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Abstract

Diffusion Monte Carlo (DMC) provides a powerful method for understanding the
vibrational landscape of molecules that are not well-described by conventional methods.
The most computationally demanding step of these calculations is the evaluation of
the potential energy. In this work, a general approach is developed in which a neural
network potential energy surface is trained using data generated from a small-scale
DMC calculation. Once trained, the neural network can be evaluated using highly-
parallelizable calls to a graphics processing unit (GPU). The power of this approach is
demonstrated for DMC simulations on H,O, CH; ", and (H,0),. The need to include
permutation symmetry in the neural network potentials is explored and incorporated
into the molecular descriptors of CH;" and (H,0),. It is shown that the zero-point
energies and wave functions obtained using the neural network potentials are nearly
identical to the results obtained when using the potential energy surfaces that were used
to train the neural networks at a substantial savings in the computational requirements
of the simulations. Use of the neural network potentials in other types of calculations

is also discussed.



Introduction

Solving the vibrational Schrodinger equation is a cornerstone of theoretical vibrational spec-
troscopy. Methods such as harmonic normal mode analysis, vibrational self-consistent field,
and vibrational perturbation theory are often sufficient to address many chemical prob-
lems. ! However, molecules that have strong couplings, such as the astronomically-relevant
CH;* and molecular clusters that are held together by intermolecular interactions, require
more sophisticated approaches due to their complicated potential energy landscapes.* 6
Often, one can obtain significant insights into the structure and spectroscopy of molecules
and clusters that undergo large amplitude vibrational motions from the ground state wave
function and how the wave function changes with isotopic substitution. One effective and
general approach for obtaining the ground state solutions to vibrational problems is provided
by diffusion Monte Carlo (DMC)."® DMC is stochastic method that is used to solve for the
ground state energy and vibrational wave function by propagating an ensemble of localized
functions, referred to as walkers, in imaginary time. Often the most computationally de-
manding aspect of these calculations comes in the evaluation of the potential energy at the
coordinates of each walker for each time step in the simulation. A DMC simulation based
on 10 000 walkers that is propagated over 10 000 time steps requires roughly 100 million
evaluations of the potential energy. Clearly, it is computationally intractable to perform this
many calculations at a high level of theory of electronic structure theory for even the very
smallest molecules. As such, DMC simulations often employ potential energy surfaces that
have been fit to energies obtained from electronic structure calculations, the spectroscopy
of the molecule, or both. Even when fitted potentials are used, the evaluations of these
functions can become expensive as the system size is increased. For example, DMC studies
of (H20)g required ensembles of 10° walkers run for 10° to 10° time steps to obtain converged
results. %10

Recently, we have demonstrated that we can achieve a significant reduction in the ensem-

ble size required for a DMC simulation by introducing a guiding function that describes the



dependence of the wave function on the high-frequency intramolecular motions, and have

10,11 protonated water clusters, and CH;". 12

applied the approach to neutral water clusters,
This development has led to an order of magnitude speed-up in these calculations, which
has opened the door to DMC studies of larger molecules and clusters. Even with these
advances, the computational requirements for evaluating the potential will quickly limit the
size of the systems that can be studied. Additionally, there are systems of interest for which
high-quality potentials are not available, and it would be desirable to be able to perform
DMC on-the-fly in such situations.

One solution to this problem is to take advantage of high performance computing re-
sources and introduce multi-node and multi-core parallelism into the DMC code to perform
potential calls at each time step. This can be accomplished using packages such as MPI
and openMP. We have recently implemented such a strategy for the 10% walker calculation
of the ground state of the water hexamer.!® Even with these modifications, this calculation
required a wall time of 2 days, and the calculations use 1088 cores spread among 17 KNL
compute nodes. To obtain statistically meaningful results, the results of several (typically
5-10) independent DMC simulations are combined to obtain the final wave function and
zero-point energy. This further increases the total computational requirements for a DMC
study. Such computational demands severely limit the scope of studies. In particular, this
high cost makes studies involving isotopic substitutions, which allow us to gain insights into
nuclear quantum effects, intractable for all but the smallest molecular systems.

One strategy, which has been gaining increasing traction, is using machine-learning tech-
niques to generate potential surfaces. In these studies, potential energy surfaces are devel-
oped from the results of a small number of electronic structure calculations using methods
such as Gaussian Process Regression (GPR) and Artificial Neural Networks (NN). For ex-
ample, Jiang and Guo used ab initio data to generate permutationally invariant neural
network potential energy surfaces for reactive scattering calculations.® Ba¢ic, Tuckermann,

and coworkers used a neural network potential to perform enhanced sampling path integral



molecular dynamics on clathrate hydrates.'* Additionally, Paesani and coworkers compared
permutationally invariant polynomials, neural networks, and GPR in calculating many-body
energies of water clusters.'® Miller and co-workers used GPR to fit CCSD(T) quality corre-

6 and

lation energies based on molecular orbitals obtained from a Hartree-Fock calculation,®
Bowman and Vargas-Hernandez have compared the accuracy and evaluation time of machine
learning models using permutationally invariant polynomials and GPR for representing the
potential energy surfaces of small molecules from ab initio data.'” In many of these earlier
studies, the goal was to develop a global or reactive potential surface with good accuracy
across all relevant configurations.

