

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

**Isolating the contributions of specific network sites to the
diffuse vibrational spectrum of interfacial water with
isotopomer-selective spectroscopy of cold clusters**

Journal:	<i>The Journal of Physical Chemistry</i>
Manuscript ID	Draft
Manuscript Type:	Feature Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Yang, Nan; Yale University Department of Chemistry, Khuu, Thien; Yale University, Chemistry Mitra, Sayoni; Yale University Duong, Chinh; Yale University, Chemistry Johnson, Mark; Yale University, Chemistry DiRisio, Ryan; University of Washington McCoy, Anne; University of Washington, Department of Chemistry Miliordos, Evangelos; Auburn University, Chemistry and Biochemistry Xantheas, Sotiris; Pacific Northwest National Laboratory, Advanced Computing, Mathematics and Data

SCHOLARONE™
Manuscripts

1
2
3 1 **Isolating the contributions of specific network sites to the diffuse vibrational**
4 2 **spectrum of interfacial water with isotopomer-selective spectroscopy of cold**
5 3 **clusters**

6
7
8 4 Nan Yang,^a Thien Khuu,^a Sayoni Mitra,^a Chinh H. Duong,^a and Mark A. Johnson ^{a,*}

9
10 5 Ryan J. DiRisio^b and Anne B. McCoy^b

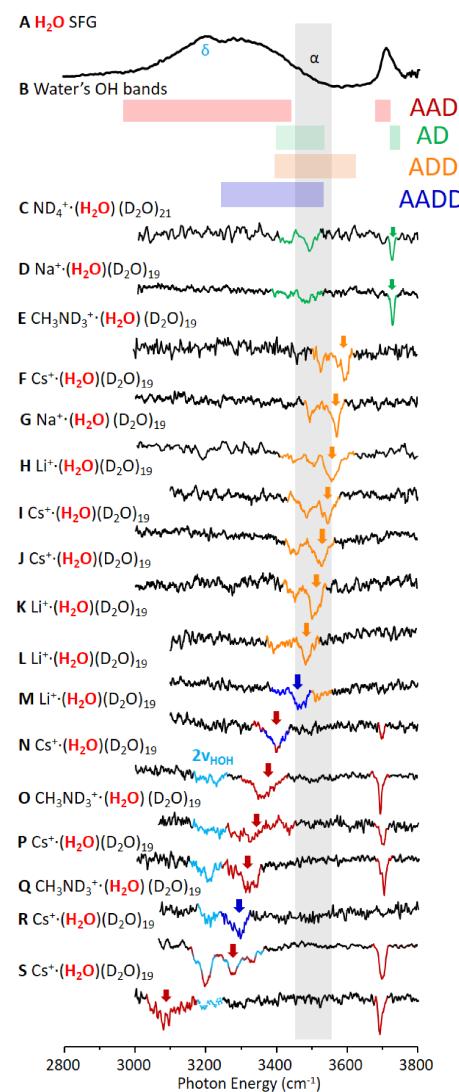
11
12 6 Evangelos Miliordos^{c,1} and Sotiris S. Xantheas^{b,c}

13
14 7
15 8 ^a Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520

16
17 9 ^b Department of Chemistry, University of Washington, Seattle, WA 98195, USA

18
19 10 ^c Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902
20 11 Battelle Boulevard, P.O. Box 999, MS K1-83, WA, 99352

21
22 12
23
24 13 Mark A. Johnson Email: mark.johnson@yale.edu


25
26 14 Anne B. McCoy Email: abmccoy@uw.edu

27
28 15 Sotiris S. Xantheas Email: sotiris.xantheas@pnnl.gov and xantheas@uw.edu

53 1 Present address: Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-
54 5312

28 *Abstract:*

29 Decoding the structural information contained in the
 30 interfacial vibrational spectrum of water requires
 31 understanding how the spectral signatures of individual
 32 water molecules respond to their local hydrogen bonding
 33 environments. In this study, we isolated the contributions for
 34 the five classes of sites that differ according to the number of
 35 donor (D) and acceptor (A) hydrogen bonds that characterize
 36 each site. These patterns were measured by exploiting the
 37 unique properties of the water cluster cage structures formed
 38 in the gas phase upon hydration of a series of cations
 39 $M^+ \cdot (H_2O)_n$ ($M=Li, Na, Cs, NH_4, CH_3NH_3$, H_3O , and $n=5, 20-$
 40 22). This selection of ions was chosen to systematically
 41 express the A, AD, AAD, ADD, and AADD hydrogen
 42 bonding motifs. The spectral signatures of each site were
 43 measured using two-color, IR-IR isotopomer-selective
 44 photofragmentation vibrational spectroscopy of the
 45 cryogenically cooled, mass selected clusters ions in which a
 46 single intact H_2O is introduced without isotopic scrambling,
 47 an important advantage afforded by the cluster regime. The
 48 resulting patterns provide an unprecedented picture of the
 49 intrinsic lineshapes and spectral complexities associated with
 50 excitation of the individual OH groups, as well as the
 51 correlation between the frequencies of the two OH groups on
 52 the same water molecule, as a function of network site. The
 53 properties of the surrounding water network that govern this
 54 frequency map are evaluated by dissecting electronic
 55 structure calculations that explore how changes in the nearby
 56 network structures, both within and beyond the first
 57 hydration shell, affect the local frequency of an OH
 58 oscillator. The qualitative trends are recovered with a simple
 59 model that correlates the OH frequency with the network-
 60 modulated local electron density in the center of the OH bond.

70 I. Introduction

71 The very large range (3000-3700 cm^{-1}) spanned by
 72 the OH stretching vibrational spectrum of liquid water
 73 reveals the wide distribution of intramolecular distortions
 74 caused by variations in the H-bonding topologies of the
 75 surrounding network. The distribution of OH frequencies has
 76 been considered in the context of the local electric fields that
 77 are present in particular binding sites, which in turn reflect
 78 the number of directly coordinated water molecules as well
 79 as the orientations of water molecules in the more distant
 80 hydration shells.¹⁻⁴ The variation in this coordination number
 81 is particularly relevant to the spectrum of the air-water
 82 interface, where there are many non-bonded OH groups.

83 There is a consensus that the dominant interactions
 84 governing the local OH frequency are the number of H-bond
 85 donor (D) and acceptor (A) molecules attached to the water
 86 molecule in question.³⁻⁵ The OH frequency distributions

87 reported by Skinner and coworkers^{1,4} for five classes of
 88 coordination environment (A, AD, AAD, ADD, and AADD) are reproduced in Fig. 1 to illustrate the
 89 ranges of activity expected for each class.⁴ Note that within a coordination class, the distributions are very
 90 broad such that the red-shifted bands arising from the bound OH groups overlap, as do the fundamentals
 91 arising from the non-bonded OH groups near 3700 cm^{-1} . As such, the factors that govern the local
 92 frequency must reflect different topologies of the water network beyond the first shell. Consequently,
 93 both Skinner⁵ and Ohno³ have advanced more elaborate schemes that take into account the coordination
 94 environments of the water molecules that are attached to the molecule whose frequency is under
 95 consideration. Although the simulations provide a compelling microscopic picture of how different
 96 structures contribute to the spectrum, experimental verification of these predicted contributions presents a
 97 profound challenge. For example, recent efforts to directly extract the contribution from the 3500 cm^{-1}
 98 region using surface-sensitive spectroscopies yielded different spectral responses, pointing to the
 99 complexities of isolating the ambient (as opposed to laser-driven) contributions to the linear spectrum.⁶⁻⁷

100 Very recently, the unique advantages of cryogenic, gas phase cluster spectroscopy⁸⁻⁹ have proven
 101 useful to disentangle the contributions of the AAD and ADD sites using the $\text{Cs}^+ \cdot (\text{H}_2\text{O})_{20}$ cluster as a
 102 model system.¹⁰ This system adopts a clathrate cage structure constructed from 12 interlocking, cyclic
 103 water pentamers (a pentagonal dodecahedron, PD). The advantage of the PD structure is that it only has
 104 10 AAD and ADD sites, thus eliminating congestion from other sites. Importantly, the OH stretching
 105 spectrum of $\text{Cs}^+ \cdot (\text{H}_2\text{O})_{20}$ is still diffuse, spanning the range displayed by the air-water interface (see Fig.
 106 2E). This occurs despite the fact that only two sites are in play because the surrounding network
 107 topologies are quite diverse with respect to the H-bond configurations in the surrounding hydration shells,
 108 with the result that the bound OH (hereafter OH^b) contributions occur over hundreds of wavenumbers.
 109 Nonetheless, these overlapping contributions could be completely disentangled by leveraging cluster
 110 regime suppression of H/D isotopic exchange.¹¹⁻¹² This allows the incorporation of a single, intact H_2O
 111 molecule into an otherwise perdeuterated water cage. The labeled water was observed to statistically
 112 occupy all spectroscopically distinct sites, creating an isotopologue that is a heterogeneous ensemble of
 113 isotopomers that differ according to the site occupied by the isotopic label. The vibrational spectrum of
 114 each isotopomer can then be isolated experimentally using two-color, IR-IR photobleaching techniques
 115 routinely used in ion photodissociation spectroscopy to separate the spectra of structural isomers.⁸

