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Localized and extended patterns in the cubic-quintic Swift-Hohenberg equation on a disk

Nicolás Verschueren * and Edgar Knobloch†

Physics Department, University of California at Berkeley, Berkeley, California 94720, USA

Hannes Uecker‡

Institute for Mathematics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

(Received 15 April 2021; accepted 16 June 2021; published 14 July 2021)

Axisymmetric and nonaxisymmetric patterns in the cubic-quintic Swift-Hohenberg equation posed on a disk

with Neumann boundary conditions are studied via numerical continuation and bifurcation analysis. Axisym-

metric localized solutions in the form of spots and rings known from earlier studies persist and snake in the usual

fashion until they begin to interact with the boundary. Depending on parameters, including the disk radius, these

states may or may not connect to the branch of domain-filling target states. Secondary instabilities of localized

axisymmetric states may create multiarm localized structures that grow and interact with the boundary before

broadening into domain-filling states. High azimuthal wave number wall states referred to as daisy states are also

found. Secondary bifurcations from these states include localized daisies, i.e., wall states localized in both radius

and angle. Depending on parameters, these states may snake much as in the one-dimensional Swift-Hohenberg

equation, or invade the interior of the domain, yielding states referred to as worms, or domain-filling stripes.
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I. INTRODUCTION

Pattern formation is a familiar feature of many physical,

chemical, and biological systems. Patterns generally form as

a result of a symmetry-breaking instability of a spatially ho-

mogeneous state. The simplest situation arises on an infinite

domain in one, two, or three space dimensions (1D, 2D, or 3D,

respectively), since this formulation admits spatially periodic

structures. These persist when the domain is replaced by a

periodic domain, or with some restrictions, by a domain with

Neumann boundary conditions. The subject is reviewed in the

books by Hoyle [1] and Cross and Greenside [2]. However,

in most applications, particularly in fluid dynamics and chem-

ical systems, the presence of lateral boundaries becomes of

fundamental importance. This paper is devoted to the expla-

nation of pattern formation on perhaps the simplest bounded

domain in 2D, the finite disk, focusing on phenomena asso-

ciated with subcritical instabilities of the homogeneous state,

i.e., associated with the presence of bistability between the

homogeneous state and different pattern states.

For this purpose we select the simplest pattern-forming

equation, the Swift-Hohenberg (SH) equation, a dissipative

evolution equation for a scalar field u(x, t ) in 2D. The equa-

tion is characterized by a finite wave number instability that

takes place, in an infinite system, at ε = 0, where ε is the

bifurcation parameter. Because of its variational structure, all

time dependence ultimately dies out, allowing us to focus on

time-independent solutions. We choose the nonlinear terms
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to be of cubic-quintic type in order to allow for bistability

between the homogeneous state u = 0 and a stripelike pattern.

This type of equation arises as a plausible model of many

systems, particularly those arising in fluid dynamics, although

a rigorous derivation is lacking [3]. However, because of its

simplicity the equation has been the model of choice for many

pattern formation studies, and this is the case in the present

contribution as well.

In the case of a finite disk, two basic types of localized

states occur: states localized in the interior of the domain,

and states localized near its boundary. The former behave

much like analogous structures in the plane, at least until they

have grown to such a size that they begin to interact with the

boundary. In contrast, the latter, referred to here as wall states,

are present only because of the boundary, and so have no

analog in the infinite plane. We focus here on understanding

the basic properties of these solutions and their interaction

as parameters are varied, as well as on their interaction with

coexisting domain-filling structures such as target states and

other stripelike states. The former are parallel to the boundary,

while the latter are frequently perpendicular to it. Periodic

wall states are also of special interest. We refer to these as

daisy states, and since these also bifurcate subcritically, we

expect the presence of azimuthally localized daisy states re-

sembling partially plucked daisies. We find that these states do

indeed exist and that they snake, for moderate subcriticality,

much like the localized states in the 1D cubic-quintic SH

equation. However, this ceases to be the case for stronger

subcriticality, for which the localized daisies expand into the

domain interior instead of expanding along the boundary.

Figure 1 illustrates some of the solutions studied in this paper.

Some of our patterns resemble states generated in super-

critical steady state bifurcations from a trivial state on a disk,
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FIG. 1. States observed in Eq. (1) with the boundary conditions (2), q = 1. (a) Spot (R, ε, ν ) = (30, −0.580, 2), (b) target (R, ε, ν ) =
(25, −0.780, 2), (c) ring state (R, ε, ν ) = (50, −0.650, 2), (d) 4−-arm localized state (R, ε, ν ) = (14, −0.5980, 2), (e) 4−-arm extended state

(R, ε, ν ) = (14, −0.6460, 2), (f) 3+-arm state (R, ε, ν ) = (14, −0.7048, 2), (g) daisy state (R, ε, ν ) = (14,−0.353, 1.5), (h) plucked daisy

state (R, ε, ν ) = (14,−0.3231, 1.5), (i) wormlike state (R, ε, ν ) = (14, −0.2755, 1.4), and (j) stripelike state (R, ε, ν ) = (14, −0.6, 2). Each

state is accompanied in a lower panel by a 1D profile along the dashed white line in the panel above; in (g)–(j) this line is slightly displaced

from the perimeter for ease of visibility.

