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Abstract

We adopt the deep learning method CASI-3D (Convolutional Approach to Structure Identification-3D) to identify
protostellar outflows in molecular line spectra. We conduct magnetohydrodynamics simulations that model
forming stars that launch protostellar outflows and use these to generate synthetic observations. We apply the 3D
radiation transfer code RADMC-3D to model 12CO (J=1–0) line emission from the simulated clouds. We train two
CASI-3D models: ME1 is trained to predict only the position of outflows, while MF is trained to predict the fraction
of the mass coming from outflows in each voxel. The two models successfully identify all 60 previously visually
identified outflows in Perseus. Additionally, CASI-3D finds 20 new high-confidence outflows. All of these have
coherent high-velocity structure, and 17 of them have nearby young stellar objects, while the remaining three are
outside the Spitzer survey coverage. The mass, momentum, and energy of individual outflows in Perseus predicted
by model MF is comparable to the previous estimations. This similarity is due to a cancellation in errors: previous
calculations missed outflow material with velocities comparable to the cloud velocity; however, they compensate
for this by overestimating the amount of mass at higher velocities that has contamination from nonoutflow gas. We
show that outflows likely driven by older sources have more high-velocity gas compared to those driven by
younger sources.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Stellar jets (1607); Convolutional neural
networks (1938); Astronomy data analysis (1858); Star formation (1569); Molecular clouds (1072)

1. Introduction

Protostars launch collimated bipolar outflows along magnetic
field lines when accreting mass from their disks. Bipolar outflows
eject high-velocity gas into their natal molecular clouds, injecting
a substantial amount of energy into their surroundings (Frank et al.
2014; Bally 2016). Jets and outflows also significantly reduce
protostellar masses and accretion rates, which primarily resolves
the low “core-to-star efficiency problem” (Myers 2008; Hansen
et al. 2012; Machida & Hosokawa 2013; Offner & Arce 2014). In
addition, outflows disperse some of the surrounding gas, reducing
the global star formation rate (Matzner 2007; Arce et al. 2010;
Federrath et al. 2014). The extra momentum and energy from the
outflows compressing and heating the gas can considerably
change cloud properties (Matzner & Jumper 2015).

Protostellar outflows also shape molecular cloud chemistry.
For example, high-velocity outflows generate molecular bow
shocks, which trigger chemical reactions that do not happen in
quiescent environments, yielding complex physical and
chemical conditions (Bachiller 1996). One of the most extreme
examples is SiO, which is usually considered a shock tracer,
whose abundance is enhanced by several orders of magnitude
along the axes of molecular outflows (Bachiller et al. 1991;
Martin-Pintado et al. 1992).

In order to understand the impact of outflows on molecular
clouds, especially the effect on their energy budget, a complete
census of outflows is needed. Unfortunately, most outflows are
asymmetric and deeply embedded in dense clouds, making them
difficult to identify (Arce et al. 2010; Dunham et al. 2014).

Historically, astronomers have identified outflows and sepa-
rated them from the surrounding gas “by eye” (Bachiller 1996;
Zhang et al. 2005; Cyganowski et al. 2008; Li et al. 2015). For

example, Arce et al. (2010) identified 60 outflows in the Perseus
molecular cloud by determining high-velocity features from a
three-dimensional visualization. They concluded that the total
outflow energy is sufficient to replenish the dissipation of
turbulence. However, Arce et al. (2010) found no correlation
between outflow strength (in terms of mass, momentum, or
energy) and star formation efficiency (SFE) in different regions of
Perseus, which is contrary to the predictions of studies using
simulations (e.g., Hansen et al. 2012; Federrath et al. 2014).
Incompleteness of the outflow sample or interlopers, i.e., false
outflows, that originate from turbulence rather than feedback
might be the reason. Alternatively, some additional feedback
mechanism, such as stellar winds, rather than outflows may
explain the lack of correlation.
Due to the difficulty and subjectivity of identifying outflows

visually, different studies have drawn different conclusions about
the importance of feedback. For example, Narayanan et al. (2012)
identify 20 outflows in the Taurus molecular cloud and conclude
that the impact of feedback is negligible compared to the
dissipation of turbulence. However, Li et al. (2015) identify twice
as many outflows, whose energy injection rate is 16 times larger
than before, yielding the opposite conclusion. Consequently, a
complete and high-confidence outflow sample is required to
understand the true impact of outflows.
Machine learning makes it possible to systematically and

quickly identify outflow features. Several machine learning
algorithms have been utilized to identify stellar feedback features
(Beaumont et al. 2011, 2014; Van Oort et al. 2019; Xu et al. 2020;
Zhang et al. 2020). Support vector machines (SVMs) were
employed to distinguish a supernova remnant from the ambient
gas (Beaumont et al. 2011) and to identify molecular outflows in a
dark cloud complex (Zhang et al. 2020). Zhang et al. (2020)
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adopted SVMs to identify outflow features in 12CO and
13COemission in Cygnus. SVMs are proficient in classification
tasks, but they require manual feature extraction to create a
training set, which is arbitrary and likely to omit information
compared to adopting complete images or sophisticated 3D
models as the training set. Random forest algorithms, which
classify feature vectors by learning a series of decision rules,
perform robustly in identifying stellar feedback bubbles in dust
emission (Beaumont et al. 2014; Xu & Offner 2017). Similar to
SVMs, random forests necessitate manually extracted features as
inputs. Moreover, the accuracy of their classifications is sensitive
to the location of stellar feedback bubbles in the input images
(Beaumont et al. 2014; Xu & Offner 2017; Jayasinghe et al.
2019). Convolutional neural networks (CNNs) are a powerful new
approach being applied to identify structures or objects, such as
exoplanets (Shallue & Vanderburg 2018) and stellar feedback
bubbles (Van Oort et al. 2019; Xu et al. 2020). CNNs are not
sensitive to the position of the objects in the data, so it is
straightforward to apply them to large surveys. Most importantly,
CNNs do not require manually extracted features as inputs.
Instead, CNNs extract features automatically from the data by
applying different filters on different layers during training. A
sophisticated algorithm, Convolutional Approach to Shell/
Structure Identification (CASI; Van Oort et al. 2019; Xu et al.
2020), based on CNNs, was recently developed and successfully
applied to identify bubbles produced by stellar feedback in both
2D and 3D simulation and observational data. CASI-3D can
identify bubble-like structures in position–position–velocity (PPV)
molecular line spectra cubes, achieving a 96% voxel-level
accuracy (Xu et al. 2020). Furthermore, CASI-3D successfully
infers hidden information in the data cube, e.g., the fraction of
mass coming from feedback, which provides a more accurate
feedback mass estimation. Xu et al. (2020) show that the newly
calculated mass associated with shell features in the Taurus
molecular cloud is an order of magnitude smaller than the
previous estimates. This result underscores the power of CNNs to
identify structures and constrain nonlinear and complex physical
processes like stellar feedback signatures.

In this paper, we adopt the deep learning method CASI-3D to
systemically identify protostellar outflows in CO data and conduct
statistical studies. We describe CASI-3D and how we generate the
training set from synthetic observations in Section 2. In Section 3,
we present the performance of the CNN model in identifying
protostellar outflows in both synthetic and observational data. We
discuss the application of the CNN model in different physical
environments in Section 4, and we summarize our results and
conclusions in Section 5.

2. Method

2.1. Magnetohydrodynamics Simulations

We conduct magnetohydrodynamics simulations with
ORION2 (Li et al. 2012) to model forming stars that launch
protostellar outflows. The simulation box is 2×2×2 pc3,
with a total mass of M=301.5Me, mean particle density of
654 cm−3, and three-dimensional Mach number of 6.6, which
places the simulated cloud on the line width−size relation,
s = R0.721D pc

0.5 km s−1
(McKee & Ostriker 2007). These

conditions represent a piece of a typical low-mass star-forming
region, such as the Perseus molecular cloud, in which we
intend to identify protostellar outflows. We treat the gas as an
ideal gas that perfectly thermally couples with the dust. The

calculations use a base grid of 2563 with four adaptive mesh
refinement (AMR) levels, where the minimum cell size is
100 au. We initialize the density and velocity fields by driving
the simulation gas for two Mach crossing times without gravity
but adding random large-scale perturbations with Fourier
modes 1�k�2 (Mac Low 1999). Sink particles are formed
when the gas density exceeds the Jeans criterion at the finest
AMR level (Krumholz et al. 2004). The sink particles represent
individual stars and adopt a subgrid stellar evolution model that
launches protostellar bipolar outflows (Offner et al. 2009;
Cunningham et al. 2011; Myers et al. 2014). The outflow
launching velocity is determined by the Keplerian velocity at

the stellar surface, =v GM RK * *
. We use a “tracer” field to

track the material launched by the outflows (Offner &
Chaban 2017). A detailed description of the outflow method
can be found in Cunningham et al. (2011).
We conduct three different simulations with different

magnetic fields and turbulent driving patterns. We carry out
the analysis at several simulation times to capture different
evolutionary stages of the protostars and study the impact of
these outflows on the surrounding molecular cloud. Table 1
shows the physical properties of the simulations. Figure 1
illustrates the projected density, projected thermal density, and
projected tracer density of different simulations.

2.2. CNN Architecture

We adopt the same CNN architecture, CASI-3D, from Xu
et al. (2020), which combines both residual networks (He et al.
2016) and a “U-net” (Ronneberger et al. 2015). CASI-3D has
two parts. The “encoder” part extracts the features from the
input data, and then the “decoder” part translates these features
into another data cube that represents the quantity being
modeled by the network. We adopt the same hyperparameters
as Xu et al. (2020) to train our models to identify protostellar
outflows within molecular clouds. The choice of hyperpara-
meters is discussed in detail in Xu et al. (2020).