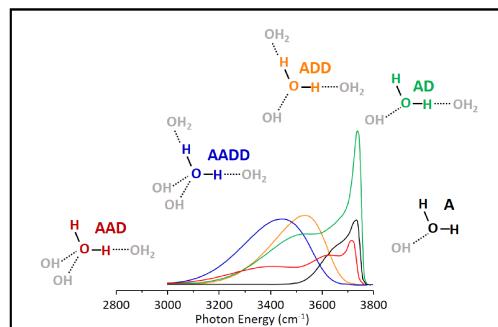
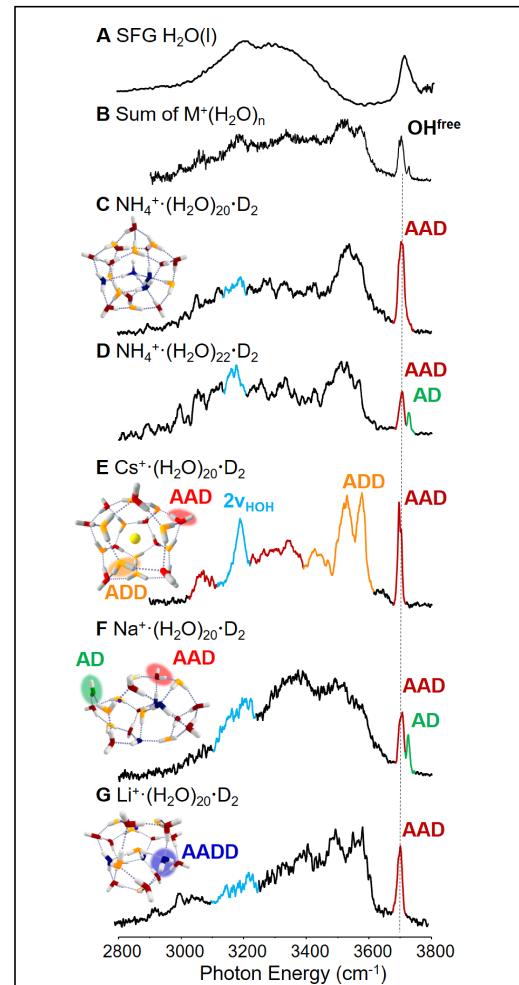


Figure 1. Color-coded frequency distributions of the two OH stretches arising from water molecules surrounded by various acceptor (A) and donor (D) H-bonding arrangements. Reproduced from Ni et al. (ref.4) with permission.

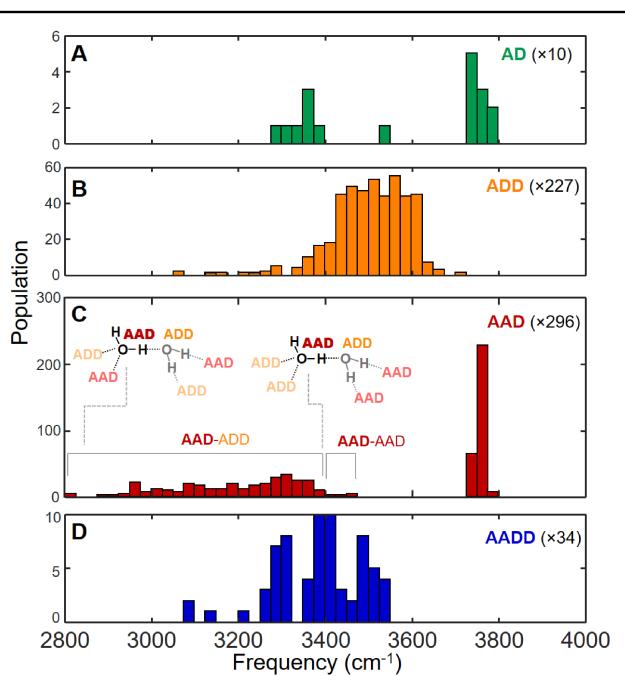

1
2
3 Importantly, because there is only one H_2O molecule in any given cluster, the spectrum of each
4 isotopomer consists of the *correlated absorptions of its two OH groups and any “extra” features arising*
5 *from anharmonicities*.^{8,13} We herein present the results of similar site-specific measurements on a series of
6 water clusters where both cluster size and guest cation are varied systematically to reveal the spectral
7 signatures of all the sites that are relevant to the
8 deconstruction of the interfacial IR spectrum. The particular
9 systems selected to accomplish this goal are indicated in
10 Fig. 2C-G along with their vibrational spectra obtained by
11 IR photodissociation of a weakly bound D_2 molecule. The
12 sum of these spectra (Fig. 2B) is compared to the surface-
13 selective (sum frequency generation, SFG) spectrum of the
14 water interface¹⁴⁻¹⁶ (Fig. 2A) to confirm that, taken together,
15 the cluster systems span the same frequency range. Note
16 that the selection rules for SFG are different than those of
17 the linear absorption regime at play in the cluster spectra
18 and differences in shape are expected.^{1,4} We consider the
19 site-specific contributions to this broad envelope in the
20 context of qualitative rules of H-bonding commonly
21 invoked to deconstruct the spectrum of the air-water
22 interface.
23
24
25

26 II. Results and Discussion

27 II.A Dependence of water network structures and H- 28 bonding site types on cation and size

29 The calculated structures for the cluster scaffolds
30 used for this study are depicted in the inserts in Fig. 2C-G
31 with the various sites highlighted in color. Rotatable pdf
32 images are included in the SI. Note that the cluster
33 structures in the $n \sim 20$ size range adopt many thousands of
34 isomeric forms that have similar oxygen atom frameworks,
35 but differ according to the orientations and topologies of the
36 H-bonds that connect them.¹⁷ These isomers are close in
37 energy and are undoubtedly present under our experimental
38 conditions, hence providing a large variation in local H-
39 bond environments that contributes to the signal at any
40 given frequency. As such, the ensemble of $\sim 10,000$ ions
41 interrogated in these measurements resembles the diverse
42 environments experienced by interfacial water molecules in
43 liquid or amorphous ice.

44 The changes in the cage structure with the size of
45 the ion are reflected in the structures of the Li^+ , Na^+ , and
46 Cs^+ clusters with 20 water molecules. The $\text{Na}^+ \cdot (\text{H}_2\text{O})_{20}$
47 structure (Fig. 2F) features a partial collapse of the PD cage
48 present in the $\text{Cs}^+ \cdot (\text{H}_2\text{O})_{20}$ system (Fig. 2E) as the Na^+ ion
49 migrates toward the surface, while the Li^+ ion is embedded
50 onto the surface in $\text{Li}^+ \cdot (\text{H}_2\text{O})_{20}$ (Fig. 2G).¹⁸⁻¹⁹ The



51 **Figure 2. SFG spectrum of the air water**
52 **interface compared to the spectra of**
53 **various water clusters in the OH region.**
54 (A) SFG intensity ($|\chi^{(2)}|^2$) spectrum
55 reproduced from ref.15 with permission; δ
56 denotes the bend overtone ($2v_{\text{HOH}}$) transition
57 and α denotes the controversial region
58 around 3500 cm^{-1} . (B) Sum of cluster
59 spectra in (C-G) weighted equally by peak
60 area. D_2 -tagged predissociation spectra and
61 representative structures of (C)
62 $\text{NH}_4^+ \cdot (\text{H}_2\text{O})_{20}$, (D) $\text{NH}_4^+ \cdot (\text{H}_2\text{O})_{22}$, (E)
63 $\text{Cs}^+ \cdot (\text{H}_2\text{O})_{20}$, (F) $\text{Na}^+ \cdot (\text{H}_2\text{O})_{20}$, and (G)
64 $\text{Li}^+ \cdot (\text{H}_2\text{O})_{20}$.¹⁹ OH stretching bands and
65 water molecules in the structures are color-
66 coded according to their types.

1
2
3 ammonium ion, on the other hand, resides in the center of the $(\text{H}_2\text{O})_{20}$ cluster but puckers the cage due to
4 strong, directional interactions between H_2O and NH_4^+ as indicated in Fig. 2C.²⁰ Table S1 presents a
5 summary of the number of each site types are predicted for calculated structures of the various systems
6 used in the this work.
7

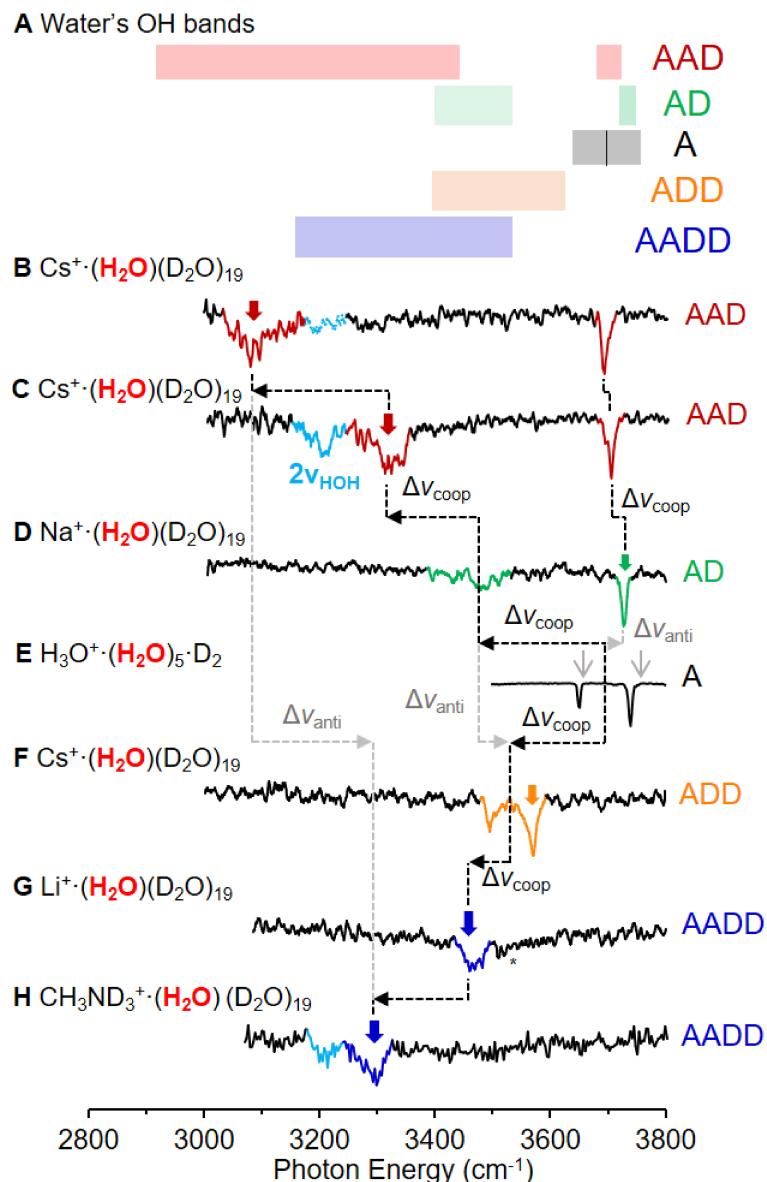
8 The spectra in Fig. 2 illustrate how a specific H_2O bonding site can be introduced into the
9 network by varying both ion identity and cluster size. For example, the distorted $\text{Na}^+\cdot(\text{H}_2\text{O})_{20}$ system
10 displays the telltale AD band (weaker member of the doublet in the OH^{free} stretching region highlighted
11 in green), while the more symmetrical cage $\text{Cs}^+\cdot(\text{H}_2\text{O})_{20}$ does not (compare Fig. 2E and 2F). Although the
12 AD peak is missing in the $\text{NH}_4^+\cdot(\text{H}_2\text{O})_{20}$ spectrum (Fig. 2C), it is present upon addition of two water
13 molecules in the $n=22$ cluster (green shoulder in Fig. 2D). The spectral signatures of these AD binding
14 sites can thus be isolated because the
15

