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Abstract

We adopt the deep learning method CASI-3D (Convolutional Approach to Structure Identification-3D) to identify
protostellar outflows in molecular line spectra. We conduct magnetohydrodynamics simulations that model
forming stars that launch protostellar outflows and use these to generate synthetic observations. We apply the 3D
radiation transfer code RADMC-3D to model '2CO (J = 1-0) line emission from the simulated clouds. We train two
CASI-3D models: MEI is trained to predict only the position of outflows, while MF is trained to predict the fraction
of the mass coming from outflows in each voxel. The two models successfully identify all 60 previously visually
identified outflows in Perseus. Additionally, CASI-3D finds 20 new high-confidence outflows. All of these have
coherent high-velocity structure, and 17 of them have nearby young stellar objects, while the remaining three are
outside the Spitzer survey coverage. The mass, momentum, and energy of individual outflows in Perseus predicted
by model MF is comparable to the previous estimations. This similarity is due to a cancellation in errors: previous
calculations missed outflow material with velocities comparable to the cloud velocity; however, they compensate
for this by overestimating the amount of mass at higher velocities that has contamination from nonoutflow gas. We
show that outflows likely driven by older sources have more high-velocity gas compared to those driven by
younger sources.
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1. Introduction

Protostars launch collimated bipolar outflows along magnetic
field lines when accreting mass from their disks. Bipolar outflows
eject high-velocity gas into their natal molecular clouds, injecting
a substantial amount of energy into their surroundings (Frank et al.
2014; Bally 2016). Jets and outflows also significantly reduce
protostellar masses and accretion rates, which primarily resolves
the low “core-to-star efficiency problem” (Myers 2008; Hansen
et al. 2012; Machida & Hosokawa 2013; Offner & Arce 2014). In
addition, outflows disperse some of the surrounding gas, reducing
the global star formation rate (Matzner 2007; Arce et al. 2010;
Federrath et al. 2014). The extra momentum and energy from the
outflows compressing and heating the gas can considerably
change cloud properties (Matzner & Jumper 2015).

Protostellar outflows also shape molecular cloud chemistry.
For example, high-velocity outflows generate molecular bow
shocks, which trigger chemical reactions that do not happen in
quiescent environments, Yyielding complex physical and
chemical conditions (Bachiller 1996). One of the most extreme
examples is SiO, which is usually considered a shock tracer,
whose abundance is enhanced by several orders of magnitude
along the axes of molecular outflows (Bachiller et al. 1991;
Martin-Pintado et al. 1992).

In order to understand the impact of outflows on molecular
clouds, especially the effect on their energy budget, a complete
census of outflows is needed. Unfortunately, most outflows are
asymmetric and deeply embedded in dense clouds, making them
difficult to identify (Arce et al. 2010; Dunham et al. 2014).

Historically, astronomers have identified outflows and sepa-
rated them from the surrounding gas “by eye” (Bachiller 1996;
Zhang et al. 2005; Cyganowski et al. 2008; Li et al. 2015). For

example, Arce et al. (2010) identified 60 outflows in the Perseus
molecular cloud by determining high-velocity features from a
three-dimensional visualization. They concluded that the total
outflow energy is sufficient to replenish the dissipation of
turbulence. However, Arce et al. (2010) found no correlation
between outflow strength (in terms of mass, momentum, or
energy) and star formation efficiency (SFE) in different regions of
Perseus, which is contrary to the predictions of studies using
simulations (e.g., Hansen et al. 2012; Federrath et al. 2014).
Incompleteness of the outflow sample or interlopers, i.e., false
outflows, that originate from turbulence rather than feedback
might be the reason. Alternatively, some additional feedback
mechanism, such as stellar winds, rather than outflows may
explain the lack of correlation.

Due to the difficulty and subjectivity of identifying outflows
visually, different studies have drawn different conclusions about
the importance of feedback. For example, Narayanan et al. (2012)
identify 20 outflows in the Taurus molecular cloud and conclude
that the impact of feedback is negligible compared to the
dissipation of turbulence. However, Li et al. (2015) identify twice
as many outflows, whose energy injection rate is 16 times larger
than before, yielding the opposite conclusion. Consequently, a
complete and high-confidence outflow sample is required to
understand the true impact of outflows.

Machine learning makes it possible to systematically and
quickly identify outflow features. Several machine learning
algorithms have been utilized to identify stellar feedback features
(Beaumont et al. 2011, 2014; Van Oort et al. 2019; Xu et al. 2020;
Zhang et al. 2020). Support vector machines (SVMs) were
employed to distinguish a supernova remnant from the ambient
gas (Beaumont et al. 2011) and to identify molecular outflows in a
dark cloud complex (Zhang et al. 2020). Zhang et al. (2020)
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adopted SVMs to identify outflow features in '*CO and
3CO emission in Cygnus. SVMs are proficient in classification
tasks, but they require manual feature extraction to create a
training set, which is arbitrary and likely to omit information
compared to adopting complete images or sophisticated 3D
models as the training set. Random forest algorithms, which
classify feature vectors by learning a series of decision rules,
perform robustly in identifying stellar feedback bubbles in dust
emission (Beaumont et al. 2014; Xu & Offner 2017). Similar to
SVMs, random forests necessitate manually extracted features as
inputs. Moreover, the accuracy of their classifications is sensitive
to the location of stellar feedback bubbles in the input images
(Beaumont et al. 2014; Xu & Offner 2017; Jayasinghe et al.
2019). Convolutional neural networks (CNNs) are a powerful new
approach being applied to identify structures or objects, such as
exoplanets (Shallue & Vanderburg 2018) and stellar feedback
bubbles (Van Oort et al. 2019; Xu et al. 2020). CNNs are not
sensitive to the position of the objects in the data, so it is
straightforward to apply them to large surveys. Most importantly,
CNNs do not require manually extracted features as inputs.
Instead, CNNs extract features automatically from the data by
applying different filters on different layers during training. A
sophisticated algorithm, Convolutional Approach to Shell/
Structure Identification (CASI; Van Oort et al. 2019; Xu et al.
2020), based on CNNs, was recently developed and successfully
applied to identify bubbles produced by stellar feedback in both
2D and 3D simulation and observational data. CASI-3D can
identify bubble-like structures in position—position—velocity (PPV)
molecular line spectra cubes, achieving a 96% voxel-level
accuracy (Xu et al. 2020). Furthermore, CASI-3D successfully
infers hidden information in the data cube, e.g., the fraction of
mass coming from feedback, which provides a more accurate
feedback mass estimation. Xu et al. (2020) show that the newly
calculated mass associated with shell features in the Taurus
molecular cloud is an order of magnitude smaller than the
previous estimates. This result underscores the power of CNNs to
identify structures and constrain nonlinear and complex physical
processes like stellar feedback signatures.

In this paper, we adopt the deep learning method CASI-3D to
systemically identify protostellar outflows in CO data and conduct
statistical studies. We describe CASI-3D and how we generate the
training set from synthetic observations in Section 2. In Section 3,
we present the performance of the CNN model in identifying
protostellar outflows in both synthetic and observational data. We
discuss the application of the CNN model in different physical
environments in Section 4, and we summarize our results and
conclusions in Section 5.

2. Method
2.1. Magnetohydrodynamics Simulations

We conduct magnetohydrodynamics simulations with
ORION2 (Li et al. 2012) to model forming stars that launch
protostellar outflows. The simulation box is 2 x 2 x 2 pc?,
with a total mass of M = 301.5 M, mean particle density of
654 cm73, and three-dimensional Mach number of 6.6, which
places the simulated cloud on the line width—size relation,
oip = 0.72R)° km s~' (McKee & Ostriker 2007). These
conditions represent a piece of a typical low-mass star-forming
region, such as the Perseus molecular cloud, in which we
intend to identify protostellar outflows. We treat the gas as an
ideal gas that perfectly thermally couples with the dust. The
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Table 1
Model Properties®
Model B (uG) Ho Nseea fran ()
Bl 3.2 8 2 (0.49, 0.52, 0.55) °
B2 0.8 32 1 (0.93, 1.06, 1.09) ©
Notes.

4 Model name, initial mean magnetic field, global mass-to-flux ratio (g =
Meyos/Mg = G/ 2Mgm / (BL?)), the number of different turbulent driving patterns
used for each model, and the evolutionary time in freefall times. All models have
L=2pc, M=3015M., T; = 10 K, and a freefall time of 1.31 Myr.

® The first star particle is formed right before 0.49¢.

€ The first star particle is formed right before 0.93t.

calculations use a base grid of 256> with four adaptive mesh
refinement (AMR) levels, where the minimum cell size is
100 au. We initialize the density and velocity fields by driving
the simulation gas for two Mach crossing times without gravity
but adding random large-scale perturbations with Fourier
modes 1 < k£ < 2 (Mac Low 1999). Sink particles are formed
when the gas density exceeds the Jeans criterion at the finest
AMR level (Krumholz et al. 2004). The sink particles represent
individual stars and adopt a subgrid stellar evolution model that
launches protostellar bipolar outflows (Offner et al. 2009;
Cunningham et al. 2011; Myers et al. 2014). The outflow
launching velocity is determined by the Keplerian velocity at
the stellar surface, vk = /GMy/Ry«. We use a “tracer” field to
track the material launched by the outflows (Offner &
Chaban 2017). A detailed description of the outflow method
can be found in Cunningham et al. (2011).

We conduct three different simulations with different
magnetic fields and turbulent driving patterns. We carry out
the analysis at several simulation times to capture different
evolutionary stages of the protostars and study the impact of
these outflows on the surrounding molecular cloud. Table 1
shows the physical properties of the simulations. Figure 1
illustrates the projected density, projected thermal density, and
projected tracer density of different simulations.