A global potential energy surface is often not necessary. If the process of interest samples
a specific region of the potential, describing that region well using neural networks will be
sufficient. This is the case for DMC calculations, which focus on the vibrational ground state
of the specific system of interest. Clearly, for this approach to be effective, we also need a
way to determine the relevant region of the potential before training the neural network.

Based on these ideas, in this study we develop a generic algorithm that trains a neural
network to learn the region of a potential energy surface for the system of interest over
the range of configurations that are sampled in a DMC simulation. The geometries and
corresponding energies that are collected as training data are obtained by running a small
DMC simulation that uses the potential energy surface that we want to describe with the
neural network. Once trained, this NN-potential can be used to perform large scale DMC
simulations. This procedure is illustrated in Figure 1. To train the neural network, we use the
Keras API implemented in the TensorFlow library.!® Using TensorFlow makes training and
evaluating the neural network model compatible with graphics processing units (GPUs).
Evaluating the neural network using GPUs drastically reduces the computation time and
resources required for the evaluation of the potential energy. To distinguish this approach
from standard DMC methods, we will refer to it as NN-DMC in the following discussion.

While the NN-DMC approach can be applied to any potential surface, in the present study we



will focus on potential energy surfaces that have been previously fit to electronic structure
and where converged DMC simulations are achievable. This will allow us to explore the
accuracy of the NN-DMC approach and benchmark the results against traditional DMC
calculations.

In this study, we focus on three molecular systems, H,O, (H,O),, and CH;". These
were chosen because they represent examples of the types of systems that are often stud-
ied by DMC. In the case of H,O, the three high-frequency vibrations make it surprisingly
challenging to describe accurately using DMC, and the calculation of the ground state of
H,O requires smaller time steps to converge the results compared to CH;*.%10 Tts small size
also makes H,O amenable to converged variational calculations of the vibrational energies,
allowing us to explore the accuracy of the NN-potential for the evaluation of vibrational
excited states. As we move to more fluctional molecules, one needs to consider the extent
to which it is important to ensure full permutational symmetry in the potential. When full
permutational symmetry is required, we must consider how to incorporate the permutational
invariance in the NN-potential.

The water dimer presents a good example of a system that has sufficiently high barriers
between equivalent minima on the potential such that consideration of full permutational
symmetry of the potential will not be necessary for DMC studies that focus on the ground
state. In principle, the potential for (H,O), should be invariant under exchange of the
two water molecules and exchange of the two hydrogen atoms within either of these water
molecules. This leads to eight equivalent minima on the potential. Operationally, a DMC
ground state simulation that is initially localized in one of these minima does not sample
all eight minima. Based on analysis of the ground state wave function, only the two hydro-
gen atoms shown in green in Figure 2 are found to exchange.!! Such situations of reduced
permutation symmetry sampled by the ground state wave function come up in a variety of
molecular clusters, and (H,0O), allows us to explore the efficacy of the NN-DMC approach

for such situations.



We also consider CH;". This is a molecular ion for which the barriers for exchange of
any pair of hydrogen atoms are less than 350 cm~'.!® This means that the NN-potential
must account for the full permutational symmetry of this ion. This is reflected by all five
hydrogen atoms in the structure of CH;" being displayed in green in Figure 2 . Upon partial
deuteration, the sizes of the effective barriers that separate the minima increase. This leads
to localization of the ground state of the ion in a subset of the minima,?° and the zero point
energies of the isotopologues of CH," will be sensitive to the the extent to which the ground
state is localized. As such, studies of CH;" and its deuterated analogues provide a stringent
test of the NN-DMC approach.

In addition to providing representative model systems to explore the efficacy of the NN-
DMC approach, potential surfaces have been developed for each of these three systems, and
each of these systems have been previously sttudied using DMC.'%1920 For H,O, we use the
potential surface generated by Partridge and Schwenke (PS); for CH;t we use the surface
generated by Jin, Braams, and Bowman (JBB);! and for (H,0), we use the generalized
water potential MB-pol developed by Paesani and coworkers (MB-pol).??2* We will add NN
to the beginning of each of these potentials (e.g. NN-PS) to refer to the NN-potential that

was trained based on the indicated surface.

Neural Networks for Fitting Potential Energy Surfaces

Neural networks have been used to generate molecular potential energy surfaces for a variety
of systems and in an assortment of contexts. Typically, the training data consists of a set of
molecular configurations and the corresponding energies obtained using a specified level of
electronic structure theory. For example, Carrington and coworkers generated a neural net-
work potential energy surface for H,CO using electronic energies evaluated at the CCSD(T)
level of theory, which was then used to calculate vibrational energies.?® Guo and coworkers

developed a many-body potential based on CASSCF/CASPT2 data to perform scattering



calculations for N,.?0 Behler and coworkers developed a scalable (2-8mer) protonated water
cluster potential energy surface based on DFT energies and used it in ab initio molecular
dynamics calculations.?” As mentioned above, the NN-DMC approach can be used with
a variety of sources for the potential energies. Since the focus of the present study is to
demonstrate the efficacy of the approach, we will use the energies obtained using potential
energy surfaces that were previously fit to electronic structure data. Once the training set is
determined there are several other considerations that need to be addressed. These include
the structure of the neural network and how it is trained as well as the choice of descriptor,

and will be described in the following discussion.