16 $\text{OH}_{\text{AD}}^{\text{free}}$ band arising from this motif is clearly
17 resolved between the free OH feature of the
18 AAD molecules and the asymmetric stretch of
19 water molecules in the A sites.²¹ The latter are
20 known from their positions in smaller cluster
21 spectra with the sharp bands from
22 $\text{H}_3\text{O}^+\cdot(\text{H}_2\text{O})_5$ displayed in Fig. 4E, consistent
23 with the simulated frequency distribution of
24 this site on the interface in Fig. 1 (black trace).¹
25 We note that the absence of this $\text{OH}_{\text{AD}}^{\text{free}}$
26 feature was key to the identification of the PD
27 structures of $\text{Cs}^+\cdot(\text{H}_2\text{O})_{20}$ and $\text{H}_3\text{O}^+\cdot(\text{H}_2\text{O})_{20}$,²³
28 and the emergence of the AD feature in the
29 $\text{Cs}^+\cdot(\text{H}_2\text{O})_{20}$ spectrum at elevated temperature
30 (200 K) has been recently exploited as a probe
31 for the breakup of the PD cage.²⁵ On the other
32 hand, isolation of the AADD site is the most
33 challenging to achieve in the cluster systems
34 because its features are expected to overlap
35 with those from OH_{AAD}^b . (Fig. 1). The AADD
36 sites are present in the $n\sim 20$ range in systems
37 that accommodate the ions on the surface of
38 the cage. This is the case in the $\text{H}_3\text{O}^+\cdot(\text{H}_2\text{O})_{20}$
39 structure, for example, which features 5
40 AADD sites.²⁶ Unfortunately, it is not possible
41 to incorporate an intact H_2O molecule in the
42 $\text{D}_3\text{O}^+\cdot(\text{D}_2\text{O})_{20}$ structure due to fast H/D
43 exchange, but the hydrophobic methyl group
44 in the CH_3NH_3^+ ion also forces surface
45 hydration in the $\text{CH}_3\text{NH}_3^+\cdot(\text{H}_2\text{O})_{20}$ system.
46
47
48
49
50
51
52
53
54
55
56

57 **Figure 3. Calculated harmonic frequency distribution**
58 **of various isomers of the $\text{M}^+\cdot(\text{H}_2\text{O})(\text{D}_2\text{O})_{n-1}$ ($\text{M}=\text{Li}, \text{Na},$**
59 **$\text{Cs}, \text{NH}_4, \text{CH}_3\text{NH}_3, \text{H}_3\text{O}$, and $n=20-22$) clusters.** The
60 calculations were done at B3LYP/6-31++G** level of
theory and basis with the LANL2DZ pseudopotential for
Cs and scaled by 0.973. The numbers near the A/D labels
are the total number of water molecules shown in the
panel. The bound OH in panel C are classified according
to the binding site types of the OH group of interest and
its surrounding water molecules.

61 That system is also calculated to accommodate 5 molecules in AADD sites (see Table S1), but
62 importantly does not exhibit H/D exchange because of the increased basicity of the amine group, and
63 hence was chosen for this study. To gauge the extent of the spectral coverage afforded by our choice of
64 cluster systems, Fig. 3 presents histograms of the calculated harmonic spectra, sorted and color coded by
65 site type. We emphasize that this indicates the range of behaviors exhibited by specific structure types. It
66

1
2
3 207 is expected that many more isomers are generated in the ion source, and thus provide an even more
4 208 complete sampling of the environments available to water molecules embedded in an extended network.
5


6 209 *II.B. Survey of the site-dependent spectral patterns displayed by a single H₂O molecule embedded in*
7 210 *three-dimensional H-bonded cages*

8 211 Isotopomer-selective spectra were obtained using a two-color, IR-IR photobleaching variation in
9 212 tandem photofragmentation mass spectrometry described in detail in ref. 8. Briefly, a particular
10 213 isotopomer with composition M⁺·(H₂O)(D₂O)_n is mass selected for interaction with a probe laser with its
11 214 frequency fixed on a transition associated with one of its isotopomers. The photofragment from the probe
12 215 laser is monitored continuously to record the population in the isotopomer selected according to the
13 216 carrier of the band to which it is tuned. Prior to this interaction, a powerful photobleaching laser intercepts
14 217 the same ion packet and removes the population of each isotopomer as it is scanned across the entire
15 218 spectrum. Hence all bands associated with the two OH groups on the site occupied by the single H₂O
16 219 molecule then appear as downward going features (dips) according the population depletions driven by
17 220 the bleach laser as it scanned across the spectrum.
20

21 221 Figure 4 presents a summary of a large data set collected using the six cations and various water
22 222 cluster sizes, which were selected to illustrate the different (persistent) patterns associated with the
23 223 various site types. The entire set is included in Fig. S1. These patterns were obtained by scanning the
24 224 bleach laser while fixing a probe laser at the locations of the downward arrows. The most difficult site to
25 225 reveal is the AADD because it does not have a unique spectral feature in the high energy region, and the
26 226 samples presented in Fig. 4H required deconvolution as described in detail in section S.II of the SI.
27

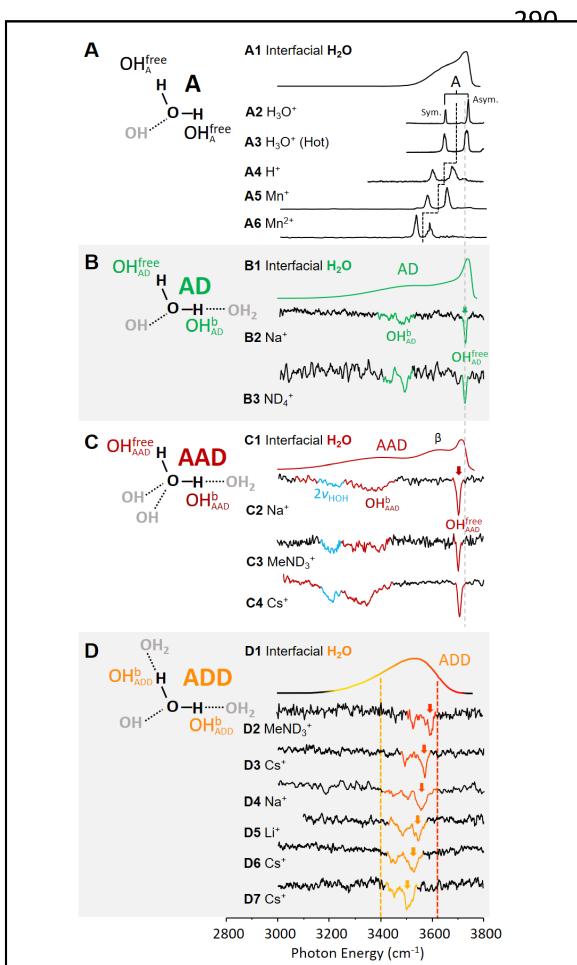
28 227 An interesting feature of the patterns displayed in Fig. 4 is that they are quite simple, mostly
29 228 consisting of two features as would be expected for the two OH stretching fundamentals on a water
30 229 molecule at the harmonic level. The only exception is the “extra” band (turquoise in Fig. 4C and 4H) that
31 230 appears around 3200 cm⁻¹. This feature arises from a Fermi-resonance interaction between the overtone of
32 231 the HOH bending mode and OH stretching fundamentals that are red-shifted into resonance with the bend
33 232 overtone.^{10,27} The simplicity of these patterns (compared to the complex spectra of the homogeneous
34 233 isotopomers in Fig. 2) is important because it demonstrates that the spectral signatures of the embedded
35 234 water molecules are not complicated by the presence of combination bands with soft modes. Such
36 235 complications are known to arise from surprisingly strong electrical and mechanical anharmonicities in
37 236 smaller water cluster ion systems.^{8,28-30} The widths of the bands, on the other hand, appear to
38 237 systematically increase with red-shift, an effect noted earlier in the case of the isolated OH groups in
39 238 spectra obtained by incorporation of a single HOD molecule in the 20 water molecule cages.³¹
40