for instance in convection in a cylinder [4–9] and in flame

dynamics above a circular burner [10]. However, in these

systems spatial localization is generally absent, because roll

convection sets in supercritically (the midplane or Boussinesq

symmetry of this system precludes subcritical hexagons at

onset) while combustion away from onset also behaves like

a supercritical system. Near onset, however, ignition is often

subcritical, a fact that may be responsible for the appearance

of localized hot spots and flickering in this regime [11]. Re-

lated structures are also seen in reaction-diffusion systems on

a disk [12], and in vertical cavity surface emitting lasers with

a round aperture [13].

Localized wall modes are present in rotating convection

in a cylinder [14,15]; these modes precess in a retrograde

fashion, and in the strongly nonlinear regime appear to be

responsible for the boundary zonal flows observed in exper-

iments at high Rayleigh number (strong forcing) [16]. Similar

rotating states are present even in nonrotating Rayleigh-

Bénard convection but appear via a symmetry-breaking Hopf

bifurcation from an axisymmetric state [17]. However, such

dynamical states cannot be described by variational sys-

tems such as the SH equation with Neumann boundary

conditions, although both mixed (i.e., Robin) boundary con-

ditions [18] or the so-called spiral boundary conditions [19]

admit the presence of Hopf bifurcations and hence persistent

dynamics.

The remainder of the paper is organized as follows.

Section II introduces the model, emphasizing symmetries,

effective number of parameters, and variational structure. In

addition, linear stability properties of the u = 0 state are

determined and thresholds for different types of instabilities

are identified. Sections III and IV describe the results of nu-

merical continuation of some of the steady states generated

by these unstable modes, focusing on two distinct types of

solutions, namely axisymmetric solutions [Figs. 1(a)–1(c)]

and nonaxisymmetric solutions that include m-arm states

[Figs. 1(d)–1(f)], wall-mode states [Figs. 1(g) and 1(h)], and

worms and stripes [Figs. 1(i) and 1(j)]. The axisymmetric

states are studied in Sec. III via solutions of a nonautonomous

boundary value problem in the radial coordinate ρ, and their

relation to the results on an unbounded domain [20–22] is

explored. Section IV describes the organization of nonaxisym-

metric solutions on the disk, which we classify into multiarm

solutions and daisy states. Bifurcations from daisy states

yield localized daisies, and for moderate subcriticality the

associated branches closely resemble the classical 1D snakes-

and-ladders scenario [23]. However, these snakes break up

with increased subcriticality, leading to worm states at the

wall. Section V shows a comparison between the solution

branches in terms of the free energy, while Sec. VI illustrates

additional patterns that are also present. The paper concludes

in Sec. VII with a discussion and suggestions for future work.

The Appendix contains some details on the numerics, and

further information, including movies stepping through some

of the bifurcation diagrams, is provided in the Supplemental

Material (SM) [24].
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FIG. 2. The domains �1 and �2 defined in Eqs. (3a) and (3b)

showing the normal vector n̂.

II. THE MODEL

We consider the SH model with a cubic-quintic nonlinear-

ity,

∂t u = εu + νu3 − u5 − (q2 + �)2u, (1)

where u(x, t ) is a real-valued scalar field and ε, ν, and q are

parameters. In contrast to much of the earlier literature, here

the equation is posed on a disk of radius R subject to the

boundary conditions

∇u · n̂|δ� = 0, ∇(�u) · n̂|δ� = 0, (2)

referred to as Neumann boundary conditions. We solve this

problem on two distinct domains, a finite disk �1 of radius R

illustrated in Fig. 2(a) and a sector �2 of opening angle 2φ0

illustrated in Fig. 2(b):

�1 = {x ∈ (ρ, φ) ∈ R
2|ρ ∈ [0, R], φ ∈ [0, 2π ]}, (3a)

�2 = {x ∈ (ρ, φ) ∈ R
2|ρ ∈ [0, R], φ ∈ [−φ0, φ0]}. (3b)

In the following the symmetry u → −u of Eq. (1) will play

a fundamental role. Although the problem is specified by four

parameters, ε, ν, q, R, we can without loss of generality set

q = 1 since other values of q can be accommodated by the

rescaling

� = q2�′, u = qu′, ∂t = q4∂τ , ε = ε′q4, ν = ν ′q2. (4)

Thus R is measured in units of q−1.

