFs indicate they are “backward TTDs”; that is, they represent the age distribution of water  the leaving

biofilter at time . A corresponding set of  “forward TTDs” can be written for the life expectancy of  water t

parcels entering the biofilter at time, ti. The relationship between forward and backward TTDs is given by 

Niemi's Theorem (Benettin, Rinaldo, & Botter, ; Harman, ; Niemi, ). Under unsteady condi2015 2015 1977 -

tions and depending on the nature of the storage selection function (see next section), the backward TTDs 

for gravitational discharge and ET are not necessarily equal, nor are they necessarily equal to the RTD of 

water in storage (Botter etal., ).2011

2.3.2. Ranked StorAge Selection Function

As written, Equation  is mathematically ill posed because it consists of  a single equation with three 4a

unknown functions: ST( , ), T t ,QP T t , and ET
,P T t . This closure problem can be resolved by introducing 

a new CDF, the ranked StorAge Selection (SAS) function, ,TS t
 [], which maps the fraction of outflow 

with ages less than or equal to  (i.e., the CDF form of the backward TTD for discharge or ET) to the fracT -

tion of age-ranked water in storage with that age or younger “selected” for outflow by either gravitational 

drainage or ET (Botter etal., ; Harman, ):2011 2015

,  , ,TP T t S T t t  (5a)
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In principle, the functional form of  the SAS function can be calculated by averaging the ADE for solute 

transport over the control volume (Benettin etal.,2013; Rinaldo etal.,2015). For the purposes of this study, 

however, we adopted a “uniform SAS” function, under the assumption that water in storage has an equal 

probability of being selected for outflow regardless of its age (Harman, ):2015

            ET

,
 ,  , , , 0,

T

Q T T T

S T t

S t S t S T t S t

S t

 (5b)

Uniform SAS functions often apply to systems, such as ours, that are far from well-mixed (Benettin, Bailey, 

etal.,2015; Benettin etal.,2013; Bertuzzo etal.,2013; Danesh-Yazdi etal., ; M. Kim etal., ; Rod2018 2016 -

riguez etal., ).2018

2.3.3. Exact Solution for Age-Ranked Storage under Uniform Selection

Under uniform sampling, the age conservation equation (Equation ) can be solved exactly for certain 4a

choices of  initial and boundary conditions (Bertuzzo etal., ; Botter etal., ). Equation  is one 2013 2011 6a

such solution that satisfies the initial and boundary conditions presented earlier (Equations  and , see 4c 4d

TextS4 for derivation); the superscript “U” denotes that the solution is premised on the choice of a uniform 

storage selection function.

                
    

  
ET ET

T 0 0,

t
f t f t f v f vU Q Q

w

S T t e S H T t T e J v dv  (6a)

  
    

0, 0

, 0

T t

w
t T T t

 (6b)

   
0

v

Q

Q u

f v du

S u
 (6c)

   ET

0

ETv u

f v du

S u
 (6d)

According to Equation  age-ranked storage (left-hand side) is influenced by the evolving age distribution 6a

of both “original” water in storage at time =0 (first term on right-hand side) and “young water” that int -

filtrates during storm events (second term). This solution was numerically integrated (details in Text ) to S4

yield 1min 1 timeseries of age-ranked storage in the biofilter, after substituting bucket model simulations 

for infiltration, ( ), storage, ( ), and gravitational discharge, ( ) (Section ).J t S t Q t 2.1

2.3.4. Age Structure of Stored Water in the Biofilter

Under uniform selection the backward TTDs for gravitational discharge and ET are equal, and equal to the 

RTD of water in storage (compare with Equation ) (Harman, ):4b 2015

P T t T t T t

S T t

S t

e

S t

Q

T

fQ t f t

RTD ET

ET

, , ,

,

 


 
 


    


     














   

S H T t T e J v dv

w

t
fQ v f v

0 0
ET  (7a)

The fifth, 50th, and 95th percentile ages of water in storage and outflow at any time, , can be obtained from t

Equation7a by numerically solving the following implicit equations for water age: ST(T0.05, )/ ( )=0.05, t S t

ST(T0.5, )/ (t S t)=0.5, and ST (T0.95, )/ (t S t)=0.95. The age-ranked storage's probability density function (PDF) 

can be calculated from Equation  by differentiation where the symbol 7a  denotes the Dirac delta function:

 
     

       
        


        


  




    

  RTD
RTD ET

ET ET ET0
0

, , ,

U

U U U

Q

f t f t f t f t T f t f t TQ Q Q

P
p T t p T t p T t

T

J t TS
t T T e H t T e

S t S t

(7b)
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The mean age in storage and outflow immediately follows by taking the first moment of the PDF for age-

ranked storage:

  
RTD ET RTD

E

U

Q

U U U

fQ t f

t t t vp v t dv

S t
S e

          


 



  


0

0

1

,

TT ET ETt
t

f t f u fQ t fQ u

t T t u J u e e du
                 







0

0







 (7c)

Further details on the derivation and numerical implementation of Equations  and  are described in 7b 7c

Text .S5

2.3.5. A TTD Theory for Solute Fate and Transport through a Biofilter

The concentration of a nonreactive and nonadsorbing (i.e., conservative) solute in water leaving the biofil-

ter by gravitational discharge, CQ (t), can be calculated by convolving the PDF of the backward TTD (Equa-

tion7b) with the concentration of solute, CJ(ti ,T), that entered the biofilter at time, ti= t T, and exited the 

biofilter as gravitational discharge at time  and age  (Harman, ):t T 2015

      


0

, ,

t

Q J QC t C t T T p T t dT  (8a)

Despite its simplicity, this convolution integral incorporates a rich set of  processes, including unsteadi-

ness in the biofilter's water balance (e.g., time-varying inflows, outflows, and storage, encoded through the 

time-evolution of  the backward TTD) and unsteadiness in the solute concentration entering the biofilter 

from the ponding zone (through the dependence of  CJ(ti, =T) on the inflow time, t t i) (Harman,2015). 

Combining Equations  and , we arrive at the following solution for the concentration of a conservative 7b 8a

solute in water discharged from the biofilter, where C0 is the concentration of solute present in the original 

water stored in the biofilter at time, =0:t

            
 

      
ET

ET ET0
0

0

1
f t f tQ t

f t f u f t f uQ Q

Q J

S e
C t C C u J u e du

S t S t
 (8b)

For the experiments described later, a subset of 17 simulated storms were tagged with bromide, which we 

assumed behaved conservatively (Levy & Chambers, ). The inflow concentration for these storms can 1987

be expressed as follows, where CJ m, , tm s, , and tm e,  are the -th storm's bromide concentration, start time and m

end time, respectively, and the sum is taken over all  storms:N

     


   , , ,

1

N

J i J m i m s m e i

m

C t C H t t H t t  (9a)

Substituting Equation  into Equation , setting 9a 8b C0=0 (because, in our experiments, no bromide was 

present in the biofilter's original water), and using the distributive property of integration, we arrive at the 

following expression for bromide concentration in water leaving the biofilter by gravitational discharge 

(details in TextS6):

                


  

ET ET
, ,

1 ,

1
yN

f t f u f t f uQ Q

Q J m m s

m tm s

C t C H t t J u e du

S t
 (9b)
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m e
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 (9c)
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In deriving Equation  we have assumed that plants in the biofilter take up bromide and water in the same 9b

proportion, which may not be the case in practice (e.g., if a solute is excluded from plant uptake its pore 

fluid concentration will increase over time by in situ evaporative concentration [Bertuzzo etal., ; Har2013 -

man,2015]). However, in the field experiments described later (Section ) ET represents a very small por4 -

tion of the overall water balance and hence in situ evaporative concentration can be neglected in our case. 

Time series (1min1) of bromide breakthrough concentration were simulated with Equation9b following 

the numerical procedures described in Text .S6

3. Field Methods

3.1. Orange County Public Works Biofilter Test Facility

Field-scale biofilter challenge experiments were carried out at the Orange County Public Works (OCPW) 

low impact development demonstration facility located in the City of Orange, Orange County, California. 

Experiments were conducted in a biofilter test cell (approximately 2.4×1.5×0.6m deep) built by a local 

contractor with previous GSI construction experience (Tobo Construction, Figure ). The test cell, which 1b

was lined and outfitted with an underdrain, consisted of a concrete slab floor and four cinderblock walls 

extending approximately 0.5m above the filter media surface to create a ponding zone (Figures  and 1b 1c). 