2.2. CNN Architecture

We adopt the same CNN architecture, CASI-3D, from Xu
et al. (2020), which combines both residual networks (He et al.
2016) and a “U-net” (Ronneberger et al. 2015). CASI-3D has
two parts. The “encoder” part extracts the features from the
input data, and then the “decoder” part translates these features
into another data cube that represents the quantity being
modeled by the network. We adopt the same hyperparameters
as Xu et al. (2020) to train our models to identify protostellar
outflows within molecular clouds. The choice of hyperpara-
meters is discussed in detail in Xu et al. (2020).

2.3. Training Sets
2.3.1. Synthetic Observations

We apply the publicly available radiation transfer code
RADMC-3D (Dullemond et al. 2012) to model the '*CO
(J = 1-0) and "*CO (J = 1-0) line emission of the simulation
gas. Since most outflows are not detectable in '>CO in high-
velocity channels owing to the limited sensitivity of most
single-dish telescopes (Arce et al. 2010), we use '*CO emission
to identify the outflows. To better calculate the mass of
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Figure 1. Projected density (top row), projected thermal density (middle row), and projected tracer density (bottom row) of different simulations at different

evolutionary stages.

outflows where '2CO is optically thick, we combine both '*CO
and "CO if there is distinct >CO emission in the corresp-
onding position. Otherwise, we use '*CO only to calculate
the mass.

To construct the synthetic observations, we adopt the
simulation density, temperature, and velocity distributions for
the RADMC-3D inputs. In the radiative transfer, we assume that
H, is the only collisional partner of '*CO. We take 62 as the
fiducial abundance ratio between '*CO and '*CO and 10™* as
the abundance ratio between '>CO and H, (Arce et al. 2010).
However, when T > 1000 K or n(H,) < 50 cm >, where '2CO
and *CO are likely to be dissociated, we set the abundance to
zero. In addition, we also set the '>CO and '>CO abundance to
zero in conditions where it would freeze out onto dust grains
(n(H,) > 10° cm™>) or where it would be dissociated by strong
shocks (|v] > 20 kms™") (Draine 2011).

To produce a variety of physical and chemical outflow
conditions for the training set, we produce synthetic observa-
tion data cubes where both '>CO and '*CO abundances are
reduced by a factor of 2 and a factor of 10. These data represent
regions where some of the CO may be dissociated owing to a
stronger radiation field. We adopt 10 and 14 K for the kinetic
temperatures based on observations that suggest that these
values are representative of Perseus (e.g., Goldsmith &
Langer 1978; Ridge et al. 2006b; Foster et al. 2009). We also
follow the same method as Xu et al. (2020) to increase the

training set by considering thin clouds with thicknesses of 0.7
and 1.4 pc. This has the effect of producing data cubes in which
outflow lobes and cavities are more distinct. Table 2 lists the
physical and chemical properties of the synthetic observations.

2.3.2. Training Data

We build two training tasks following the procedure of Xu
et al. (2020). The training target in model ME1 is '*CO
emission, which is associated with outflows, while the training
target in model MF is the fraction of the mass that comes from
stellar feedback.

To construct the training target in model ME1, we define the
position of the protostellar outflows using the tracer field that
indicates the amount of gas launched by the outflow subgrid
model at each position. We impose two criteria. First, if more
than 10% of the mass comes from protostellar outflows in a
voxel, we treat the voxel as a part of an outflow structure.
Second, in order to better capture the morphology of the gas
associated with the outflows, we define a voxel as belonging to
an outflow if the gas temperature is over 12 K and adjacent to
gas where over 10% of the mass is launched material (Xu et al.
2020). We compare different models trained on data with
different thresholds for the outflow mass in Appendix A.

The training data for model ME1 is the '2CO emission that is
only coming from the outflow gas. We mask the positions of
pristine (nonoutflow) gas and set the '>CO abundance to be 0 in
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Table 2
Synthetic Observation Properties®

Synthetic Observation Name 2co /H, T (K) FOV (pc x pc) Thickness (pc) Label Color
T10_al-4 1074 10 2x2,1x1,05x0.5) 2, 1.4,0.7) green
T14_al-4 10°* 14 2x2,1x1,05 x0.5) 2, 1.4,0.7) red
T10_a5-5 5% 107° 10 2x2,1x1,05x0.5) 2, 1.4,0.7) yellow
T14_a5-5 5% 107° 14 2x2,1x1,05 x0.5) 2, 1.4,0.7) black
T10_al-5 1073 10 2x2,1x1,05 x0.5) 2, 1.4,0.7) blue
T14_al-5 1073 14 2x2,1x1,05 x0.5) 2, 1.4,0.7) cyan
Note.

a Synthetic observation name, 2C0O to H, abundance, kinetic temperature, field of view of the synthetic observation, thickness of the cloud in the synthetic

observations, and the color of the symbols in the plots in Section 3.1.

the masked region. We then compute the radiative transfer to
obtain the '*CO emission that is only coming from the
protostellar outflows, which we refer to as the 2C0O feed-
back cube.

To build the training data for model MF, we calculate the
fraction of feedback mass by converting the raw density from
position—position—position space to PPV space. The fraction
ranges from O to 1, and it is not necessarily proportional to the
actual '*CO or '>CO intensity. If the '*CO or '*CO emission is
optically thin, the column density is proportional to the
emission intensity.

A more detailed description about how we generate training
data for these two models can be found in Xu et al. (2020).

2.3.3. Data Augmentation

We adopt outputs with different magnetic fields, different
turbulent patterns, and different evolutionary stages to create
synthetic observations. Multiple stars form and launch outflows
in each simulated cloud. We construct a “zoomed-in” synthetic
observation centered on each protostar with an image size of
0.5pc x 0.5pc and 1pc x 1pc. We also conduct synthetic
observations with an image size of 2 pc x 2 pc, which contains
multiple outflows. These synthetic observations span early and
late evolutionary stages. By constructing a training set with
outflows of different sizes, we reinforce the ability of the model
to detect outflows on different scales. In addition to the
different image sizes, we resample the synthetic observations
with two different velocity resolutions: at low resolution with
an interval of 0.25kms ', and at high-resolution with an
interval of 0.125kms '. To enhance the diversity of the
training set, we conduct radiative transfer from six different
angular views and rotate the images randomly from 0° to 360°.

To help CASI-3D distinguish outflows from high-velocity
blobs produced from supersonic turbulence in the molecular
cloud and prevent false detections, we construct a negative
training set. We conduct synthetic observations on turbulent
simulations including noise, which do not contain feedback
sources. In addition, we pick several regions in Perseus where
there are no young stellar objects. Figure 2 shows these
nonfeedback regions enclosed by yellow dashed lines.

To make the synthetic cubes closer to the real observational
data described in Section 2.4, we assume that the synthetic
images are at a distance of 250 pc and are observed with the
Five College Radio Astronomy Observatory (FCRAO; Ridge
et al. 2006a). We convolve them with a telescope beam of 50”
and add noise with a mean square error (MSE) of 0.17 K,
which is consistent with the noise level in the Perseus '*CO
data in Section 2.4. Moreover, since many observed sources

have velocities that are offset from the cloud velocity and/or
not at 0 km sfl, we randomly shift the central velocity of the
cubes from —3 to 3 km s~ '. Figure 3 shows an example of a
synthetic observation of a simulated outflow and corresponding
target images like those included in the training set.

In total, we generate 23,715 synthetic data cubes, among
which 3483 contain no feedback sources. We adopt 14,229 of
the data cubes as a training set, 4743 data cubes as a test set,
and 4743 data cubes as a validation set. The validation
set allows us to evaluate how well the model has been trained.
The test set assesses the accuracy of the final model.

2.4. Perseus Data

We use the publicly available '*CO (J = 1-0) and
3CO (J = 1-0) Perseus data from the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE)
Survey of Star-forming Regions (Ridge et al. 2006a). The
Perseus '2CO and '*CO maps were observed between 2003
and 2005 using the 13.7 m FCRAO Telescope. The maps are
about 6225 x 3° with a beam size of 46”. The '*CO and
3CO data have a mean rms antenna temperature of 0.25 and
0.2 K, respectively. We resampled the spectra with a lower
velocity resolution of 0.125 km s~!. which matches the
velocity resolution in the training set. The noise levels for the
new '*CO and "*CO spectra are reduced by a factor of a square
root of 2, which are 0.17 and 0.14 K, respectively.

We adopt the outflow catalog from Arce et al. (2010), in
which 60 outflow candidates are identified in the Perseus
molecular cloud by determining high-velocity features from a
three-dimensional visualization using the COMPLETE '*CO
maps. Arce et al. (2010) call these high-velocity features
“COMPLETE Perseus Outflow Candidates” (CPOCs). Some
high-velocity features at the same position are split into two
CPOCs, a redshifted lobe and a blueshifted lobe. Arce et al.
(2010) also note that these 60 outflows are an underestimate of
the true number of outflows. Outflows that are smaller than the
beam size of the '2CO map or that have weak high-velocity
wings cannot be detected by their technique. Consequently,
outflows with smaller size and lower velocity along the line of
sight are missed.