The model (1), posed on the finite disk �1 with the

boundary conditions (2), possesses variational structure. More

precisely, the free energy

F[u] ≡
∫

�

(

1

2
[(q2+�)u]2−

ε

2
u2−

ν

4
u4+

1

6
u6

)

dx (5)

satisfies, on using integration by parts and the boundary con-

ditions,

dF

dt
=

∫

�

{−εu − νu3 + u5 + q2[(q2 + ∇2)u]}(∂t u) dx

+
∫

�

[(q2 + ∇2)u]∇2(∂t u) dx

= −
∫

�1

(∂t u)2dx. (6)

Since F[u] is bounded from below, it decreases along trajecto-

ries until ∂t u = 0. The variational structure of Eqs. (1) and (2)

thus rules out persistent dynamics and we therefore focus on

time-independent solutions of the problem.

Our main tool for exploring time-independent solutions

of (1) is numerical continuation. We make extensive use of

the packages AUTO [25] and pde2path [26–28]. For numeri-

cal continuation in 2D, the number of states often increases

rapidly with the size of the domain and branch jumping,

i.e., uncontrolled and undetected switching of states from

one solution branch to another, becomes a problem in the

neighborhood of bifurcation points. One strategy to mitigate

this problem is to employ symmetries to restrict the study to

a smaller domain, a procedure that also reduces numerical

effort. See [27, Sec. 3.6.1, Sec. 8.3.1] for further comments.

Here we fix a moderate value for the disk radius and in some

settings study the problem on the sectorial domain (3b) instead

of the whole disk (3a). For the opening angle 2φ0 we take

φ0 = π/n with n an integer and impose Neumann boundary

conditions along φ = ±φ0 in addition to r = R.

A. Linear stability of the trivial state u = 0

The linearization of (1) about the homogeneous solution

u = 0 reads

∂tv = [ε − (q2 + �)2]v, |v| ≪ 1. (7)

Equation (7) can be solved via separation of variables,

using the eigenfunctions of the Laplacian in polar coordi-

nates (ρ, φ), i.e., we seek solutions of the form v(ρ, φ, t ) =
eσ t

w(ρ, φ) with

w(ρ, φ) = Jm(kρ) cos(mφ + α), (8)

where σ , α, and k are constants to be determined for each

value of the azimuthal wave number m ∈ N0. Substituting

v(ρ, φ, t ) into (7) yields the dispersion relation

σ = ε − (q2 − k2)2. (9)

Instability sets in when σ crosses zero. The resulting critical

case σ = 0 admits four values of k, k±,± = ±
√

q2 ±
√

ε.

However, with m ∈ N0 it follows that Jm(−x) = (−1)mJm(x)

and consequently that only two of these solutions are linearly

independent. Thus

w(ρ, φ) = [AmJm(k+ρ) + BmJm(k−ρ)] cos(mφ + α), (10)

where k± =
√

q2 ±
√

ε. In order to determine the constants

Am, Bm, and α, we impose the boundary conditions (2). In

the case of the full disk (domain �1), the solution must be

periodic in the angular variable φ, implying that m ∈ N0. In

the case of a slice of half-angle φ0 = π/n (domain �2 with

1 < n ∈ N), the boundary conditions in the angular coordi-

nate yield

sin

(

m
π

n
+ α

)

= 0,

which can be satisfied by either

α = 0, m = ln, or α =
π

2
, m =

(2l − 1)n

2
, l ∈ N0,

where without loss of generality we take l = 1. We interpret

this result as follows. Either n = m in which case n copies

of the solution generate an m-fold solution on the whole

disk, or n = 2m implying that n is an even integer and one

must first double the domain, e.g., via reflection in φ = φ0 or

014208-3



VERSCHUEREN, KNOBLOCH, AND UECKER PHYSICAL REVIEW E 104, 014208 (2021)

FIG. 3. The first six eigenfunctions on the half disk predicted

by linear stability analysis of the u = 0 state when (a) R = 14 and

(b) R = 15. The eigenfunctions are sorted according to the eigenval-

ues ε. In each case, ε and the corresponding azimuthal number m are

specified.

φ = −φ0, before replicating the result to obtain an m = n/2-

fold state [29]. In particular, u = sin mφ satisfies u = ±1 on

φ = ±π/n, n = 2m, together with Neumann boundary con-

ditions. This solution is not periodic on φ ∈ [−φ0, φ0] but is

periodic on φ ∈ [−2φ0, 2φ0] and so represents a periodic state

on the disk with wave number m = n/2.

The boundary conditions at ρ = R are the same for both

the full disk and the sector: these yield a set of two linear

equations for Am, Bm given by

M

(

Am

Bm

)

=
(

0

0

)

, M ≡
(

k+J ′
m(k+R) k−J ′

m(k−R)

k3
+J ′

m(k+R) k3
−J ′

m(k−R)

)

.

To find nontrivial solutions of this equation for given m and R

we determine ε from

det(M) = −2
√

ε
√

q4 − εJ ′
m(k+R)J ′

m(k−R) = 0. (11)

If ε = 0, then k− = k+ > 0, and condition (11) is satisfied

trivially. In this case Eq. (9) shows that no instability takes

place. Similarly, ε = q4 also satisfies (11) for all m. We disre-

gard this case because we are interested in small values of ε

and q ∼ O(1). Condition (11) thus reduces to

J ′
m(k+R)J ′

m(k−R) = 0.