2.3. Training Sets

2.3.1. Synthetic Observations

We apply the publicly available radiation transfer code
RADMC-3D (Dullemond et al. 2012) to model the 12CO
(J=1–0) and 13CO(J=1–0) line emission of the simulation
gas. Since most outflows are not detectable in 13COin high-
velocity channels owing to the limited sensitivity of most
single-dish telescopes (Arce et al. 2010), we use 12CO emission
to identify the outflows. To better calculate the mass of

Table 1

Model Propertiesa

Model B (μG) μΦ Nseed trun (tff)

B1 3.2 8 2 (0.49, 0.52, 0.55) b

B2 0.8 32 1 (0.93, 1.06, 1.09) c

Notes.
a
Model name, initial mean magnetic field, global mass-to-flux ratio (μΦ=

Mgas/MΦ=2πG
1/2Mgas/(BL

2
)), the number of different turbulent driving patterns

used for each model, and the evolutionary time in freefall times. All models have

L=2 pc, M=301.5Me, Ti=10 K, and a freefall time of 1.31 Myr.
b
The first star particle is formed right before 0.49tff.

c
The first star particle is formed right before 0.93tff.
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outflows where 12CO is optically thick, we combine both 12CO
and 13COif there is distinct 13COemission in the corresp-
onding position. Otherwise, we use 12CO only to calculate
the mass.

To construct the synthetic observations, we adopt the
simulation density, temperature, and velocity distributions for
the RADMC-3D inputs. In the radiative transfer, we assume that
H2 is the only collisional partner of 12CO. We take 62 as the
fiducial abundance ratio between 12CO and 13COand 10−4 as
the abundance ratio between 12CO and H2 (Arce et al. 2010).
However, when T>1000 K or n(H2)< 50cm−3, where 12CO
and 13COare likely to be dissociated, we set the abundance to
zero. In addition, we also set the 12CO and 13COabundance to
zero in conditions where it would freeze out onto dust grains
(n(H2)>105 cm−3

) or where it would be dissociated by strong
shocks (|v|>20 km s−1

) (Draine 2011).
To produce a variety of physical and chemical outflow

conditions for the training set, we produce synthetic observa-
tion data cubes where both 12CO and 13COabundances are
reduced by a factor of 2 and a factor of 10. These data represent
regions where some of the CO may be dissociated owing to a
stronger radiation field. We adopt 10 and 14 K for the kinetic
temperatures based on observations that suggest that these
values are representative of Perseus (e.g., Goldsmith &
Langer 1978; Ridge et al. 2006b; Foster et al. 2009). We also
follow the same method as Xu et al. (2020) to increase the

training set by considering thin clouds with thicknesses of 0.7
and 1.4 pc. This has the effect of producing data cubes in which
outflow lobes and cavities are more distinct. Table 2 lists the
physical and chemical properties of the synthetic observations.

2.3.2. Training Data

We build two training tasks following the procedure of Xu
et al. (2020). The training target in model ME1 is 12CO
emission, which is associated with outflows, while the training
target in model MF is the fraction of the mass that comes from
stellar feedback.
To construct the training target in model ME1, we define the

position of the protostellar outflows using the tracer field that
indicates the amount of gas launched by the outflow subgrid
model at each position. We impose two criteria. First, if more
than 10% of the mass comes from protostellar outflows in a
voxel, we treat the voxel as a part of an outflow structure.
Second, in order to better capture the morphology of the gas
associated with the outflows, we define a voxel as belonging to
an outflow if the gas temperature is over 12 K and adjacent to
gas where over 10% of the mass is launched material (Xu et al.
2020). We compare different models trained on data with
different thresholds for the outflow mass in Appendix A.
The training data for model ME1 is the 12CO emission that is

only coming from the outflow gas. We mask the positions of
pristine (nonoutflow) gas and set the 12CO abundance to be 0 in

Figure 1. Projected density (top row), projected thermal density (middle row), and projected tracer density (bottom row) of different simulations at different
evolutionary stages.
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the masked region. We then compute the radiative transfer to
obtain the 12CO emission that is only coming from the
protostellar outflows, which we refer to as the 12CO feed-
back cube.

To build the training data for model MF, we calculate the
fraction of feedback mass by converting the raw density from
position–position–position space to PPV space. The fraction
ranges from 0 to 1, and it is not necessarily proportional to the
actual 12CO or 13COintensity. If the 12CO or 13COemission is
optically thin, the column density is proportional to the
emission intensity.

A more detailed description about how we generate training
data for these two models can be found in Xu et al. (2020).

2.3.3. Data Augmentation

We adopt outputs with different magnetic fields, different
turbulent patterns, and different evolutionary stages to create
synthetic observations. Multiple stars form and launch outflows
in each simulated cloud. We construct a “zoomed-in” synthetic
observation centered on each protostar with an image size of
0.5 pc×0.5 pc and 1 pc×1 pc. We also conduct synthetic
observations with an image size of 2 pc×2 pc, which contains
multiple outflows. These synthetic observations span early and
late evolutionary stages. By constructing a training set with
outflows of different sizes, we reinforce the ability of the model
to detect outflows on different scales. In addition to the
different image sizes, we resample the synthetic observations
with two different velocity resolutions: at low resolution with
an interval of 0.25 km s−1, and at high-resolution with an
interval of 0.125 km s−1. To enhance the diversity of the
training set, we conduct radiative transfer from six different
angular views and rotate the images randomly from 0° to 360°.

To help CASI-3D distinguish outflows from high-velocity
blobs produced from supersonic turbulence in the molecular
cloud and prevent false detections, we construct a negative
training set. We conduct synthetic observations on turbulent
simulations including noise, which do not contain feedback
sources. In addition, we pick several regions in Perseus where
there are no young stellar objects. Figure 2 shows these
nonfeedback regions enclosed by yellow dashed lines.

To make the synthetic cubes closer to the real observational
data described in Section 2.4, we assume that the synthetic
images are at a distance of 250 pc and are observed with the
Five College Radio Astronomy Observatory (FCRAO; Ridge
et al. 2006a). We convolve them with a telescope beam of 50″
and add noise with a mean square error (MSE) of 0.17 K,
which is consistent with the noise level in the Perseus 12CO
data in Section 2.4. Moreover, since many observed sources

have velocities that are offset from the cloud velocity and/or
not at 0 km s−1, we randomly shift the central velocity of the
cubes from−3 to 3 km s−1. Figure 3 shows an example of a
synthetic observation of a simulated outflow and corresponding
target images like those included in the training set.
In total, we generate 23,715 synthetic data cubes, among

which 3483 contain no feedback sources. We adopt 14,229 of
the data cubes as a training set, 4743 data cubes as a test set,
and 4743 data cubes as a validation set. The validation
set allows us to evaluate how well the model has been trained.
The test set assesses the accuracy of the final model.

2.4. Perseus Data

We use the publicly available 12CO (J=1–0) and
13CO(J=1–0) Perseus data from the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE)
Survey of Star-forming Regions (Ridge et al. 2006a). The
Perseus 12CO and 13COmaps were observed between 2003
and 2005 using the 13.7 m FCRAO Telescope. The maps are
about 6°.25×3° with a beam size of 46″. The 12CO and
13COdata have a mean rms antenna temperature of 0.25 and
0.2 K, respectively. We resampled the spectra with a lower
velocity resolution of 0.125 km s−1, which matches the
velocity resolution in the training set. The noise levels for the
new 12CO and 13COspectra are reduced by a factor of a square
root of 2, which are 0.17 and 0.14 K, respectively.
We adopt the outflow catalog from Arce et al. (2010), in

which 60 outflow candidates are identified in the Perseus
molecular cloud by determining high-velocity features from a
three-dimensional visualization using the COMPLETE 12CO
maps. Arce et al. (2010) call these high-velocity features
“COMPLETE Perseus Outflow Candidates” (CPOCs). Some
high-velocity features at the same position are split into two
CPOCs, a redshifted lobe and a blueshifted lobe. Arce et al.
(2010) also note that these 60 outflows are an underestimate of
the true number of outflows. Outflows that are smaller than the
beam size of the 12CO map or that have weak high-velocity
wings cannot be detected by their technique. Consequently,
outflows with smaller size and lower velocity along the line of
sight are missed.
To search for the potential outflow driving sources, we use the

draft YSO catalog for Perseus from SESNA (Spitzer Extended
Solar Neighborhood Archive; R. A. Gutermuth et al. 2020, in
preparation) used by Pokhrel et al. (2020). SESNA is a uniform
retreatment of most of the Spitzer surveys of nearby molecular
clouds that uses an updated implementation of the data treatment,
source catalog construction, and YSO identification and classifi-
cation processes of Gutermuth et al. (2009). As in that work, the

Table 2

Synthetic Observation Propertiesa

Synthetic Observation Name 12CO/H2 Tk (K) FOV (pc ×pc) Thickness (pc) Label Color

T10_a1-4 10−4 10 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) green

T14_a1-4 10−4 14 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) red

T10_a5-5 5×10−5 10 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) yellow

T14_a5-5 5×10−5 14 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) black

T10_a1-5 10−5 10 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) blue

T14_a1-5 10−5 14 (2×2, 1×1, 0.5×0.5) (2, 1.4, 0.7) cyan

Note.
a
Synthetic observation name, 12CO to H2abundance, kinetic temperature, field of view of the synthetic observation, thickness of the cloud in the synthetic

observations, and the color of the symbols in the plots in Section 3.1.
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Figure 2. Intensity of 12CO integrated over all velocity channels. “Y” and “O” indicate the location of YSOs: “Y” for early evolutionary stage YSOs, i.e., protostars,
and “O” for late evolutionary stage YSOs, i.e., pre-main-sequence stars with disks (R. A. Gutermuth et al. 2020, in preparation; Pokhrel et al. 2020). The cyan dashed
lines enclose subregions searched by our models. The yellow dashed lines indicate regions we include in our negative training set. The black dashed lines illustrate the
coverage of YSOs in R. A. Gutermuth et al. (2020, in preparation).