41 239 The site-specific band patterns (Fig. 4) provide a remarkably clear picture of how the local H-
42 240 bonding configuration drives the qualitative trends in the embedded band patterns (Fig. 2). We begin with
43 241 the simple doublet pattern associated a single acceptor water molecule (‘A’ in Fig. 1) attached to an OH
44 242 group such that both of its OH groups are free (Fig. 4E). These two bands are the fundamentals of the
45 243 symmetric (ν_{sym}) and antisymmetric (ν_{asym}) OH stretching normal modes, which lie very close to the
46 244 origins of those found in the bare water molecule (gray downward arrows in Fig. 4E). If one adopts a
47 245 local OH mode perspective, the ~100 cm⁻¹ spacing between these bands can be viewed as the coupling
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Frequency ranges of the various binding sites available to water molecules at the interface, with representative spectral patterns displayed by a single H₂O molecule embedded in each site. (A) Frequency ranges displayed by a single H₂O molecule embedded in D₂O clusters in various combinations of acceptor ‘A’ and donor ‘D’ H-bonding environments. (B-H) Representative patterns of the spectral signatures of the sites obtained from isotopomer-specific spectra of (B, C, F) Cs⁺·(H₂O)(D₂O)₁₉, (D) Na⁺·(H₂O)(D₂O)₁₉, (E) H₃O⁺·(H₂O)₅, (G) Li⁺·(H₂O)(D₂O)₁₉, and (H) CH₃ND₃⁺·(H₂O)(D₂O)₁₉. The OH stretching bands are color-coded according to their site types in (A). The complete set of spectra is included in Fig. S1. 2v_{HOH} denotes the bend overtone, while $\Delta\nu_{\text{coop}}$ and $\Delta\nu_{\text{anti}}$ labels on arrows denotes the frequency shifts caused by cooperative and anticooperative interactions displayed by adding a second H-bond to an open coordination site.

matrix element between the degenerate OH groups. Interestingly, when the A motif reorients into the surface to donate two H-bonds and adopt the ADD environment, the doublet pattern (Fig. 4F) retains the $\sim 2/1$ intensity ratio with about 20% contraction of the splitting while the centroid red-shifts by about 200 cm^{-1} ($\Delta\nu_{\text{coop}}$ in Fig. 4E, 4F). This red-shift is increased upon accepting another H-bond to form the AADD

(Fig. 4G and 4H), which is the behavior expected for cooperative H-bonding in which accepting a second H-bond enhances the first). Notice, however, that the broad OH_{AADD}^b feature does not appear as a doublet, suggesting that the second acceptor H-bond suppresses the coupling between the OH groups. Interestingly, Skinner and co-workers³² considered this intramolecular coupling in simulations of condensed phase water and ice and concluded that the coupling matrix element is indeed reduced in the fully coordinated environment. Although the signal-to-noise in the AADD spectra is somewhat degraded, the trace in Fig. 4H suggests that the Fermi resonance with the bend overtone is retained, a provocative observation that warrants further investigation beyond the scope of this work.


The traces progressing upward from Fig. 4E display the trends associated with retention of one free OH group while donating an H-bond with its partner OH group, and sequentially adding acceptor groups. The formation of one donor bond to the A site creates the AD site (Fig. 4D), which results in a ~ 200 cm^{-1} red shift in the OH_{AD}^b stretch as expected. Note that the OH_{AD}^{free} band also red-shifts, and moves toward the 3705 cm^{-1} centroid of the normal modes in a free water molecule (the same frequency as the OH stretch in isolated HOD).³³ The latter shift occurs because the coupling between the two groups is suppressed when the separation between the two bands is significantly larger than the intrinsic coupling matrix element (~ 50 cm^{-1}). Although the red-shifted OH_{AD}^b fundamental is broadened (from 10 to 35 cm^{-1}) in keeping with expected H-bond behavior, it does not exhibit the intensity enhancement that is typical for H-bonds in binary systems.³⁴ When the AD site accepts another bond to form the AAD site, the OH_{ADD}^{free} transition falls closer to the decoupled OH stretch in HOD, and its companion OH_{AAD}^b transition further red-shifts by 200 - 400 cm^{-1} ($\Delta\nu_{coop}$ in Fig. 4C, D) as it broadens and gains intensity.

Finally, the survey in Fig. 4 also reveals the consequence of converting an AD site (Fig. 4D) into an ADD site (Fig. 4F) by forming a second donor bond. This blue shifts ν_{AD}^b by about 50 cm^{-1} ($\Delta\nu_{anti}$ between Fig. 4D and 4F) toward the centroid of the doublet in the OH_{ADD}^b pattern, indicating a weakening or anticooperative interaction between the two bound OH groups. A similar effect is observed in the case of transforming AAD into AADD (Fig. 4B and 4H).

II.C Frequency ranges explored by the A, AD, ADD and AAD sites

Figure 5 compares the frequency ranges associated with each binding class, which are displayed along with the predicted contributions to the spectrum of the air-water interface (solid curves above experimental spectra in Fig. 5).^{1,22}

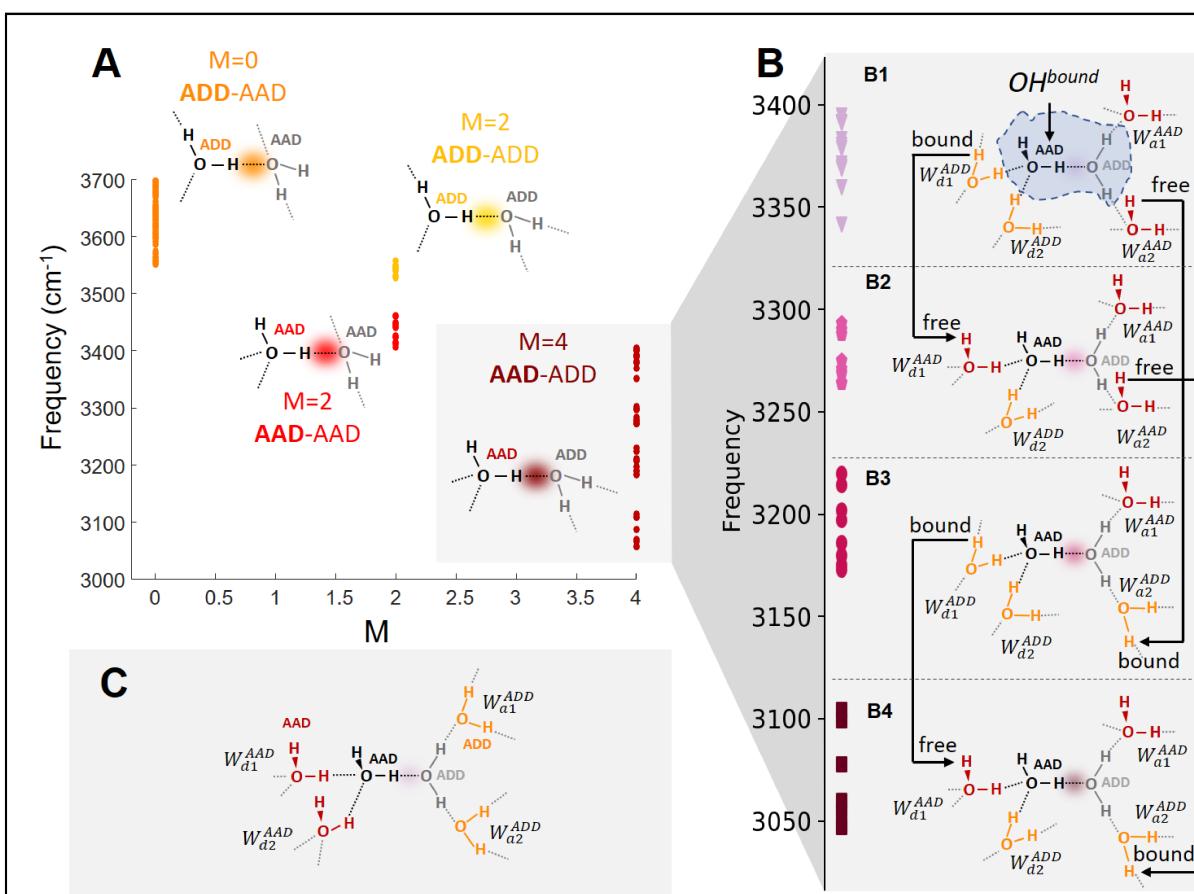
The frequency range displayed by the A sites is readily available because the ν_{sym} and ν_{asym} bands are easily identified in the linear absorption spectrum. To sample the range available to the A sites, however, we note that these only occur in minimum energy structures at smaller cluster sizes. In general, the free OH frequency has been correlated with the local electric field at the surface,³⁴⁻³⁶ such that the centroid of the ν_{sym} and ν_{asym} doublet red-shifts as the two bands come closer together. Several examples demonstrating this effect are included in Fig. 5A in which H_2O is attached to a water molecule, a hydronium ion, a proton, Mn^+ and Mn^{2+} (Fig. 5A2-A6, respectively)³⁵. Note that the intensity of the two bands also inverts in a strong electric field such that the lower energy ν_{sym} band is dominant upon attachment to a +2 charged ion. The calculated range at the interface samples much of this range, but likely does so because of large amplitude dispacements driven by thermal fluctuations, which bring the nominally free OH groups closer to H-bond acceptors on the surface. Part of this effect can also be

Figure 5. Calculated OH frequency distribution of water molecules classified by their H-bond environment at the air water interface compared to spectra obtained with finite size water clusters of the corresponding sites. Example structures, calculated frequency distributions (ref. 4, upward traces), and experimental spectra (downward traces) from various water clusters of single acceptor (A), acceptor-donor (B), acceptor-acceptor-donor (C) and acceptor-donor-donor (D) water molecules. The spectra are color coded according to the water molecule's acceptor donor type. Spectra from specific clusters are presented in (A2) $\text{H}_3\text{O}^+(\text{H}_2\text{O})_5$, (A3) $\text{H}_3\text{O}^+(\text{H}_2\text{O})_3$, (A4) $\text{H}^+(\text{H}_2\text{O})_2$, (A5) $\text{Mn}^+(\text{H}_2\text{O})$, (A6) $\text{Mn}^{2+}(\text{H}_2\text{O})$, and (B3) $\text{ND}_4^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{21}$. The rest have the M^+ labels correspond to the cation in a $\text{M}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$, for example (B2) would be $\text{Na}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$. (A5, A6) are reproduced from ref.35 with permission.

simulated using clusters warmed by absorption of a IR photon, leading to the broadened feature displayed in Fig. 5A3.