The filter media consisted of sand (65%), sandy loam (20%), and compost (15%) (v/v basis). In January 2017, 

the media was planted with a European gray sedge, . When we conducted our first Carex divulsa tumulicola

set of experiments in June 2018 the plant community also included opportunist ruderal weed species (e.g., 

the common dandelion). While our biofilter is open to the atmosphere, no measurable rainfall occurred 

during the set of experiments described below.

The research team retrofitted the biofilter with an upstream 1,890L “inflow” tank (Custom Roto-Molding, 

Inc., Caldwell, ID) which drained by gravity through a programmable control valve (Sigma Controls, Inc., 

Perkasie, PA) to the biofilter's ponding zone (Figure ). The weight of the inflow tank was monitored con1b -

tinuously at 10Hz (WinWedge, TAL Technologies Inc., Philadelphia, PA) with a calibrated industrial scale 

(PCE-SW 3000N Pallet Scale, PCE Americas Inc., Jupiter, FL). The weight measurements were lowpass 

filtered (J. C. Davis, ), differentiated, and divided by the density of water to yield 2002 1min1  estimates 

for the volumetric discharge of water entering the ponding zone (these measurements correspond to the in-

flow term, ), in Equation ). Following the experiments conducted in the summer of 2018 we discovered I t( 2

that, during construction, a ca., 5cm diameter hole had been drilled through the base of the cinderblock 

wall separating our test cell from the adjacent test cell (and through the wall separating the adjacent test 

cell from the next test cell and so on) to accommodate a buried irrigation pipe. A substantial fraction of  

storm water added to our test cell (approximately 50%) laterally exfiltrated to the adjacent cell through this 

hole. While not part of our original design, this feature made for a more realistic field experiment, as most 

operational biofilters undergo at least some degree of  subsurface exfiltration (e.g., Brown & Hunt,2011). 

Indeed, our exfiltration rate of  50% is close to the storm water volume reduction design goal for GSI of  

67% (A. P. Davis,2008). To account for lateral exfiltration, gravitational discharge estimated from the bucket 

model (Section ) was routed as follows. A fixed fraction, , was assigned to the underdrain and the rest, 2.1 α

1α, to lateral exfiltration to the adjacent test cell (Figure  was estimated using several 1c). The fraction α

independent experimental methods (see Text  and Figure ).S7 S6

Water exiting the biofilter through the underdrain flowed by gravity through a buried manifold to an un-

derground sump and from there was periodically pumped (Model 98 Sump Pump, Zoeller Pump Company, 

Louisville, KY) up to an “outflow” tank sitting on a calibrated industrial scale at ground level (identical to 

the inflow tank set up, Figure ). A timeseries (1c 1min1) of  volumetric discharge entering the outflow 

tank was estimated from high frequency (10Hz) measurements of the tank's weight following the same pro-

cedure described above for the inflow tank (corresponding to the ) term in Equations  and Q t( 1a 3b). Time 

series of volumetric discharge and bromide concentration measured at the outflow tank were time-shifted 

backwards by 30min to account for the transit of water from the biofilter's underdrain to the outflow tank 

and the overly fast response of the bucket model to storm events (Text ).S8
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3.2. Experimental Storm Hydrograph

Municipal separate storm sewer system (MS4) permit requirements for the Santa Ana Region (where our 

experiments were carried out) stipulate that new development and significant re-development projects in-

clude storm water control measures sufficient to capture runoff volume generated by the 85th percentile 

storm, which at this field site corresponds to 2.1cm of storm water depth (volume per unit catchment area) 

over a 24-h period (OCPW, ). With this regulatory requirement in mind, we designed our experimental 2017

storm hydrograph as follows: (1) seven 24-h rainfall events were selected from measurements at an onsite 

rain gauge over the years 2011–2016; (2) an average hyetograph was constructed from these seven events 

after aligning peaks and standardizing the total 24-h rainfall depth to 2.1cm; and (3) a design storm hydro-

graph was calculated from the average hyetograph by the Rational Method (Brooks etal., ) assuming 2013

a unit runoff  coefficient (corresponding to 100% imperviousness) and a catchment area of  82.3m2. The 

corresponding biofilter-to-catchment area ratio (4.5%) is typical for urban landscapes in Southern California 

(Ambrose & Winfrey,2015). The design storm hydrograph was subsequently programmed into the control 

valve to regulate the flow of water into the biofilter's ponding zone during each simulated storm (Figure1b) 

(see TextS9 S8 and Figure  for a comparison of measured and design storm hydrographs).

3.3. Bromide Tracer Experiments

A sequence of simulated experimental storms (each of which conformed to the storm hydrograph described 

in Section ) were discharged to our experimental biofilter over a 5-day period in the summer of  2018 3.2

(June 25–29) and again over a 5-day period in the summer of 2019 (June 1–5). Ten storms were simulated 

in 2018, one in the morning and another in the afternoon on each day. The afternoon storms were spiked 

with bromide (final concentration 50 Br - mg/L) while the morning storms were bromide free. The storm 

sequence in 2019 consisted of: (1) two bromide-free storms on the first day, one in the morning and one in 

the afternoon; (2) 2 days later a single bromide-spiked storm in the morning (final concentration of  124 

Br- mg L1); and (3) over the following 2 days two bromide-free storms per day, one in the morning and one 

in the afternoon. Three replicate 40mL samples were collected from the inflow tank before each simulated 

storm. Outflow samples were collected as follows. Water entering the outflow tank from the sump was di-

rected into a continuously overflowing 5L bucket affixed to the top of the tank (the bucket overflowed into 

the tank, see Figure ). Water in the bucket was continuously subsampled (40mL min1c 1) by means of a 

peristaltic pump (BioLogic LP, Bio-Rad, Hercules, CA) and fractionated into 50mL conical tubes (Falcon, 

Corning Life Sciences, Tewksbury, MA) according to a predefined sampling schedule (2018: every 2, 5, or 

10min, with more rapid sampling during the first hour of biofilter outflow; 2019: every 5min) (inset, Fig-

ure1c). During each storm, outflow samples were collected in this manner until the on/off cycling of the 

sump pump fell below 1/30min1. The bromide concentration in each sample was measured by ion chro-

matography (2018: 940 Professional IC Vario, Metrohm AG, Herisau, Switzerland; 2019: Dionex DX-120, 

Thermo Fisher Scientific, Waltham, MA). A total of =30 (15) and 435 (147) inflow and outflow samples, N

respectively, were analyzed during the 2018 (2019) experiments.

In addition to the timing of storm events and the periodic (2018) and nonperiodic (2019) nature of the bro-

mide dosing, the 2018 and 2019 experiments differed in several other respects (details in TextS9), including: 

(1) the nature of the water used (tap water in 2018 and either storm water alone or a 50:50 storm water and 

raw sewage mixture in 2019); (2) the partial sealing of the hole in the test cell wall after 2018; (3) operation 

of the control valve (automatically and manually actuated in 2018 and 2019, respectively); and (4) change 

in plant community from a European gray sedge and ruderal weeds in 2018 to a native southern California 

sedge in 2019.

4. Results and Discussion

4.1. Lateral Exfiltration and the Effective Volume of the Biofilter

Each experimental storm discharged roughly the same volume of water (1,400–1,500L) to the biofilter's 

ponding zone over 1 to 2h. The volume of water captured in the outflow tank varied by storm, from 378 

to 751L (25%–49% of the inflow volume) for the 10 experiments conducted in 2018, and from 266 to 654L 

(21%–46% of  the inflow volume) for the seven experiments conducted in 2019 (Table ). Across all 17 S1
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storms, ET was a minor component of the water budget (<0.3% of the 1400L added per storm, Table S1). 