Structure and Training of the Neural Network

The details of generating a potential energy surface using neural networks are described
thoroughly by Behler, Manzhos and Carrington, and Jiang and Guo.!3?%2 In the present
study, we employ regression neural networks that will be used to learn the region of the
potential surface that is relevant to DMC ground state simulations.

Hyperparameter optimization is an important, yet empirical, component of reducing the
prediction error of a neural network. The selection of the number of hidden layers, number
of nodes per layer, learning rate, activation function, and optimization algorithm each have
a significant impact on the accuracy of the resulting neural network. Numerous studies have
addressed on these choices for chemical problems. For example, Manzhos and Carrington
have noted that one hidden layer of nodes is typically all that is necessary to approximate a
potential energy surface when training with evenly-distributed, unbiased electronic structure
training data,?® while Juang and Guo and Baci¢ and coworkers have elected to employ deep
neural networks (i.e. multiple hidden layers) to obtain potential energy surfaces.!33% We
have elected to use a deep neural network in this work, since the training data obtained from
a DMC simulation will be unevenly distributed and biased based on how the ground state

wave function samples the potential surface.



Overfitting is generally a concern when training neural networks. Small numerical insta-
bilities can occur when there is a bias towards the accuracy of the potential at geometries
included in the training set when compared to geometries that are not included in the train-

t.29

ing se Due to the long wavelength of the vibrational ground state wave function, DMC

calculations have been shown to be relatively insensitive to small numerical instabilities in the

1.3! Nonetheless, we will take steps to avoid overfitting, for example by confirming

potentia
that our training and test sets show similar errors in the calculated energies.

One other ingredient in generating the NN-potential is the choice of activation functions.
Activation functions perform a nonlinear transformation of the input data at a given node.
It is typical in the computational chemistry community to use sigmoid or hyperbolic tangent
functions. 13122530 These activation functions are well-suited for single, and in some cases,
multiple hidden layer networks, but will suffer from the vanishing gradient problem??33 in
deep learning contexts. To minimize the effect of the vanishing gradient problem, we use the

Swish activation function,

f(z) = (1)

for the nodes in the hidden layers. This function has empirically been shown to perform

well in deep learning training.®* Additionally, we use the the rectified linear unit function

(RELU)®

flz) = (2)

in the output layer. This function forces the predicted energy of the NN-potential to be
either positive or 0, even in regions of configuration space that are poorly described by the
training data.

The mean squared error was chosen as the loss function, and the Nadam algorithm is used



to optimize the weights of the neural network.?% Since neural networks have trouble learning
and predicting a large range of energies, it is typical to transform and scale the training
energies before using them to train the neural network.?® To maintain the generality of our
algorithm and to compress the energy range, we uniformly shift the energies so that the
training data are based on a potential with its global minimum at 100 cm~!. We then take
the natural logarithm of the calculated energies and use the resulting quantities as the input
for the neural network. The shift is introduced because the natural logarithm transformation
spreads out the energies that are close to zero, increasing the likelihood of overfitting the
low-energy region of the potential. With this combination of hyperparameters, we have
found that using a neural network with three hidden layers and 10 x (3N — 6) nodes per
layer, where NV is the number of atoms for the system of interest, yields the training and

validation accuracy needed for the present application.

Choice of Descriptor

One of the challenges currently facing the chemistry machine learning community is how
to best represent molecular coordinates as rotationally, translationally, and permutationally
invariant vectors. In addition to this list, for the purposes of interfacing a neural network po-
tential energy surface with DMC, we aim to find a generic and transferable descriptor whose
transformation from the Cartesian coordinates of the atoms can be efficiently evaluated using
a GPU. If the calculation of the descriptor takes longer than the original potential energy
call, our primary goal of developing an efficient approach for evaluating the potential is not
met. To this end, we considered using permutationally invariant polynomials of interatomic
distances (PIPs), the Coulomb matrix (CM), and the Behler-Parinello neural network struc-
ture that uses atom-centered symmetry functions. Using PIPs is a promising option, however
the number of polynomials required to adequately describe molecular systems scales poorly
with system size. While there have been recent efforts to contract the number of terms

required to describe larger symmetrical systems using fundamental invariants,3”3® this work
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has not been extended beyond 10 atoms. The Behler-Parinello neural network formalism
is inherently permutationally, rotationally, and translationally invariant.?® However, finding
the sufficient number and types of symmetry functions to use is not obvious and requires
empirical testing. Additionally, since all atom-atom distances as well as all atom-atom-
atom angles must be calculated for the symmetry functions, this becomes computationally
unfavorable.