To search for the potential outflow driving sources, we use the
draft YSO catalog for Perseus from SESNA (Spitzer Extended
Solar Neighborhood Archive; R. A. Gutermuth et al. 2020, in
preparation) used by Pokhrel et al. (2020). SESNA is a uniform
retreatment of most of the Spitzer surveys of nearby molecular
clouds that uses an updated implementation of the data treatment,
source catalog construction, and YSO identification and classifi-
cation processes of Gutermuth et al. (2009). As in that work, the
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Figure 2. Intensity of '>CO integrated over all velocity channels. “Y” and “O” indicate the location of YSOs: “Y” for early evolutionary stage YSOs, i.e., protostars,
and “O” for late evolutionary stage YSOs, i.e., pre-main-sequence stars with disks (R. A. Gutermuth et al. 2020, in preparation; Pokhrel et al. 2020). The cyan dashed
lines enclose subregions searched by our models. The yellow dashed lines indicate regions we include in our negative training set. The black dashed lines illustrate the
coverage of YSOs in R. A. Gutermuth et al. (2020, in preparation).
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Figure 3. '2CO synthetic observation of a simulated outflow and the outflow tracer field. Top row, first panel: '>CO emission at V = 0.5 km s~ '. Top row, middle and
right panels: ground-truth "2CO emission from the outflow for models ME1 and MF. Bottom row: same as the top row, but indicating the '>CO integrated intensity
between —4 and 4 km s~', and integrated ground-truth '>CO emission for models ME1 and MF. Note that the actual target for model MF is the fraction of mass
associated with outflows, whose value ranges from 0 to 1, but here we make the plot with the fraction times the '2CO emission for fair comparison.
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Figure 4. Results of the models MEI and MF applied to a synthetic outflow. Top row, first panel: '2CO emission at V = 0.5 km s~ '. Top row, second and third
panels: ground-truth '*CO tracer for models ME1 and MF, respectively. Top row, fourth and fifth panels: prediction from models MEI and MF, respectively. Bottom
row: same as the top row, but indicating the '>CO integrated intensity between —4 and 4 km s, integrated ground-truth '>CO tracer for models ME1 and MF, and

integrated prediction from models ME1 and MF, respectively.

resulting YSOs are classified into one of four groups (“deeply
embedded protostars,” “Class I YSOs,” “Class II YSOs,” and
“transition disks”) using a series of color—color and color—
magnitude diagram selections that largely mitigate extragalactic
contamination and are relatively unbiased in a wide range of
reddening conditions (Flaherty et al. 2007). For further analysis,
the former two groups are merged to encompass the dusty-
envelope-bearing protostars that we call “younger YSOs”
throughout this work. Similarly, the latter two groups are merged
to list the protoplanetary-disk-bearing pre-main-sequence stars
that we call “older YSOs” herein. As is the case with all mid-IR
YSO surveys, diskless “Class III’ YSOs cannot be distinguished
from field stars and are thus ignored here. Residual contamination
comes from two sources. For the draft SESNA catalog we adopt,
the residual extragalactic contamination is 9 £ 1 sources per
square degree, with an even split between younger and older YSO
types, based on applying the full SESNA treatment to 16 square
degrees of so-called “blank-field” galaxy survey data (the “Elias-
N1” and “Bodétes” fields). These sources are generally assumed to
be statistically uniform in their spatial distribution on the sky. In
contrast, the other contaminant is class contamination, whereby
YSOs are misclassified as younger versus older. Gutermuth et al.
(2009) estimated that up to 3.5% of older YSOs may be reported
as younger YSOs as a result of edge-on viewing angle. These will
thus be spatially correlated with elevated densities of older YSOs.
We do not attempt to treat either of these residual contaminant
types further in this work.

3. Results
3.1. Assessing Model Accuracy Using Synthetic Observations

In this section we use the synthetic data to assess how accurately
physical properties can be determined from the identified outflows.
We apply both models to the outflow synthetic observations in the
test set. Figure 4 shows an example of the model performance on a
test synthetic outflow. Both models ME1 and MF capture the
outflow features clearly.

We follow the same strategy in Arce et al. (2010) to calculate
the outflow mass by combining both '>CO and *CO data. If

there is distinct '>*CO emission in the corresponding position,
we assume that the '*CO emission line is optically thin and has
an excitation temperature of 25 K to calculate the mass (Arce
et al. 2010; Narayanan et al. 2012; Li et al. 2015). Under the
assumption of LTE, the mass estimation goes linearly with the
excitation temperature. From previous feedback mass esti-
mates, the choice of excitation temperature ranges from 10 to
50 K. This could potentially introduce a factor of two
uncertainty in the mass estimation. Here we take the widely
used and moderate value of 25 K as the excitation temperature
for all outflow calculations (Arce et al. 2010; Narayanan et al.
2012; Li et al. 2015). If there is no reliable ">CO emission in
the corresponding Position, we use '*CO to derive the mass by
assuming that the '2CO line is optically thin.

We take 62 as the abundance ratio between 'CO and
13CO and 107* as the abundance ratio between '*CO and H,
(Arce et al. 2010). As mentioned in Section 2.3.1, we also
conduct 'CO synthetic observations with three different
abundance ratios. We adopt the corresponding abundance
ratios to calculate the mass of the outflows.

Figure 5 shows the mass estimated from the two models,
ME1 and MF. We also plot the true feedback mass, which we
estimate directly by adding the mass contained in all cells
where there is feedback as defined in Section 2.3.2. We find
that ME1 overestimates the outflow mass by a factor of 5 or
more, while MF correctly predicts the outflow mass within a
scatter of a factor of two.

Different symbol colors in Figure 5 indicate different
outflow physical conditions, e.g., different kinetic temperatures
and different '*CO and '*CO abundance ratios. The scatter at a
given true mass value suggests the uncertainty in converting
from '>CO and '>CO emission to mass; multiple synthetic
observations with different physical and chemical conditions of
a simulated outflow have the same mass associated with
feedback but have different '>CO and '*CO emission. Model
MF correctly predicts the outflow mass within a reasonable
uncertainty under different physical and chemical conditions.
We quantitatively evaluate the two-model performance in
Appendix C.
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We compare the 1D line-of-sight momentum between the
model predictions and the true simulation feedback in Figure 6.
We define the 1D momentum as the sum of the gas mass in
each channel multiplied by the channel velocity, where we
have shifted the mean cloud velocity to zero. Model ME1
overestimates the 1D momentum by a factor of 4. In contrast,
model MF correctly predicts the 1D momentum within 30%
relative error. This uncertainty is the same order of magnitude
as the uncertainty in the outflow mass predicted by model MF,
which reflects the challenge of converting from '*CO and
3CO emission to mass under different physical and chemical
conditions.
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If we assume that the inclination angle between the outflow
axis and the line of sight is 6, the 3D momentum would be

expected to be a factor of ﬁ larger than the 1D momentum,

while the 3D kinetic energy would be a factor of 0512 7 larger

than the 1D kinetic energy. Figures 7 and 8 show the 1D
momentum and energy, respectively, predicted by the two
models compared to the respective 3D quantities calculated
from the simulation. We see a significant scatter in these two
figures. The 1D momentum and 1D energy deviate from the
linear trend of their 3D true value, indicating a diverse range of
inclination angles, which is usually the case.

Figure 7 illustrates that the 3D momentum is a factor of 2
higher than the 1D momentum predicted by model MF. This
corresponds to an average inclination angle of 60° in our test
sample. The scatter along the one-to-one line suggests the
variation of inclination angles for different outflows.
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Figure 9. Intensity of '>CO integrated over all velocity channels for the four subregions, overlaid with the model ME1 prediction (red and blue contours). Red boxes
indicate the position of outflows previously identified by Arce et al. (2010). Letters “Y” and “O” mark YSO positions, as described in Figure 2. Yellow boxes indicate
the position of 20 newly identified outflows. The cyan dashed lines enclose subregions searched by our models.

Figure 8 demonstrates that outflow inclination uncertainty,
together with uncertainties in the physical conditions, produces a
factor of 10 uncertainty in the 3D kinetic energy of individual
outflows. For example, the correction factor for an outflow with an
inclination angle of 35° is an order of magnitude larger than that
with an inclination angle of 75°. Consequently, it is not possible to
accurately calculate the 3D momentum and 3D energy for an
individual outflow only from the line-of-sight velocity information.
Statistically, however, an average inclination angle between 30°
and 60° approximately reproduces the total true 3D momentum
and 3D energy within a factor of two and a factor of four
uncertainty, respectively. Thus, our results verify the statement on

the uncertainty of outflow energy in Perseus by Arce et al. (2010),
who adopt an average outflow inclination of 45°.

3.2. Identifying Individual Outflows in Perseus Using CASI-3D

To visually assess the performance of our CNN models on
observational data, we apply models ME1 and MF to a catalog of
outflows previously identified in the Perseus '“CO data. Arce
et al. (2010) identified 60 outflows by identifying high-velocity
features in a three-dimensional visualization. We apply models
ME]1 and MF to subregions of the Perseus data containing these
outflows. Figures 9 and 10 show the integrated intensity of '*CO
over the entire velocity range (=2 to 15 kms') of four
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Figure 10. Same as Figure 9, but displaying the prediction of model MF (red and blue contours).

subregions, overlaid with the model ME1 prediction and the
model MF prediction, respectively. Figure 11 demonstrates the
encouraging performance of both models on previously identified
outflow CPOC 7. Both models MEl and MF capture the
morphology of the outflow very well.

Figure 12 shows the position—velocity diagram of 'CO
emission for the outflow in Figure 11. Coherent high-velocity
structures are identified by both the ME1 and MF models. Most
outflows are only distinct in high-velocity channels. The
bottom panels of Figure 12 indicate that if we integrate the
2CO emission over the full velocity range, —2 to 15 km 7!
the outflow morphology vanishes in the bright cloud emission.
However, both models ME1 and MF are still able to find the
outflow when the entire velocity range is searched rather than

just the range of channels containing the visually identified
outflow.