Figure 3. 12CO synthetic observation of a simulated outflow and the outflow tracer field. Top row, first panel: 12CO emission at V=0.5 km s−1. Top row, middle and
right panels: ground-truth 12CO emission from the outflow for models ME1 and MF. Bottom row: same as the top row, but indicating the 12CO integrated intensity
between −4 and 4 km s−1, and integrated ground-truth 12CO emission for models ME1 and MF. Note that the actual target for model MF is the fraction of mass
associated with outflows, whose value ranges from 0 to 1, but here we make the plot with the fraction times the 12CO emission for fair comparison.
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resulting YSOs are classified into one of four groups (“deeply
embedded protostars,” “Class I YSOs,” “Class II YSOs,” and
“transition disks”) using a series of color–color and color–
magnitude diagram selections that largely mitigate extragalactic
contamination and are relatively unbiased in a wide range of
reddening conditions (Flaherty et al. 2007). For further analysis,
the former two groups are merged to encompass the dusty-
envelope-bearing protostars that we call “younger YSOs”
throughout this work. Similarly, the latter two groups are merged
to list the protoplanetary-disk-bearing pre-main-sequence stars
that we call “older YSOs” herein. As is the case with all mid-IR
YSO surveys, diskless “Class III” YSOs cannot be distinguished
from field stars and are thus ignored here. Residual contamination
comes from two sources. For the draft SESNA catalog we adopt,
the residual extragalactic contamination is 9±1 sources per
square degree, with an even split between younger and older YSO
types, based on applying the full SESNA treatment to 16 square
degrees of so-called “blank-field” galaxy survey data (the “Elias-
N1” and “Boötes” fields). These sources are generally assumed to
be statistically uniform in their spatial distribution on the sky. In
contrast, the other contaminant is class contamination, whereby
YSOs are misclassified as younger versus older. Gutermuth et al.
(2009) estimated that up to 3.5% of older YSOs may be reported
as younger YSOs as a result of edge-on viewing angle. These will
thus be spatially correlated with elevated densities of older YSOs.
We do not attempt to treat either of these residual contaminant
types further in this work.

3. Results

3.1. Assessing Model Accuracy Using Synthetic Observations

In this section we use the synthetic data to assess how accurately
physical properties can be determined from the identified outflows.
We apply both models to the outflow synthetic observations in the
test set. Figure 4 shows an example of the model performance on a
test synthetic outflow. Both models ME1 and MF capture the
outflow features clearly.

We follow the same strategy in Arce et al. (2010) to calculate
the outflow mass by combining both 12CO and 13COdata. If

there is distinct 13COemission in the corresponding position,
we assume that the 13COemission line is optically thin and has
an excitation temperature of 25 K to calculate the mass (Arce
et al. 2010; Narayanan et al. 2012; Li et al. 2015). Under the
assumption of LTE, the mass estimation goes linearly with the
excitation temperature. From previous feedback mass esti-
mates, the choice of excitation temperature ranges from 10 to
50 K. This could potentially introduce a factor of two
uncertainty in the mass estimation. Here we take the widely
used and moderate value of 25 K as the excitation temperature
for all outflow calculations (Arce et al. 2010; Narayanan et al.
2012; Li et al. 2015). If there is no reliable 13COemission in
the corresponding position, we use 12CO to derive the mass by
assuming that the 12CO line is optically thin.
We take 62 as the abundance ratio between 12CO and

13COand 10−4 as the abundance ratio between 12CO and H2

(Arce et al. 2010). As mentioned in Section 2.3.1, we also
conduct 12CO synthetic observations with three different
abundance ratios. We adopt the corresponding abundance
ratios to calculate the mass of the outflows.
Figure 5 shows the mass estimated from the two models,

ME1 and MF. We also plot the true feedback mass, which we
estimate directly by adding the mass contained in all cells
where there is feedback as defined in Section 2.3.2. We find
that ME1 overestimates the outflow mass by a factor of 5 or
more, while MF correctly predicts the outflow mass within a
scatter of a factor of two.
Different symbol colors in Figure 5 indicate different

outflow physical conditions, e.g., different kinetic temperatures
and different 12CO and 13COabundance ratios. The scatter at a
given true mass value suggests the uncertainty in converting
from 12CO and 13COemission to mass; multiple synthetic
observations with different physical and chemical conditions of
a simulated outflow have the same mass associated with
feedback but have different 12CO and 13COemission. Model
MF correctly predicts the outflow mass within a reasonable
uncertainty under different physical and chemical conditions.
We quantitatively evaluate the two-model performance in
Appendix C.

Figure 4. Results of the models ME1 and MF applied to a synthetic outflow. Top row, first panel: 12CO emission at V=0.5 km s−1. Top row, second and third
panels: ground-truth 12CO tracer for models ME1 and MF, respectively. Top row, fourth and fifth panels: prediction from models ME1 and MF, respectively. Bottom
row: same as the top row, but indicating the 12CO integrated intensity between −4 and 4 km s−1, integrated ground-truth 12CO tracer for models ME1 and MF, and
integrated prediction from models ME1 and MF, respectively.
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We compare the 1D line-of-sight momentum between the
model predictions and the true simulation feedback in Figure 6.
We define the 1D momentum as the sum of the gas mass in
each channel multiplied by the channel velocity, where we
have shifted the mean cloud velocity to zero. Model ME1
overestimates the 1D momentum by a factor of 4. In contrast,
model MF correctly predicts the 1D momentum within 30%
relative error. This uncertainty is the same order of magnitude
as the uncertainty in the outflow mass predicted by model MF,
which reflects the challenge of converting from 12CO and
13COemission to mass under different physical and chemical
conditions.

If we assume that the inclination angle between the outflow

axis and the line of sight is θ, the 3D momentum would be

expected to be a factor of
q

1

cos
larger than the 1D momentum,

while the 3D kinetic energy would be a factor of
q

1

cos2
larger

than the 1D kinetic energy. Figures 7 and 8 show the 1D

momentum and energy, respectively, predicted by the two

models compared to the respective 3D quantities calculated

from the simulation. We see a significant scatter in these two

figures. The 1D momentum and 1D energy deviate from the

linear trend of their 3D true value, indicating a diverse range of

inclination angles, which is usually the case.
Figure 7 illustrates that the 3D momentum is a factor of 2

higher than the 1D momentum predicted by model MF. This

corresponds to an average inclination angle of 60° in our test

sample. The scatter along the one-to-one line suggests the

variation of inclination angles for different outflows.

Figure 5. Relation between the CASI-3D predicted outflow mass and the true
mass for different outflows. Circles indicate the mass calculated by model
ME1. Triangles represent the mass calculated by model MF. Different symbol
colors indicate synthetic observations with different physical and chemical
conditions as listed in Table 2. The black dashed line indicates where CASI-3D
correctly predicts the true mass. The blue dashed line has a slope of 5. We
investigate the uncertainty of the mass estimates predicted by both models in
Appendix C.1.

Figure 6. Relation between the CASI-3D predicted outflow momentum for
particular lines of sight and the true 1D momentum for different outflows. Circles
indicate the momentum calculated by model ME1. Triangles represent the
momentum calculated by model MF. The black dashed line indicates where CASI-
3D correctly predicts the true momentum. The blue dashed line has a slope of 4.

Figure 7. Relation between the CASI-3D predicted outflow momentum and the
true 3D momentum for different outflows. Circles indicate the momentum
calculated by model ME1. Triangles represent the momentum calculated by
model MF. The black dashed line has a slope of 1/2.

Figure 8. Relation between the CASI-3D predicted outflow energy and the true
feedback energy for different outflows. Circles indicate the energy calculated by
ME1. Triangles represent the mass calculated by model MF. The black dashed line
has a slope of 1/4, and the blue dashed line has a slope of 1/10.
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Figure 8 demonstrates that outflow inclination uncertainty,

together with uncertainties in the physical conditions, produces a

factor of 10 uncertainty in the 3D kinetic energy of individual

outflows. For example, the correction factor for an outflow with an

inclination angle of 35° is an order of magnitude larger than that

with an inclination angle of 75°. Consequently, it is not possible to

accurately calculate the 3D momentum and 3D energy for an

individual outflow only from the line-of-sight velocity information.

Statistically, however, an average inclination angle between 30°

and 60° approximately reproduces the total true 3D momentum

and 3D energy within a factor of two and a factor of four

uncertainty, respectively. Thus, our results verify the statement on

the uncertainty of outflow energy in Perseus by Arce et al. (2010),
who adopt an average outflow inclination of 45°.

3.2. Identifying Individual Outflows in Perseus Using CASI-3D

To visually assess the performance of our CNN models on
observational data, we apply models ME1 and MF to a catalog of
outflows previously identified in the Perseus 12CO data. Arce
et al. (2010) identified 60 outflows by identifying high-velocity
features in a three-dimensional visualization. We apply models
ME1 and MF to subregions of the Perseus data containing these
outflows. Figures 9 and 10 show the integrated intensity of 12CO
over the entire velocity range (−2 to 15 km s−1) of four

Figure 9. Intensity of 12CO integrated over all velocity channels for the four subregions, overlaid with the model ME1 prediction (red and blue contours). Red boxes
indicate the position of outflows previously identified by Arce et al. (2010). Letters “Y” and “O” mark YSO positions, as described in Figure 2. Yellow boxes indicate
the position of 20 newly identified outflows. The cyan dashed lines enclose subregions searched by our models.
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subregions, overlaid with the model ME1 prediction and the

model MF prediction, respectively. Figure 11 demonstrates the

encouraging performance of both models on previously identified

outflow CPOC 7. Both models ME1 and MF capture the

morphology of the outflow very well.
Figure 12 shows the position–velocity diagram of 12CO

emission for the outflow in Figure 11. Coherent high-velocity

structures are identified by both the ME1 and MF models. Most

outflows are only distinct in high-velocity channels. The

bottom panels of Figure 12 indicate that if we integrate the
12CO emission over the full velocity range, −2 to 15 km s−1,

the outflow morphology vanishes in the bright cloud emission.