The CM?” provides an efficient and effective descriptor due to its generality, its rotational

and translational invariance, and its low cost to evaluate. The elements of the CM are given

by

0.5224 i=j
CM;; = (3)

where Z; is the nuclear charge of the ¢th atom, and r;; is the interatomic distance between
atoms ¢ and j. As such, evaluating the elements of the symmetric CM only requires the
evaluation of the interatomic distances. The size of the final descriptor, which is the upper
or lower triangle of the matrix, scales as N2, where IV is the number of atoms in the system
of interest. To obtain permutation invariance from this descriptor, the rows and columns of
the CM are reordered based on the norm of the values in the columns.“® A limitation of using
this sorted CM as a descriptor is that it may lead to discontinuities in the NN-potential.*!
In the discussion that follows, we will use the sorted CM as the descriptor for CH;" to
ensure permutational invariance for the NN-potential for this ion. We initially elected not to
sort the CM for either H,O or (H,0), and use the unsorted CM as the descriptor for these
systems. We will return to this decision for (H,0), in our discussion of the DMC results.

Finally, for efficiency, we implement the unsorted and sorted CM using CuPy, a software

package used to execute numerical Python code on GPUs.*?
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Diffusion Monte Carlo

DMC has been described in detail elsewhere,*3** and we provide a brief overview of the
relevant aspects of the algorithm below. As mentioned above, for DMC simulations, an
ensemble of localized functions in 3N-dimensional configuration space, referred to as walkers,
is propagated in imaginary time (7 = it/h). Once the average value of

V) = V() o e B =0

(4)

has stabilized, we collect the value of V.. at each time step and the coordinates of the walkers
periodically throughout the simulation. The zero-point energy is evaluated by taking the
time-averaged value of Vief(7) in Eq. 4. In the expression for Vi, V is the average potential
energy of the ensemble, « is 0.5/A7,%46 and N, (7) is the number of walkers at imaginary
time 7. Once equilibrated, the density of the walkers near the molecular configuration
represented by the coordinates, x, is proportional to the value of the ground state wave
function at that geometry.

At each imaginary time step in the DMC propagation, each of the coordinates of each
of the walkers is randomly displaced based on a Gaussian distribution, the width of which
depends on the size of the time step (A7) and the mass of the atom that is being displaced.”
The potential energies associated with the coordinates of each of the walkers are evaluated
after this displacement. Based on the potential energy at the new configuration, the walker
may be replicated or removed from the simulation. Typically, ensemble sizes on the order of
10 000 to 100 000 are required to achieve adequate sampling of the ground state wave function
for molecules with approximately 2-10 atoms, and these ensembles must be propagated on
the order of 10 000 to 100 000 time steps.'? All DMC calculations were performed using

PyVibDMC,*" an open source, general purpose DMC code developed by our group.
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Results and Discussion

Collection of Training Data

In developing a strategy for collecting training data, our goal was to construct a general
approach that is based on the collection of wave functions that are obtained from a DMC
simulation without any additional pruning or enhancement of this data. In order for this to
be successful, we must ensure that the geometries included in the training data fully sample
the regions of the potential that are accessed by the ground state wave function in a DMC
simulation. The red curve in Figure 3 illustrates the distributions of the energies of walkers
obtained from a ground state DMC simulation for CH;". As can be seen, the highest energies
that are sampled exceed twice the value of the zero-point energy (dark blue line) of 10 918
ecm~ 112 Additional plots showing the distribution of walker energies obtained from DMC
simulations for H,O and (H,0), are provided in Figure S1 in the Supporting Information.

Above the zero-point energy, the number of walkers with a specified energy decreases with
energy. For an M —dimensional isotropic harmonic oscillator, the amount of configuration
space that corresponds to a particular energy will be the surface area of a M —dimensional
hypersphere with a radius that is proportional to v/E. Based on this, the amount of con-
figuration space that corresponds to an energy of E will scale as roughly EM—1/2 This
means that the density of sampled configurations in the DMC ensemble falls off rapidly as a
function of E. If we use only the configurations that are captured by the distribution plotted
in red in Figure 3, we will not have sufficient training data at energies above the zero-point
energy for the neural network to provide an accurate description of the potential energy sur-
face. When we performed DMC on a neural network trained only using data obtained from
ground state sampling, we found that the NN-potential had large numerical instabilities in
the surface, or holes, which caused DMC simulations based on this surface to fail.

One way to ensure that geometries included in the training set sample these higher energy

regions of configuration space is to run DMC simulations in which the masses of the atoms
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have been decreased. For example, the light green distribution in Figure 3, which is labeled
as 0.5, was obtained by performing a DMC simulation in which the masses of all of the atoms
were multiplied by 0.5. This reduction of the atomic mass increases the zero-point energy
of the system and expands the region of configuration space that the walkers can access. It
also leads to poorer sampling at low-energy regions of the potential.

Based on these observations, we have developed a hybrid approach. The training data
is obtained from a DMC simulation in which we propagate a set of walkers with their most
abundant masses for the first half of the simulation. During the the second half of the
simulation, we decrease the masses of all of the atoms until their masses have been reduced
by a factor of ten. This is achieved by multiplying the masses by a constant factor at each
time step. In the case of this study, the masses are decreased over the course of 4000 time
steps. To decrease the masses of the atoms by a factor of 10 over this time period, at each
time step the masses of the atoms are each multiplied by “°%/0.1. The coordinates of the
walkers along with their energies are collected periodically throughout this simulation, and
this forms the training data for the NN-potential. The resulting energy distribution is shown
as the shaded distribution in Figure 3. The shaded distribution follows the red curve at low
energies while also providing a larger number of geometries at higher energies.