The frequency ranges explored by the **bound** OH_{AD}^b and OH_{AAD}^b oscillators can be unambiguously determined using IR^2MS^3 spectroscopy in a mode where the probe laser is tuned to one of the well-resolved **free** partner oscillators ($\text{OH}_{\text{AD}}^{\text{free}}$ and $\text{OH}_{\text{AAD}}^{\text{free}}$), highlighted in green and red in Fig. 2, respectively. Specifically, by setting the probe laser on one of these bands, the locations of *all* of the absorptions arising from the bound OH groups within each class, OH_{AD}^b and OH_{AAD}^b , are revealed by scanning the bleach laser through the spectrum. The OH_{AD}^b bands were obtained by applying the IR^2MS^3 method to the $\text{ND}_4^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{21}$ and $\text{Na}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ clusters. Both systems yield OH_{AD}^b activity over a narrow ($\sim 100 \text{ cm}^{-1}$) range near 3500 cm^{-1} , consistent with the simulated contributions from AD molecules displayed in Fig. 5B1.

In contrast to the AD behavior, the OH_{AAD}^b contributions span a larger range from 3100 to 3450 cm^{-1} . Note that the $\text{Na}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ system exhibits both AAD and AD sites so that the different behaviors are displayed by the same cluster. In addition, the range of its OH_{AAD}^b envelope, as well as that displayed by $\text{CH}_3\text{ND}_3^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$, are similar to that found in the more symmetrical $\text{Cs}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ system but extend to slightly higher energy (by $\sim 50 \text{ cm}^{-1}$). We emphasize that the OH_{AAD}^b envelope has been deconstructed to reveal the heterogeneity of the broad envelope in the Cs^+ system, with two examples presented in Fig. 4. A more complete set of these patterns is presented in Fig. S1, which illustrates how the OH_{AAD}^b broadens and effectively "tunes" through the Fermi resonance with the bend overtone with increasing red-shift. The observed OH_{AAD}^b behavior is not consistent with that calculated (Fig. 5C1),^{1,4} however, as there is no observed activity in the region of the higher energy shoulder predicted near 3600 cm^{-1} (labeled β in Fig. 5C). This discrepancy may reflect the fact that at 300 K , the large amplitude motions in the liquid enhance the contributions from more open structures while the cold clusters correspond to the intrinsic behavior of the local minima.


1
2
3 335 It is more difficult to determine the spectral range of the ADD sites because they do not have a
4 feature common to all of the variations available in the clusters, as do the A and AD sites. Nonetheless,
5 the range in the patterns could be established by probing many frequencies in the 3400-3600 cm⁻¹ region
6 where the activity from the ADD site was observed in the previous study of Cs⁺·(H₂O)₂₀.¹⁰ Because the
7 cage in Cs⁺·(H₂O)₂₀ is the most symmetrical of the PD series, we extended these measurements to the
8 CH₃NH₃⁺, Li⁺, and Na⁺ systems. The results are displayed along with the earlier Cs⁺ spectra in Fig. 5.
9 Interestingly, all of the activity in the 3400-3600 cm⁻¹ range not associated with AD bands appears as a
10 doublet with about same splitting and intensity distribution such that the higher energy member
11 dominates the lower feature by about a factor of two. The doublet splitting and intensity distribution are
12 quite similar in all cases except the Na⁺ spectrum (Fig. 5D), which appears broader than those below and
13 above it - an effect likely due to overlapping bands. Note that the range of simulated ADD behavior at the
14 interface (top trace) encompasses that observed experimentally. The fact that these heterogeneous
15 contributions to the spectrum in the 3500 cm⁻¹ region occur with similar shapes is surprising and
16 significant. The center frequency of the doublet motif appears to be simply displaced across the predicted
17 region. The issue of whether the ADD doublet arises from the coupling between the OH oscillators when
18 a water molecule is embedded in a network is important, as it involves the question of whether the
19 localized oscillators are degenerate in that binding site (for example using HDO). The observation that the
20 centroid of the doublet motif evolves over 100 cm⁻¹, about the same energy as the splitting between the
21 peaks, while maintaining a similar intensity profile suggests that this splitting is indeed mostly due to the
22 coupling, as opposed to "diagonal disorder" in the local force constants.²
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

355 *III. Qualitative interpretation of trends and theoretical analysis of the network topologies that drive the*
356 *local OH frequencies of embedded water molecules: Contributions from the second hydration shell and*
357 *beyond*

358 The general trend in the OH frequencies of the AD and AAD sites is revealed to be $\nu_{AD}^{free} >$
359 $\nu_{AAD}^{free} > \nu_{AD}^b > \nu_{AAD}^b$. Qualitatively, we can rationalize this behavior as reflecting the decrease in the
360 effective force constants of both the OH groups when a water molecule accepts a hydrogen bond. When
361 the water molecule has a OH^{free} group, its OH^b frequency is lowered incrementally with the number of
362 H-bonds it accepts. This general trend is also displayed when H₂O binds to metal cations: the presence of
363 positive charge that attracts the electrons on oxygen weakens the bonds to the hydrogen atoms, effectively
364 pushing the positively charged protons away. At the extreme, we note that the OH stretches in H₂O⁺ are
365 ~500 cm⁻¹ lower than those in H₂O,³⁷⁻³⁸ reflecting the connection between the effective force constant and
366 the electron density around the OH bond. Characterization of the H-bonding strength in the context of
367 partial charge transfer has been discussed at length in the context of the isomers formed by the neutral
368 water hexamer.^{5,39} What accounts for the large frequency ranges exhibited by the AAD and AADD sites,
369 given that they all share the same local coordination arrangement? One correlation that accounts for long
370 range interactions is the dependence of the OH^b frequencies on the net local electric field at the bond
371 center.^{2,36} Skinner and Ohno^{3,5} have developed schemes to classify this dependence according to the
372 local network topology. Those maps were generated by exploiting experimental results on the frequencies
373 of the neutral water hexamer to calibrate the methods, and then use these calculations to follow how they
374 are modified in the various isomeric forms. In the scheme reported by Ohno,³ the index, M, is defined as:

$$M = -d' + a' + d'' - a'' \quad [1]$$

375 where d' (0 or 1) and a' (0, 1 or 2) denote the number of additional donor (d') and acceptor (a') H-bonds
376 engaged by the molecule with the OH^b group (gray dashed bonds on the structures in Fig. 6A). Similarly,
377 d'' (0, 1, or 2) and a'' (0 or 1) labels the number of additional donor and acceptor H-bonds on the water
378

Figure 6. Calculated bound OH frequencies in isomers of the $\text{Cs}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ classified by their hydrogen bond environments. (A) Harmonic frequencies of the bound OH groups plotted against the M index proposed by Ohno.⁵ These points are further classified and color coded with an index proposed by Skinner and coworkers, which capture the binding type of both the donor and acceptor water molecules of the H-bond of interest. The schematic structures are shown as water dimers. For example, AAD-ADD corresponds to the case where an OH group on an AAD water molecule donates to an ADD water molecule. The OH oscillators indexed by M=4 (or AAD-ADD) are again further classified in (B) by the binding types of water molecules surrounding the dimer (W_d and W_a). B1 and C represent the environments that yield the weakest and strongest H-bond in the central dimer, respectively. B1-B4 are the structures present in the clusters. The black arrows label the change of exterior water molecule's type from one class to another.

tethered to OH^b . For a specific example, the AAD-ADD pair of water molecules displayed in the lower right of Fig. 6A has the value $M = -0+2+2-0 = 4$. The points in Fig. 6A are the calculated OH^b frequencies of the all the OH groups in the $\text{Cs}^+(\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ PD cage structure, sorted by the M values that encode their H-bonding environments. Indeed, there is a general trend for lower OH^b frequencies with larger M values, but note that the systems identified by M=4 are calculated to vary by $\sim 350 \text{ cm}^{-1}$. Thus, it is evident that variations in the more extended surrounding network must be taken into account to recover the local OH^b behavior.

1
2
3 386 A useful ansatz that rationalizes the
4 dependence of OH^b frequencies on the surrounding
5 network topology casts a strong H-bond as a
6 frustrated intermolecular proton transfer reaction.⁴⁰
7 387 In that picture, the frequency of the OH group
8 reflects the local endothermicity of this reaction.⁴¹
9 388 This is, in turn, determined by how well the
10 extended H-bonding configuration could solvate the
11 incipient H_3O^+ and OH^- ion pair generated by proton
12 transfer.⁹ This situation is illustrated in the set of
13 configurations presented in Fig. 6B, which focuses
14 on the AAD site in the specific situation where the
15 donor binds to an ADD molecule, an arrangement
16 that corresponds to $M=4$ according to Eq. [1]. The
17 key issue is to explore the role played by the site
18 environments occupied by the four molecules
19 solvating the water dimer bound together by the
20 OH^b group (black AAD and gray ADD in dashed
21 box, Fig. 6B1). Two (W_d) donate and two (W_a)
22 accept H-bonds at the four contact points indicated
23 in Fig. 6B1. Both H_3O^+ and OH^- ions adopt threefold hydration shells at the interface and in clusters.⁴²⁻⁴⁴
24 In the case of H_3O^+ , the three molecules in the first hydration shell reside in ADD sites,^{24, 42, 45} while those
25 in the first shell around hydroxide adopt the AAD configuration.⁴⁶ This is the scenario depicted in Fig. 6C
26 when applied to the pair of water molecules bound by OH^b . By similar reasoning, the arrangement
27 displayed in Fig. 6B1 offers the poorest hydration environment since both W_a and W_d water molecules
28 now reside in sites opposite to those that best solvate the ion pair. The calculated frequencies of the OH^b
29 sites with 6B1 structures are indeed the least red-shifted and form a distinct group near 3375 cm^{-1} .
30 Unfortunately, the favorable 6C arrangement does not occur in the low energy forms of the $Cs^+\cdot(H_2O)_{20}$
31 PD cage structure. A recent theoretical investigation of the $(H_2O)_{20}$ cluster reported that this arrangement
32 indeed yields the strongest hydrogen bond.⁴⁷ Nonetheless, it is instructive to incrementally change the site
33 classes of the four outer water molecules (W_a and W_d in Fig. 6B, gray box) into the more favorable sites,
34 starting from the 6B1 motif. For example, changing a donor water (W_{d1}) from ADD (denoted as W_{d1}^{ADD})
35 to the AAD (denoted as W_{d1}^{AAD}) orientation with a free OH group yields the 6B2 hydration topology,
36 which indeed identifies a common hydration motif shared by the OH^b oscillators with frequencies around
37 3275 cm^{-1} (panel 6B2). On the other hand, changing a W_{a2}^{ADD} water to the W_{a2}^{AAD} motif yields the network
38 structure indicated in 6B3, which is the environment common to the OH^b transitions near 3200 cm^{-1} . Note
39 that this group occurs with about twice the shift (relative to the 6B1 class) as those in the 6B2 panel.
40 Interestingly, a similar change in frequency occurs when the one of the W_a waters in the 6B2 structure is
41 switched from AAD to ADD, thus generating the 6B4 arrangement. That topology is common to the
42 group of OH^b transitions near 3075 cm^{-1} , the most red-shifted calculated for this PD structure.
43
44