Thus, the difference between these inflow and outflow volumes either went to increasing storage or lateral 

exfiltration to the adjacent test cell (see Text ).S7

The fraction of inflow volume recovered at the outflow tank is inversely correlated with antecedent dry pe-

riod (R2=0.82, Figure ), consistent with the hypothesis that at least some of the unrecovered water goes S6

to storage. Extrapolating the fractional water recovery back to an antecedent dry period of zero hours (under 

the premise that the change in storage should be zero in this case) we estimate that, in both 2018 and 2019, 

approximately α=46% of the water added to the biofilter is routed to the outflow tank while 1 =54% is α

lost to lateral exfiltration (Text ). These results are consistent with loss rates we independently measured S7

under steady-state flow conditions (Text ) and the observed wetting of  biofilter media in the adjacent S7

test cell (data not shown), along with previously published modeling studies (Browne etal., ; J. G. Lee 2008

etal., -2015) and field measurements (Winston etal.,2016) that indicate exfiltration is a dominant mecha

nism for water volume reduction in GSI. At our site, some of the exfiltrated water and solute may eventu-

ally find its way back to the outflow tank, for example by recirculating back through our biofilter test cell 

(mechanism [iii], Figure ) or transiting along another subsurface route to the buried collection manifold 1a

(indeed, the test cell adjacent to our biofilter also had an underdrain that could have contributed flow and 

solute to the manifold and, ultimately, to the outflow tank). Thus, exfiltration can potentially increase the 

effective volume of our biofilter during solute transport. We return to this idea in Section .4.4

4.2. Power-Law Model for Gravitational Discharge

Kirchner's power-l al discharge (Equation ) could not be evaluated from our 3b

inflow and outflow  lateral exfiltration precluded accurate estimates of the gravita-

tional discharge and f the equation. Instead, hourly time series for these two quanti-

ties were numericall drus 1D, over the 17 experimental storms in 2018 and 2019 (Sec-

tion2.2). Consistent wer-law relationship, when normalized and plotted on a log-log 

basis, the Hydrus-gen of discharge and storage collapse to a single line for Q t K( )>0.05 sat 

(Figure2). Inferred valu r-law exponent and minimum storage are the same, within error, 

across both years (2018:  and g Smin=3.6×1020±1.9×104m; 2019: =5.00±0.01 and g

Smin=3.4×1021±2.2  is result indicates these parameters are robust to changes in the se-

quence and length of antec r riods as well as to changes in saturated hydraulic conductivity (with-

in each simulated storm se e, e saturated hydraulic conductivity declined over time, see TextS3). 

Substituting g=5 into Equ 3 yields a recessional exponent of  b=1.8, which is toward the flashy 

end of the allowable range,  (Kirchner, ), consistent with the small storage volume of the bi2009 -

ofilter. Our inferred value for the power-law exponent is also concordant with exponent values inferred by 

Bertuzzo etal.( ) for gravitational drainage from the vadose zone of a 46km2013 2 catchment in Switzerland 

(compare =5 with the posterior distribution for the exponent  in their Figure ).g c 4

On the other hand, the inferred value for minimum storage, Smin=0, is at odds with the expectation that 

some residual water (e.g., equal to the area normalized volume of water in the biofilter media at field ca-

pacity [Hillel, ]) should be present in the biofilter following the cessation of  gravitational discharge. 2003

Two points are relevant here. First, for the set of Hydrus 1D simulations used in the inference step, water 

storage in the biofilter never fell below the soil media's field capacity due to the large volume of water asso-

ciated with each storm (compared to the biofilter's void volume) and the back-to-back nature of the storm 

sequences in 2018 and 2019 (Section ). Thus, one plausible explanation for the inferred value, 4.1 Smin=0, 

is that the biofilter was never dry enough to observe an influence of  minimum storage on gravitational 

discharge. Second, the inferred value of  the power-law exponent, =5, implies that discharge declines g

very rapidly with storage. For example, substituting g S=5 and min=0 into Equation  we predict that 3b

gravitational discharge will be 0.05% of  the media's saturated hydraulic conductivity ( Q K 0.0005   sat) 

when storage falls below the media's field capacity (S<Sfc=0.054m for our biofilter). Put another way, the 

large power-law exponent ensures that there will be very little gravitational discharge once storage drops 

below field capacity, even if  the minimum storage is set to zero. For this reason and consistent with other 

field applications of Equation  (e.g., Bertuzzo etal., ), we adopted the inferred value, 3b 2013 Smin=0, in the 

bucket model and TTD simulations presented below.
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4.3. Unsteady Water Balance: Bucket Model and Hydrus 1D Predictions

Over the 17 experimental storms conducted during 2018 and 2019, numerical solutions of the bucket model 

(Equation1a) closely track Hydrus 1D simulations of ponding depth, degree of biofilter saturation, and gravi-

tational discharge (Figure ). The predicted range of ponding depths (from 0 to 0.2m above the surface of the 3
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Figure 2.  Power-law dependence of gravitational discharge on water storage simulated with Hydrus 1D for storm sequences in (a) 2018 and (b) 2019. Solid and 
dashed black curves indicate model fit and 95% prediction intervals, respectively.

Figure 3.  Two approaches for simulating the unsteady water balance in our biofilter: numerical solutions to the Richards equation (Hydrus 1D, solid black 
curves) and a bucket model (dashed black curves). Colored lines represent measured inflow (dark blue), measured outflow (light blue) and calculated cPET 
(green) for the set of experiments conducted during the summers of (a) 2018 and (b) 2019. To compare simulated and measured discharge, the former was 

multiplied by =0.46 (to account for the fraction of water that is laterally exfiltrated) and the latter was backward time shifted by 30min. cPET, crop potential α
evapotranspiration.
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biofilter media) is consistent with our field observations and the predicted gravitational discharge rates closely 

match measurements at the outflow tank (light blue curves, bottom panels of Figures  and 3a 3b).

4.4.  TTD Theory Predictions for Bromide Transport

In 2018, our semi-periodic study design consis f  a bromide-free “flushing” storm in the morning (or-

ange arrows in Figure4a) and a bromide-spiked acer” storm in the afternoon (black arrows in Figure4a) 

of each day. By the second day of the storm sequ ce, the normalized bromide breakthrough curves (BTCs) 

settled into a periodic pattern, oscillating betwee J  0.3 and 0.6 during the morning and afternoon 

storms, respectively (black dots in lower graph, Figure4a). Here, the variable CQ(t) represents the measured 

bromide concentration at the outlet tank and the variable CJ,1=48.7mg L1 represents the initial bromide 

concentration measured in the first afternoon tracer storm (across all five tracer storms the initial bromide 

concentrations were CJ m, =48.7, 48.8, 49.3, 48.3, and 44.4mg L1). The bromide BTC predicted by TTD 

theory also follows a periodic pattern (solid curve, bottom graph, Figure ), but the model consistently un4a -

der and overpredicts measured bromide concentrations in the morning and afternoon storms, respectively. 

These model predictions were calculated from Equation  after specifying the timing and initial bromide 9b

concentrations associated with each bromide-spiked storm, and running bucket model simulations for J t( ), 

S t Q t( ), and ( ) after setting the maximum storage term (see Equation ) equal to the void volume of  the 3b

biofilter, Smax=0.246m.

The TTD model's tendency to overshoot bromide measurements implies it is oversampling young water; 

that is, the predicted bromide BTC contains too much bromide-free water during the bromide-free morn-

ing storm, and too much bromide-spiked water during the bromide-spiked afternoon storm. One possible 

explanation for this result is that the uniform storage selection function, which underpins our model (see 

Equation9b and discussion thereof), oversamples young water for gravitational discharge. Alternatively, 

the storage selection function is fine but there is not enough old water in storage to select from. While the 

former explanation cannot be ruled out (indeed, the science of selecting SAS functions is an active area of 

current research [Harman, ]), the latter explanation is compelling for several reasons. First, the void 2019

volume of our biofilter ( 900L) is less than the volume of water flowing into the biofilter with each experi -
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Figure 4.  Comparison of measured (points) and predicted (solid and dashed curves) bromide breakthrough curves (BTCs) for the 2018 (a and b) and 2019 (c 

and d) experiments. Model predictions assume Smax equals the physical volume of the biofilter (a and c) or a volume obtained by fitting the model to the second 
storm of 2018 (b) or the fourth, fifth, sixth, and seventh storms of 2019 (d). Dashed curves correspond to times when no samples were collected. Vertical arrows 
mark the bromide-spiked (black) and bromide-free (orange) storms. Each panel also includes bucket model predictions for gravitational discharge given the 

value of Smax shown.

(b) (d)
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mental storm ( 1,400L). Therefore, as far as the model is concerned, our biofilter has very limited capacity 

to store older water from penultimate and older storms. Second, a substantial fraction (>50%) of the inflow 

volume leaves our biofilter by lateral exfiltration. As noted in Section4.1, some of this exfiltrated water may 

eventually return to the outflow tank and thereby increase the effective volume that solutes experience as 

they transit through the system.