In order to illustrate the predictions from this condition, we

consider the cases q = 1, φ0 = π
2

(half disk) and R = 14 and

R = 15 (Fig. 3). Using computer algebra we find the first six

values of ε satisfying (11). On the full disk, we obtain the

same eigenvalues, but for m 
= 0 these are of double multi-

plicity.

The values found are in good agreement with the bifurca-

tion points found from one-parameter numerical continuation

of the trivial state u = 0 of (1) on the half disk. The per-

centage difference between the predicted and observed values

of ε is always under 1%. Figure 3 illustrates the first six

predicted (and numerically computed) eigenvectors when R =
14 and R = 15, sorted by the corresponding eigenvalues ε.

Remarkably, the only mode that is common to both lists is

m = 3, indicating a strong dependence on R of the initial

bifurcation sequence. Although the number of possibilities

increases rapidly with the domain size, we can always identify

two qualitatively different types of eigenvectors: axisymmet-

ric solutions characterized by m = 0 [when R = 14 these

appear at ε5 ≈ 8.88×10−3, Fig. 3(a); when R = 15 the on-

set of axisymmetric states is delayed to ε13 ≈ 4.20×10−2

and ε14 ≈ 4.50×10−2, i.e., two such modes arise in close

succession] and wall modes characterized by a high wave

number m and confined to the periphery ρ ∼ R of the do-

main [e.g., ε3 ≈ 2.92×10−4 at R = 14 and ε1 ≈ 8.6×10−5

at R = 15, Figs. 3(a) and 3(b)]. The organization, stability,

and interconnections among the solution branches spawned

by these modes, radial and wall, are discussed in the following

sections. We start with these modes because (a) the radial

mode is essentially 1D and, on the infinite disk and for the

quadratic–cubic case, has been studied before; (b) the daisy

mode is expected to be associated with quasi-1D snaking of

localized daisies. Additionally, both show interesting further

bifurcations. These two states are thus a natural starting point

for discussing the organization of the very rich solution struc-

ture that exists even on small to moderate size disks.

III. THE AXISYMMETRIC CASE

A. Boundary value formulation

The steady state problem for axisymmetric solutions u =
u(ρ), ρ ∈ [0, R], with the boundary conditions (2) can be

written as the nonautonomous 1D boundary value problem

v
′
1 = v3, (12a)

v
′
2 = v4, (12b)

v
′
3 = v2 − q2

v1 −
v3

v5

, (12c)

v
′
4 = εv1 + νv

3
1 − v

5
1 − q2

v2 −
v4

v5

, (12d)

v
′
5 = 1, (12e)

where v
′
i = dvi

dρ
, i = 1, . . . , 5. The connection between the

components of v ≡ (v1, v2, v3, v4, v5) and u is as follows:

v1 = u, v2 = (q2 + �)u, v3 = v
′
1, v4 = v

′
2, v5 = ρ.

The system (12) is not the only choice for studying steady ax-

isymmetric solutions of Eq. (1) as a boundary value problem,

and similar formulations have been used before to explore the

quadratic-cubic SH model [20–22]. The advantage of (12) is

that the boundary conditions (2) for the system on the disk

yield the uncoupled boundary conditions

v3|ρ=0,R = 0 = ∂ρu|
ρ=0,R

= ∇u · ρ̂|∂�, (13a)

v4|ρ=0,R = 0 = ∂ρ (q2u + �u)|ρ=0,R = ∇(�u) · ρ̂|∂�, (13b)

v5|ρ=0 = 0 = ρ|ρ=0, (13c)

which allow a simple numerical implementation, for instance,

using the boundary value routine of AUTO, even for large R.

This approach does not provide linear stability information,

however, unless one solves the linearized problem in parallel

(see, e.g., [30–33]).
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FIG. 4. (a) Comparison between the 1D (AUTO, left) and 2D

(pde2path, right) continuation of axisymmetric states on a disk of

radius R = 14 when ν = 2 and q = 1. Thick line segments in the 2D

case indicate stable solutions. (b) Radial profiles of representative

spot and target states at locations indicated in (a) by an open circle

and a star. Open red circles correspond to 1D computations while

the solid blue line shows the corresponding profile obtained from 2D

computations.

Since we are also interested in continuation of the branches

that bifurcate from axisymmetric states, we also compute such

states in 2D (albeit for moderate R) using pde2path, which

yields linear stability information without additional effort.

B. Axisymmetric solutions on a small disk

We begin by demonstrating the equivalence between the

AUTO solution of the 1D boundary value problem (12) and

the pde2path solution of the 2D problem (1). In Fig. 4 we

compare the spot and target patterns computed by both proce-

dures when R = 14, ν = 2, q = 1. Panel (a) shows the branch

of axisymmetric solutions emerging from the trivial branch

u = 0 at ε = ε5 in the 1D and 2D formulations. To present the

solution branches we employ the quasi-1D norm

‖u‖∗ =

√

1

R

∫ R

0

u2(ρ) dρ . (14)

This norm is preferred since it avoids suppressing spots at the

center of the disk, in contrast to the 2D L2 norm used later

for nonaxisymmetric states. Panel (b) shows the radial pro-

files of two representative axisymmetric solutions at locations

indicated by a circle and a star in the bifurcation diagrams in

(a). These correspond to a spot and a target state, respectively.