As shown in Figure 12, model MEL1 predicts a wider velocity
coverage compared to that predicted by model MF. This is
because at high-velocity channels the fraction of mass
associated with feedback is higher compared to that of the
rest-frame gas. Model MF is more likely to highlight a higher
fraction of mass associated with feedback voxels than model
MEI. On the other hand, model MEI predicts the '*CO
emission associated with feedback. Generally, there is more
12C0 emission at the rest frame of the cloud, which is produced
by the molecular cloud itself, than at high velocities. Model
MEI1 is likely to identify the stronger emission velocities
associated with feedback that span near the rest-frame velocity.
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Figure 12. Position—velocity diagram of '>CO emission toward the outflow in Figure 11. Left subfigure, top left panel: integrated intensity of '2CO over the outflow
velocity channels (from —0.5 to 2 km s~ ') overlaid with the model MEI prediction in white contours. The red box shows the position of the outflow. The purple line
illustrates the cutting direction of the position—velocity diagram. Top right panel: position—velocity diagram of '>CO emission in the outflow velocity channels
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with the integrated model ME1 prediction (white contours). Bottom right panel: '*CO position—velocity diagram overlaid with the model ME1 prediction (white
contours). The four panels in the right subfigure are the same as in the left, but showing the prediction by model MF.

This in turn demonstrates that model ME1 likely overestimates To summarize, both CASI-3D models successfully identify
the mass associated with feedback. all 60 previously identified outflows.* We note that Figures 11
Among the 60 previously identified outflows, about one- and 13 represent typical identifications among the 60 outflows.

third lack a clearly associated driving source. Consequently,
some of these candidates may not in fact be true outflows.

3.3. New Out Candidates Identified in P
Figure 13 shows an example of an outflow without nearby ew Ouifiow Candidates Identified in Perseus

YSOs but that is identified as an outflow in Arce et al. (2010). Apart from the previously identified outflows, we find 20
Similar to human identification, models MEl1 and MF new candidate outflows. Figure 9 shows that model MEI1
successfully capture the morphology of this outflow, which successfully predlcts' all previously identified outflows (red
in turn demonstrates that CASI-3D identifies outflows via boxes). However, Figure 9 shows that there are outflows

identified by model ME1 that were not previously identified by
Arce et al. (2010) (yellow boxes). These outflows are also
identified by model MF (Figure 10), which gives us confidence
that they are indeed real outflows. Visual inspection of the new
identifications indicates that they have similar high-velocity gas
distributions to the previously identified outflows. Hereafter
each of these newly identified high-velocity features is named

similar characteristics that humans have used. This lends
confidence that these candidates are in fact real outflows. So,
either these are true outflows, whose driving source has not yet
been located, or these emission features are excellent facsimiles
of actual outflows. Without additional data, such as a complete
YSO census, it is impossible to distinguish coherent high-
velocity features that may be caused by turbulence from stellar
feedback. We discuss the presence of YSOs in detail in * The velocity range of CPOC 14 is 9.0-10.0 km s~! rather than 9.8-10.8
Section 3.5. km s~ indicated in Arce et al. (2010).

10
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Figure 13. Results of models MEI and MF applied to previously identified Perseus outflow CPOC 57. First panel: integrated intensity of '>CO over the outflow
velocity channels indicated by Arce et al. (2010). The red box shows the position of the outflow. Second panel: predicted intensity integrated along the velocity axis
from model ME1. Third panel: integrated intensity of '>CO over the outflow velocity channels overlaid with the model ME1 prediction in white contours. Fourth and
fifth panels: same as the second and the third panels, but showing the prediction by model MF.

Table 3

Physical Properties of New Outflow Candidates in Perseus
Source R.A.  Decl Area Velocity Velocity Mass Momentum Energy
Name (72000) (arcmin) (MEI, kms™ ") (MF, kms ™) M) M, kms™h) (10® erg)
CPOC 61 03"25™4339 4+30°35'45"0 6 x 10 —2-5.1 0.1-14 0.09 0.28 1.9
CPOC 62 03"25™495 8 430°40'2170 11 x 13 3.8-8.9 5.3-9.9 0.13 0.40 2.8
CPOC 63 03"27™25%0 +31°2122”0 12 x 9 —1.1-44 —0.4-43 0.35 1.64 16.5
CPOC 64 03"28™42574-30°56/04"0 11 x 13 0.5-11.8 0.1-13.0 0.75 1.83 10.2
CPOC 65 03"29™00% 34-30°33/2770 14 x 13 1.8-6.1 2.4-74 0.82 1.19 3.8
CPOC 66 03"29™0833 431°40'55”0 9 x 12 4.1-9.0 3.8-7.1 0.16 0.28 1.2
CPOC 67 03"30™18%84-30°32/4170 12 x 11 0.5-8.6 0.5-6.1 1.60 1.63 4.7
CPOC 68 03"31™2352 430°49'1070 8 x 14 —0.5-6.3 —0.5-4.3 0.24 0.95 8.1
CPOC 69 03"33™343 1 4+31°06/02”0 9%x9 0.1-4.1 —0.3-2.9 0.12 0.57 5.6
CPOC 70 03"33™42524-30°50'4270 13 x 8 —1.3-143 —2-6.6 0.13 0.44 4.1
CPOC 71 03"34™36 64-31°07'1170 9 x8 2349 —0.1-4.3 0.37 1.75 16.9
CPOC 72 03"38™32504-31°56/38"0 10 x 12 6.8-10.0 5.6-104 0.43 0.33 0.8
CPOC 73 03"39™13354-31°12/56"0 15 x 13 2.4-1.9 2.6-7.5 0.59 1.18 7.0
CPOC 74 03"39™303 14-32°09'1770 5x6 6.8-9.9 7.1-8.3 0.19 0.13 0.2
CPOC 75 03"40™01%84-32°01'1470 9x9 5.6-8.9 5.1-7.9 1.21 2.07 7.4
CPOC 76 03"41™54544-31°56/38"0 7 %17 5.6-10.5 6.5-8.1 0.46 0.71 22
CPOC 77 03"42™41384-31°51'16”0 4x8 5.5-9.1 4.9-6.9 0.02 0.06 0.4
CPOC 78 03"46™00% 34-31°53/5770 9 x 16 5.6-9.8 5.8-7.5 0.06 0.17 1.0
CPOC 79 03"47™063 9 +32°45'42”0 16 x 13 9.5-14.1 10.3-14.1 1.79 2.53 8.1
CPOC 80 03"48™3234 432°55'1770 6 x6 9.6-12.3 10.1-13.1 0.11 0.17 0.6
Total 9.63 11.3 104
Note.

? Outflow name, position, area, velocity range indicated by model MEI, velocity range indicated by model MF, mass predicted by model MF, 1D momentum

predicted by model MF, and 1D energy predicted by model MF.

according to the CPOC numbering established by Arce et al.
(2010). We list their positions and other properties in Table 3.

Figure 14 shows an example of newly identified outflow
CPOC 79. Both models ME1 and MF capture the morphology
of this new candidate. In addition, several YSOs are found
nearby, one of which is likely the driving source. Figure 15
shows the position—velocity diagram of the '*CO emission for
this outflow. Figure 15 shows distinct coherent high-velocity
structures, which are similar to those for previously identified
outflows (e.g., Figure 12). Both models ME1 and MF identify
all 20 new outflow candidates.

Our CASI-3D models indicate that some of the previously
identified outflows are more extended than previously found.
For example, CPOC 4 and 5 (region IV in Figures 9 and 10)
appear to be part of much more extended outflow lobes. Both
models show the red and blue counterparts. CPOC 4 and 5
and newly identified CPOC 61 and 62 are likely driven by a

11

cluster of young sources, which creates a 2 pc scale combined
outflow.

3.4. Physical Properties of Outflows in Perseus

Next, we estimate the masses of the outflows identified by
models ME1 and MF and compare them with the previous
observational estimates. We calculate the outflow mass, 1D
momentum, and 1D energy for each model as described in
Section 3.1. We further consider the outflow properties as
defined by the subset of velocity channels previously identified
by Arce et al. (2010) as belonging to the outflow, as well as the
outflow defined by using all velocity channels.

Figure 16 compares the outflow mass estimated by our CNN
models and by Arce et al. (2010), where both include mass
only in the outflow velocity channels determined by Arce et al.
(2010). Arce et al. (2010) calculate the mass of each outflow by
adding all the emission in the outflow velocity channels within
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Figure 14. New outflow candidate, CPOC 79, identified by models ME1 and MF. First panel: intensity of '>CO integrated over the outflow velocity channels, from
11.5 to 14.0 km s~ ". The red box shows the position of the outflow. Letters “Y” and “O” mark YSO positions, as described in Figure 2. Second panel: predicted
intensity integrated along the velocity axis from model ME1. Third panel: integrated intensity of '>CO over the outflow velocity channels overlaid with the model
MEI prediction in white contours. Fourth and fifth panels: same as the second and the third panels, but displaying the prediction by model MF.
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Figure 15. Same as Figure 12, but toward the new candidate outflow shown in Figure 14.

the red box as shown in Figures 11 and 13. Figure 16 suggests
that extra emission from diffuse gas not associated with the
outflow overestimates the mass compared to our models.

For some outflows, the masses predicted by the two CNN
models are similar. This is likely because the mass estimates
are dominated by emission in the high-velocity channels, which
are similar for both models. However, the masses predicted by
the two CNN models for other outflows are quite different. We
conclude that this is because these outflows span a wider
velocity range. The fraction of mass associated with the
outflow as predicted by model MF drops in the rest-frame
velocity channels. In these channels, model MEI likely
overestimates the mass by a large factor, because it includes
cloud material.