To test the last hypothesis—that the effective volume for solute transport is larger than the biofilter's physical 

volume—we split the measured bromide data from 2018 into a calibration period (the first bromide-spiked 

storm, storm #2) and a validation period (all other storms). We then inferred a value of the biofilter's void 

volume by minimizing the root-mean square error (RMSE) over the calibration period (FigureS9). The 

optimal volume thus obtained (Smax=0.73m, RMSE=0.041) is about two times larger than the physical 

volume of  the biofilter (Smax=0.246m) consistent with the hypothesis that a substantial fraction of  the 

water that exfiltrated into the adjacent biofilter test cell eventually returned to the outflow tank. When the 

inferred value of Smax=0.73m is substituted back into the bucket model and the hydrologic water balance 

is recomputed, Equation  closely tracks the bromide BTC over the validation period (storms #3 through 9b

#10, bottom graph in Figure ).4b

Application of  TTD theory to the 2019 storm sequence yields similar results. If the maximum volume of  

the biofilter is set equal to its physical volume (Smax=0.246m), Equation  consistently underpredicts 9b

bromide breakthrough during the four bromide-free flushing storms (storms #4, 5, 6, and 7, bottom graph 

in Figure ). However, when the effective volume is raised to 4c Smax=0.42m (obtained by minimizing the 

RMSE for storms #4–7, see Figure ; RMSE= 0.31) the model's performance improves markedly (FigS9 -

ure4d). The void volume inferred from the 2018 experiments (Smax=0.73m) is about 74% larger than the 

void volume inferred from the 2019 experiments (Smax=0.42m), perhaps reflecting changes in the biofilter 

test cell over the 2 years; for example, after the 2018 experiments the hole at the base of  the test cell was 

partially sealed and the media was replanted (see Text  and discussion in Section  below).S9 5.4

5. Implications for Age Structure and Pollutant Removal

5.1. Age Distribution of Water Leaving the Biofilter by Gravitational Discharge

By selecting a uniform SAS function for our model (Section ), the backward TTDs for gravitational 2.3.2

discharge and ET are equal to the RTD of water stored in the biofilter. Thus, under uniform storage sam-

pling, the age distribution of water in storage is equal to the age distribution of water leaving the biofilter 

as gravitational discharge.

During the 2018 experiments, predictions for the median age of water stored in the biofilter (Equation7a 

and discussion thereof) follows a semi-periodic pattern, increasing linearly with time between storms (as 

water stored in the biofilter ages) and rapidly declining to near zero during storm events (as incoming 

storm water, of age =0 h, fills the biofilter, Figure ). The 5th and 50th (median) age percentiles overlap T 5a

but the 95th age percentile is much older, indicating that the age distribution is positively skewed (Ang & 

Tang,2007). The fifth and 50th percentiles overlap because, at any time t, more than 50% of water stored in 

the biofilter is from the most recent storm with an age roughly equal to the antecedent dry period. The 95th 

percentile age is much older because the rest of water in storage (i.e., water not from the last storm) is from 

penultimate and earlier storms.

For the simulations presented in Figure  we arbitrarily set the initial age of “original” water (i.e., water 5a

that was initially present in the biofilter at time, =0) at t T0=50h. Until the fourth storm, this original 

water constituted more than 5% of water stored in the biofilter, as evidenced by the upward slope of the gray 

band in Figure5a (the upward slope reflects the fact that that original water in storage is aging linearly with 

time). After the fourth storm, the original water's contribution to storage drops below 5%, as evidenced by a 

steep drop in the 95th percentile around =28h (Figure ). Thus, four storms were required to flush out t 5a

95% of the original water, even though more than 50% of water in the biofilter, at any given time, is from the 

last storm. A similar pattern is evident for the set of experiments conducted in 2019 (Figure5b). Across both 

years the mean age is 5–20h older than the median age, consistent with a positively skewed age distribution 

(Ang & Tang,2007).
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5.2. Mapping out the Contribution of Past Storms to Present Storage

TTD theory also allows us to determine the relative contribution of all past storms to water stored in a bi-

ofilter at any time, . If the -th storm begins at time, t n t t= b n, , then the fraction, fn(t) [], of water in storage 

with that age or younger can be estimated from the RTD's CDF (see Section ) (Benettin etal.,2.3.4 2017; 

Kirchner, ; Lutz etal., ):2016 2018

   RTD , ,, ,
U

n b n b nf t P T t t t t t  (10)

We applied Equation  to all seven storms simulated in 2019, along with the original water present in the 10

biofilter at time, =0 (Figure ). The upper bound of each color band in the figure represents the fraction t 6

of water in storage that is younger than the oldest water from the storm indicated. The lower bound of the 

same color band represents the fraction of water in storage that is younger than the oldest water from the 

next storm, and so on.

The influence of biofilter hydrology on the age structure of stored water (and by implication the age struc-

ture of water leaving the biofilter by gravitational drainage under uniform sampling) is striking. During the 

Filling Phase of each storm (e.g., Storm #3 in Figure ) new water entering the biofilter from the ponding 6

zone rapidly dominates the age distribution of water in storage for two reasons: (1) the new water fills up 

portions of storage that were previously dry; and (2) the new water displaces older water, driving it out of  

the biofilter as gravitational drainage. The first mechanism explains why different storms initially dominate 

storage to different degrees. For example, the assumed volume of original water in storage at time =0 was t

relatively small in these simulations (S0=0.092m, corresponding to the biofilter's field capacity) which 

explains why Storm #1 very quickly constituted more than 80% of the biofilter's storage (orange band in 

Figure6). Because the initial moisture content for the first storm event was set equal to the soil media's 

field capacity, this last example may be more representative of  the situation, during long antecedent dry 

periods, where biofilters are irrigated only to the extent necessary to maintain soil moisture at field capacity 

(Ambrose & Winfrey,2015).

Under a uniform SAS, all water parcels (regardless of their age) have an equal probability of being selected 

for outflow by gravitational discharge or ET. This explains why, during the Draining Phase, the age structure 
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Figure 5.  The evolution of mean and median water ages in the biofilter during the sequence of storms in (a) 2018 and (b) 2019. Also shown are the fifth to 
95th percentile range (gray band). Top panels indicate the infiltration (red curve) and gravitational discharge (black curve) rate for each storm sequence. For 

these simulations, we adopted inferred values of maximum storage: Smax=0.73 and 0.42m for 2018 and 2019, respectively. The age of original water was 

arbitrarily set to T 0=50h and its volume was taken as the product of initial moisture content (s0 =0.22, corresponding to field capacity) and maximum storage: 

S0=s0 Smax.
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of water in storage does not change (i.e., during this phase all boundaries in Figure  are horizontal lines). 6

Figure6 also vividly illustrates the two key attributes of biofilter storage discussed previously: at any time 

about >50% of water in storage is from the most recent storm while the rest is a mixture of penultimate and 

earlier storms.

5.3. Age Structure and Water Quality

The age structure of  water in storage has significant implications for the treatment credit attributable to, 

and the pollution exported by, GSI. For example, during the 2019 storm sequence we included a “worst 

case” scenario (from a water quality perspective) by making one of the experimental storm events, Storm 

#3, a 50:50 mixture of  storm water and raw sewage. From the thickness of  the horizontal portions of  the 

green band in Figure6 (divided by two to account for the storm's 50:50 sewage:storm water mixture) we can 

infer that the fraction of water in storage that is raw sewage declined over time as follows: 35% (Storm #3), 

11% (Storm #4), 4% (Storm #5), 1.2% (Storm #6), and 0.5% (Storm #7). Raw sewage harbors very high con-

centrations of human fecal bacteria (e.g., in the range of 106E. coli mL1 [Garcia-Aljaro etal.,2018]). There-

fore, even after the biofilter has been flushed with four sewage-free storms, the  concentration in gravE. coli -

itational drainage could still be as high as 5,000 mL1—more than enough bacteria to close beaches if the 

biofilter drained to a recreational lake or river (US EPA, ). This example assumes that bacteria behave 2018

conservatively which is rarely the case (Chandrasena, Deletic, & McCarthy, ; C. M. Lee etal.,2014 2006). 

Indeed, the tendency of  biofilters to retain older water might enhance their treatment performance, for 

example by increasing the opportunity for bacterial removal in the rhizosphere by die-off, grazing by preda-

cious protozoa, and other processes (Chandrasena etal., ; Surbeck etal., ).2017 2010
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Figure 6.  The contribution of original water (Storm #0) and seven experimental storms in 2019 (Storms #1–7) to water 
storage in the OCPW biofilter over time. Each new storm rapidly occupies at least 50% of storage volume during the 

Filling Phase. These simulations were carried out using the inferred value for maximum storage of Smax=0.42m. Top 
panel indicates infiltration (red curve) and discharge (black curve) for the 2019 storm sequence. OCPW, Orange County 
Public Works.
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More generally, the retention and release of  older water could impact the quality of  water released from 

these systems either positively or negatively, depending on interstorm pollutant transformation mecha-

nisms. For example, between storms the biofilter media's organic material can be respired by resident bac-

teria, potentially leading to the liberation of ammonium (by ammonification) and nitrate (by nitrification) 

(Canfield etal.,2010). Thus, water retained in the biofilter from penultimate and older storms could serve as 

a perpetual source of nitrate that is exported during storm events—a pattern often observed in practice (e.g., 

Hatt etal., ; McPhillips etal., ). On the other hand, if anaerobic conditions develop between storms 2009 2018

(as is likely to occur if the biofilter contains a submerged zone [H. Kim etal., ]) nitrate may be further 2003

transformed to harmless N2  gas and, potentially, the potent greenhouse gas N2O (McPhillips etal., ) by 2018

denitrification.