For all systems, we collect training data from a DMC simulation with 20 000 walkers,
which is propagated for 8000 time steps with A7 = 1 a.u. All of the walkers are placed at the
minimum in the potential at 7 = 0 a.u. The training data consists of the ensembles of walkers
and their energies, which are collected every 100 time steps throughout the simulation.
This results in a training set containing roughly 1.6 x 10° walkers for each system that is
considered. By starting all of the walkers at the potential minimum and, in the case of
CH;* and (H,0),, collecting the walkers after one time step, we ensure that the region near
the potential minimum is well-sampled. This additional step was not required for H,O, as
it lacks the low frequency vibrations and multiple minima exhibited by the other systems.

More details on the training procedure are provided in the Supporting Information.
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Validation of Neural Network

A validation set was also collected from the training DMC simulation, where 100 000 ran-
domly chosen walkers are collected using snapshots of the wave function between time step
3000 and 4000, which were not used in the construction of the training set. As such, the val-
idation set only contains walkers that have unscaled masses and reflect geometries sampled
by a ground state DMC simulation. The mean absolute error (mae) of the validation set was
used as a convergence metric throughout the training process. To generate a test data set
that consists of walkers and energies that were not used in the training process, we performed
an independent DMC simulation using the same procedure as was used to obtain the train-
ing set. We obtained the test set by randomly selecting 80 000 of the generated molecular
configurations from the wave functions obtained from this second DMC simulation.

After training the neural networks for the three systems of interest, we calculated the
error associated with each model. The results are reported in Table 1. We report the mae
for each neural network based on the training, validation, and test sets. Since the validation
set includes configurations from a typical ground state DMC simulation, the energies of
the sampled configurations are expected to be smaller on average than the energies of the
configurations that make up the training and test sets. In fact, for all three systems, the
validation error is roughly half of the training error. The difference between the training
and test error is less than 1 em™! for H,O and CH;* and smaller than 4 cm™~! for (H,O),.
This small difference between the training and test errors gives us confidence that the model
predicts energies of configurations that are not included in the training set with similar
accuracy to configurations that are in the training set.

To further explore how the error is distributed, in Figure 4 we plot the density of con-
figurations in the validation set for H,O as a function of the energy evaluated using the
PS potential (ETS) and the difference between values of the energy obtained using the PS
potential and the NN-PS potential, AE = EPS — ENN=PS " Overlaid on this plot, we show the

average and standard deviation of AE for EFS ranges of 750 ecm™!, shown with black dots
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and error bars, respectively, and a white line at AE = 0. As is seen, the average value of AE
remains close to zero up to 15 000 cm™!, which is nearly four times the zero-point energy for
water. The standard deviation of AE increases with E¥S. In the bottom panel, we plot the
correlation between ENNPS and ETS over the full energy range sampled by the validation
set. The dashed line shows ENN-PS = EPS  Ag is seen, the data lies close to the dashed
line. Taken together, these results show that while there are small, and growing, deviations

ENN-PS and EPS, the error is centered at 0 and uniformly distributed about that

between
value (see also Figure S2, where we provide one-dimensional cuts through the distribution
shown in the top panel of Figure 4). The analogous figures for CH;" and (H,O), can be
found in Figures S3 and S4 in the Supporting Information. Consistent with the reported
errors in Table 1, the distributions shown in Figures S3 and S4 are similar to those for H,O,
albeit with slightly larger ranges of AE. The ensemble that is propagated in DMC randomly
samples the potential, and the predicted value for the ground state energy is based on an
ensemble average of the potential energy, V(7). Therefore, the uniformly distributed errors

descrribe above should lead to errors in the ground state energy that are much smaller than

the mae values reported in Table 1.

Diffusion Monte Carlo Performance on the Neural Network Sur-

faces

The goal of this work is to develop a NN-based approach that allows for the efficient and
accurate determination of the potential energies for a DMC calculation. Therefore, the most
important test of the success of this approach is through comparisons of the energies and
wave functions obtained using the NN-potential and the potential on which the NN-potential
is based.

In Table 2, we compare the zero-point energies for H,O, CH;", and (H,0), obtained using
the NN-potentials with a small and large ensemble of walkers along with previously reported

results obtained using the PS; JBB, and MB-pol potentials, respectively. The smaller NN-

16



DMC calculations were performed using the same ensemble size and propagation time as
were used to obtain previously reported results on these systems. We performed the larger
calculations to confirm that the results are converged. As can be seen in the results reported
in Table 2, the energies obtained from the NN-DMC calculations are in excellent agreement
with previously reported results for all three systems, with differences for these three systems
of 1 em™! or less. As anticipated, these differences are much smaller than the mae of the
energies calculated using the NN-potentials reported in Table 1. In addition, the differences
between the zero-point energies obtained from DMC and NN-DMC simulations are generally
much smaller than the reported uncertainties of the DMC simulations.