If we only consider the outflow mass located in the outflow
velocity channels, i.e., where the outflow morphology is
distinct, the traditional observational approach to calculate the
outflow mass probably overestimates the mass for two reasons.
First, it includes extra emission around the outflows that is not
associated with them but is enclosed in the boxes indicated in
Arce et al. (2010). As shown in Figure 11, the red box encloses
a large region where the outflow appears to occupy less than
one-third of the entire box. Some extended emission near the
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boundary of the box contributes significantly. Second, apart
from the extra emission around the outflow lobe, background
or foreground cloud gas not associated with outflows that is
located in the outflow velocity channels at the outflow location
contributes additional emission. The effect of contamination by
cloud gas in model ME1 was previously found by Xu et al.
(2020) in an analysis of bubble identifications. Model MEI1,
which more closely models how humans visually identify data
by construction, is not able to accurately separate feedback and
nonfeedback emission. However, on the other hand, mass
associated with feedback that is located outside the outflow
velocity channels but is difficult to distinguish by visual
examination is apparently missed.

Our CASI-3D models are able to identify the outflow
structure across the entire velocity range. As indicated in
Figure 12, the visually identified outflow velocity channels are
between —0.5 and 2.0 kms™'. The model MEI prediction in
the position—velocity diagram shows that the outflow structure
extends from —0.5 to 4.8 km s~ '. Model MF illustrates that the
outflow structure extends from —0.5 to 2.5 kms '. Both
models demonstrate a wider outflow velocity range than that
identified by visual inspection.

Figure 17 shows the relation between the CNN predicted
outflow mass over all velocity channels and the outflow mass
calculated by Arce et al. (2010), which uses only the high-
velocity channels. Model ME1 overestimates the outflow mass
by an order of magnitude compared to that predicted by Arce
et al. (2010). This is caused by large contamination from
foreground or background gas near the cloud rest-frame
velocity channels. When correcting for the fraction of mass
associated with outflows, the final mass predicted by model MF
is comparable to the outflow mass calculated by Arce et al.
(2010). This similarity is due to a cancellation in errors: Arce
et al. (2010) miss outflow material emitting in the cloud rest-
frame channels; however, they compensate for this by over-
estimating the amount of mass in the high-velocity channels.

Figure 18 shows the relation between the outflow 1D
momentum predicted using all velocity channels and the 1D
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line-of-sight outflow momentum calculated by Arce et al.
(2010). Figure 19 shows the relation between the outflow 1D
energy predicted using all velocity channels and the outflow 1D
line-of-sight energy calculated by Arce et al. (2010). The
figures show that the outflow 1D momenta and 1D energies
predicted by model MF are comparable to the outflow
momenta and energies calculated by Arce et al. (2010),
respectively.

We estimate that the total 1D momentum is 56.4 M. kms™
and the 1D energy is 2.6 x 10*° erg from outflows. These are
the same order of magnitude as the 1D calculations in Arce
et al. (2010), which are 49.2 M. kms ' and 1.4 x 10* erg,
respectively. The correction factor from 1D momentum/energy
to 3D momentum/energy in Arce et al. (2010) is /2. This

1
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Table 4

Physical Properties of Outflows in Perseus®
Source Velocity Velocity Mass Momentum Energy
Name (MEL, km s™") (MF, km s ') M) (M., kms™" (10* erg)
CPOC 1 5.5-6.8 6.3-8.6 0.08 0.19 1.3
CPOC 2 4.3-89 6.0-8.6 0.09 0.16 0.88
CPOC 3 5.0-7.9 5.9-9.0 0.06 0.23 1.84
CPOC 4 -0.6-1.5 -1.8-0.8 0.03 0.13 1.02
CPOC 5 1.3-4.3 1.4-2.1 0.00 0.01 0.03
CPOC 6 7.9-10.4 8.5-11.0 0.05 0.12 0.61
CPOC 7 -0.6-7 -0.8-3.5 0.64 1.81 11.39
CPOC 8 4.1-9.0 6.1-9.4 0.68 0.79 2.02
CPOC 9 8.1-11.1 8.6-12.8 1.27 2.70 15.15
CPOC 10 8.4-11.1 9.0-11.1 0.10 0.33 2.64
CPOC 11 7.6-11.0 8.1-11.4 231 3.70 18.51
CPOC 12 1.1-10.8 -1.4-7.8 245 4.08 19.8
CPOC 13 8.5-11.0 8.8-11.8 4.21 7.06 35.26
CPOC 14 5.1-10.9 9.0-9.9 0.04 0.16 1.16
CPOC 15 -0.5-6.9 0.6-3.8 0.12 0.39 2.88
CPOC 16 7.9-10.8 8.8-10.8 0.37 0.59 2.58
CPOC 17 7.1-13.6 8.0-13.6 6.91 12.19 68.79
CPOC 18 7.3-12.4 7.9-12.4 0.73 1.10 5.09
CPOC 19 8.3-13.0 7.3-14.3 0.38 0.87 4.75
CPOC 20 7.1-10.8 8.1-11.3 0.33 0.50 2.34
CPOC 21 7.0-11.1 8.4-11.4 0.20 0.40 1.92
CPOC 22 0.9-3.3 1.1-2.3 0.86 0.92 3.15
CPOC 23 0.4-2.5 0.1-3.0 0.09 0.19 1.64
CPOC 24 -1.6-6.1 -1.6-4.4 0.72 3.78 41.52
CPOC 25 -1.6-0.9 -1.8-1 0.01 0.06 0.87
CPOC 26 6.8-9.6 7.5-10.4 0.04 0.11 0.55
CPOC 27 -0.8-3.9 -0.6-2.3 0.02 0.08 0.89
CPOC 28 5.1-10.3 53-12.4 225 1.49 4.19
CPOC 29 6.5-9.4 9.1-9.6 0.02 0.09 0.77
CPOC 30 7.1-10.0 8.1-10.5 0.04 0.10 0.5
CPOC 31 6.6-10.0 7.6-11.3 0.24 0.58 2.95
CPOC 32 6.5-9.3 7.0-9.8 0.08 0.12 0.38
CPOC 33 6.4-10.3 9.0-9.9 0.09 0.18 0.81
CPOC 34 7.1-9.5 8.9-9.9 0.04 0.08 0.36
CPOC 35 7.3-9.6 7.8-10.5 0.34 0.88 5.37
CPOC 36 5.9-10.9 8.9-10.0 0.16 0.42 2.68
CPOC 37 6.9-10.1 7.3-10.1 0.28 0.18 0.41
CPOC 38 6.4-10.0 5.9-9.0 0.04 0.03 0.06
CPOC 39 8.3-12.1 8.4-13.1 0.54 0.90 4.69
CPOC 40 6.5-10.8 5.6-10.9 3.18 1.23 1.69
CPOC 41 8.4-12.0 9.3-11.8 0.71 1.10 3.67
CPOC 42 7.1-10.0 6.5-10.8 3.33 1.29 1.75
CPOC 43 8.5-11.5 9.3-11.9 1.06 1.65 5.43
CPOC 44 9.8-10.9 10.8-11.6 0.04 0.09 0.42
CPOC 45 8.8-11.8 10.8-11.5 0.12 0.20 0.82
CPOC 46 7.6-11.1 9.8-10.8 0.89 1.07 2.86
CPOC 47 5.8-9.0 4.6-8.4 0.05 0.16 1.35
CPOC 48 8.8-11.4 10.9-11.3 0.21 0.24 0.62
CPOC 49 6.0-6.9 5.1-5.9 0.29 0.32 0.82
CPOC 50 9.5-11.1 10.9-11.3 0.08 0.10 0.31
CPOC 51 9.4-11.5 9.3-12.5 0.05 0.06 0.16
CPOC 52 7.8-10.4 6.8-8.6 0.27 0.35 1.33
CPOC 53 9.4-11.6 8.6-12.3 0.84 0.39 0.46
CPOC 54 9.3-11.9 10.4-12.0 0.61 0.30 0.49
CPOC 55 9.1-13.1 11.6-12.6 0.14 0.29 1.26
CPOC 56 6.5-10.9 5.9-13.5 4.88 2.76 5.99
CPOC 57 9.4-12.0 9.6-12.5 0.42 0.26 0.53
CPOC 58 7.5-11.8 9.9-11.0 0.09 0.04 0.13
CPOC 59 7.6-10.9 6.1-12.1 0.51 0.36 0.77
CPOC 60 7.9-11.9 8.0-9.9 0.83 0.67 1.22
Total oo 3 44.2 56.4 260
Note.

# Outflow name, velocity range indicated by model ME1, velocity range indicated by model MF, mass predicted by model MF, 1D momentum predicted by model MF, and 1D energy
predicted by model MF.

number is consistent with our argument in Section 3.1, where outflows. It is worth noting that to make a fair comparison, the
an average outflow inclination of 45° is adopted. Table 4 lists total outflow mass, 1D momentum, and 1D energy calculations
the physical properties of all 60 previously identified Perseus above do not include the 20 newly identified outflows. The
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physical properties of the newly identified outflows are listed in
Table 3.

The total mass, 1D momentum, and 1D energy including the
20 newly identified are 53.8 M., 67.7 M. kms ', and
3.6 x 10™ erg, respectively.

3.5. Relation between Outflow Properties and Candidate
Driving Sources

In this section, we discuss the relation between outflow
properties and the type of the source that likely drives each
outflow. We first divided the previously identified outflows into
several categories based on the YSOs nearby. Some outflows
are located near multiple sources, so the true driving source is
ambiguous. The four categories are as follows:

1. Younger YSOs: The outflow is likely driven by an early
evolutionary stage YSO, e.g., protostars with cold, dusty,
quasi-spherical envelopes (R. A. Gutermuth et al. 2020,
in preparation; Pokhrel et al. 2020).