Evaporative concentration is another aging process that could have potentially significant water quality 

implications. In northern climates, GSI can serve as a conduit through which deicing salts from road runoff 

are transferred into shallow groundwater and surface waters, thereby contributing to inland freshwater sa-

linization (Snodgrass etal.,2017). Depending on the degree to which vegetation in these systems fractionate 

salt during transpiration, evaporative concentration of older water in storage could increase the salinity of 

water released from GSI, making an already serious problem worse.

5.4. Limitations of the Uniform Selection Function

A key assumption of the TTD model derived and tested in this study is that all water in storage is randomly 

selected for outflow regardless of its age; that is, a uniform SAS function was adopted. A primary benefit of 

this approach is that the resulting age conservation equation is linear and can be solved exactly in the Lap-

lace domain (see TextS4), leading to explicit formulae for the age distribution of water leaving the system by 

gravitational drainage and the breakthrough concentration of a conservative solute (Equations  and 7a 8b, 

respectively). A potential disadvantage of this approach is that the physical processes by which water and 

solute are selected for outflow may not be consistent with the choice of a uniform selection function; that 

is, by adopting the uniform SAS function, we may be misrepresenting the underlying physics of water and 

solute transport through the biofilter.

On the one hand, our model closely reproduces measured bromide breakthrough curves with only a single 

fitting parameter—the effective maximum storage. On the other hand, inferred values for this parameter de-

clined over the two sets of experiments conducted here, from 0.73m in 2018 to 0.42m in 2019. These max-

imum storage volumes are two to three times the actual storage volume of the biofilter (0.25m), consistent 

with the idea that some of the water exfiltrating from our test cell may have found its way back to the out-

flow tank, either by recirculating through our test cell or by flowing directly to the collection manifold and, 

from there, to the outflow tank. We can point to several changes in the experimental system that occurred 

over the two years (e.g., the “leak” was partially sealed and the biofilter was replanted) but these changes 

might have altered the effective volume of the biofilter, the way in which stored water in the biofilter was 

sampled for outflow, or both. In particular, we cannot rule out the possibility that the apparent decrease 

in the maximum effective volume from 2018 to 2019 is an artifact of assuming a uniform SAS function for 

both years. This equifinality problem underscores a key research priority going forward: to delineate under 

what conditions the uniform SAS function is appropriate for modeling the transport and transformation 

of solutes within GSI. While the analytical results presented in this study are valid only for a uniform SAS 

function, software tools are available for numerically integrating the age conservation equation under non-

uniform storage selection as well (e.g., Benettin & Bertuzzo, ).2018

6. Conclusions

Unsteady TTD theory directly links the hydrology and treatment performance of  GSI. Its practical appli-

cation therefore requires, as a first step, delineation of the unsteady water balance over the GSI element of 

interest. In this study, we demonstrate that this first step can be accomplished with a simple bucket model 

that tracks time varying infiltration, storage, ET and gravitational discharge over a control volume drawn 

around the biofilter soil media, which in our case was lined with an underdrain open to the atmosphere. 
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A set of expressions was proposed and tested for the storage-dependence of water fluxes across the control 

volume surface, including: (1) an empirical relationship for infiltration that toggles between the inflow of 

storm water (when the biofilter media is partially unsaturated) and the saturated hydraulic conductivity 

(when the biofilter media approaches full saturation); (2) cPET for ET; (3) Kirchner's power-law model for 

gravitational discharge (Equation ); and (4) a simple flow routing scheme that directs a constant fraction, 3b

α, of the gravitational discharge to the underdrain and, from there, to the outflow tank.

Generalizing the hydrologic bucket model beyond the experimental system described here may require 

modifying one or more of these four relationships, for example by adopting a process-based model (such as 

the Green-Ampt equation [Green & Ampt, ]) for infiltration, accounting for the reduction of ET that 1911

occurs as moisture content falls below the incipient water stress (Hess etal., ; Zhao etal., ), tai2019 2013 -

loring Kirchner's gravitational outflow expression (Equation ) by adjusting the minimum and maximum 3b

storage values (Smin  and Smax), and directly measuring, modeling or controlling water loss to the surrounding 

media (thus eliminating the need for a flow routing scheme).

In our implementation of Kirchner's gravitational outflow model we set the minimum storage value to zero, 

Smin=0, for two reasons: (1) our biofilter was never dry enough to warrant the specification of a value for 

this parameter; and (2) the very large power-law exponent inferred for Kirchner's gravitational discharge 

expression ( =5, Equationg 3b) ensures that gravitational drainage will be near zero once storage falls below 

the field capacity of  the biofilter media. On the other hand, depending on context, the minimum storage 

can be equated to: (1) the biofilter media's area-normalized field capacity (e.g., in settings with long ante-

cedent dry periods where supplemental irrigation is applied to maintain plant communities [Ambrose & 

Winfrey,2015]); and (2) the area-normalized volume of the submerged zone for biofilters that include this 

engineered feature (Brown & Hunt, ; H. Kim etal., ).2011 2003

In the context of  our TTD theory, the maximum storage parameter, Smax, represents the area-normalized 

void volume of  soil media through which solute and water circulate before being transferred to the next 

hydrologic response unit; for example, shallow groundwater in the case of an unlined biofilter or an MS4 

drainage network in the case of a lined biofilter (Grant etal., ). Our study suggests that this maximum 2013

storage may exceed the biofilter's physical void volume, due to lateral exfiltration of water and solutes into 

the surrounding soil. Roughly speaking, from the results presented here, it appears that a volume loss of  

around 55% (close to the design goal for GSI of 67% [A. P. Davis, ]) increases the effective maximum 2008

storage volume by a factor of two to three.

With the unsteady water balance in hand, we next solved the age conservation equation under the assump-

tion that stored water is randomly selected for outflow regardless of its age (i.e., we adopted the uniform SAS 

function). From this solution explicit expressions were derived for the mean age of  water in storage (and 

leaving the biofilter as ET and gravitational discharge), various age percentiles, as well as the breakthrough 

concentration of  a conservative solute (Equations  and ). When compared to bromide breakthrough 8b 9b

data measured during our field experiments, we find the model over samples young water, either because 

the uniform SAS function oversamples young water in storage, or because there is simply not enough old 

water in storage to sample from (Benettin etal., ; Harman, ).2013 2015

Given the magnitude of lateral exfiltration in our system, it is unlikely that water entering the outflow tank 

was selected exclusively from water stored within the physical boundaries of the biofilter test cell. Indeed, 

when we allow the maximum storage volume of the biofilter to be a free variable, the inferred volumes are 

70%–196% larger than the biofilter's void volume, consistent with the hypothesis that exfiltration increases 

the effective storage experienced by solutes as they transit through the system. The concordance between 

predicted and measured bromide breakthrough concentrations improves dramatically after taking this extra 

storage into account (Figures  and ). Remarkably, the final model—which includes both the unsteady 4b 4d

water balance over the biofilter media (Equation ) and the convolution integral for solute breakthrough 1a

(Equation )—has only one fitting parameter: the effective volume of the biofilter.9b

Looking forward, TTD theory could inform the design of GSI elements, for example by allowing engineers 

to tailor passive features of  the porous media component of  these systems—such as their depth, porosity 

and saturated hydraulic conductivity—to achieve target mixtures of  young and old water in storage and 

outflow. Opportunities also exist to control water quality “on the fly,” for example by embedding TTD theory 
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into control algorithms that dynamically actuate inflows and outflows using so-called smart storm water 

technology (Kerkez etal., ). The parsimony, extensibility and predictive power of TTD theory opens up 2016

new possibilities for modeling and optimizing pollutant removal at the scale of individual biofilters, as well 

as GSI networks and the urban catchments in which they are embedded (Hrachowitz etal., ).2016

Data Availability Statement

All data used in this study are publicly available (http://www.hydroshare.org/resource/b7187928719446bbaf 

30d181787efdad).

References

Al-Mashaqbeh, O., & McLaughlan, R. G. (2012). Non-equilibrium zinc uptake onto compost particles from synthetic storm water. Biore-

source Technology, , 242–248.123

Alikhani, J., Nietch, C., Jacobs, S., Shuster, B., & Massoudieh, A. (2020). Modeling and design scenario analysis of  long-term monitored 

bioretention system for rainfall-runoff reduction to combined sewer in Cincinnati, OH. Journal of Sustainable Water in the Built Envi-

ronment 6, (2), 04019016.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements—FAO 

irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations.