Because of the symmetry u → −u of the cubic-quintic SH

equation, there is only one type of spot in this system, in

contrast to the quadratic-cubic SH equation [21].

In contrast to the 1D problem on the real line [23], in

the axisymmetric case described by (12) the u = 0 branch

becomes unstable to an already localized state given by a

Bessel function of the first kind of index zero. This is a

consequence of the linear analysis in Sec. II A and is therefore

the same regardless of the nonlinearity in (1). Continuation of

this localized state produces characteristic snaking behavior

(Fig. 4), qualitatively similar to that present in the quadratic-

cubic case [20,21]. We therefore refer to this branch as the

spot branch. As one follows this branch, a half wavelength is

added to the spot solution after every other saddle node and

the solution thereby grows in spatial extent until it fills the

domain, becoming a target state [Fig. 1(b)]. Using pde2path

over the disk we computed in parallel the linear stability of the

solutions along this branch, with stable (unstable) segments

of the branch indicated by thick (thin) lines [Fig. 4(b)]. The

result shows that most of the localized states on this branch

are unstable, except for short segments after every fold on

the left. Stable large-amplitude domain-filling target states

acquire stability shortly after the leftmost fold.

The transitions just described, namely the continuous evo-

lution from the primary bifurcation into a spatially localized

snaking structure, followed by a continuous transition into a

domain-filling state, is characteristic of systems with nonstan-

dard boundary conditions, as explained in [34]; in problems

with Neumann or periodic boundary conditions, such as the

SH equation on a periodic interval in 1D, localized solutions

appear in a secondary bifurcation from a periodic state that

occurs at small amplitude, and these localized states reconnect

to the domain-filling state near the fold of the latter. Thus

the transition to and from localized structures takes place via

bifurcations involving the periodic state, and does not occur

smoothly following a single branch. In the present problem

this departure from the periodic case is a consequence of

the nonautonomous nature of the radial problem and not the

boundary conditions.

C. Axisymmetric solutions on a large disk

Previous studies of axisymmetric solutions of the SH

equation with a quadratic-cubic nonlinearity assumed an in-

finitely large (R → ∞) disk [20–22]. In order to illustrate

the similarities and differences between these studies and the

cubic-quintic case studied here, we perform numerical con-

tinuation of (12) on a disk large enough (R = 90) to admit

approximately 30 wavelengths across a diameter. The results

are summarized in Figs. 5 and 6.

As in the case with R = 14 (Fig. 4), the branch of localized

states for R = 90 bifurcates from u = 0 at ε ≈ 0 as a spot

solution, undergoes a series of folds, adding a half wavelength

to the solution after every other fold as in the unbounded

case [21] or the 1D cubic-quintic SH equation [23]. How-

ever, in contrast with the case R = 14, the branch eventually

ceases to add more oscillations and instead starts to lose them.

Figure 5(b) shows two copies of this branch; the left and right

panels highlight the portions of the branch where the solution

adds oscillations (blue) and loses oscillations (red).

Figure 5(b), left panel, shows that the process of adding

oscillations to the spot solution continues for a number of

folds, but instead of connecting to the target solution, there

014208-5



VERSCHUEREN, KNOBLOCH, AND UECKER PHYSICAL REVIEW E 104, 014208 (2021)

FIG. 5. Solution branch for the boundary value problem (12) on

a disk of radius R = 90 when ν = 2, q = 1 (b). Spot solutions are

represented in blue (left) and evolve into ring solutions in red (right).

The trivial solution u = 0 is in black. Each segment of the bifurca-

tion diagram is accompanied by representative solutions (a) shown

at locations indicated by different symbols (triangles, squares, and

stars).

is now a transition where the solution changes from having a

maximum at the origin (spot) to a local minimum (ring) [green

star in (a)]. Further continuation of the branch [Fig. 5(b), right

panel] leads to a progressive loss of oscillations by the same

mechanism, thereby reversing the process described above.

This contraction process continues until the ring solution has

only one maximum and one minimum. Subsequently the so-

lution branch connects to a rightmost fold located at ε ≈ 0

(left-pointing triangle), corresponding to a small-amplitude

spatially modulated periodic state. Further continuation of the

solution past this fold results in states with an additional ring-

like structure near the wall at ρ = R. This state, indicated by a

star symbol in Fig. 5(b), right panel, is thus a combination of a

spot at the origin and a ringlike structure along the wall. Like

the states centered on ρ = 0, these wall structures are of two

types, distinguished by whether they peak at the wall (a wall

spot) or near the wall (a wall ring). Further continuation leads

to further snaking of these combination states, either gaining

or losing maxima, and eventually passing through a fold and

turning into a yet different combination state (not shown) in

a process that does not appear to terminate. The exact details

depend strongly on the size of the disk, much as found in the

1D problem with Robin boundary conditions [35], and have

not been studied in detail.