2. Older YSOs with disks: The outflow is likely driven by a
later evolutionary stage YSO, e.g., pre-main-sequence
stars with protoplanetary disks (R. A. Gutermuth et al.
2020, in preparation; Pokhrel et al. 2020).

3. Multiple YSOs: Multiple YSOs are nearby. Either an
early or a late evolutionary stage YSO may drive the
outflow.

4. No YSOs: The outflow has distinct coherent high-velocity
features but has no known YSOs in close proximity.

5. No Spitzer: The outflow is located outside the YSO catalog
coverage (R. A. Gutermuth et al. 2020, in preparation;
Pokhrel et al. 2020).

We note that there are many more YSOs than identified
outflows. This may mean that the outflows of these sources are
small and/or relatively low-velocity, perpendicular to the line
of sight such that no high-velocity gas is apparent, or it is not
distinct from the identified outflow gas. The difference in
outflow and source number may also be because the outflows
of multiple sources are blended together and difficult to cleanly
separate (see Section 4.1 for additional discussion).

Among the 60 outflows identified by Arce et al. (2010), 12
outflows are outside the Spitzer YSO catalog coverage as
indicated in Figure 2. Of the remaining 48 outflows, 8 (17%)
are associated with younger YSOs, 12 (25%) are associated
with older YSOs with disks, 19 (39%) are associated with
multiple YSOs, and 9 (19%) have no nearby source. There are
two possibilities to explain the latter category of outflows:
either the YSO catalog is not complete, or the outflows without
YSOs are false detections. The SESNA YSO catalog is derived
from Spitzer mid-IR data, and thus it is quite sensitive to most
YSOs. However, the youngest type, Class 0, can be missed. For
outflow identifications with no YSO catalog member, we
visually examined Herschel 70 and 160 ym images where
those particularly young protostars should be very bright. We
found no evidence for hidden and highly embedded protostars
in those data. However, there is still a chance of overlooking
faint/young sources owing to the sensitivity. We also note that
it is implausible for YSOs to move out of the field of view on
the dynamical time of the outflow, which is usually of order
10°-10* yr. On the other hand, outflows are likely to extend
beyond the box circumscribing them, making it difficult to
identify which part of the outflow is closest to the driving
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Figure 20. Distribution of the ratio between the mass predicted by model MF

and that by model MEI over all velocity channels for different categories of
outflows.

source. Thus, it is possible that the driving source is outside
the box.

We stress that the outflows with no nearby source are
identified by both models and by eye as well. We confirm that
these outflow candidates do visually look like other outflows
with nearby YSOs. Moreover, our test set has an extremely low
false-positive rate; no false outflows are identified in the
simulation data. Considering that morphologies of these high-
velocity blobs are indistinguishable from confirmed outflows, it
is impractical to rule out these candidates by examining only
the 3D data without complete YSO catalogs and the ability to
match an outflow to a particular YSO source. Correspondingly,
we still consider these outflows to be high-confidence
candidates.

Figure 20 shows the distribution of the ratio between the
mass predicted by model MF and that by model ME1 over all
velocity channels for the different categories of outflows. Since
model ME1 includes more mass associated with the cloud,
while model MF is a more direct measure of the actual outflow
mass, this ratio roughly indicates the fraction of mass
associated with feedback. A smaller ratio suggests high
contamination from ambient gas in model MEI1 that is not
associated with the outflow. Generally, at rest-frame velocity
channels, this ratio drops quickly compared to that at high-
velocity channels. In other words, the ratio between the mass
predicted from model MF and that from model ME1 across all
velocity channels reveals at what velocity more outflow mass is
located. If the ratio is high, more mass is likely associated with
high-velocity channels. If the ratio is low, more mass is likely
associated with the rest-frame velocity channels. Figure 20
suggests that outflows likely driven by late evolutionary stage
YSOs (older YSOs with disks) have slightly higher ratios
compared to those driven by early evolutionary stage YSOs.
This has an intuitive explanation: at early evolutionary stages,
YSOs have not ejected a significant amount of high-velocity
gas owing to the presence of the envelope. The high-velocity
gas is likely slowed by interaction with dense gas. At late
evolutionary stages, YSOs can efficiently expel gas at higher
velocities. However, due to the limited sample size, the
difference between the two distributions is not significant.
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Figure 21. Distribution of the ratio between the mass predicted by model MF
over only the outflow velocity channels from Arce et al. (2010) and that over
all velocity channels for different categories of outflows.

Figure 21 shows the distribution of the ratio between the
mass predicted by model MF over only the subset of outflow
velocity channels and that predicted over all velocity channels
for different categories of outflows. This ratio indicates at
which velocities the mass associated with feedback is located.
If more mass emits in high-velocity channels, where the
outflow morphology is the most distinct, this ratio increases. If
more mass emits near the rest-frame velocity channels, where
the outflow morphology vanishes in the diffuse gas emission,
this ratio drops. Similar to the ratio between the mass predicted
from model MF and that from model ME1 for all velocity
channels, the ratio shown in Figure 21 is also sensitive to the
evolutionary stage of the driving YSOs. Early evolutionary
stage YSOs are likely to have less gas at high velocities
compared to that of late evolutionary stage YSOs. Figure 21
shows that for older YSOs more gas is likely observable in
'2CO emission at high velocities.

The distribution of the outflows outside the YSO catalog
coverage in both Figures 20 and 21 spans a large range of
ratios. This may indicate that the outflows outside the YSO
catalog coverage include both early evolutionary stage and late
evolutionary stage driving YSOs.

The distribution of the outflows that have no nearby source
in both Figures 20 and 21 is similar to those associated with
younger YSOs. This in turn demonstrates that there is a chance
that the SESNA YSO catalog overlooks some faint/young
sources.

In both Figures 20 and 21, most of the outflows have small
ratios. This is because most of our sources are young and
located in relatively dense gas regions. It takes ~50 kyr for the
outflow to break out of the core and appear at high velocities in
2CO (Offner & Arce 2014).

4. Discussion
4.1. Outflows in Star Clusters

In this section, we present the performance of models ME1
and MF on the star cluster NGC 1333. NGC 1333 is one of the
most active star-forming regions in Perseus with multiple
outflows driven by the protostellar cluster (Lada et al. 1996;
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Knee & Sandell 2000; Gutermuth et al. 2008). Astronomers
have identified tens of outflows in this region (Bally et al. 1996;
Knee & Sandell 2000; Arce et al. 2010). Arce et al. (2010)
identified 16 individual outflows in ">CO (1-0), while Curtis
et al. (2010) identified 27 distinct outflows in 2co (3-2) in
NGC 1333. In total, there are over 100 YSOs in this region
(Gutermuth et al. 2008, 2009; R. A. Gutermuth et al. 2020, in
preparation). Due to the intense star formation going on, most
outflows in '>)CO (1-0) blend with each other, making them
difficult to separate. CASI-3D provides a means to separate the
outflow emission from the rest of the cloud.

Figure 22 demonstrates the performance of models ME1 and
MF on NGC 1333. Both models identify coherent high-
velocity structures that are similar to outflows in the position—
velocity diagram in Figure 22. In Figure 22, we randomly
choose a position—velocity cut direction that spans as many
YSOs as possible. The right panels show that the predictions by
models ME1 and MF are similar in the high-velocity channels,
but the prediction by model ME1 is more extended toward the
cloud rest-frame velocity. The fraction of gas associated with
outflows drops significantly at cloud velocities, which explains
the different predictions by the models. As expected, in
projection the identified outflow emission covers most of NGC
1333, but model MF successfully excludes most of the cloud
emission. Other position—velocity cuts show similar results in
NGC 1333.

The position—velocity diagram in Figure 22 indicates that
both models predict that the lower left blob is part of an
outflow, although this blob is isolated in velocity. This feature
is likely a high-velocity component of the cloud. However, the
morphology exhibits velocity variation, where a flipped “V”
structure appears. This shape is a signature of feedback as
discussed in Arce et al. (2011). We cannot distinguish the
difference between outflow structures and high-velocity cloud
components visually or using the models with the '?CO data
alone.

4.2. Outflows without Driving Sources and False Detections

In this section, we present the performance of models ME1
and MF on a region with few YSOs. We select the region to the
east of B1, where the YSO density is relatively low. Figure 23
presents the performance of models ME1 and MF on this low
YSO density region. Although there is only one YSO along the
cut direction, both models identify coherent high-velocity
structures whose morphologies are consistent with outflows far
away from the YSO. The predictions by models ME1 and MF
are indistinguishable from the morphology of high-confidence
outflows that have obvious driving sources. We cannot identify
whether these are true outflows without ancillary data.

As indicated in Figure 23, this region has a sharp velocity
gradient from 10 to 6 kms™'. It bridges two subregions, Bl
and B3, which have two different central velocities. The
position—velocity diagram in Figure 23 illustrates a significant
number of high-velocity features. Many mechanisms may
cause this, including but not limited to cloud formation, cloud-
cloud collision, or gas phase transition due to radiation (Motte
et al. 2014; Nakamura et al. 2014). Most of these coherent
high-velocity structures are very similar to confirmed outflow
structures with obvious driving sources. It is possible that both
models may have false detections that are not produced by
feedback but by other mechanisms. This illustrates that clouds
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Figure 22. Position—velocity diagram of '>CO emission toward NGC 1333. Left panel: integrated intensity of '>CO over the full velocity range (from —2 to
15 km s~ ') overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple line
illustrates the cut direction of the position—velocity diagram. Middle and right panels: position—velocity diagram of '>CO emission overlaid with the model ME1 and

MF predictions in white contours.

have high-velocity features that are indistinguishable—either
visually or using our method—from high-confident outflow
signatures. Consequently, we caution that machine learning
models are not “magic bullets” and must be applied with care.