While validation through comparisons of zero-point energies is important, the power of
DMC comes from the ability to obtain the ground state vibrational wave function that de-
scribes the structure of the system of interest. To this end, we compare the wave functions
generated from DMC using the NN-potentials and the potentials on which the NN-potential
was based. We first consider the system that is most difficult to describe quantum me-
chanically, CH;". As discussed above, CH;" has 120 equivalent minima, and the energetic
barriers to isomerize between these minima are lower than the zero-point energy in the as-
sociated vibrations. This leads to full permutation equivalence of the hydrogen atoms in the
vibrational ground state. Additionally, when one performs isotopic substitution, the wave
function becomes localized in a subset of these minima. This phenomenon has been described
in previous work.?%4® This partial localization of the ground state wave function makes the
calculation of the ground state energies and wave functions for partially deuterated CH;* a
particularly stringent test of the NN-potential, as slight deviations in potential can impact
the localization of the isotopic variants of this ion.

We first examine the zero-point energies associated with each of the isotopologues, re-
ported Table 2. There is good agreement between the previously reported values based on
DMC calculations that used the JBB surface, the NN-DMC calculation, the large-scale NN-

DMC calculation. To compare the ground state probability amplitude obtained from DMC
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calculations using the NN-JBB surface to those obtained using the JBB surface, in Figure 5
we project the W2 obtained from these two calculations onto the HH distances in each of the
isotopologues of CH;* that contains two or more hydrogen atoms. While there are subtle
differences between the distributions obtained when the DMC calculations were performed
using the JBB and NN-JBB potentials, these differences are generally smaller than the un-
certainty in the values as indicated by the error bars. The corresponding projections onto
the HD and DD distances show similar trends (see Figure S6 in the Supporting Information).
As noted above, one concern about using the sorted CM as the descriptor in generating the
NN-potential comes in the possibility of discontinuities. In fact, if we plot cuts through the
NN-JBB surface along each of the four unique CH bond lengths in CH,", constraining all
other coordinates to their equilibrium values, we note such discontinuities (see Figure S7).
While this is a possible limitation of the use of the sorted CM in thee NN-DMC approach,
it does not appear to be affecting the accuracy of the zero-point energies or the probability
amplitude obtained when we perform a DMC simulation using the NN-JBB potential.

As discussed above, the water dimer is a system that has eight equivalent minima on
the potential surface. However, when the DMC simulation is initialized in one of the eight
minima, only two of these minima are sampled by the ground state wave function. The water
dimer also exhibits highly anharmonic, low frequency vibrational motions in the intermolec-
ular degrees of freedom. To examine how these attributes of (H,0), are captured by the
NN-potential, we project the probability amplitude onto pairs of OH distances in Figure 6.
In the top panel, we show the projection of U2 onto both of the intramolecular OH distances
in the donor the water molecule (the two OH bonds of the water molecule with red, orange,
and yellow atoms in Figure 2). There is excellent agreement between the wave functions
collected from DMC simulations using the MB-pol surface and the NN-MB-pol surfaces. In
the bottom panel of Figure 6, we show the projection of ¥Z onto the intermolecular OH dis-
tances between the oxygen in the donor water and the two hydrogen atoms in the acceptor

water (the red oxygen atom and the two green hydrogen atoms in the structure in Figure
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2). We find generally good agreement between these projections, which are plotted in black
and red, although there is a small peak around 2 A that is only partially captured in the
DMC calculation that is based on the NN-MB-pol potential. If we train a new NN-potential
using the sorted CM as the molecular descriptor and perform a DMC calculation, we recover
this feature (gold dotted line). The mae for this new NN-potential is reported in Table 1,
the DMC zero-point energies are reported in Table 2, and the distributions of the errors are
provided in Figures S2 and S5. The training, test, and validation mae of the sorted CM NN-
MB-pol surface are all comparable to the mae of the CH;* model, which contains the same
number of atoms and also uses the sorted CM as the molecular descriptor. Additionally,
the zero-point energy calculated using the sorted CM NN-potential is in agreement with the
NN-DMC simulations that used the unsorted CM NN-potential for (H,0),.

Upon closer inspection of the walkers that correspond to the peak near 2 A in the projec-
tions of the ground state probability amplitude plotted in the bottom panel of Figure 6, we
find that they are structurally similar to the hydrogen bond interchange transition state,4?->°
which is shown in the inset in the bottom panel of Figure 6. The energy of this transition
state has been reported as approximately 235 cm™! based on the MB-pol surface,* while
the harmonic normal mode frequency that corresponds to the motion that connects the min-
imum energy structure and this transition state is below 200 cm~!. While the ground state
DMC calculation may sample geometries that are near this transition state, the walkers are
not able to tunnel through this barrier. When we examined the structures that are sampled
by the DMC simulation used to generate the training and test sets, we found they do not
show evidence of tunneling through this barrier. The enforced symmetry introduced by the
sorted CM provides an improved description of this region of the potential and more accu-
rate ground state wave function. Further evidence of this improvement can be seen in the
projections of U2 onto the intermolecular HH distances shown in Figure S8 in the Supporting
Information. Finally, we have considered the projections of the probability amplitude onto

the OH distance and HOH bend in H,O, and the results are provided in Figure S9 in the
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Supporting Information. The projections obtained using the NN-PS surface show excellent

agreement with those obtained using the PS surface.