FIG. 6. Disconnected branch of solutions evolving from a target

state for the boundary value problem (12) when R = 90, ν = 2,

q = 1 (left, blue curve). The trivial solution u = 0 is in black. Dif-

ferent symbols (square, diamond, star, crosses, and triangles) mark

the location of representative solutions (most along the dashed line

ε = −0.7), illustrated on the right.

In contrast with the spot to ring transition described above,

the existence of the target solution is independent of the ra-

dius of the disk. Figure 6 shows a target solution for R = 90

(see the up-pointing triangle in inset) and its connection to

the wall spot solutions (e.g., right-pointing triangle in inset).

Further continuation of the branch leads to wavelength loss,

much as observed after the transition from a spot to a ring

[Fig. 5(b), right panel]. The different insets illustrate this pro-

cess (left-pointing triangle, star, and crosses). The wall-spot

solution reaches a single maximum close to the prominent

fold at ε ≈ 0 (diamond in inset) heralding a transition to a

new combination state, consisting of a wall spot at ρ = R

and a spot at the center of the domain, ρ = 0. As far as we

can tell both branches (that bifurcating from u = 0 and the

continuation of the target branch) execute similar repeated

upward and downward snaking but never connect, i.e., the

target state remains disconnected from u = 0.

To understand this disconnection process we return in

Fig. 7 to the moderate R case and discuss the transition from
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FIG. 7. Bifurcation diagram for axisymmetric states when

(a) R = 14, (b) R = 14.6, (c) R = 14.7, and (d) R = 15 illustrating

the pair of disconnections that are responsible for transforming the

structure of (a) into (d). Sample radial profiles, at locations indi-

cated by symbols (blue dots and green or red crosses), are included

alongside.

R = 14 (direct connection of the primary u = 0 branch to

the target) to R = 15 (no such connection) in greater detail.

Specifically, the figure shows the bifurcation diagrams for R =
14, R = 14.6, R = 14.7, and R = 15 together with sample

solutions. The plot at R = 14 includes the second branch of

axisymmetric states (green curve) that bifurcates from u = 0

at ε ≈ 0.148, in addition to the first branch (blue) that arises

already at ε5. At this value of R these two branches are

distinct [Fig. 7(a)] but this situation changes as R increases.

At R = 14.6 [Fig. 7(b)] the spot state is still connected to the

large-amplitude target state although we are beginning to see

a cusplike feature in place of the leftmost fold on the blue

branch. In addition, we have found a branch of axisymmetric

states lying on an isola (red curve). Such isolas of spatially

extended states are present even in the 1D cubic-quintic SH

equation [36]. This isola also possesses a cusplike feature in

the vicinity of the cusp on the spot branch indicating that a

codimension-2 reconnection is about to happen. Figure 7(c)

for R = 14.7 describes the situation after this reconnection.

The spot branch (blue) remains connected to the target states

but now incorporates the isola states in the process. State 4 on

the first target branch differs from state 8 on the second target

FIG. 8. Mode crossing in the linear stability problem (7) as a

function of the radius R when q = 1. A marginal mode with n

wavelengths (blue) is superseded by a marginal mode with n + (1/2)

wavelengths (green) at R ≈ 14.98. Here n = 2. The eigenvalues ε13

and ε14 at R = 15 are indicated with red dots as are the corresponding

eigenvalues at R = 14.6 and 14.7, the radii employed in Fig. 7.

branch by approximately half a wavelength, as expected of

solutions ultimately connected via a fold.

A further transition occurs by R = 15 [Fig. 7(d)].

Figure 7(c) shows that the leftmost fold on the second spot

branch (green) is approaching close to the first branch (blue)

at ε ≈ −0.76 and amplitude ‖u‖∗ ≈ 0.76, suggesting that a

further reconnection takes place. This is indeed the case and

Fig. 7(d) shows that as a result the blue branch becomes

disconnected from the target states, and instead connects back

to u = 0 at ε14, i.e., at the origin of the second spot branch.

The proximity of ε13 and ε14 at this value of R is responsible

for the appearance of the cusplike feature at u = 0 in the blue

branch seen in the figure. Moreover, the target states on both

the blue (profile 4) and green (profile 8) branches in Fig. 7(c)

are now connected. These are part of a sequence of small

and large amplitude states that are disconnected from u = 0

and shown in red. These may form via the incorporation of

additional isolas into the branch. In fact, at R = 15 the target

states are part of a heavily folded upper branch responsible for

the appearance of additional target states at large amplitude.

Evidently, the transition that leads to the break up of the

branch connecting the first spot branch to the corresponding

target states is exceedingly complex. In fact, we expect that

the transition shown in Fig. 7 is one of many such transitions.

This is because the system has a preferred radial wavelength.