However, both models ME1 and MF are still able to find the

outflow when the entire velocity range is searched rather than

just the range of channels containing the visually identified

outflow.
As shown in Figure 12, model ME1 predicts a wider velocity

coverage compared to that predicted by model MF. This is

because at high-velocity channels the fraction of mass

associated with feedback is higher compared to that of the

rest-frame gas. Model MF is more likely to highlight a higher

fraction of mass associated with feedback voxels than model

ME1. On the other hand, model ME1 predicts the 12CO

emission associated with feedback. Generally, there is more
12CO emission at the rest frame of the cloud, which is produced

by the molecular cloud itself, than at high velocities. Model

ME1 is likely to identify the stronger emission velocities

associated with feedback that span near the rest-frame velocity.

Figure 10. Same as Figure 9, but displaying the prediction of model MF (red and blue contours).
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This in turn demonstrates that model ME1 likely overestimates

the mass associated with feedback.
Among the 60 previously identified outflows, about one-

third lack a clearly associated driving source. Consequently,

some of these candidates may not in fact be true outflows.

Figure 13 shows an example of an outflow without nearby

YSOs but that is identified as an outflow in Arce et al. (2010).

Similar to human identification, models ME1 and MF

successfully capture the morphology of this outflow, which

in turn demonstrates that CASI-3D identifies outflows via

similar characteristics that humans have used. This lends

confidence that these candidates are in fact real outflows. So,

either these are true outflows, whose driving source has not yet

been located, or these emission features are excellent facsimiles

of actual outflows. Without additional data, such as a complete

YSO census, it is impossible to distinguish coherent high-

velocity features that may be caused by turbulence from stellar

feedback. We discuss the presence of YSOs in detail in

Section 3.5.

To summarize, both CASI-3D models successfully identify
all 60 previously identified outflows.4 We note that Figures 11
and 13 represent typical identifications among the 60 outflows.

3.3. New Outflow Candidates Identified in Perseus

Apart from the previously identified outflows, we find 20
new candidate outflows. Figure 9 shows that model ME1
successfully predicts all previously identified outflows (red
boxes). However, Figure 9 shows that there are outflows
identified by model ME1 that were not previously identified by
Arce et al. (2010) (yellow boxes). These outflows are also
identified by model MF (Figure 10), which gives us confidence
that they are indeed real outflows. Visual inspection of the new
identifications indicates that they have similar high-velocity gas
distributions to the previously identified outflows. Hereafter
each of these newly identified high-velocity features is named

Figure 12. Position–velocity diagram of 12CO emission toward the outflow in Figure 11. Left subfigure, top left panel: integrated intensity of 12CO over the outflow
velocity channels (from −0.5 to 2 km s−1

) overlaid with the model ME1 prediction in white contours. The red box shows the position of the outflow. The purple line
illustrates the cutting direction of the position–velocity diagram. Top right panel: position–velocity diagram of 12CO emission in the outflow velocity channels
overlaid with the model ME1 prediction in white contour. Bottom left panel: 12CO intensity integrated over the full velocity range (from −2 to 15 km s−1

) overlaid
with the integrated model ME1 prediction (white contours). Bottom right panel: 12CO position–velocity diagram overlaid with the model ME1 prediction (white
contours). The four panels in the right subfigure are the same as in the left, but showing the prediction by model MF.

Figure 11. Results of models ME1 and MF applied to previously identified Perseus outflow CPOC 7. First panel: integrated intensity of 12CO over the outflow
velocity channels indicated by Arce et al. (2010). The red box shows the position of the outflow. Letters “Y” and “O” mark YSO positions, as described in Figure 2.
Second panel: predicted intensity integrated along the velocity axis from model ME1. Third panel: integrated intensity of 12CO over the outflow velocity channels
overlaid with the model ME1 prediction in white contours. Fourth and fifth panels: same as the second and third panels, but displaying the prediction by model MF.

4
The velocity range of CPOC 14 is 9.0–10.0 km s−1 rather than 9.8–10.8

km s−1 indicated in Arce et al. (2010).
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according to the CPOC numbering established by Arce et al.

(2010). We list their positions and other properties in Table 3.
Figure 14 shows an example of newly identified outflow

CPOC 79. Both models ME1 and MF capture the morphology

of this new candidate. In addition, several YSOs are found

nearby, one of which is likely the driving source. Figure 15

shows the position–velocity diagram of the 12CO emission for

this outflow. Figure 15 shows distinct coherent high-velocity

structures, which are similar to those for previously identified

outflows (e.g., Figure 12). Both models ME1 and MF identify

all 20 new outflow candidates.
Our CASI-3D models indicate that some of the previously

identified outflows are more extended than previously found.

For example, CPOC 4 and 5 (region IV in Figures 9 and 10)

appear to be part of much more extended outflow lobes. Both

models show the red and blue counterparts. CPOC 4 and 5

and newly identified CPOC 61 and 62 are likely driven by a

cluster of young sources, which creates a 2 pc scale combined
outflow.

3.4. Physical Properties of Outflows in Perseus

Next, we estimate the masses of the outflows identified by
models ME1 and MF and compare them with the previous
observational estimates. We calculate the outflow mass, 1D
momentum, and 1D energy for each model as described in
Section 3.1. We further consider the outflow properties as
defined by the subset of velocity channels previously identified
by Arce et al. (2010) as belonging to the outflow, as well as the
outflow defined by using all velocity channels.
Figure 16 compares the outflow mass estimated by our CNN

models and by Arce et al. (2010), where both include mass
only in the outflow velocity channels determined by Arce et al.
(2010). Arce et al. (2010) calculate the mass of each outflow by
adding all the emission in the outflow velocity channels within

Table 3

Physical Properties of New Outflow Candidates in Perseus

Source R.A. Decl. Area Velocity Velocity Mass Momentum Energy

Name (J2000) (arcmin) (ME1, km s−1
) (MF, km s−1

) (Me) (Me km s−1
) (1043 erg)

CPOC 61 03h25m43 9 +30°35′45 0 6×10 −2–5.1 0.1–1.4 0.09 0.28 1.9

CPOC 62 03h25m49 8 +30°40′21 0 11×13 3.8–8.9 5.3–9.9 0.13 0.40 2.8

CPOC 63 03h27m25 0 +31°21′22 0 12×9 −1.1–4.4 −0.4–4.3 0.35 1.64 16.5

CPOC 64 03h28m42 7+30°56′04 0 11×13 0.5–11.8 0.1–13.0 0.75 1.83 10.2

CPOC 65 03h29m00 3+30°33′27 0 14×13 1.8–6.1 2.4–7.4 0.82 1.19 3.8

CPOC 66 03h29m08 3 +31°40′55 0 9×12 4.1–9.0 3.8–7.1 0.16 0.28 1.2

CPOC 67 03h30m18 8+30°32′41 0 12×11 0.5–8.6 0.5–6.1 1.60 1.63 4.7

CPOC 68 03h31m23 2 +30°49′10 0 8×14 −0.5–6.3 −0.5–4.3 0.24 0.95 8.1

CPOC 69 03h33m34 1 +31°06′02 0 9×9 0.1–4.1 −0.3–2.9 0.12 0.57 5.6

CPOC 70 03h33m42 2+30°50′42 0 13×8 −1.3–14.3 −2–6.6 0.13 0.44 4.1

CPOC 71 03h34m36 6+31°07′11 0 9×8 2.3–4.9 −0.1–4.3 0.37 1.75 16.9

CPOC 72 03h38m32 0+31°56′38 0 10×12 6.8–10.0 5.6–10.4 0.43 0.33 0.8

CPOC 73 03h39m13 5+31°12′56 0 15×13 2.4–7.9 2.6–7.5 0.59 1.18 7.0

CPOC 74 03h39m30 1+32°09′17 0 5×6 6.8–9.9 7.1–8.3 0.19 0.13 0.2

CPOC 75 03h40m01 8+32°01′14 0 9×9 5.6–8.9 5.1–7.9 1.21 2.07 7.4

CPOC 76 03h41m54 4+31°56′38 0 7×7 5.6–10.5 6.5–8.1 0.46 0.71 2.2

CPOC 77 03h42m41 8+31°51′16 0 4×8 5.5–9.1 4.9–6.9 0.02 0.06 0.4

CPOC 78 03h46m00 3+31°53′57 0 9×16 5.6–9.8 5.8–7.5 0.06 0.17 1.0

CPOC 79 03h47m06 9 +32°45′42 0 16×13 9.5–14.1 10.3–14.1 1.79 2.53 8.1

CPOC 80 03h48m32 4 +32°55′17 0 6×6 9.6–12.3 10.1–13.1 0.11 0.17 0.6

Total L L L L 9.63 11.3 104

Note.
a
Outflow name, position, area, velocity range indicated by model ME1, velocity range indicated by model MF, mass predicted by model MF, 1D momentum

predicted by model MF, and 1D energy predicted by model MF.

Figure 13. Results of models ME1 and MF applied to previously identified Perseus outflow CPOC 57. First panel: integrated intensity of 12CO over the outflow
velocity channels indicated by Arce et al. (2010). The red box shows the position of the outflow. Second panel: predicted intensity integrated along the velocity axis
from model ME1. Third panel: integrated intensity of 12CO over the outflow velocity channels overlaid with the model ME1 prediction in white contours. Fourth and
fifth panels: same as the second and the third panels, but showing the prediction by model MF.