Efficiency Gain from Neural Network Potentials

Next we consider the relative efficiency of the NN-potentials when compared to the poten-
tial energy surfaces on which the NN-potentials are based. To explore this, we calculate the
time it takes to evaluate the energies using the MB-pol potential and the GPU accelerated
NN-MB-pol potential for (H,O),. The analogous timing plots for H,O and CH,", as well as
detailed timings for all the systems, are found in Figure S10 and Table S1 in the Supporting
Information. We call the compiled MB-pol surface within Python using the ctypes foreign
function interface, and we parallelize the calls to MB-pol across CPU cores using Python’s
multiprocessing module. In Figure 7, we compare the average time required to evaluate the
potential energy over 400 time steps in a DMC simulation for a series of different ensemble
sizes. Continuous weighting DMC*? is used in these calculations in order to keep the ensem-
ble size constant throughout the 400 time steps. The DMC simulations using the MB-pol
potential are performed using a single 28-core Intel Xeon E5-2680 v4 2.40 GHz processor.
We perform the analogous calculation on the NN-potential using one of the GPU nodes
on the Cori supercomputer at the National Energy Research Scientific Computation Center
(NERSC). These GPU nodes have 8 NVIDIA Tesla V100 GPUs per node and two 20-core
2.40 GHz Intel Xeon Gold 6148 Skylake processors. For these NN-DMC calculations, only
one of the 8 GPU nodes was used.

The results plotted in Figure 7 illustrate that the GPU-optimized NN-MB-pol evaluations
scale significantly better than the calls to the underlying MB-pol potential. The improvement
is shown most prominently in the 10° walker case, where the GPU calls of thee NN-potential
are 3x faster for H,O, 4x faster for CH;", and 10x faster for (H,O), compared to the CPU
calls to the potential on which the NN-potential is trained. In some senses this comparison is

not entirely fair as similar speed-ups could be obtained by using a version of the underlying
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potentials that has been modified to take advantage of GPU’s. This is not always a straight-
forward procedure, and advantage of the present approach for obtaining the NN-potentials
is that it can be applied to a broad range of potential surfaces without modification.

With these gains in speed we can perform extremely large NN-DMC simulations at a
cost that is independent of the cost to evaluate the underlying potential. As such, the use
of these NN-potentials will enable us to perform DMC calculations that use significantly
more expensive approaches for evaluation of the potential energy. For example, we are
currently exploring applications in which the energies are evaluated using electronic structure

calculations directly.

Variational Calculation of Vibrational States Using the NIN-Potential

The discussion above focuses on ground state properties, and the geometries that were used
to develop the NN potential for the NN-DMC calculation were chosen for the calculation of
the ground state. It is interesting to ask how well this potential describes excited states. In
the case of water, the excited state vibrational energies are reasonably straightforward to
evaluate, and the details of the calculation are provided in the Supporting Information. The
results of these calculations are provided in Table 3. Comparing the results obtained using
the PS and NN-PS potentials, we find there are small differences in energies. For example,
the zero-point energies differ by 0.1 cm™!, while the energies of all other vibrational states
differ by less than 1 cm™!. The calculated zero-point energy is also in excellent agreement
with the DMC values reported in Table 2. This shows that the NN-potential obtained for
DMC calculations can also be used in other types of large scale calculations that require

many calls to a potential energy surface.
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Conclusions

In this work, we have developed a generic algorithm to train a neural network to learn a
potential energy surface using data obtained from a single, small-scale DMC simulation.
After training this neural network, we are able to perform large-scale DMC simulations by
taking advantage of the efficiency of parallel evaluations of the NN-potential on a GPU.
These NN-potentials are system-dependent, meaning that one has to train a new neural
network for each system of interest and for different isomers of a particular molecular cluster.
These surfaces focus on describing low energy vibrational states, although modification of
the training protocols could extend the region covered by the neural network. There are
other methods, such as path integral ground state (PIGS) methods®®? and Path Integral
Monte Carlo®** that require dozens to hundreds of potential energy evaluations per step.

These methods can also take advantage of parallel evaluation of these potential energy values

on a GPU.
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Table 1: Mean Absolute Errors for the Training, Validation and Test Set Ob-
tained for H,0, CH,*, and (H,0), (cm™").

System  Training Error Validation Error® Test Error’

H,O 5 2 5
CH,* 60 33 60
(H,0),° 28 12 32
(H,0),¢ 58 28 61

® The validation set consists of 100 000 geometries based on a
ground state DMC simulation, as described in the text.

b Consists of 80 000 geometries collected during a DMC
simulation with scaled masses.

¢ The NN was trained and evaluated using the unsorteed
CM descriptor.