As a result, as R increases, the system must repeatedly execute

disconnections of this type, in order that the new lowest radial

mode is again able to connect to the target state with the

correct number of wavelengths. These transitions are triggered

linearly when successive bifurcation points on u = 0 pass

through one another as R increases (Fig. 8), and these are

inevitably associated with additional nonlinear transitions of

the type shown in Fig. 7. Similar behavior occurs in 1D as

well [37].
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FIG. 9. Branches of multiarm solutions for R = 14, ν = 2, q = 1. (a)–(c) m = 2, 3, 4 branches bifurcating from an axisymmetric spot

at low ‖u‖2. Stability with respect to perturbations on the full disk is indicated by thick line segments. In each case, illustrative solutions

are numbered and shown in corresponding insets. (d) Zoom of the bifurcation diagram with the m = 12 crown branch (magenta) and the

branches of 1-arm (orange), 2-arm (blue), 3-arm (red), and 4-arm (green) states that bifurcate from it; the m = 3, 4-arm states connect to the

corresponding branches in panels (b) and (c). The four critical eigenfunctions on the m = 12 crown branch are shown alongside, together

with the solution profile at location 5 on this branch. See Fig. 10 for further continuation and sample profiles along the m = 1, 2 branches

bifurcating from the first two bifurcation points on the crown branch.

IV. NONAXISYMMETRIC SOLUTIONS ON A DISK

A. Multiarm states

We now explore secondary bifurcations from axisymmetric

states to nonaxisymmetric structures. For this 2D problem we

use pde2path on the half disk of radius R = 14 but compute

the stability of the solutions on the whole disk. The results are

presented using the 2D L2 norm

‖u‖2 =

√

1

|�|

∫

�

u2(x)dx, (15)

where |�| is the area of the domain �, with ε serving as the

continuation parameter, unless otherwise stated. The results

are summarized in Fig. 9.

For R = 14, the m = 2 mode is the first nonaxisymmetric

mode that bifurcates from the axisymmetric state with a spot

at the center of the domain [Fig. 9(a)]. The bifurcation is

characterized by the appearance of new maxima on opposite

sides of the spot (state 1). The resulting branch snakes, a

behavior that is associated with the successive nucleation of

additional maxima at the tips of the resulting arms after every

second fold (states 2 and 3), in a process that resembles the

growth of localized structures in the 1D cubic-quintic SH

equation. However, in contrast to the 1D SH equation, as this

is taking place the structure broadens into a worm [38] prior

to reaching the boundary at ρ = R and refocusing (state 4).

In addition, further continuation of the m = 2 branch did not

lead to lateral broadening of the arms and the branch does

not approach a domain-filling target state, in contrast to the

cases m = 3, 4 discussed next. Instead the m = 2 arms retract

toward the boundary forming a pair of spots at opposite ends

of a diameter (not shown).

We next discuss the m = 3 [panel (b)] and m = 4 [panel

(c)] branches. These consist of 3-arm and 4-arm states, re-

spectively. Like the m = 2 branch, these branches start at low

norm on the branch of axisymmetric states (state 1), and grow

by essentially the same snaking process as the m = 2 branch

until they reach the boundary. However, at this point snaking

gives way to a “vertical” increase in the norm that is associated

with rapid lateral expansion of the arms. This type of growth is

not associated with snaking because of the absence of pinning

in this direction [38] and takes place in the vicinity of the

Maxwell point, i.e., the ε value at which the energy F[u]

of the target state vanishes. This lateral expansion generates

states that almost completely fill the domain, leaving 3 (resp.

4) radial gaps or holes. The snaking observed at the top of this

interval of rapid expansion is associated with the successive

formation of complete rings around the disk center, i.e., with

the gradual retraction of the radial holes toward the boundary.

Surprisingly, we find that neither state connects to a

domain-filling target state. Instead, this connection takes place
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FIG. 10. Continuation of Fig. 9 showing the m = 1, 2 branches

from their origin on the m = 12 crown branch. Stability with respect

to perturbations on the full disk is indicated by thick line segments.

via a new, intermediate state we refer to as a crown state. This

state bifurcates from the target branch at the point where the

target branch stabilizes, and represents a near-axisymmetric

state with an m = 12 modulation superposed on the stripe ad-

jacent to the wall [magenta branch in panel (d) and sample plot

5]. The right column in panel (d) shows the first 4 bifurcation

directions along the magenta branch. These correspond to the

appearance of 1, 2, 3, and 4 equispaced holes along the wall,

and we find that the m = 3, 4 branches in panels (b) and (c)

terminate on the m = 12 crown branch at the corresponding

m = 3, 4 bifurcations (red and green branches). Thus, con-

trary to expectation, none of these states connect directly to

the target state.