11

The Astrophysical Journal, 905:172 (25pp), 2020 December 20 Xu et al.



the red box as shown in Figures 11 and 13. Figure 16 suggests
that extra emission from diffuse gas not associated with the
outflow overestimates the mass compared to our models.

For some outflows, the masses predicted by the two CNN
models are similar. This is likely because the mass estimates
are dominated by emission in the high-velocity channels, which
are similar for both models. However, the masses predicted by
the two CNN models for other outflows are quite different. We
conclude that this is because these outflows span a wider
velocity range. The fraction of mass associated with the
outflow as predicted by model MF drops in the rest-frame
velocity channels. In these channels, model ME1 likely
overestimates the mass by a large factor, because it includes
cloud material.

If we only consider the outflow mass located in the outflow
velocity channels, i.e., where the outflow morphology is
distinct, the traditional observational approach to calculate the
outflow mass probably overestimates the mass for two reasons.
First, it includes extra emission around the outflows that is not
associated with them but is enclosed in the boxes indicated in
Arce et al. (2010). As shown in Figure 11, the red box encloses
a large region where the outflow appears to occupy less than
one-third of the entire box. Some extended emission near the

Figure 15. Same as Figure 12, but toward the new candidate outflow shown in Figure 14.

Figure 16. Relation between the outflow mass predicted by CASI-3D and the
outflow mass calculated by Arce et al. (2010), where both use only the outflow
velocity channels. The circles indicate the mass calculated by model ME1. The
triangles represent the mass calculated by model MF. The black dashed line
and the blue dashed line have a slope of 1 and 1/4, respectively.

Figure 14. New outflow candidate, CPOC 79, identified by models ME1 and MF. First panel: intensity of 12CO integrated over the outflow velocity channels, from
11.5 to 14.0 km s−1. The red box shows the position of the outflow. Letters “Y” and “O” mark YSO positions, as described in Figure 2. Second panel: predicted
intensity integrated along the velocity axis from model ME1. Third panel: integrated intensity of 12CO over the outflow velocity channels overlaid with the model
ME1 prediction in white contours. Fourth and fifth panels: same as the second and the third panels, but displaying the prediction by model MF.
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boundary of the box contributes significantly. Second, apart
from the extra emission around the outflow lobe, background
or foreground cloud gas not associated with outflows that is
located in the outflow velocity channels at the outflow location
contributes additional emission. The effect of contamination by
cloud gas in model ME1 was previously found by Xu et al.
(2020) in an analysis of bubble identifications. Model ME1,
which more closely models how humans visually identify data
by construction, is not able to accurately separate feedback and
nonfeedback emission. However, on the other hand, mass
associated with feedback that is located outside the outflow
velocity channels but is difficult to distinguish by visual
examination is apparently missed.

Our CASI-3D models are able to identify the outflow
structure across the entire velocity range. As indicated in
Figure 12, the visually identified outflow velocity channels are
between −0.5 and 2.0 km s−1. The model ME1 prediction in
the position–velocity diagram shows that the outflow structure
extends from−0.5 to 4.8 km s−1. Model MF illustrates that the
outflow structure extends from−0.5 to 2.5 km s−1. Both
models demonstrate a wider outflow velocity range than that
identified by visual inspection.

Figure 17 shows the relation between the CNN predicted
outflow mass over all velocity channels and the outflow mass
calculated by Arce et al. (2010), which uses only the high-
velocity channels. Model ME1 overestimates the outflow mass
by an order of magnitude compared to that predicted by Arce
et al. (2010). This is caused by large contamination from
foreground or background gas near the cloud rest-frame
velocity channels. When correcting for the fraction of mass
associated with outflows, the final mass predicted by model MF
is comparable to the outflow mass calculated by Arce et al.
(2010). This similarity is due to a cancellation in errors: Arce
et al. (2010) miss outflow material emitting in the cloud rest-
frame channels; however, they compensate for this by over-
estimating the amount of mass in the high-velocity channels.

Figure 18 shows the relation between the outflow 1D
momentum predicted using all velocity channels and the 1D

line-of-sight outflow momentum calculated by Arce et al.

(2010). Figure 19 shows the relation between the outflow 1D

energy predicted using all velocity channels and the outflow 1D

line-of-sight energy calculated by Arce et al. (2010). The

figures show that the outflow 1D momenta and 1D energies

predicted by model MF are comparable to the outflow

momenta and energies calculated by Arce et al. (2010),

respectively.
We estimate that the total 1D momentum is 56.4 Me km s−1

and the 1D energy is 2.6×1045 erg from outflows. These are

the same order of magnitude as the 1D calculations in Arce

et al. (2010), which are 49.2 Me km s−1 and 1.4×1045 erg,

respectively. The correction factor from 1D momentum/energy
to 3D momentum/energy in Arce et al. (2010) is 2 . This

Figure 18. Relation between the CNN predicted outflow 1D momentum over
the entire velocity channels and the 1D outflow momentum calculated by Arce
et al. (2010). The circles indicate the momentum calculated by model ME1.
The triangles represent the momentum calculated by model MF. The black
dashed line and the blue dashed line have a slope of 1 and 14, respectively.

Figure 19. Relation between the CNN predicted outflow 1D energy over the
entire velocity channels and the 1D outflow energy calculated by Arce et al.
(2010). The circles indicate the energy calculated by model ME1. The triangles
represent the energy calculated by model MF. The black dashed line and the
blue dashed line have a slope of 1 and 14, respectively.

Figure 17. Relation between the CNN predicted outflow mass over the entire
velocity channels and the outflow mass calculated by Arce et al. (2010). The
circles indicate the mass calculated by model ME1. The triangles represent the
mass calculated by model MF. The black dashed line and the blue dashed line
have a slope of 1 and 14, respectively.
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number is consistent with our argument in Section 3.1, where

an average outflow inclination of 45° is adopted. Table 4 lists

the physical properties of all 60 previously identified Perseus

outflows. It is worth noting that to make a fair comparison, the

total outflow mass, 1D momentum, and 1D energy calculations

above do not include the 20 newly identified outflows. The

Table 4

Physical Properties of Outflows in Perseusa

Source Velocity Velocity Mass Momentum Energy

Name (ME1, km s−1
) (MF, km s−1

) (Me) (Me km s−1
) (1043 erg)