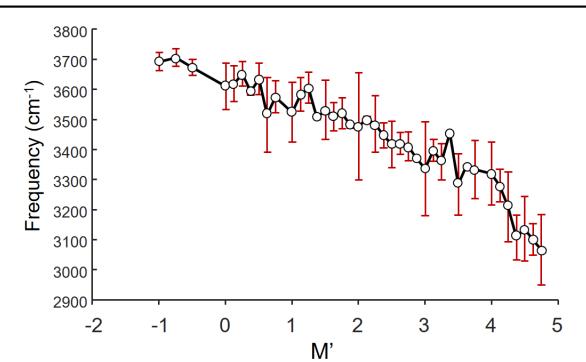
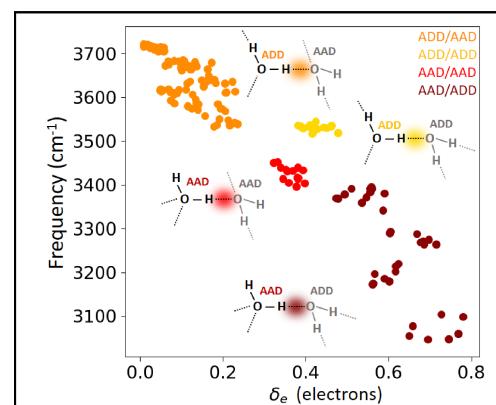


Figure 7. Calculated bound OH frequencies in various water cluster ions sorted by their M' index, defined by Eq. [2]. Harmonic frequency calculation of isomers of the $M^+\cdot(H_2O)(D_2O)_{n-1}$ ($M=Li, Na, Cs, ND_4, CD_3NH_3$, and $n=20$) clusters were done at B3LYP/6-31++G** level of theory and basis with the LANL2DZ pseudopotential for Cs. Frequencies were scaled by 0.973.

50 426 The trends displayed in Fig. 6B thus elucidate the structural variations experienced by an OH^b
51 group that is most simply described as in an AAD-ADD, $M=4$ local environment. The calculated
52 frequency groupings in Fig. 6B are distinct because we have focused on the structurally well-defined PD
53 cage in $Cs^+\cdot(H_2O)_{20}$. To introduce a modified index that describes this extended topological-dependence
54 of the OH^b shifts, we first note that the $W_a^{AAD} \rightarrow W_a^{ADD}$ conversion yields about twice the shift as that
55 found for $W_d^{ADD} \rightarrow W_d^{AAD}$. One way to classify the frequencies associated with the four arrangements is
56

1
2
3 432 to count the number of hydrogen bonds in W_a and W_d water
4 433 molecules associated with the solvent structure and account
5 434 for the fact that changing the bonding to the W_a water
6 435 molecules induces about twice the shift as do those involving
7 436 the W_d molecules. A scheme that accounts for the OH^b
8 437 location for various possible $W_{a,d}$ arrangements with the
9 438 same M value is provided by M' :


10
11
12 439
13 440
$$M' = M + \frac{-d'^{(2)} + a'^{(2)}}{8} + \frac{d''^{(2)} - a''^{(2)}}{4} \quad [2]$$

14
15 441 where M is the index defined in Eq. [1] and the additional
16 442 terms capture the shifts induced by the configurations of the
17 443 $W_{a,d}$ molecules. Specifically, $a'^{(2)}$ and $d'^{(2)}$ are the total
18 444 number of extra acceptor and donor H-bonds in the W_d water
19 445 molecules (W_{d1} and W_{d2} in Fig. 6B) apart from those to the
20 446 dimer of interest, whereas $a''^{(2)}$ and $d''^{(2)}$ are the total
21 447 number of extra acceptor and donor hydrogen bonds in the
22 448 W_a molecules excluding the ones to the dimer, (W_{a1} and W_{a2}
23 449 in Fig. 6B). The ' and " superscripts denote the donor and
24 450 acceptor sides of the dimer, which follows the convention
25 451 established in Eq. [1]. The (2) labels H-bonds as belonging
26 452 to the second hydration shell. Several example calculations of the M' are provided in Fig. S11. The
27 453 performance of this index when applied to all of the site configurations in this work is presented in Fig. 7.
28 454 The M' index thus captures the effect of the sites occupied by water molecules in the first and second
29 455 hydration shells around a particular OH group.

30
31 456 Qualitatively, the M' index reflects the cooperativity and anticooperativity effects caused by the
32 457 water molecules surrounding the dimer bound by OH^b . In general, when the W_d water molecules accept
33 458 one or more H-bonds (larger $a'^{(2)}$), the strength of the OH^b bond increases, which is again a statement of
34 459 cooperativity. The degree of cooperativity depends on the strength of the H-bond between the W_d water
35 460 molecule and the OH^b . This is most effective when a W_d molecule accepts two H-bonds, and retains the
36 461 free OH, making its contributions to $d'^{(2)}$ and $a'^{(2)}$ zero and two, respectively.

37
38 462 On the other hand, a W_a water molecule strengthens the H-bond to OH^b the most when it donates two H-
39 463 bonds (making its contribution to $d''^{(2)} = 2$) and accepts no additional hydrogen bonds (making its
40 464 contribution to $a''^{(2)} = 0$). The possible ranges of contributions from each second shell water molecule to
41 465 these parameters are: $d'^{(2)} \in (0,1)$, $a'^{(2)} \in (0,1,2)$, $d''^{(2)} \in (0,1,2)$, $a''^{(2)} \in (0,1)$, and the full ranges of
42 466 these parameters is twice as large when considering all the second shell water molecules. An interesting
43 467 observation is that W_a molecules have roughly twice the impact on the H-bond strength than do W_d
44 468 molecules (reflected as the 1/4 vs. 1/8 factors in Eq. [2]).

45
46 469 The above discussion focused on an empirical connection between the shape of the surrounding
47 470 network and the OH^b frequency using arguments based on shifts in the electron density. To address the
48 471 underlying changes in bonding that drive these values, we turn to electronic structure calculations to
49 472 explore the changes in the electron density in the region of the oxygen atom of the accepting water
50 473 molecule for various hydrogen bonding geometries depicted in Fig. 6B. Specifically, when a hydrogen

Figure 8. Bound OH frequency dependence on changes in the electron density in the donor OH group and the region along the hydrogen bond.

Calculations are carried for the pentagonal dodecahedron cage structure of $Cs^+ \cdot (H_2O)(D_2O)_{19}$. Changes are relative to the densities in the isolated water dimer, held fixed at the geometry of each motif in the cage.

bond is formed, we expect an increase in electron density (δ_{HB}) between the hydrogen atom in the donating water molecule and the oxygen atom in the accepting water molecule along with a decrease in electron density (δ_{OH}) in the region of the OH bond in the donating water molecule. We explored changes to the electron density in these two regions as the strength of the hydrogen bond is tuned through the environments of the donor and acceptor water molecules. We applied this procedure to follow changes in the electronic structure when a water dimer is embedded in a solvation shell of zero to six water molecules (up to three on the open coordination sites on each water). Details are included in the supporting materials. Based on the results for the analysis of these model systems, we characterize changes in the electron density (δ_e) in terms of the differences in the integrated electron density in the hydrogen bond region (δ_{HB}) and along the OH bond that donates into the hydrogen bond (δ_{OH}) when additional water molecules are allowed to form a hydrogen bonding network with the hydrogen bonding pair of water molecules of interest. This analysis is applied to each of the hydrogen bonds in the $\text{Cs}^+ \cdot (\text{H}_2\text{O})_{20}$ pentagonal dodecahedron structure where the other eighteen water molecules provide the additional hydrogen bonding network. Specifically, electron density changes are calculated by taking the difference between the electron density in the hydrogen bonding region when the pair of water molecules is incorporated in the $(\text{H}_2\text{O})_{20}$ cage relative to the electron density of the isolated dimer. The structures of the donor/acceptor pair of water molecules are the same for both calculations. The effect of the environment on the strength of the hydrogen bond of interest is thus captured by $\delta_e = \delta_{HB} - \delta_{OH}$. Structures where the solvation environment leads to a stronger hydrogen bond (and hence lower frequency) will have $\delta_{HB} > 0$ and $\delta_{OH} < 0$, making δ_e positive.

In Fig. 8, we plot the harmonic OH^b frequencies of all hydrogen-bonded OH stretches in 5 low energy isomers of $\text{Cs}^+ \cdot (\text{H}_2\text{O})(\text{D}_2\text{O})_{19}$ as a function of δ_e . The colors are used to differentiate the types of water molecules involved in these hydrogen bonds. As expected from the above discussion, the red shift of the hydrogen-bonded OH bond increases with electron density in the hydrogen-bonding region. We can further explore these effects by identifying the second solvation shell environment for the hydrogen bonds formed between AAD and ADD water molecules (shown in red). The OH bonds with the lowest frequency (and highest electron density in the hydrogen-bonding region) are those for which the acceptor water molecule is donating to an ADD and an AAD water molecule. The higher frequency OH^b groups donate to two AAD water molecules. As discussed above, and seen in Fig. 8, hydrogen bonds to ADD water molecules are stronger (lower frequency) than ones to AAD water molecules when the donor molecule is in the same environment.