4 The NN was trained and evaluated using the sorted
CM descriptor.
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Table 2: Calculated DMC Zero-Point Vibrational Energies for H,O, CH5+, and
(H,0), (em™).

System  Literature Value NN-DMC Large NN-DMC*

H,0 4637° 4637 (0.4)
(H,0), © . 9910 (2) 9909 (0.3)
(1,0), ¢ 0@ 9909 (3) 9908 (1)

CH;" 10 918 (7)7 10917 (4) 10 920 (2)
CH,D" 10 307 (11)7 10 312 (3) 10 310 (2)
CH,D, " 9703 (8)7 9701 (6) 9703 (1)
CH,D," 9101 (8)F 9105 (2) 9106 (1)
CHD," 8563 (6)f 8573 (7) 8570 (1)

CD;* 8045 (8)7 8048 (6) 8048 (2)

@ Zero-point energies calculated based on a 200 000 walker
DMC simulation described in the Supporting Information.

b Variational calculation reported in the manuscript.

¢ The NN was trained and evaluated using the unsorted
CM descriptor.

4 The NN was trained and evaluated using the sorted
CM descriptor.

¢ Ref. 11.

F Ref. 12.
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Table 3: Ground and Excited State Vibrational Energies for H,O Using the
NN-PS and the PS Potentials?' (cm™).

viovy, v, PSP NN-PS
0 0 0 4636.8 4636.9
0 1 0 15944 1594.5
0 2 0 31508 3150.8
1 0 0 3656.2 3656.7
0 0 1 3755.1 3755.5
0 3 0 4665.7 4666.0
1 1 0 52338 5234.4
0 1 1 53300 5330.5

% v, Vp, V, correspond to number of quanta in

the symmetric OH stretch, the HOH bend, and
the antisymmetric OH stretch, respectively.

b The first row reports the zero-point energy E,
and all other values are E-E,.
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Figure 1: The workflow (purple) of a standard DMC simulation. The NN-DMC workflow
(orange). In NN-DMC, rather than evaluating the potential energy directly, we first collect
training data and train a neural network potential. Then, we use this neural network for
parallel, GPU-accelerated potential energy evaluations.
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CH;"  (H,0),

Figure 2: Equilibrium structures of CHy* and (H,0),. Permutationally equivalent atoms
are shown in green, and permutationally distinct atoms are shown in other colors.
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Figure 3: The fraction of the number of walkers obtained from DMC simulations plotted
a functions of energy obtained using the JBB potential for CH;".'® The different colors
correspond to walker distributions obtained when the masses of each of the atoms in CH;"
are multiplied by the indicated value. The shaded black curve provides the distribution of
energies of the training data set used to obtain the NN-JBB potential as described in the

text. The dark blue vertical line indicates the value of the calculated zero-point energy of
CH;*.

36



o 407 10° §
E 20 A g
n 102 -
o 0 1 S
W s
| —20 A 10t &
0 x
a o
W _40 - a
T T 1 100
0 5000 10000 15000
EPS (cm™1)
60000 ra
e
a &
IE 40000 -
<
= 20000
w
0

0 20000 40000 60000
EPS (cm—l)

Figure 4: Comparisons between the NN-PS and PS?! potentials for H,O. (Top) Plot of the
number of walkers as a function of the difference between the energies obtained using the
PS and NN-PS surfaces and the energy evaluated using the PS surface. Superimposed on
the heat map are the average (black circles) and standard deviation (black error bars) of the
energy difference over energy ranges of 750 cm ™! centered at the position of the black circle.
(Bottom) The predicted NN-PS energy (open circles) as a function of the PS energy over
the full energy range sampled by the validation set.
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Figure 5: Plots of projections of the DMC probability amplitude onto all HH distances of
the indicated system based on the JBB'® (black) and NN-JBB (red) potential. The error
bars indicate the standard deviation of the amplitude of W2 among five independent DMC
simulations. The projections are normalized based on the number of HH distances in the
ion.
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Figure 6: The DMC ground-state probability amplitude obtained from simulations using the
NN-MB-pol with an unsorted CM descriptor (red dashed lines) and a sorted CM descriptor
(gold dotted lines) and the MB-pol?>2* potentials (black solid lines) projected onto pairs
of OH distances in (H,0),. (Top) The DMC probability amplitude projected onto the
intramolecular OH distance in the donor water molecule (the two OH bonds between the red
oxygen and orange and yellow hydrogen atoms in Figure 2). (Bottom) The DMC probability
amplitude projected onto an intermolecular OH distance between the hydrogen atoms in the
donor water molecule and the oxygen atom in the acceptor water molecule (the distance
between the red oxygen and the two green hydrogen atoms in Figure 2). The inset in the
bottom panel shows the geometry of a walker that contributes to the feature near 2 A, where
the walkers sample geometries near the transition state for the exchange of the identities of

the donor and acceptor water molecules.
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Figure 7: The average potential energy call time in a sample DMC simulation for varying
numbers of (H,O), configurations using the MB-pol surface?*2* (black solid) compared to
the NN-MB-pol surface (red dashed).

40



TOC graphic:

AEPF

Neural

Network Eg

Original

41