CPOC 1 5.5–6.8 6.3–8.6 0.08 0.19 1.3

CPOC 2 4.3–8.9 6.0–8.6 0.09 0.16 0.88

CPOC 3 5.0–7.9 5.9–9.0 0.06 0.23 1.84

CPOC 4 –0.6–1.5 –1.8–0.8 0.03 0.13 1.02

CPOC 5 1.3–4.3 1.4–2.1 0.00 0.01 0.03

CPOC 6 7.9–10.4 8.5–11.0 0.05 0.12 0.61

CPOC 7 –0.6–7 –0.8–3.5 0.64 1.81 11.39

CPOC 8 4.1–9.0 6.1–9.4 0.68 0.79 2.02

CPOC 9 8.1–11.1 8.6–12.8 1.27 2.70 15.15

CPOC 10 8.4–11.1 9.0–11.1 0.10 0.33 2.64

CPOC 11 7.6–11.0 8.1–11.4 2.31 3.70 18.51

CPOC 12 1.1–10.8 –1.4–7.8 2.45 4.08 19.8

CPOC 13 8.5–11.0 8.8–11.8 4.21 7.06 35.26

CPOC 14 5.1–10.9 9.0–9.9 0.04 0.16 1.16

CPOC 15 –0.5–6.9 0.6–3.8 0.12 0.39 2.88

CPOC 16 7.9–10.8 8.8–10.8 0.37 0.59 2.58

CPOC 17 7.1–13.6 8.0–13.6 6.91 12.19 68.79

CPOC 18 7.3–12.4 7.9–12.4 0.73 1.10 5.09

CPOC 19 8.3–13.0 7.3–14.3 0.38 0.87 4.75

CPOC 20 7.1–10.8 8.1–11.3 0.33 0.50 2.34

CPOC 21 7.0–11.1 8.4–11.4 0.20 0.40 1.92

CPOC 22 0.9–3.3 1.1–2.3 0.86 0.92 3.15

CPOC 23 0.4–2.5 0.1–3.0 0.09 0.19 1.64

CPOC 24 –1.6–6.1 –1.6–4.4 0.72 3.78 41.52

CPOC 25 –1.6–0.9 –1.8–1 0.01 0.06 0.87

CPOC 26 6.8–9.6 7.5–10.4 0.04 0.11 0.55

CPOC 27 –0.8–3.9 –0.6–2.3 0.02 0.08 0.89

CPOC 28 5.1–10.3 5.3–12.4 2.25 1.49 4.19

CPOC 29 6.5–9.4 9.1–9.6 0.02 0.09 0.77

CPOC 30 7.1–10.0 8.1–10.5 0.04 0.10 0.5

CPOC 31 6.6–10.0 7.6–11.3 0.24 0.58 2.95

CPOC 32 6.5–9.3 7.0–9.8 0.08 0.12 0.38

CPOC 33 6.4–10.3 9.0–9.9 0.09 0.18 0.81

CPOC 34 7.1–9.5 8.9–9.9 0.04 0.08 0.36

CPOC 35 7.3–9.6 7.8–10.5 0.34 0.88 5.37

CPOC 36 5.9–10.9 8.9–10.0 0.16 0.42 2.68

CPOC 37 6.9–10.1 7.3–10.1 0.28 0.18 0.41

CPOC 38 6.4–10.0 5.9–9.0 0.04 0.03 0.06

CPOC 39 8.3–12.1 8.4–13.1 0.54 0.90 4.69

CPOC 40 6.5–10.8 5.6–10.9 3.18 1.23 1.69

CPOC 41 8.4–12.0 9.3–11.8 0.71 1.10 3.67

CPOC 42 7.1–10.0 6.5–10.8 3.33 1.29 1.75

CPOC 43 8.5–11.5 9.3–11.9 1.06 1.65 5.43

CPOC 44 9.8–10.9 10.8–11.6 0.04 0.09 0.42

CPOC 45 8.8–11.8 10.8–11.5 0.12 0.20 0.82

CPOC 46 7.6–11.1 9.8–10.8 0.89 1.07 2.86

CPOC 47 5.8–9.0 4.6–8.4 0.05 0.16 1.35

CPOC 48 8.8–11.4 10.9–11.3 0.21 0.24 0.62

CPOC 49 6.0–6.9 5.1–5.9 0.29 0.32 0.82

CPOC 50 9.5–11.1 10.9–11.3 0.08 0.10 0.31

CPOC 51 9.4–11.5 9.3–12.5 0.05 0.06 0.16

CPOC 52 7.8–10.4 6.8–8.6 0.27 0.35 1.33

CPOC 53 9.4–11.6 8.6–12.3 0.84 0.39 0.46

CPOC 54 9.3–11.9 10.4–12.0 0.61 0.30 0.49

CPOC 55 9.1–13.1 11.6–12.6 0.14 0.29 1.26

CPOC 56 6.5–10.9 5.9–13.5 4.88 2.76 5.99

CPOC 57 9.4–12.0 9.6–12.5 0.42 0.26 0.53

CPOC 58 7.5–11.8 9.9–11.0 0.09 0.04 0.13

CPOC 59 7.6–10.9 6.1–12.1 0.51 0.36 0.77

CPOC 60 7.9–11.9 8.0–9.9 0.83 0.67 1.22

Total L L 44.2 56.4 260

Note.
a Outflow name, velocity range indicated by model ME1, velocity range indicated by model MF, mass predicted by model MF, 1D momentum predicted by model MF, and 1D energy

predicted by model MF.
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physical properties of the newly identified outflows are listed in
Table 3.

The total mass, 1D momentum, and 1D energy including the
20 newly identified are 53.8 Me, 67.7 Me km s−1, and
3.6×1045 erg, respectively.

3.5. Relation between Outflow Properties and Candidate
Driving Sources

In this section, we discuss the relation between outflow
properties and the type of the source that likely drives each
outflow. We first divided the previously identified outflows into
several categories based on the YSOs nearby. Some outflows
are located near multiple sources, so the true driving source is
ambiguous. The four categories are as follows:

1. Younger YSOs: The outflow is likely driven by an early
evolutionary stage YSO, e.g., protostars with cold, dusty,
quasi-spherical envelopes (R. A. Gutermuth et al. 2020,
in preparation; Pokhrel et al. 2020).

2. Older YSOs with disks: The outflow is likely driven by a
later evolutionary stage YSO, e.g., pre-main-sequence
stars with protoplanetary disks (R. A. Gutermuth et al.
2020, in preparation; Pokhrel et al. 2020).

3. Multiple YSOs: Multiple YSOs are nearby. Either an
early or a late evolutionary stage YSO may drive the
outflow.

4. No YSOs: The outflow has distinct coherent high-velocity
features but has no known YSOs in close proximity.

5. No Spitzer: The outflow is located outside the YSO catalog
coverage (R. A. Gutermuth et al. 2020, in preparation;
Pokhrel et al. 2020).

We note that there are many more YSOs than identified
outflows. This may mean that the outflows of these sources are
small and/or relatively low-velocity, perpendicular to the line
of sight such that no high-velocity gas is apparent, or it is not
distinct from the identified outflow gas. The difference in
outflow and source number may also be because the outflows
of multiple sources are blended together and difficult to cleanly
separate (see Section 4.1 for additional discussion).

Among the 60 outflows identified by Arce et al. (2010), 12
outflows are outside the Spitzer YSO catalog coverage as
indicated in Figure 2. Of the remaining 48 outflows, 8 (17%)

are associated with younger YSOs, 12 (25%) are associated
with older YSOs with disks, 19 (39%) are associated with
multiple YSOs, and 9 (19%) have no nearby source. There are
two possibilities to explain the latter category of outflows:
either the YSO catalog is not complete, or the outflows without
YSOs are false detections. The SESNA YSO catalog is derived
from Spitzer mid-IR data, and thus it is quite sensitive to most
YSOs. However, the youngest type, Class 0, can be missed. For
outflow identifications with no YSO catalog member, we
visually examined Herschel 70 and 160μm images where
those particularly young protostars should be very bright. We
found no evidence for hidden and highly embedded protostars
in those data. However, there is still a chance of overlooking
faint/young sources owing to the sensitivity. We also note that
it is implausible for YSOs to move out of the field of view on
the dynamical time of the outflow, which is usually of order
103–104 yr. On the other hand, outflows are likely to extend
beyond the box circumscribing them, making it difficult to
identify which part of the outflow is closest to the driving

source. Thus, it is possible that the driving source is outside

the box.
We stress that the outflows with no nearby source are

identified by both models and by eye as well. We confirm that

these outflow candidates do visually look like other outflows

with nearby YSOs. Moreover, our test set has an extremely low

false-positive rate; no false outflows are identified in the

simulation data. Considering that morphologies of these high-

velocity blobs are indistinguishable from confirmed outflows, it

is impractical to rule out these candidates by examining only

the 3D data without complete YSO catalogs and the ability to

match an outflow to a particular YSO source. Correspondingly,

we still consider these outflows to be high-confidence

candidates.
Figure 20 shows the distribution of the ratio between the

mass predicted by model MF and that by model ME1 over all

velocity channels for the different categories of outflows. Since

model ME1 includes more mass associated with the cloud,

while model MF is a more direct measure of the actual outflow

mass, this ratio roughly indicates the fraction of mass

associated with feedback. A smaller ratio suggests high

contamination from ambient gas in model ME1 that is not

associated with the outflow. Generally, at rest-frame velocity

channels, this ratio drops quickly compared to that at high-

velocity channels. In other words, the ratio between the mass

predicted from model MF and that from model ME1 across all

velocity channels reveals at what velocity more outflow mass is

located. If the ratio is high, more mass is likely associated with

high-velocity channels. If the ratio is low, more mass is likely

associated with the rest-frame velocity channels. Figure 20

suggests that outflows likely driven by late evolutionary stage

YSOs (older YSOs with disks) have slightly higher ratios

compared to those driven by early evolutionary stage YSOs.

This has an intuitive explanation: at early evolutionary stages,

YSOs have not ejected a significant amount of high-velocity

gas owing to the presence of the envelope. The high-velocity

gas is likely slowed by interaction with dense gas. At late

evolutionary stages, YSOs can efficiently expel gas at higher

velocities. However, due to the limited sample size, the

difference between the two distributions is not significant.

Figure 20. Distribution of the ratio between the mass predicted by model MF
and that by model ME1 over all velocity channels for different categories of
outflows.
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Figure 21 shows the distribution of the ratio between the
mass predicted by model MF over only the subset of outflow
velocity channels and that predicted over all velocity channels
for different categories of outflows. This ratio indicates at
which velocities the mass associated with feedback is located.
If more mass emits in high-velocity channels, where the
outflow morphology is the most distinct, this ratio increases. If
more mass emits near the rest-frame velocity channels, where
the outflow morphology vanishes in the diffuse gas emission,
this ratio drops. Similar to the ratio between the mass predicted
from model MF and that from model ME1 for all velocity
channels, the ratio shown in Figure 21 is also sensitive to the
evolutionary stage of the driving YSOs. Early evolutionary
stage YSOs are likely to have less gas at high velocities
compared to that of late evolutionary stage YSOs. Figure 21
shows that for older YSOs more gas is likely observable in
12CO emission at high velocities.

The distribution of the outflows outside the YSO catalog
coverage in both Figures 20 and 21 spans a large range of
ratios. This may indicate that the outflows outside the YSO
catalog coverage include both early evolutionary stage and late
evolutionary stage driving YSOs.

The distribution of the outflows that have no nearby source
in both Figures 20 and 21 is similar to those associated with
younger YSOs. This in turn demonstrates that there is a chance
that the SESNA YSO catalog overlooks some faint/young
sources.

In both Figures 20 and 21, most of the outflows have small
ratios. This is because most of our sources are young and
located in relatively dense gas regions. It takes ∼50 kyr for the
outflow to break out of the core and appear at high velocities in
12CO (Offner & Arce 2014).

4. Discussion

4.1. Outflows in Star Clusters

In this section, we present the performance of models ME1
and MF on the star cluster NGC 1333. NGC 1333 is one of the
most active star-forming regions in Perseus with multiple
outflows driven by the protostellar cluster (Lada et al. 1996;

Knee & Sandell 2000; Gutermuth et al. 2008). Astronomers
have identified tens of outflows in this region (Bally et al. 1996;
Knee & Sandell 2000; Arce et al. 2010). Arce et al. (2010)
identified 16 individual outflows in 12CO (1–0), while Curtis
et al. (2010) identified 27 distinct outflows in 12CO (3–2) in
NGC 1333. In total, there are over 100 YSOs in this region
(Gutermuth et al. 2008, 2009; R. A. Gutermuth et al. 2020, in
preparation). Due to the intense star formation going on, most
outflows in 12CO (1–0) blend with each other, making them
difficult to separate. CASI-3D provides a means to separate the
outflow emission from the rest of the cloud.
Figure 22 demonstrates the performance of models ME1 and

MF on NGC 1333. Both models identify coherent high-
velocity structures that are similar to outflows in the position–
velocity diagram in Figure 22. In Figure 22, we randomly
choose a position–velocity cut direction that spans as many
YSOs as possible. The right panels show that the predictions by
models ME1 and MF are similar in the high-velocity channels,
but the prediction by model ME1 is more extended toward the
cloud rest-frame velocity. The fraction of gas associated with
outflows drops significantly at cloud velocities, which explains
the different predictions by the models. As expected, in
projection the identified outflow emission covers most of NGC
1333, but model MF successfully excludes most of the cloud
emission. Other position–velocity cuts show similar results in
NGC 1333.
The position–velocity diagram in Figure 22 indicates that

both models predict that the lower left blob is part of an
outflow, although this blob is isolated in velocity. This feature
is likely a high-velocity component of the cloud. However, the
morphology exhibits velocity variation, where a flipped “V”
structure appears. This shape is a signature of feedback as
discussed in Arce et al. (2011). We cannot distinguish the
difference between outflow structures and high-velocity cloud
components visually or using the models with the 12CO data
alone.