4.3. Case Studies
4.3.1. Discrepancies between the Two Model Predictions

In this section, we discuss a case where the two models make
significantly different predictions. In most regions, the predic-
tions by the two models are similar at high velocities. The
model MEL1 prediction is often more extended toward the cloud
rest-frame velocity compared to that by model MF, but the
overall coherent high-velocity structures identified by the two
models are similar. However, there are some regions where the
predictions by the models are different. Figure 24 shows an
example of the performance of models ME1 and MF toward a
region where the predictions are discrepant. Model MF predicts
a more extended outflow structure compared to model MEI. In
the position—velocity diagram, the two predictions are similar
except in the middle. A late evolutionary stage YSO located on
the cut direction likely drives the two outflow features on each
side. It is ambiguous whether the feature identified by model
MF but not by model MEI is a true outflow. The high-velocity
feature is not as distinct as other outflows. We can recognize
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some faint diffuse emission highlighted by model MF only in
the center around 8 kms '. This diffuse emission seems
associated with the left side blob that is identified by both
models. Model MF is likely to identify a more extended
outflow structure than model MEI, but not necessarily a new
individual outflow. The presence of the YSO lends confidence
to the model MF prediction, which appears as part of the
outflow. However, due to the discrepancy, we only consider the
left feature identified by both models as a high-confidence
outflow candidate.

4.3.2. A Previously Identified Outflow: IRAS 03282+3035

In this section, we discuss the performance of the two
models on previously identified outflow IRAS 03282+3035.
Dunham et al. (2014) conducted a '>)CO (2-1) and '>CO (3-2)
survey toward 28 molecular outflows driven by low-mass
protostars that are isolated spatially and kinematically. Among
these outflows, IRAS 0328243035 is located in Perseus and
identified by our two models but missed by Arce et al. (2010).

Figure 25 shows the performance of models ME1 and MF
toward IRAS 032824-3035. The morphology of the '*CO
(1-0) is similar but more extended compared to that in the 2co
(2-1) and the "’CO (3-2) emission in Dunham et al. (2014).
Both models identify coherent high-velocity features. Since this
outflow is close to a cluster of YSOs and '“CO (1-0) has better
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Figure 23. Position—velocity diagram of '>CO emission toward a region with few YSOs. Left panel: integrated intensity of '>CO over the full velocity range (from —2
to 15 km s~ ") overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple line
illustrates the cut direction of the position-velocity diagram. Middle and right panels: position—velocity diagram of '>CO emission overlaid with the model ME1 and

MF predictions in white contours.

sensitivity toward diffuse gas, the prediction by both models
extends to a wider area than the '>CO (2-1) and 2co (3-2)
emission.

Next, we compare the physical properties calculated by our
models and those reported by Dunham et al. (2014). Dunham
et al. (2014) conscientiously calculate the outflow mass,
energy, and momentum by considering several correction
factors, including opacity and outflow emission at low
velocities confused with ambient cloud emission. We adopt
the same box size as in Dunham et al. (2014) to constrain the
outflow area. Model MF corrects contamination by the cloud in
low-velocity channels, which is similar to the method in
Dunham et al. (2014). The outflow mass predicted by model
MF is 0.2 M, while Dunham et al. (2014) calculate it to be
0.43 M,,. This is only a factor of two difference. Dunham et al.
(2014) adopt an excitation temperature of 50 K to calculate the
outflow mass; however, we adopt 25 K for the calculation. A
higher excitation temperature indicates an approximately
linearly increased mass. If we adopt 50 K as the excitation
temperature in the calculation, we get an outflow mass of
0.4 M., which is consistent with the result, 0.43 M., in
Dunham et al. (2014). The result that using different transition
lines returns a similar result is promising, which in turn gives
confidence in our approach and assumptions.
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The outflow 1D momentum and 1D energy predicted by
model MF are 0.4 M. kms ™' and 1.9 x 10* erg, respectively,
while Dunham et al. (2014) find 2.1 M. kms ' and 1.4 x
10* erg. This is a factor of 5 difference in momentum and
a factor of 7 difference in energy. The main reason for the
difference is due to the velocity range. As pointed out in
Dunham et al. (2014), the minimum velocity of IRAS 03282
43035 is 6.0 km s~ ! and the maximum velocity is 25.9 kms™ !,
while in our analysis, the '>CO (1-0) has a velocity coverage
between —2 and 15 kms™'. A small amount of gas located in
extremely high velocity channels contributes a significant
amount of momentum (xv) and energy (oxv?). On the other
hand, Dunham et al. (2014) observed '“CO (2-1) with an rms of
0.04 K, but our resampled 'CO (1-0) has an rms of 0.17 K. The
outflow emission vanishes into the noise in the high-velocity
channels of '*CO (1-0). This may also explain the differences in
the outflow properties.

5. Conclusions

We adopt the deep learning method CASI-3D to identify
protostellar outflows in '*CO spectral cubes. By creating
different training sets, we develop two deep machine learning
models. Model ME1 predicts the position of the outflows.
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Figure 24. Position—velocity diagram of '>CO emission toward a region where the predictions by model MEI and MFs are discrepant. Left panel: integrated intensity
of 12CO over the full velocity range (from —2 to 15 km s~') overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO
E)ositions, as described in Figure 2. The purple line illustrates the cut direction of the position—velocity diagram. Middle and right panels: position—velocity diagram of

2CO emission overlaid with the model ME1 and MF predictions in white contours.

Model MF predicts the fraction of the mass associated with the
outflows. Our main findings are the following:

1.

2.

We apply CASI-3D to Perseus and successfully identify
60 previously visually identified outflows.

We identify 20 new high-confidence outflows in Perseus
using CASI-3D. All of these have coherent high-velocity
structure and nearby YSOs.

. The outflow mass in Perseus predicted by model MF is

comparable to the outflow mass calculated by Arce et al.
(2010). This similarity is due to a cancellation in errors:
Arce et al. (2010) miss outflow material emitting in the
cloud rest-frame channels; however, they compensate for
this by overestimating the amount of mass in high-
velocity channels that have foreground and background
contamination.

. The total 1D momentum, 56.4 M., km sfl, and 1D energy,

2.6 x 10* erg, from outflows in Perseus are on the same
order of magnitude as the 1D calculations in Arce et al.
(2010), which are 492 M. kms ' and 1.4 x 10* erg,
respectively.
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5. We find that outflows likely driven by older YSOs have
more gas ejected at high velocities compared to those
driven by younger YSOs.

6. We use CASI-3D to identify an extended amount of
outflow gas around the NGC 1333 region, where it is
difficult to visually identify individual outflows owing to
the intensive star formation.

In future work, we plan to apply CASI-3D to more active star-
forming regions where it is not possible to cleanly separate
outflow signatures visually.
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Figure 25. Position—velocity diagram of '2CO emission toward outflow IRAS 03282+4-3035. Left panel: integrated intensity of '>CO over the full velocity range (from
—2to 15 km s~ ') overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Figure 2. The purple
line illustrates the cut direction of the position—velocity diagram. Middle and right panels: position—velocity diagram of '2CO emission overlaid with the model ME1

and MF predictions in white contours.

Appendix A
Exploring Different Outflow Definitions

In this appendix, we assess the impact of different thresholds
on the derived outflow mass. We examine thresholds of values
of 1% and 10% for the minimum tracer fraction for which
material is defined as part of an outflow. Figure 26 shows an
example for two ME1 models with different thresholds applied
to a synthetic outflow. The prediction by model MEI1 using a
1% minimum tracer fraction is more extended compared to that
trained using 10%. The morphology of the tracer field with a
1% threshold and that with a 10% threshold are almost
identical. However, the prediction by model MEI trained using
a 10% minimum tracer fraction better reproduces the
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morphology of the outflow without contamination around the
outflow boundary. On average, the model ME1 trained using a
1% minimum tracer fraction overestimates the mass by a factor
of two compared to that trained using a 10% minimum tracer
fraction. Figure 27 demonstrates the performance of the two
MEI models with different thresholds on a previously
identified outflow in Perseus. In the outflow channels, the
predictions by the two MEI models are almost identical. In
contrast, the integrated prediction over the entire velocity range
from model ME1 with a 1% threshold is more extended than
that with a 10% threshold. We conclude that using a 10%
threshold reduces diffuse contamination from ambient gas.
Consequently, we adopt model ME1 with a 10% threshold as
the fiducial model.
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Figure 26. Results of two MEI models with different tracer fraction thresholds applied to a synthetic outflow. First panel: integrated intensity of '>CO. Second panel:
integrated tracer field with a 1% minimum tracer fraction. Third panel: integrated tracer field with a 10% minimum tracer fraction. Fourth panel: predicted integrated intensity
from model MEI trained using the 1% threshold to identify outflows. Fifth panel: predicted integrated intensity by model MEI trained using a 10% threshold.

Integrated 12CO ME1(1%) 12CO0+ME1(1%) ME1(10%) 12CO+ME1(10%)

31°30'
25'
(9}
(0]
o 20"
15' :
B -2-15km/s
3h35mM30500° 34™M30° 00°

RA

Figure 27. Results of two ME1 models with different thresholds applied to the previously identified Perseus outflow CPOC 35. Top row, first panel: integrated
intensity of '>CO over the outflow velocity channels. Letters “Y™ and “O” mark YSO positions, as described in Figure 2. Second panel: predicted intensity integrated
along the velocity axis from model ME1 with a 1% threshold. Third panel: integrated intensity of '2CO over only the outflow velocity channels overlaid with the
model ME1 (1%) prediction (white contour). Fourth and fifth panels: same as the second and third panels, but for model MEI trained using a 10% threshold. The
bottom row is the same as the top row but is integrated over the full velocity range.