IV. Summary

We have isolated the intrinsic spectral signatures of the OH stretching motions on a single water molecule embedded at various sites within the water cage structures that assemble around atomic and molecular cations. This is accomplished using an isotopic labeling scheme in which a single intact H_2O molecule is incorporated into an otherwise perdeuterated cage. The site-specific spectra are then extracted by carrying out two-color, IR-IR photobleaching in an isotopomer-selective mode. The specific patterns recovered with this approach are quite simple, generally consisting of one to three localized absorptions arising from the two correlated fundamentals on the OH groups of the same water molecule. The only complication to this pattern is the appearance of a third band when the red-shifted OH bands fall near the overtone of the HOH intramolecular bending vibration at $\sim 3200 \text{ cm}^{-1}$. Different characteristic patterns are observed for the five binding sites in play at the air-water interface, which differ according to the number of donor and acceptor H-bonds: A, AD, AAD, ADD, and AADD. Although the patterns are preserved in many systems, the frequency ranges over which they appear depend strongly on the site type, with the largest excursions displayed by the sites that yield larger red-shifts (i.e., AAD > AADD > ADD > AD >

1
2
3 519 A). The simple doublet structure of isolated water arising from the symmetric and antisymmetric OH
4 520 stretch normal modes is preserved in the ADD sites but with a splitting reduced by about 20%. The
5 521 AADD sites are the most difficult to characterize because they are embedded in overlapping band
6 522 structures. Deconvolution yields a single, broadened feature, suggesting suppression of the coupling
7 523 between the OH group. These results provide a diverse learning set with which to construct extended
8 524 frequency maps that describe how the IR fundamental of an embedded OH oscillator depends on the
9 525 topology of the extended water network, and does so in systems that can be treated with accurate
10 526 theoretical methods.⁴⁸⁻⁵¹

11
12 527 **Acknowledgements**

13 528 MAJ thanks the Chemistry Division of the National Science Foundation for supporting this work under
14 529 grant CHE-1900119. The IR-IR photofragmentation mass spectrometer crucial for this work was
15 530 developed under AFOSR DURIP grant FA9550-17-1-0267. ABM thanks the Chemistry division of the
16 531 National Science Foundation for supporting this work under grant CHE-1856125. Parts of this work were
17 532 performed using the Ilahie cluster, which was purchased using funds from a MRI grant from the National
18 533 Science Foundation (CHE-1624430). EM and SSX acknowledge support from the US Department of
19 534 Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences
20 535 and Biosciences at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national
21 536 laboratory operated for DOE by Battelle. This research also used resources of the National Energy
22 537 Research Scientific Computing Center, which is supported by the Office of Science of the U.S.
23 538 Department of Energy under Contract No. DE-AC02-05CH11231

24 539
25 540
26 541
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

542 **References:**

543 1. Tainter, C. J.; Ni, Y.; Shi, L.; Skinner, J. L. Hydrogen bonding and OH-stretch spectroscopy in
544 water: hexamer (cage), liquid surface, liquid, and ice. *J Phys Chem Lett* **2013**, *4* (1), 12-17.

545 2. Gruenbaum, S. M.; Tainter, C. J.; Shi, L.; Ni, Y.; Skinner, J. L. Robustness of Frequency, Transition
546 Dipole, and Coupling Maps for Water Vibrational Spectroscopy. *Journal of Chemical Theory and*
547 *Computation* **2013**, *9* (7), 3109-3117.

548 3. Ohno, K.; Okimura, M.; Akai, N.; Katsumoto, Y. The effect of cooperative hydrogen bonding on
549 the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and
550 density functional theory. *Physical chemistry chemical physics : PCCP* **2005**, *7* (16), 3005-3014.

551 4. Ni, Y. C.; Skinner, J. L. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid
552 and at the liquid-vapor interface, respectively. *Journal of Chemical Physics* **2015**, *143* (1).

553 5. Tainter, C. J.; Skinner, J. L. The water hexamer: three-body interactions, structures, energetics,
554 and OH-stretch spectroscopy at finite temperature. *J. Chem. Phys.* **2012**, *137* (10), 104304.

555 6. Hsieh, C. S.; Okuno, M.; Hunger, J.; Backus, E. H. G.; Nagata, Y.; Bonn, M. Aqueous Heterogeneity
556 at the Air/Water Interface Revealed by 2D-HD-SFG Spectroscopy. *Angewandte Chemie-International*
557 *Edition* **2014**, *53* (31), 8146-8149.

558 7. Inoue, K.; Ishiyama, T.; Nihonyanagi, S.; Yamaguchi, S.; Morita, A.; Tahara, T. Efficient Spectral
559 Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected
560 Vibrational Sum Frequency Generation Spectroscopy. *Journal of Physical Chemistry Letters* **2016**, *7* (10),
561 1811-1815.

562 8. Yang, N.; Duong, C. H.; Kelleher, P. J.; Johnson, M. A.; McCoy, A. B. Isolation of site-specific
563 anharmonicities of individual water molecules in the $\text{I}^-\cdot(\text{H}_2\text{O})_2$ complex using tag-free, isotopomer
564 selective IR-IR double resonance. *Chem. Phys. Lett.* **2017**, *690*, 159-171.

565 9. Wolk, A. B.; Leavitt, C. M.; Garand, E.; Johnson, M. A. Cryogenic Ion Chemistry and Spectroscopy.
566 *Acc. Chem. Res.* **2014**, *47* (1), 202-210.

567 10. Yang, N.; Duong, C. H.; Kelleher, P. J.; McCoy, A. B.; Johnson, M. A. Deconstructing Water's
568 Diffuse OH Stretching Vibrational Spectrum With Cold Clusters. *Science* **2019**, *364* (6437), 275-278.

569 11. Zatula, A. S.; Ryding, M. J.; Andersson, P. U.; Uggerud, E. Proton Mobility and Stability of Water
570 Clusters Containing Alkali Metal Ions. *Int. J. Mass Spec.* **2012**, *330*, 191-199.

571 12. Ryding, M. J.; Zatula, A. S.; Andersson, P. U.; Uggerud, E. Isotope exchange in reactions between
572 D₂O and size-selected ionic water clusters containing pyridine, H+(pyridine)(m)(H₂O)(n). *Physical*
573 *chemistry chemical physics : PCCP* **2011**, *13* (4), 1356-1367.

574 13. Wolke, C. T.; Fournier, J. A.; Miliordos, E.; Kathmann, S. M.; Xantheas, S. S.; Johnson, M. A.
575 Isotopomer-Selective Spectra of a Single Intact H₂O Molecule in the Cs⁺(D₂O)₅H₂O Isotopologue: Going
576 Beyond Pattern Recognition to Harvest the Structural Information Encoded in Vibrational Spectra. *J.*
577 *Chem. Phys.* **2016**, *144* (7), 074305.

578 14. Schaefer, J.; Backus, E. H. G.; Nagata, Y.; Bonn, M. Both Inter- and Intramolecular Coupling of O-
579 H Groups Determine the Vibrational Response of the Water/Air Interface. *J Phys Chem Lett* **2016**, *7* (22),
580 4591-4595.

581 15. Seki, T.; Sun, S. M.; Zhong, K.; Yu, C. C.; Machel, K.; Dreier, L. B.; Backus, E. H. G.; Bonn, M.;
582 Nagata, Y. Unveiling Heterogeneity of Interfacial Water through the Water Bending Mode. *Journal of*
583 *Physical Chemistry Letters* **2019**, *10* (21), 6936-6941.

584 16. Nihonyanagi, S.; Kusaka, R.; Inoue, K.; Adhikari, A.; Yamaguchi, S.; Tahara, T. Accurate
585 determination of complex c(2) spectrum of the air/water interface. *Journal of Chemical Physics* **2015**,
586 *143* (12).

587 17. Kirov, M. V.; Fanourgakis, G. S.; Xantheas, S. S. Identifying the most stable networks in
588 polyhedral water clusters. *Chemical Physics Letters* **2008**, *461* (4), 180-188.