Ambrose, R. F., & Winfrey, B. K. (2015). Comparison of storm water biofiltration systems in Southeast Australia and Southern California. 

WIREs Water, , 131–146.2

Ang, A. H.-S., & Tang, W. H. (2007). Probability concepts in engineering: Emphasis on applications to civil and environmental engineering 

(2nd ed.). Hoboken, NJ: John Wiley & Sons, Inc.

Bedan, E. S., & Clausen, J. C. (2009). Stormwater runoff quality and quantity from traditional and low impact development watersheds. 

Journal of the American Water Resources Association 45, (4), 998–1008.

Behroozi, A., Arora, M., Fletcher, T. D., & Western, A. W. (2020). Sorption and transport behavior of zinc in the soil; Implications for storm 

water management. , , 114243.Geoderma 367

BenDor, T. K., Shandas, V., Miles, B., Belt, K., & Olander, L. (2018). Ecosystem services and U.S. storm water planning: An approach for 

improving urban storm water decisions. Environmental Science & Policy 88, , 92–103.

Benettin, P., Bailey, S. W., Campbell, J. L., Green, M. B., Rinaldo, A., Likens, G. E., etal. (2015). Linking water age and solute dynam-

ics in streamflow at the Hubbard Brook Experimental Forest, NH, USA. Water Resources Research,  51, 9256–9272. https://doi.

org/10.1002/2015WR017552

Benettin, P., Bailey, S. W., Rinaldo, A., Likens, G. E., McGuire, K. J., & Botter, G. (2017). Young runoff fractions control streamwater age and 

solute concentration dynamics. Hydrological Processes 31, (16), 2982–2986.

Benettin, P., & Bertuzzo, E. (2018). Tran-SAS v1.0: A numerical model to compute catchment-scale hydrologic transport using StorAge 

selection functions. , , 1627–1639.Geoscientific Model Development 11

Benettin, P., Rinaldo, A., & Botter, G. (2013). Kinematics of  age mixing in advection-dispersion models. Water Resources Research, , 49

8539–8551. https://doi.org/10.1002/2013WR014708

Benettin, P., Rinaldo, A., & Botter, G. (2015). Tracking residence times in hydrological systems: Forward and backward formulations. 

Hydrological Processes 29, (25), 5203–5213.

Bertuzzo, E., Thomet, M., Botter, G., & Rinaldo, A. (2013). Catchment-scale herbicides transport: Theory and application. Advances in 

Water Resources 52, , 232–242.

Boehm, A. B., Bell, C. D., Fitzgerald, N. J. M., Gallo, E., Higgins, C. P., Hogue, T. S., etal. (2020). Biochar-augmented biofilters to improve 

pollutant removal from storm water—Can they improve receiving water quality? Environmental Science: Water Research & Technology, 

6, 1520–1537.

Boivin, A., Simunek, J., Schiavon, M., & van Genuchten, M. (2006). Comparison of pesticide transport processes in three tile-drained field 

soils using HYDRUS-2D. Vadose Zone Journal 5, (3), 838–849.

Botter, G., Bertuzzo, E., & Rinaldo, A. (2011). Catchment residence and travel time distributions: The master equation. Geophysical Re-

search Letters 38, (11), L11403. https://doi.org/10.1029/2011GL047666

Brooks, K. N., Ffolliott, P. F., & Magner, J. A. (2013).  (4th ed.). Ames, IA: John Wiley & Sons, Hydrology and the management of watersheds

Inc.

Browne, D., Deletic, A., Mudd, G. M., & Fletcher, T. D. (2008). A new saturated/unsaturated model for storm water infiltration systems. 

Hydrological Processes 22, , 4838–4849.

Brown, R. A., & Hunt, W. F. (2011). Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads. Journal of  

Environmental Engineering 137, (11), 1082–1091. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000437

Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth's nitrogen cycle. , , 192–196.Science 330

Chandrasena, G. I., Deletic, A., & McCarthy, D. T. (2014). Survival of Escherichia coli in storm water biofilters. Environmental Science and 

Pollution Research 21, (8), 5391–5401.

Chandrasena, G. I., Pham, T., Payne, E. G. I., Deletic, A., & McCarthy, D. T. (2014). E. coli removal in laboratory scale storm water biofilters: 

Influence of vegetation and submerged zone. , , 814–822.Journal of Hydrology 519

Chandrasena, G. I., Shirdashtzadeh, M., Li, Y. L., Deletic, A., Hathaway, J. M., & McCarthy, D. T. (2017). Retention and survival of E. coli 

in storm water biofilters: Role of vegetation, rhizosphere microorganisms and antimicrobial filter media. Ecological Engineering, , 102

166–177.

Clar, M. L., Barfield, B. J., & O'Connor, T. P. (2004). Stormwater best management practice design guide volume 2. Washington, DC: Vegeta-

tive Biofilters U.S. Environmental Protection Agency. EPA/600/R-04/121A.

Daly, E., Deletic, A., Hatt, B. E., & Fletcher, T. D. (2012). Modelling of storm water biofilters under random hydrologic variability: A case 

study of a car park at Monash University, Victoria (Australia). Hydrological Processes 26, , 3416–3424.

PARKER ET AL.

10.1029/2020WR028579

21 of 24

Acknowledgments

The authors declare no conflict of inter-

est. Funding was provided by the U.S. 

National Science Foundation Growing 

Convergence Research Program award 

to SBG (NSF Award #2021015), the 

University of California Office of the 

President, Multicampus Research 

Programs and Initiatives award to PH 

and SBG (Grant ID MRP-17-455083), 

and Virginia Tech's Charles E. Via, Jr. 

Department of Civil and Environmental 

Engineering. EAP was supported by 

a Via Ph.D. Fellowship from Virginia 

Tech's Charles E. Via, Jr. Department 

of Civil and Environmental Engineer-

ing. The authors thank B. Hong, A. 

Mehring, and OCPW staff for their 

assistance with field sampling and lab 

analysis, and C. Harman, E. Fass-

man-Beck, the Associate Editor, and 

three anonymous reviewers for helpful 

edits and comments. E. A. Parker and 

S. B. Grant designed and implement-

ed the experiments, derived the TTD 

framework, and drafted the manuscript. 

Y. Cao, J. Peng, and S. Shao coordinated 

field experiments. M. A. Rippy, P. Hold-

en, M. Feraud, S. Avasarala, H. Liu, W. 

Hung, M. Rugh, J. Jay, D. Li contributed 

to field sampling and lab analysis. M. 

A. Rippy, S. Shao, and K. McGuire 

contributed analyses. All co-authors 

contributed edits.

Printed by [A
G

U
 Journals - 173.079.010.140 - /doi/epdf/10.1029/2020W

R
028579] at [14/07/2021].



Water Resources Research

Danesh-Yazdi, M., Klaus, J., Condon, L. E., & Maxwell, R. M., (2018). Bridging the gap between numerical solutions of travel time distri-

butions and analytical storage selection functions. , (8), 1063–1076.Hydrological Processes 32

Davis, J. C. (2002).  (p. 638. 3rd ed.). New York, NY: John Wiley & Sons, Inc.Statistics and data analysis in geology

Davis, A. P. (2008). Field performance of  bioretention: hydrology impacts. (2), 90–95. Journal of Hydrologic Engineering, 13 https://doi.

org/10.1061/(ASCE)1084-0699

Davis, A. P., Hunt, W. F., Traver, R. G., & Clar, M. (2009). Bioretention Technology: Overview of Current Practice and Future Needs. Journal 

of Environmental Engineering 135, (3), 109–117.

Dos Santos, D. R., Cambier, P., Mallmann, F. J. K., Labanowski, J., Lamy, I., Tessier, D., & van Oort, F. (2013). Prospective modeling with 

Hydrus-2D of  50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils. Journal of  Contaminant 

Hydrology 145, , 54–66.

Engemann, K., Pedersen, C. B., Arge, L., Tsirogiannis, C., Mortensen, P. B., & Svenning, J. C. (2019). Residential green space in childhood 

is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proceedings of the National Academy of Sciences, 

116(11), 5188–5193.

eWater Ltd. (2020). Model for urban stormwater improvement conceptualization MUSICX. Bruce, ACT, Australia. Retrieved from https://

ewater.org.au/products/music/

Feng, W., Hatt, B. E., McCarthy, D. T., Fletcher, T. D., & Deletic, A. (2012). Biofilters for Stormwater harvesting: Understanding the treat-

ment performance of key metals that pose a risk for water use. Environmental Science & Technology 46, (9), 5100–5108.