MSE of 0.035. Since the validation error flattens, we stop
training after 220 epochs. Figure 29 indicates the receiver
operating characteristic (ROC) curve of model MF. We assess

Appendix B
Training Results

After training, we find that model ME1 converges to an MSE the model MF performance on six different test sets. We
below 0.05. Figure 28 shows the training and validation errors achieve 95% accuracy within a 5% false-positive rate on all six
of model MEI. After 220 epochs, this model converges to an test sets.
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Figure 28. Training and validation errors of model ME1 during training.
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Figure 29. Receiver operating characteristic curve of model MF tested on
different test sets.

Appendix C
Quantitatively Evaluating Model Performance

C.1. Performance on Test Set Data

In this section, we quantitatively evaluate the performance of
both models on the outflow mass estimates under different
physical and chemical conditions. We calculate the mean mass
and its uncertainty for each simulated outflow with different
kinetic temperatures and different '>CO abundances in the test
set. Figure 30 shows the relation between the CASI-3D
predicted outflow mass and the true mass for different outflows,
where error bars indicate the standard deviation of the mass
prediction on a simulated outflow with two different kinetic
temperatures (10 and 14 K) and three different 'CO
abundances (1074, 5x107° , 1075). On average, model ME1
overestimates the outflow mass by a factor of 5, while model
MF is able to correctly predict the outflow mass within a
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Figure 30. Reproduced from Figure 5, relation between the CASI-3D predicted
outflow mass and the true mass for different outflows. Circles indicate the mass
calculated by model MEI. Triangles represent the mass calculated by model
MEF. Error bars indicate the standard deviation of the mass prediction on a
simulating outflow under six different physical and chemical conditions. The
black dashed line indicates where CASI-3D correctly predicts the true mass. The
blue dashed line has a slope of 5.

reasonable uncertainty under different physical and chemical
conditions.

C.2. Performance on New Conditions

In this section, we explore the performance of both models
on synthetic outflows whose conditions are not included in our
training set. This exercise examines the uncertainty when
applying both models to different observations under different
conditions.

We test the performance of the two models on a simulated
outflow with different beam sizes than we used in our training
set: 100”, 25”, and 10”. Both models are trained on a training
set that only includes synthetic observations with a beam size
of 50”. Figure 31 shows the performance of the two models on
a simulated outflow with different beam sizes. Both models are
able to capture the morphology of the outflow even though
images with these beam sizes are not included in the
training set.

We then quantitatively assess the performance of both
models on outflow mass estimates under different conditions.
The training set only includes synthetic observations with these
parameters: a beam size of 50”, a noise level of 0.17 K, kinetic
temperatures of 10 and 14 K, and 2co /H, abundances of
1074, 5 x 1075, and 1075, We explore the performance of the
two models on synthetic outflows under more conditions: beam
sizes of 100”, 50", 25" and 10”, noise levels of 0.06, 0.17, and
0.51 K, kinetic temperatures of 10, 14, and 20 K, and 2co /Hs
abundances of 1074, 5 x 10*5, and 107>, In total, we test the
two models on 108 synthetic outflows with different combina-
tions of parameters, among which only six combinations of
parameters are included in the training set. Figure 32 shows the
distribution of the mass predicted by the two models on 108
synthetic outflows with different combinations of parameters.
Both models are able to predict the outflow mass consistently
under different conditions. The mean mass predicted by model
MEI is 5.94 M, with a standard deviation of 2 M. The mean
mass predicted by model MF is 0.76 M., with a standard
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Figure 31. Performance of the two models on a simulated outflow with different beam sizes.
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Figure 32. Distribution of the mass predicted by the two models on 108
synthetic outflows with different combinations of parameters.

deviation of 0.32 M. The true mass of these synthetic outflows
is 1.04 M. Model MF is able to predict the outflow mass under
different conditions within a factor of two. Table 5 gives the
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masses predicted by the two models for synthetic outflows
under several different conditions. We adopt the mean masses
predicted by both models on the six synthetic outflows whose
parameters are included in the training set as the fiducial values
for comparison. We also calculate the mean and the standard
deviation of the masses of the synthetic outflows with different
parameters.

As indicated in Table 5, different parameters have different
effects on the outflow mass prediction. We discuss them
separately as follows.

Model ME1 overestimates the outflow mass when the beam
size is large. When the beam size is large, more gas located
near the rest-frame velocity that is not associated with the
outflow is included in the model ME1 prediction, which yields
a larger mass estimate. In contrast, model MF underestimates
the mass when the beam size is large. Model MF is more
sensitive to outflow emission in the high-velocity channels
where the fraction of mass associated with feedback is high.
The relatively faint outflow emission in the high-velocity
channels vanishes into the background noise owing to beam
smearing. Model MF fails to capture the morphology of the
outflow in the high-velocity channels, which yields a smaller
mass estimate. We calculate the mean and the standard
deviation of the masses of synthetic outflows with different
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Table 5
CASI-3D Predictions on Synthetic Outflows with Different Conditions®

MME1 — MMEL,fid MMF — MMF,fid

No. Tx (K) 2co /H, Beam (arcsec) Noise (K) Myg; (M) Myr (M) MMELfid MME.fid
Fiducial (10, 14) 10,5,1) x 107° 50 0.17 5.19 0.65

1 14 107 50 0.17 5.55 0.82 6.91% 26.27%
2 14 107 100 0.17 7.10 0.53 36.72% —17.81%
3 14 10 25 0.17 5.55 1.13 6.96% 73.65%
4 14 10 10 0.17 5.00 1.31 —3.71% 101.25%
5 14 10 50 0.51 6.29 1.36 21.14% 109.36%
6 14 107 50 0.06 5.78 0.87 11.34% 33.37%
7 14 5% 1077 50 0.17 5.74 0.65 10.55% —0.27%
8 14 107° 50 0.17 5.64 0.45 8.66% —30.44%
9 10 10 50 0.17 4.55 0.86 —12.41% 32.71%
10 20 10 50 0.17 5.97 0.80 15.06% 22.69%
(1,2,3,4) 14 10 0.17 5.80 = 0.78 0.95 £ 0.30

1,5, 6) 14 10 50 5.87 £ 0.31 1.02 + 0.24

1,7,8) 14 50 0.17 5.64 = 0.08 0.64 £ 0.15

(1,9, 10) 10 50 0.17 5.36 = 0.60 0.83 £ 0.03

(1-10) 5.72 £ 0.65 0.88 £ 0.29

Note.

a Synthetic observation list, kinetic temperature, 200 1o H, abundance, beam size, noise level, mass predicted by model ME1, mass predicted by model MF, the
relative error of the mass predicted by model ME1 compared with the fiducial ME1 mass, and the relative error of the mass predicted by model MF compared with the

fiducial MF mass. The true mass for the simulated outflow is 1.04 M.,

beam sizes, which are 0.95 and 0.30 M. There is a factor of
two between the maximum and the minimum predicted mass of
the synthetic outflows with different beam sizes.

The estimated mass increases for both lower and higher
noise levels. As indicated in Table 5, when the noise level is
increased by a factor of 3, the masses predicted by both models
increase. This is due to the contamination by the noise. When
the noise level is decreased by a factor of 3, the masses
predicted by both models also increase. This is because the
outflow emission is more distinct, and both models are able to
identify a more complete morphology. We calculate the mean
and the standard deviation of the masses of synthetic outflows
with different noise levels, which are 1.02 and 0.24 M.,. There
is a factor of 1.6 between the maximum and the minimum
predicted mass of synthetic outflows with different noise levels.

When the '*CO/H, abundance drops, the mass predicted by
model MF decreases. Since we use a constant '*CO/"*CO
ratio, when 12CO/H2 decreases by a factor of 10, the
abundance of '>CO also drops by a factor of 10. Under this
circumstance, 13CO emission of the outflow is fainter and
difficult to detect. In most voxels of the low '*CO and
3CO abundance synthetic outflow, we can only rely on '*CO
emission to calculate the outflow mass rather than combining
both '*CO and '*CO. '>CO is usually optical thick, so we
underestimate the outflow mass based on 'CO only. We
calculate the mean and the standard deviation of the masses of
synthetic outflows with different '>CO/H, abundances, which
are 0.64 and 0.15 M. There is a factor of 1.6 between the
maximum and the minimum predicted mass of the synthetic
outflows with different '*CO/H, abundances.

There is only a weak dependence between the cloud kinetic
temperature and the mass estimates by the two models. The
averaged kinetic temperature of launched gas is higher than the
mean cloud kinetic temperature. We adopt a constant excitation
temperature of 25 K when we calculate outflow mass as
discussed in Section 3.1. Consequently, the cloud kinetic
temperature plays a limited role in setting the emission of the
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gas associated with feedback. We calculate the mean and the
standard deviation of the masses of synthetic outflows with
different kinetic temperatures, which is 0.83 and 0.03 M.

We find that the beam sizes, noise levels, and 12CO/H2
abundances dominate the uncertainty of outflow mass esti-
mates. Kinetic temperatures do not significantly affect the
outflow mass estimation. These variations at most introduce a
factor of 2 change in the estimated mass. To conclude, we
demonstrate that CASI-3D performs well on other observations
whose conditions are not included in the training set.
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