1
2
3 589 18. Cooper, R. J.; Chang, T. M.; Williams, E. R. Hydrated Alkali Metal Ions: Spectroscopic Evidence for
4 590 Clathrates. *J. Phys. Chem. A* **2013**, *117* (30), 6571-6579.
5 591 19. Gonzalez, B. S.; Hernandez-Rojas, J.; Wales, D. J. Global minima and energetics of $\text{Li}^+(\text{H}_2\text{O})_n$, and
6 592 $\text{Ca}^{2+}(\text{H}_2\text{O})_n$ clusters for $n \leq 20$. *Chem. Phys. Lett.* **2005**, *412* (1-3), 23-28.
7 593 20. Willow, S. Y.; Singh, N. J.; Kim, K. S. NH_4^+ Resides Inside the Water 20-mer Cage As Opposed to
8 594 H_3O^+ , Which Resides on the Surface: A First Principles Molecular Dynamics Simulation Study. *Journal of*
9 595 *Chemical Theory and Computation* **2011**, *7* (11), 3461-3465.
10 596 21. Shin, J.-W.; Hammer, N. I.; Diken, E. G.; Johnson, M. A.; Walters, R. S.; Jaeger, T. D.; Duncan, M.
11 597 A.; Christie, R. A.; Jordan, K. D. Infrared signature of structures associated with the $\text{H}^+(\text{H}_2\text{O})_n$ ($n = 6$ to 27)
12 598 clusters. *Science* **2004**, *304* (5674), 1137-1140.
13 599 22. Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M. Vibrational Spectroscopy of Water at Interfaces.
14 600 *Accounts Chem Res* **2012**, *45* (1), 93-100.
15 601 23. Fournier, J. A.; Wolke, C. T.; Johnson, C. J.; Johnson, M. A.; Heine, N.; Gewinner, S.; Schollkopf,
16 602 W.; Esser, T. K.; Fagiani, M. R.; Knorke, H.; Asmis, K. R. Site-specific vibrational spectral signatures of
17 603 water molecules in the magic $\text{H}_3\text{O}^+(\text{H}_2\text{O})_{20}$ and $\text{Cs}^+(\text{H}_2\text{O})_{20}$ clusters. *Proc. Natl. Acad. Sci.* **2014**, *111* (51),
18 604 18132-18137.
19 605 24. Fournier, J. A.; Johnson, C. J.; Wolke, C. T.; Weddle, G. H.; Wolk, A. B.; Johnson, M. A. Vibrational
20 606 spectral signature of the proton defect in the three-dimensional $\text{H}^+(\text{H}_2\text{O})_{21}$ cluster. *Science* **2014**, *344*
21 607 (6187), 1009-1012.
22 608 25. Stachl, C. N.; Williams, E. R. Effects of Temperature on $\text{Cs}^+(\text{H}_2\text{O})_{20}$ Clathrate Structure. *Journal of*
23 609 *Physical Chemistry Letters* **2020**, *11*, 6127-6132.
24 610 26. Xantheas, S. S. Low-lying energy isomers and global minima of aqueous nanoclusters: Structures
25 611 and spectroscopic features of the pentagonal dodecahedron $(\text{H}_2\text{O})_{20}$ and $\text{H}_3\text{O}^+(\text{H}_2\text{O})_{20}$. *Can J Chem Eng*
26 612 **2012**, *90* (4), 843-851.
27 613 27. Robertson, W. H.; Weddle, G. H.; Kelley, J. A.; Johnson, M. A. Solvation of the $\text{Cl}^-\text{H}_2\text{O}$ Complex in
28 614 CCl_4 Clusters: The Effect of Solvent-Mediated Charge Redistribution on the Ionic H-Bond. *J. Phys. Chem.*
29 615 **A** **2002**, *106*, 1205-1209.
30 616 28. McCoy, A. B. The role of electrical anharmonicity in the association band in the water spectrum.
31 617 *J. Phys. Chem. B* **2014**, *118* (28), 8286-8294.
32 618 29. McCoy, A. B.; Guasco, T. L.; Leavitt, C. M.; Olesen, S. G.; Johnson, M. A. Vibrational
33 619 manifestations of strong non-Condon effects in the $\text{H}_3\text{O}^+\text{X}_3$ ($\text{X} = \text{Ar}, \text{N}_2, \text{CH}_4, \text{H}_2\text{O}$) complexes: a possible
34 620 explanation for the intensity in the "association band" in the vibrational spectrum of water. *Phys. Chem.*
35 621 *Chem. Phys.* **2012**, *14* (20), 7205-7214.
36 622 30. Roscioli, J. R.; Diken, E. G.; Johnson, M. A.; Horvath, S.; McCoy, A. B. Prying apart a water
37 623 molecule with anionic H-bonding: a comparative spectroscopic study of the $\text{X}^-\text{H}_2\text{O}$ ($\text{X} = \text{OH}, \text{O}, \text{F}, \text{Cl}$, and
38 624 Br) binary complexes in the 600-3800 cm^{-1} region. *J. Phys. Chem. A* **2006**, *110* (15), 4943-4952.
39 625 31. Yang, N.; Duong, C. H.; Kelleher, P. J.; Johnson, M. A. Capturing intrinsic site-dependent spectral
40 626 signatures and lifetimes of isolated OH oscillators in extended water networks. *Nat. Chem.* **2020**, *12*,
41 627 159-164.
42 628 32. Li, F.; Skinner, J. L. Infrared and Raman line shapes for ice Ih. II. H_2O and D_2O . *Journal of*
43 629 *Chemical Physics* **2010**, *133* (24).
44 630 33. Shimanouchi, T. *Tables of Molecular Vibrational Frequencies Consolidated Volume I*, National
45 631 Bureau of Standards. 1972; p 1-160.
46 632 34. Hermansson, K. Electric-field effects on the OH vibrational frequency and infrared absorption
47 633 intensity for water. *J. Chem. Phys.* **1993**, *99*, 861-868.
48 634 35. Carnegie, P. D.; Bandyopadhyay, B.; Duncan, M. A. Infrared Spectroscopy of $\text{Mn}^+(\text{H}_2\text{O})$ and
49 635 $\text{Mn}^{2+}(\text{H}_2\text{O})$ via Argon Complex Predissociation. *Journal of Physical Chemistry A* **2011**, *115* (26), 7602-
50 636 7609.
51
52
53
54
55
56
57
58
59
60

1
2
3 637 36. Kebede, G. G.; Mitev, P. D.; Briels, W. J.; Hermansson, K. Red-shifting and blue-shifting OH
4 638 groups on metal oxide surfaces - towards a unified picture. *Physical chemistry chemical physics : PCCP*
5 639 **2018**, *20* (18), 12678-12687.

6 640 37. Roth, D.; Dopfer, O.; Maier, J. P. Intermolecular potential energy surface of the proton-bound
7 641 H₂O⁺-He dimer: Ab initio calculations and IR spectra of the O-H stretch vibrations. *Physical chemistry*
8 642 *chemical physics : PCCP* **2001**, *3* (12), 2400-2410.

9 643 38. Huet, T. R.; Pursell, C. J.; Ho, W. C.; Dinelli, B. M.; Oka, T. Infrared-Spectroscopy and Equilibrium
10 644 Structure of H₂O+(X)over-Tilde2b1). *Journal of Chemical Physics* **1992**, *97* (9), 5977-5987.

11 645 39. Guevara-Vela, J. M.; Romero-Montalvo, E.; Gomez, V. A. M.; Chavez-Calvillo, R.; Garcia-Revilla,
12 646 M.; Francisco, E.; Pendas, A. M.; Rocha-Rinza, T. Hydrogen Bond Cooperativity and Anticooperativity
13 647 Within the Water Hexamer. *Phys. Chem. Chem. Phys.* **2016**, *18* (29), 19557-19566.

14 648 40. Craig, S. M.; Menges, F. S.; Duong, C. H.; Denton, J. K.; Madison, L. R.; McCoy, A. B.; Johnson, M.
15 649 A. Hidden Role of Intermolecular Proton Transfer in the Anomalously Diffuse Vibrational Spectrum of a
16 650 Trapped Hydronium Ion. *Proc. Natl. Acad. Sci. USA* **2017**, *114* (24), E4706-E4713.

17 651 41. Duong, C. H.; Yang, N.; Johnson, M. A.; DiRisio, R. J.; McCoy, A. B.; Yu, Q.; Bowman, J. M.
18 652 Disentangling the Complex Vibrational Mechanics of the Protonated Water Trimer by Rational Control of
19 653 Its Hydrogen Bonds. *J. Phys. Chem. A* **2019**, *123* (37), 7965-7972.

20 654 42. Fournier, J. A.; Wolke, C. T.; Johnson, M. A.; Odbadrakh, T. T.; Jordan, K. D.; Kathmann, S. M.;
21 655 Xantheas, S. S. Snapshots of proton accommodation at a microscopic water surface: understanding the
22 656 vibrational spectral signatures of the charge defect in cryogenically cooled H⁺·(H₂O)_{n=2-28} clusters. *J.
23 657 Phys. Chem. A* **2015**, *119* (36), 9425-9440.

24 658 43. Robertson, W. H.; Diken, E. G.; Price, E. A.; Shin, J. W.; Johnson, M. A. Spectroscopic
25 659 determination of the OH- solvation shell in the OH-center dot(H₂O)(n) clusters. *Science* **2003**, *299*
26 660 (5611), 1367-1372.

27 661 44. Mundy, C. J.; Kuo, I. F. W.; Tuckerman, M. E.; Lee, H. S.; Tobias, D. J. Hydroxide Anion at the Air-
28 662 water Interface. *Chemical Physics Letters* **2009**, *481* (1-3), 2-8.

29 663 45. Fournier, J. A.; Wolke, C. T.; Johnson, C. J.; Johnson, M. A.; Heine, N.; Gewinner, S.; Schollkopf,
30 664 W.; Esser, T. K.; Fagiani, M. R.; Knorke, H.; Asmis, K. R. Site-Specific Vibrational Spectral Signatures of
31 665 Water Molecules in the Magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ Clusters. *Proc. Natl. Acad. Sci.* **2014**, *111* (51),
32 666 18132-18137.

33 667 46. Bankura, A.; Chandra, A. Hydration structure and dynamics of a hydroxide ion in water clusters
34 668 of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies. *Chem
35 669 Phys* **2012**, *400*, 154-164.

36 670 47. Alexei A. Kananenka, J. L. S. Unusually strong hydrogen bond cooperativity in particular (H₂O)₂₀
37 671 clusters. *Physical chemistry chemical physics : PCCP* **2020**, *Advance Article*.

38 672 48. Paesani, F.; Voth, G. A. The Properties of Water: Insights from Quantum Simulations. *J. Phys.
39 673 Chem. B* **2009**, *113* (17), 5702-5719.

40 674 49. Reddy, S. K.; Moberg, D. R.; Straight, S. C.; Paesani, F. Temperature-dependent vibrational
41 675 spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential
42 676 energy function. *Journal of Chemical Physics* **2017**, *147* (24).

43 677 50. Riera, M.; Gotz, A. W.; Paesani, F. The i-TTM model for ab initio-based ion-water interaction
44 678 potentials. II. Alkali metal ion-water potential energy functions. *Physical chemistry chemical physics :
45 679 PCCP* **2016**, *18* (44), 30334-30343.

46 680 51. Ceriotti, M.; Fang, W.; Kusalik, P. G.; McKenzie, R. H.; Michaelides, A.; Morales, M. A.; Markland,
47 681 T. E. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current
48 682 Challenges. *Chem. Rev.* **2016**, *116* (13), 7529-7550.

49 683