4.2. Outflows without Driving Sources and False Detections

In this section, we present the performance of models ME1
and MF on a region with few YSOs. We select the region to the
east of B1, where the YSO density is relatively low. Figure 23
presents the performance of models ME1 and MF on this low
YSO density region. Although there is only one YSO along the
cut direction, both models identify coherent high-velocity
structures whose morphologies are consistent with outflows far
away from the YSO. The predictions by models ME1 and MF
are indistinguishable from the morphology of high-confidence
outflows that have obvious driving sources. We cannot identify
whether these are true outflows without ancillary data.
As indicated in Figure 23, this region has a sharp velocity

gradient from 10 to 6km s−1. It bridges two subregions, B1
and B3, which have two different central velocities. The
position–velocity diagram in Figure 23 illustrates a significant
number of high-velocity features. Many mechanisms may
cause this, including but not limited to cloud formation, cloud–
cloud collision, or gas phase transition due to radiation (Motte
et al. 2014; Nakamura et al. 2014). Most of these coherent
high-velocity structures are very similar to confirmed outflow
structures with obvious driving sources. It is possible that both
models may have false detections that are not produced by
feedback but by other mechanisms. This illustrates that clouds

Figure 21. Distribution of the ratio between the mass predicted by model MF
over only the outflow velocity channels from Arce et al. (2010) and that over
all velocity channels for different categories of outflows.
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have high-velocity features that are indistinguishable—either
visually or using our method—from high-confident outflow
signatures. Consequently, we caution that machine learning
models are not “magic bullets” and must be applied with care.

4.3. Case Studies

4.3.1. Discrepancies between the Two Model Predictions

In this section, we discuss a case where the two models make
significantly different predictions. In most regions, the predic-
tions by the two models are similar at high velocities. The
model ME1 prediction is often more extended toward the cloud
rest-frame velocity compared to that by model MF, but the
overall coherent high-velocity structures identified by the two
models are similar. However, there are some regions where the
predictions by the models are different. Figure 24 shows an
example of the performance of models ME1 and MF toward a
region where the predictions are discrepant. Model MF predicts
a more extended outflow structure compared to model ME1. In
the position–velocity diagram, the two predictions are similar
except in the middle. A late evolutionary stage YSO located on
the cut direction likely drives the two outflow features on each
side. It is ambiguous whether the feature identified by model
MF but not by model ME1 is a true outflow. The high-velocity
feature is not as distinct as other outflows. We can recognize

some faint diffuse emission highlighted by model MF only in
the center around 8 km s−1. This diffuse emission seems
associated with the left side blob that is identified by both
models. Model MF is likely to identify a more extended
outflow structure than model ME1, but not necessarily a new
individual outflow. The presence of the YSO lends confidence
to the model MF prediction, which appears as part of the
outflow. However, due to the discrepancy, we only consider the
left feature identified by both models as a high-confidence
outflow candidate.

4.3.2. A Previously Identified Outflow: IRAS03282+3035

In this section, we discuss the performance of the two
models on previously identified outflow IRAS03282+3035.
Dunham et al. (2014) conducted a 12CO (2–1) and 12CO (3–2)
survey toward 28 molecular outflows driven by low-mass
protostars that are isolated spatially and kinematically. Among
these outflows, IRAS 03282+3035 is located in Perseus and
identified by our two models but missed by Arce et al. (2010).
Figure 25 shows the performance of models ME1 and MF

toward IRAS03282+3035. The morphology of the 12CO
(1–0) is similar but more extended compared to that in the 12CO
(2–1) and the 12CO (3–2) emission in Dunham et al. (2014).
Both models identify coherent high-velocity features. Since this
outflow is close to a cluster of YSOs and 12CO (1–0) has better

Figure 22. Position–velocity diagram of 12CO emission toward NGC 1333. Left panel: integrated intensity of 12CO over the full velocity range (from −2 to
15 km s−1

) overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple line
illustrates the cut direction of the position–velocity diagram. Middle and right panels: position–velocity diagram of 12CO emission overlaid with the model ME1 and
MF predictions in white contours.
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sensitivity toward diffuse gas, the prediction by both models

extends to a wider area than the 12CO (2–1) and 12CO (3–2)
emission.

Next, we compare the physical properties calculated by our
models and those reported by Dunham et al. (2014). Dunham
et al. (2014) conscientiously calculate the outflow mass,

energy, and momentum by considering several correction
factors, including opacity and outflow emission at low
velocities confused with ambient cloud emission. We adopt
the same box size as in Dunham et al. (2014) to constrain the
outflow area. Model MF corrects contamination by the cloud in

low-velocity channels, which is similar to the method in
Dunham et al. (2014). The outflow mass predicted by model
MF is 0.2Me, while Dunham et al. (2014) calculate it to be
0.43Me. This is only a factor of two difference. Dunham et al.

(2014) adopt an excitation temperature of 50 K to calculate the
outflow mass; however, we adopt 25 K for the calculation. A
higher excitation temperature indicates an approximately
linearly increased mass. If we adopt 50 K as the excitation
temperature in the calculation, we get an outflow mass of

0.4Me, which is consistent with the result, 0.43Me, in
Dunham et al. (2014). The result that using different transition
lines returns a similar result is promising, which in turn gives
confidence in our approach and assumptions.

The outflow 1D momentum and 1D energy predicted by
model MF are 0.4 Me km s−1 and 1.9×1043 erg, respectively,
while Dunham et al. (2014) find 2.1 Me km s−1 and 1.4×
1044 erg. This is a factor of 5 difference in momentum and
a factor of 7 difference in energy. The main reason for the
difference is due to the velocity range. As pointed out in
Dunham et al. (2014), the minimum velocity of IRAS03282
+3035 is 6.0km s−1 and the maximum velocity is 25.9km s−1,
while in our analysis, the 12CO (1–0) has a velocity coverage
between −2 and 15km s−1. A small amount of gas located in
extremely high velocity channels contributes a significant
amount of momentum (∝v) and energy (∝v2). On the other
hand, Dunham et al. (2014) observed 12CO (2–1) with an rms of
0.04K, but our resampled 12CO (1–0) has an rms of 0.17K. The
outflow emission vanishes into the noise in the high-velocity
channels of 12CO (1–0). This may also explain the differences in
the outflow properties.

5. Conclusions

We adopt the deep learning method CASI-3D to identify
protostellar outflows in 12CO spectral cubes. By creating
different training sets, we develop two deep machine learning
models. Model ME1 predicts the position of the outflows.

Figure 23. Position–velocity diagram of 12CO emission toward a region with few YSOs. Left panel: integrated intensity of 12CO over the full velocity range (from −2
to 15 km s−1

) overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple line
illustrates the cut direction of the position–velocity diagram. Middle and right panels: position–velocity diagram of 12CO emission overlaid with the model ME1 and
MF predictions in white contours.
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Model MF predicts the fraction of the mass associated with the

outflows. Our main findings are the following:

1. We apply CASI-3D to Perseus and successfully identify

60 previously visually identified outflows.
2. We identify 20 new high-confidence outflows in Perseus

using CASI-3D. All of these have coherent high-velocity

structure and nearby YSOs.
3. The outflow mass in Perseus predicted by model MF is

comparable to the outflow mass calculated by Arce et al.

(2010). This similarity is due to a cancellation in errors:

Arce et al. (2010) miss outflow material emitting in the

cloud rest-frame channels; however, they compensate for

this by overestimating the amount of mass in high-

velocity channels that have foreground and background

contamination.
4. The total 1D momentum, 56.4 Me km s−1, and 1D energy,

2.6×1045 erg, from outflows in Perseus are on the same

order of magnitude as the 1D calculations in Arce et al.

(2010), which are 49.2 Me km s−1 and 1.4×1045 erg,

respectively.

5. We find that outflows likely driven by older YSOs have

more gas ejected at high velocities compared to those

driven by younger YSOs.
6. We use CASI-3D to identify an extended amount of

outflow gas around the NGC 1333 region, where it is

difficult to visually identify individual outflows owing to

the intensive star formation.