Garcia-Aljaro, C., Blanch, A. R., Campos, C., Jofre, J., & Lucena, F. (2018). Pathogens, faecal indicators and human specific microbial 

source-tracking markers in sewage. , , 701–717.Journal of Applied Microbiology 126

Grant, S. B., Fletcher, T. D., Feldman, D., Saphores, J. D., Cook, P. L. M., Stewardson, M., etal. (2013). Adapting urban water systems 

to a changing climate: Lessons from the millennium drought in Southeast Australia. Environmental Science & Technology, (19), 47

10727–10734.

Grant, S. B., Saphores, J. D., Feldman, D. L., Hamilton, A. J., Fletcher, T. D., etal. (2012). Taking the ‘Waste’ out of ‘Wastewater’ for human 

water security and ecosystem sustainability. , , 681–686.Science 337

Grebel, J. E., Mohanty, S. K., Torkelson, A. A., Boehm, A. B., Higgins, C. P., Maxwell, R. M., etal. (2013). Engineered Infiltration systems 

for urban stormwater reclamation. , (8), 437–454.Environmental Engineering Science 30

Green, W. H., & Ampt, G. A. (1911). Studies on soil physics, part 1, the flow of air and water through soils. Journal of Agricultural Science, 

4, 11–24.

Harman, C. J. (2015). Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of  

chloride in a watershed. Water Resources Research 51, , 1–30. https://doi.org/10.1002/2014WR015707

Harman, C. J. (2019). Age-ranked storage-discharge relations: A unified description of spatially lumped flow and water age in hydrologic 

systems. Water Resources Research 55, (8), 7143–7165. https://doi.org/10.1029/2017WR022304

Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of storm water biofiltration systems at the 

field scale. , (3–4), 310–321.Journal of Hydrology 365

Henrichs, M., Welker, A., & Uhl, M. (2009). Modelling of biofilters for ammonium reduction in combined sewer overflow. Water Science 

and Technology, (3), 825–831.60

Hess, A., Wadzuk, B., & Welker, A. (2019). Predictive evapotranspiration equations in rain gardens. Journal of Irrigation and Drainage 

Engineering 145, (7), 04019010.

Hillel, D. (2003). . Cambridge, MA: Academic Press.Introduction to environmental soil physics

Horel, A., Schiewer, S., & Misra, D. (2015). Effect of concentration gradients on biodegradation in bench-scale sand columns with HY-

DRUS modeling of hydrocarbon transport and degradation. Environmental Science and Pollution Research 22, , 13251–13262.

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., etal. (2016). Transit times—The link between 

hydrology and water quality at the catchment scale. WIREs Water, , 629–657.3

Jefferson, A. J., Bhaskar, A. S., Hopkins, K. G., Fanelli, R., Avellaneda, P. M., & McMillan, S. K. (2017). Stormwater management network 

effectiveness and implications for urban watershed function: A critical review. , (23), 4056–4080.Hydrological Processes 31

Jiang, C., Li, J., Li, H., & Li, Y. (2019). Experiment and simulation of layered bioretention system for hydrological performance. Journal of 

Water Reuse and Desalination 9, (3), 319–329.

Jiang, S., Pang, L., Buchan, G. D., Simunek, J., Noonan, M. J., & Close, M. E. (2010). Modeling water flow and bacterial transport in undis-

turbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Research 44, (4), 1050–1061.

Keeler, B. L., Hamel, P., McPhearson, T., Hamann, M. H., Donahue, M. L., Meza Prado, K. A., etal. (2019). Socio-ecological and technolog-

ical factors moderate the value of urban nature. , , 29–38.Nature Sustainability 2

Kerkez, B., Gruden, C., Lewis, M., Montestruque, L., Quigley, M., Wong, B., etal. (2016). Smarter stormwater systems. Environmental 

Science & Technology, (14), 7267–7273.50

Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H. M., Wang, Y., etal. (2016). Transit time distributions and StorAge selection 

functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water 

Resources Research 52, , 7105–7129. https://doi.org/10.1002/2016WR018620

Kim, H., Seagren, E. A., & Davis, A. P. ( (2003). Engineered bioretention for removal of nitrate from storm water runoff. Water Environment 

Research 75, (4), 355–367.

Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrol-

ogy backward. Water Resources Research 45, , W02429. https://doi.org/10.1029/2008WR006912

Kirchner, J. W. (2016). Aggregation in environmental systems-Part 1: Seasonal tracer cycles quantify young water fractions, but not mean 

transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences 20, (1), 279–297.

Kranner, B. P., Afrooz, A. R. M. N., Fitzgerald, N. J. M., & Boehm, A. B. (2019). Fecal indicator bacteria and virus removal in storm water 

biofilters: Effects of biochar, media saturation, and field conditioning. , (9), e0222719.PLoS One 14

Le Coustumer, S., Fletcher, T. D., Deletic, A., Barraud, S., & Lewis, J. F. (2009). Hydraulic performance of biofilter systems for storm water 

management: Influences of design and operation. , (1–2), 16–23.Journal of Hydrology 376

Le Coustumer, S., Fletcher, T. D., Deletic, A., Barraud, S., & Poelsma, P. (2012). The influence of design parameters on clogging of storm 

water biofilters: A large-scale column study. Water Research 46, (20), 6743–6752.

Lee, J. G., Borst, M., Brown, R. A., Rossman, L., & Simon, M. A. (2015). Modeling the hydrologic processes of a permeable pavement sys-

tem. , (5), 1–9.Journal of Hydrologic Engineering 20

Lee, C. M., Lin, T. Y., Lin, C., Kohbodi, G. A., Bhatt, A., Lee, R., & Jay, J. A. (2006). Persistence of fecal indicator bacteria in Santa Monica 

Bay beach sediments. Water Research 40, (14), 2593–2602.

PARKER ET AL.

10.1029/2020WR028579

22 of 24

Printed by [A
G

U
 Journals - 173.079.010.140 - /doi/epdf/10.1029/2020W

R
028579] at [14/07/2021].



Water Resources Research

LeFevre, G. H., Paus, K. H., Natarajan, P., Gulliver, J. S., Novak, P. J., & Hozalski, R. M. (2015). Review of  dissolved pollutants in urban 

storm water and their removal and fate in bioretention cells. Journal of Environmental Engineering 141, (1), 04014050.

Levy, B. S., & Chambers, R. M. (1987). Bromide as a conservative tracer for soil-water studies. Hydrological Processes 1, (4), 385–389.

Li, L., & Davis, A. P. (2014). Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environmental Science & 

Technology 48, (6), 3403–3410.

Li, Y., Deletic, A., Alcazar, L., Bratieres, K., Fletcher, T. D., & McCarthy, D. T. (2012). Removal of Clostridium perfringens, Escherichia coli 

and F-RNA coliphages by storm water biofilters. , , 137–145.Ecological Engineering 49

Li, C., Fletcher, T. D., Duncan, H. P., & Burns, M. J. (2017). Can storm water control measures restore altered urban flow regimes at the 

catchment scale? , , 631–653.Journal of Hydrology 549

Li, Y., McCarthy, D. T., & Deletic, A. (2016).  removal in copper-zeolite-integrated storm water biofilters: Effect of vegetaEscherichia coli -

tion, operational time, intermittent drying weather. Ecological Engineering 90, , 234–243.

Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L., & Merz, R. (2018). Spatial patterns of water age: Using young water 

fractions to improve the characterization of transit times in contrasting catchments. Water Resources Research, 54(7), 4767–4784. https://

doi.org/10.1029/2017WR022216

Massoudieh, A., Maghrebi, M., Kamrani, B., Nietch, C., Tryby, M., Aflaki, S., & Panguluri, S. (2017). A flexible modeling framework for hy-

draulic and water quality performance assessment of storm water green infrastructure. Environmental Modelling & Software, 92, 57–73.

McPhillips, L., Goodale, C., & Walter, T. (2018). Nutrient leaching and greenhouse gas emissions in grassed detention and bioretention 

storm water basins. Journal of Sustainable Water in the Built Environment 4, (1), 04017014. https://doi.org/10.1061/JSWBAY.0000837

Metzler, H., Muller, M., & Sierra, C. A. (2018). Transit-time and age distributions for nonlinear time-dependent compartmental systems. 

Proceedings of the National Academy of Sciences 115, (6), 1150–1155.

Mohanty, S. K., & Boehm, A. B. (2014).  removal in biochar-augmented biofilter: Effect of infiltration rate, initial bacterial Escherichia coli

concentration, biochar particle size, and presence of compost. Environmental Science & Technology 48, (19), 11535–11542.