In future work, we plan to apply CASI-3D to more active star-

forming regions where it is not possible to cleanly separate

outflow signatures visually.
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Figure 24. Position–velocity diagram of 12CO emission toward a region where the predictions by model ME1 and MFs are discrepant. Left panel: integrated intensity
of 12CO over the full velocity range (from −2 to 15 km s−1

) overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO
positions, as described in Figure 2. The purple line illustrates the cut direction of the position–velocity diagram. Middle and right panels: position–velocity diagram of
12CO emission overlaid with the model ME1 and MF predictions in white contours.
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Appendix A
Exploring Different Outflow Definitions

In this appendix, we assess the impact of different thresholds

on the derived outflow mass. We examine thresholds of values

of 1% and 10% for the minimum tracer fraction for which

material is defined as part of an outflow. Figure 26 shows an

example for two ME1 models with different thresholds applied

to a synthetic outflow. The prediction by model ME1 using a

1% minimum tracer fraction is more extended compared to that

trained using 10%. The morphology of the tracer field with a

1% threshold and that with a 10% threshold are almost

identical. However, the prediction by model ME1 trained using

a 10% minimum tracer fraction better reproduces the

morphology of the outflow without contamination around the
outflow boundary. On average, the model ME1 trained using a
1% minimum tracer fraction overestimates the mass by a factor
of two compared to that trained using a 10% minimum tracer
fraction. Figure 27 demonstrates the performance of the two
ME1 models with different thresholds on a previously
identified outflow in Perseus. In the outflow channels, the
predictions by the two ME1 models are almost identical. In
contrast, the integrated prediction over the entire velocity range
from model ME1 with a 1% threshold is more extended than
that with a 10% threshold. We conclude that using a 10%
threshold reduces diffuse contamination from ambient gas.
Consequently, we adopt model ME1 with a 10% threshold as
the fiducial model.

Figure 25. Position–velocity diagram of 12CO emission toward outflow IRAS03282+3035. Left panel: integrated intensity of 12CO over the full velocity range (from
−2 to 15 km s−1

) overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple
line illustrates the cut direction of the position–velocity diagram. Middle and right panels: position–velocity diagram of 12CO emission overlaid with the model ME1
and MF predictions in white contours.
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Appendix B
Training Results

After training, we find that model ME1 converges to an MSE
below 0.05. Figure 28 shows the training and validation errors
of model ME1. After 220 epochs, this model converges to an

MSE of 0.035. Since the validation error flattens, we stop

training after 220 epochs. Figure 29 indicates the receiver

operating characteristic (ROC) curve of model MF. We assess

the model MF performance on six different test sets. We

achieve 95% accuracy within a 5% false-positive rate on all six

test sets.

Figure 26. Results of two ME1 models with different tracer fraction thresholds applied to a synthetic outflow. First panel: integrated intensity of 12CO. Second panel:
integrated tracer field with a 1% minimum tracer fraction. Third panel: integrated tracer field with a 10% minimum tracer fraction. Fourth panel: predicted integrated intensity
from model ME1 trained using the 1% threshold to identify outflows. Fifth panel: predicted integrated intensity by model ME1 trained using a 10% threshold.

Figure 27. Results of two ME1 models with different thresholds applied to the previously identified Perseus outflow CPOC 35. Top row, first panel: integrated
intensity of 12CO over the outflow velocity channels. Letters “Y” and “O” mark YSO positions, as described in Figure 2. Second panel: predicted intensity integrated
along the velocity axis from model ME1 with a 1% threshold. Third panel: integrated intensity of 12CO over only the outflow velocity channels overlaid with the
model ME1 (1%) prediction (white contour). Fourth and fifth panels: same as the second and third panels, but for model ME1 trained using a 10% threshold. The
bottom row is the same as the top row but is integrated over the full velocity range.
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Appendix C
Quantitatively Evaluating Model Performance

C.1. Performance on Test Set Data

In this section, we quantitatively evaluate the performance of

both models on the outflow mass estimates under different

physical and chemical conditions. We calculate the mean mass

and its uncertainty for each simulated outflow with different

kinetic temperatures and different 12CO abundances in the test

set. Figure 30 shows the relation between the CASI-3D

predicted outflow mass and the true mass for different outflows,

where error bars indicate the standard deviation of the mass

prediction on a simulated outflow with two different kinetic

temperatures (10 and 14 K) and three different 12CO

abundances (10−4, 5×10−5, 10−5
). On average, model ME1

overestimates the outflow mass by a factor of 5, while model

MF is able to correctly predict the outflow mass within a

reasonable uncertainty under different physical and chemical
conditions.

C.2. Performance on New Conditions

In this section, we explore the performance of both models
on synthetic outflows whose conditions are not included in our
training set. This exercise examines the uncertainty when
applying both models to different observations under different
conditions.
We test the performance of the two models on a simulated

outflow with different beam sizes than we used in our training
set: 100″, 25″, and 10″. Both models are trained on a training
set that only includes synthetic observations with a beam size
of 50″. Figure 31 shows the performance of the two models on
a simulated outflow with different beam sizes. Both models are
able to capture the morphology of the outflow even though
images with these beam sizes are not included in the
training set.
We then quantitatively assess the performance of both

models on outflow mass estimates under different conditions.
The training set only includes synthetic observations with these
parameters: a beam size of 50″, a noise level of 0.17 K, kinetic
temperatures of 10 and 14 K, and12CO/H2 abundances of
10−4, 5×10−5, and 10−5. We explore the performance of the
two models on synthetic outflows under more conditions: beam
sizes of 100″, 50″, 25″, and 10″, noise levels of 0.06, 0.17, and
0.51 K, kinetic temperatures of 10, 14, and 20 K, and 12CO/H2

abundances of 10−4, 5×10−5, and 10−5. In total, we test the
two models on 108 synthetic outflows with different combina-
tions of parameters, among which only six combinations of
parameters are included in the training set. Figure 32 shows the
distribution of the mass predicted by the two models on 108
synthetic outflows with different combinations of parameters.
Both models are able to predict the outflow mass consistently
under different conditions. The mean mass predicted by model
ME1 is 5.94 Me, with a standard deviation of 2 Me. The mean
mass predicted by model MF is 0.76 Me, with a standard

Figure 28. Training and validation errors of model ME1 during training.

Figure 29. Receiver operating characteristic curve of model MF tested on
different test sets.

Figure 30. Reproduced from Figure 5, relation between the CASI-3D predicted
outflow mass and the true mass for different outflows. Circles indicate the mass
calculated by model ME1. Triangles represent the mass calculated by model
MF. Error bars indicate the standard deviation of the mass prediction on a
simulating outflow under six different physical and chemical conditions. The
black dashed line indicates where CASI-3D correctly predicts the true mass. The
blue dashed line has a slope of 5.
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deviation of 0.32Me. The true mass of these synthetic outflows
is 1.04Me. Model MF is able to predict the outflow mass under
different conditions within a factor of two. Table 5 gives the

masses predicted by the two models for synthetic outflows

under several different conditions. We adopt the mean masses

predicted by both models on the six synthetic outflows whose

parameters are included in the training set as the fiducial values

for comparison. We also calculate the mean and the standard

deviation of the masses of the synthetic outflows with different

parameters.
As indicated in Table 5, different parameters have different

effects on the outflow mass prediction. We discuss them

separately as follows.
Model ME1 overestimates the outflow mass when the beam

size is large. When the beam size is large, more gas located

near the rest-frame velocity that is not associated with the

outflow is included in the model ME1 prediction, which yields

a larger mass estimate. In contrast, model MF underestimates

the mass when the beam size is large. Model MF is more

sensitive to outflow emission in the high-velocity channels

where the fraction of mass associated with feedback is high.

The relatively faint outflow emission in the high-velocity

channels vanishes into the background noise owing to beam

smearing. Model MF fails to capture the morphology of the

outflow in the high-velocity channels, which yields a smaller

mass estimate. We calculate the mean and the standard

deviation of the masses of synthetic outflows with different

Figure 32. Distribution of the mass predicted by the two models on 108
synthetic outflows with different combinations of parameters.

Figure 31. Performance of the two models on a simulated outflow with different beam sizes.
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beam sizes, which are 0.95 and 0.30 Me. There is a factor of
two between the maximum and the minimum predicted mass of
the synthetic outflows with different beam sizes.

The estimated mass increases for both lower and higher
noise levels. As indicated in Table 5, when the noise level is
increased by a factor of 3, the masses predicted by both models
increase. This is due to the contamination by the noise. When
the noise level is decreased by a factor of 3, the masses
predicted by both models also increase. This is because the
outflow emission is more distinct, and both models are able to
identify a more complete morphology. We calculate the mean
and the standard deviation of the masses of synthetic outflows
with different noise levels, which are 1.02 and 0.24 Me. There
is a factor of 1.6 between the maximum and the minimum
predicted mass of synthetic outflows with different noise levels.

When the 12CO/H2 abundance drops, the mass predicted by
model MF decreases. Since we use a constant 12CO/13CO
ratio, when 12CO/H2 decreases by a factor of 10, the
abundance of 13COalso drops by a factor of 10. Under this
circumstance, 13COemission of the outflow is fainter and
difficult to detect. In most voxels of the low 12CO and
13COabundance synthetic outflow, we can only rely on 12CO
emission to calculate the outflow mass rather than combining
both 12CO and 13CO. 12CO is usually optical thick, so we
underestimate the outflow mass based on 12CO only. We
calculate the mean and the standard deviation of the masses of
synthetic outflows with different 12CO/H2 abundances, which
are 0.64 and 0.15 Me. There is a factor of 1.6 between the
maximum and the minimum predicted mass of the synthetic
outflows with different 12CO/H2 abundances.

There is only a weak dependence between the cloud kinetic
temperature and the mass estimates by the two models. The
averaged kinetic temperature of launched gas is higher than the
mean cloud kinetic temperature. We adopt a constant excitation
temperature of 25 K when we calculate outflow mass as
discussed in Section 3.1. Consequently, the cloud kinetic
temperature plays a limited role in setting the emission of the

gas associated with feedback. We calculate the mean and the
standard deviation of the masses of synthetic outflows with
different kinetic temperatures, which is 0.83 and 0.03 Me.
We find that the beam sizes, noise levels, and 12CO/H2

abundances dominate the uncertainty of outflow mass esti-
mates. Kinetic temperatures do not significantly affect the
outflow mass estimation. These variations at most introduce a
factor of 2 change in the estimated mass. To conclude, we
demonstrate that CASI-3D performs well on other observations
whose conditions are not included in the training set.
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