National Academies of Sciences, Engineering, and Medicine. (2016). Using graywater and stormwater to enhance local water supplies: An 

assessment of risks, costs, and benefits. Washington, DC: The National Academies Press.

Niemi, A. J. (1977). Residence time distributions of variable flow processes. The International Journal of Applied Radiation and Isotopes, 

28, 855–860.

Orange County Public Works. (2017).  (Report PIN 24108). Prop. 84 OC public works Glassell campus stormwater LID retrofit project final

Orange, CA. Retrieved from https://ocerws.ocpublicworks.com/sites/ocpwocerws/files/import/data/files/documents-Prop84Stormwa-

terLIDRetrofitProjectFinalReport.pdf

Parker, E. A., Rippy, M. A., Mehring, A. S., Winfrey, B. K., Ambrose, R. F., Levin, L. A., & Grant, S. B. (2017). Predictive power of clean bed 

filtration theory for fecal indicator bacteria removal in stormwater biofilters. Environmental Science & Technology 51, (10), 5703–5712.

Payne, E. G. I., Hatt, B. E., Deletic, A., Dobbie, M. F., McCarthy, D. T., & Chandrasena, G. I. (2015). Adoption guidelines for stormwater 

biofiltration systems—Summary report. Melbourne, Australia: Cooperative Research Centre for Water Sensitive Cities.

Payne, E. G. I., Pham, T., Cook, P. L. M., Fletcher, T. D., Hatt, B. E., & Deletic, A. (2014). Biofilter design for effective nitrogen removal from 

storm water—Influence of plant species, inflow hydrology and use of a saturated zone. Water Science and Technology, 69(6), 1312–1319.

Payne, E. G. I., Pham, T., Deletic, A., Hatt, B. E., Cook, P. L. M., & Fletcher, T. D. (2018). Which species? A decision-support tool to guide 

plant selection in storm water biofilters. Advances in Water Resources 113, , 86–99.

Peng, J., Cao, Y., Rippy, M. A., Afrooz, A. R. M. N., & Grant, S. B. (2016). Indicator and Pathogen Removal by Low Impact Development 

Best Management Practices. Water 8, (12), 600.

Radcliffe, D., & Simunek, J. (2010). . Boca Raton, FL: CRC Press.Soil physics with HYDRUS

Randelovic, A., Zhang, K., Jacimovic, N., McCarthy, D., & Deletic, A. (2016). Stormwater biofilter treatment model (MPiRe) for selected 

micro-pollutants. Water Research 89, , 180–191.

Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., etal. (2017). A framework for assessing and implementing 

the co-benefits of nature-based solutions in urban areas. , , 15–24.Environmental Science & Policy 77

Read, J., Fletcher, T. D., Wevill, T., & Deletic, A. (2009). Plant traits that enhance pollutant removal from stormwater in biofiltration sys-

tems. , (1), 34–53.International Journal of Phytoremediation 12

Read, J., Wevill, T., Fletcher, T., & Deletic, A. (2008). Variation among plant species in pollutant removal from storm water in biofiltration 

systems. Water Research 42, (4–5), 893–902.

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., Van Der Velde, Y., etal. (2015). Storage selection functions: A 

coherent framework for quantifying how catchments store and release water and solutes. Water Resources Research, 51(6), 4840–4847. 

https://doi.org/10.1002/2015WR017273

Rinaldo, A., Beven, K. J., Bertuzzo, E., Nicotina, L., Davies, J., Fiori, A., etal. (2011). Catchment travel time distributions and water flow in 

soils. Water Resources Research 47, , W07537. https://doi.org/10.1029/2011WR010478

Rippy, M. A. (2015). Meeting the criteria: Linking biofilter design to fecal indicator bacteria removal. Wiley Interdisciplinary Reviews: Water, 

2(5), 577–592.

Rodriguez, N. B., McGuire, K. J., & Klaus, J. (2018). Time-varying storage—Water age relationships in a catchment with a Mediterranean 

climate. Water Resources Research 54, , 3988–4008. https://doi.org/10.1029/2017WR021964

Roy-Poirier, A., Champagne, P., & Filion, Y. (2010). Review of bioretention system research and design: Past, present, and future. Journal 

of Environmental Engineering 136, (9), 878–889.

Rycewicz-Borecki, M., McLean, J. E., & Dupont, R. R. (2017). Nitrogen and phosphorous mass balance, retention and uptake in six plant 

species grown in storm water bioretention microcosms. , , 409–416.Ecological Engineering 99

Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient-flow conditions. 

Water Resources Research 39, (1), 1029. https://doi.org/10.1029/2002WR001370

Shen, P., Deletic, A., Urich, C., Chandrasena, G. I., & McCarthy, D. T. (2018). Stormwater biofilter treatment model for faecal microorgan-

isms. The Science of the Total Environment 630, , 992–1002.

Simunek, J., van Genuchten, M., & Sejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages 

and related codes. Vadose Zone Journal 7, (2), 587–600.

Smith, A. A., Tetzlaff, D., & Soulsby, C. (2018). On the use of StorAge selection functions to assess time-variant travel times in lakes. Water 

Resources Research 54, , 5163–5185. https://doi.org/10.1029/2017WR021242

Snodgrass, J. W., Moore, J., Lev, S. M., Casey, R. E., Ownby, D. R., Flora, R. F., & Izzo, G. (2017). Influence of modern stormwater manage-

ment practices on transport of road salt to surface waters. Environmental Science & Technology 51, (8), 4165–4172.

PARKER ET AL.

10.1029/2020WR028579

23 of 24

Printed by [A
G

U
 Journals - 173.079.010.140 - /doi/epdf/10.1029/2020W

R
028579] at [14/07/2021].



Water Resources Research

Surbeck, C. Q., Jiang, S. C., & Grant, S. B. (2010). Ecological control of fecal indicator bacteria in an urban stream. Environmental Science 

& Technology, (2), 631–637.44

Trenouth, W. R., & Gharabaghi, B. (2015). Soil amendments for heavy metals removal from storm water runoff discharging to environmen-

tally sensitive areas. , (3), 1478–1487.Journal of Hydrology 529

Ulrich, B. A., Vignola, M., Edgehouse, K., Werner, D., & Higgins, C. P. (2017). Organic carbon amendments for enhanced biological attenu-

ation of trace organic contaminants in biochar-amended stormwater biofilters. Environmental Science & Technology, 51(16), 9184–9193.

U. S. Environmental Protection Agency. (2018). . Washington, DC: Office 2017 Five-year review of the 2012 recreational water quality criteria

of Water, US EPA. EPA-823-R-18-001.

Walsh, C. J., Booth, D. B., Burns, M. J., Fletcher, T. D., Hale, R. L., Hoang, L. N., etal. (2016). Principles for urban storm water management 

to protect stream ecosystems. Freshwater Science 35, (1), 398–411.

Walsh, C. J., Fletcher, T. D., & Burns, M. J. (2012). Urban storm water runoff: A new class of environmental flow problem. PLoS One, , 7

e45814.

Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: Current 

knowledge and the search for a cure. , , 706–723.Journal of the North American Benthological Society 24

Williams, J. R., Ouyang, Y., Chen, J., & Ravi, V. (1998). Estimation of  infiltration rate in Vadose zone: Application of selected mathematical 

models volume II. Ada, OK: National Risk Management Research Laboratory, U.S. Environmental Protection Agency.EPA/600/R-97/128b

Winston, R. J., Dorsey, J. D., & Hunt, W. F. (2016). Quantifying volume reduction and peak flow mitigation for three bioretention cells in 

clay soils in northeast Ohio. The Science of the Total Environment 553, , 83–95.

Wong, T. H. F. (2006). Water sensitive urban design—The journey thus far. Australasian Journal of Water Resources 10, (3), 213–222.

Zhang, K., Randelovic, A., Deletic, A., Page, D., & McCarthy, D. T. (2019). Can we use a simple modeling tool to validate storm water bio-

filters for herbicides treatment? Urban Water Journal, (6), 412–420.16

Zhang, L., Seagren, E. A., Davis, A. P., & Karns, J. S. (2010). The capture and destruction of  from simulated urban runoff Escherichia coli

using conventional bioretention media and iron oxide-coated sand. Water Environment Research 82, (8), 701–714.

Zhao, L., Xia, J., Xu, C., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Jour-

nal of Geographical Sciences 23, (2), 359–369.

PARKER ET AL.

10.1029/2020WR028579

24 of 24

Printed by [A
G

U
 Journals - 173.079.010.140 - /doi/epdf/10.1029/2020W

R
028579] at [14/07/2021].