The 1-arm (orange) and 2-arm (blue) hole states that bifur-

cate from the magenta branch in panel (d) have been continued

away from the crown branch and the results are illustrated

in Fig. 10. Both branches extend to low norm and do so

via rapid broadening of the hole that turns the hole into a

1-arm (resp. 2-arm) state. However, neither branch connects

to the branch of axisymmetric spots. Instead, the 1-arm state

gradually retracts toward the boundary via snaking and turns

into a wall-attached spot [state 4 in panel (a)]. The 2-arm state

likewise shrinks into a pair of spots on the boundary [state 4

in panel (b)]. In both cases these spots subsequently regrow

new spots toward the interior, but no longer along the radius

(not shown).

In summary, for m = 3, 4 we have a connection between

the radial spot at low norm and the m = 12 crown branch very

close to the top left fold on the target branch. For m = 2 we

have two disconnected branches of 2-arm states, one emerging

from a small-amplitude spot, and the other from the m = 12

crown branch at the top, both exhibiting very similar 2-arm

states in between, for ‖u‖2 ≈ 0.4, say, but the two branches

FIG. 11. Branches of solutions with the symmetry D−
m emerging

from bifurcations of the trivial state u = 0. Panels (a) and (b) show

the 4−-arm and 6−-arm states, respectively. The bottom panels show

the corresponding bifurcation diagrams in red and blue. Sample

states at locations indicated by filled dots are shown in the top panels.

Stability with respect to perturbations on the full disk is indicated by

thick line segments.

do not connect. For m = 1 we only have one branch, with no

bifurcation to a 1-arm state from an axisymmetric spot at low

‖u‖2. Remarkably, all of these m-arm branches include some

stable states.

The m = 1, 2, 3, 4-arm states computed above are invari-

ant under rotations φ → φ + 2π/m and reflections across a

suitable line. These operations generate the group Dm and our

continuation procedure respects this symmetry, unless tertiary

bifurcations take place that break it. Dm-symmetric states may

also bifurcate directly from the trivial state; see, for instance,

the 2nd, 3rd, and 6th mode in Fig. 3(a). In addition, branches

of D−
m-symmetric states are also present; these states change

sign upon rotation by 2π/m. In Figs. 11(a) and 11(b) we show

two such states, with symmetry D−
4 and D−

6 , respectively.

These states are D2- and D3-invariant but not D4- and D6-

invariant.

Like the multiarm solutions of Figs. 9 and 10, the D−
m states

start as localized structures near the center of the domain but

develop m arms as one proceeds to larger amplitude which

broaden into extended D−
m target states after reaching the wall

(insets 1–3 in each case). Because of the D−
m symmetry these

states fill the domain with a target-like structure consisting of

2π/m slices of the disk with the same pattern but alternating

sign (see inset 4 in each case). The D−
m symmetry is present in

the problem because of the u → −u symmetry of the cubic-

quintic SH equation. Mathematically, the same symmetry is

present in porous media convection and it therefore comes as

no surprise that states similar to the m = 4 states in Fig. 9(c)

were found in numerical continuation of the relevant equa-

tions of fluid dynamics on a periodic domain with a square

cross section [39,40]. In particular, in this problem one finds

both D4- and D−
4 -symmetric structures. However, because of
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FIG. 12. The wall modes or daisy states (blue) and their sec-

ondary bifurcations computed from Eq. (1) when R = 14, ν = 1.4,

and q = 1. The secondary branches of (e)ven (red) and (o)dd (green)

localized states are connected via (r)ung states (black). A zoom of the

bifurcation diagram provides more detail of the localized branches.

Representative solutions marked with dots in the bifurcation diagram

are represented in the respective insets. The 1D profiles correspond

to each solution along its periphery.

the periodicity of the spatial domain, these states bifurcate

from a branch of periodic structures rather than directly from

the trivial state.

B. Daisy states and their bifurcations

Our next family of nonaxisymmetric states is characterized

by high azimuthal wave number. For this reason these states

are localized toward the periphery of the domain; i.e., they are

wall modes. Following [41] we refer to them as daisy states.

Figure 1(g) shows an example for R = 14 and ν = 1.5. The

daisies are periodic in the angle φ and have symmetry Dm,

m ≫ 1. Consequently they are easily computed on smaller

sectorial domains with opening angle 2π/m or even π/m; in

the latter case the solution will have the property u(ρ, π/m) =
−u(ρ, 0) for all ρ, with uφ (ρ, π/m) = uφ (ρ, 0) = 0, modulo

rotations of the state.

The blue branch in Fig. 12 represents the computed daisy

states, with sample states at locations “wu” and “wd” shown

in the top panels. The daisy states bifurcate subcritically from

FIG. 13. Branches of one- and two-pulse solutions on the half

disk for the case R = 14, q = 1, together with continuation of se-

lected folds in ν. (a) Bifurcation diagram of the daisy branch (blue),

together with the branches of 1-pulse (green) and 2-pulse (magenta)

localized daisy states when ν = 1.4, with four representative folds

numbered 1–4. (b) Continuation of folds 1–3 on the 1-pulse branch

in the (ν, ε) plane. The numbers next to each curve correspond to

the folds in (a); states at ν = 1.5 are marked by triangles. (c) Same

as (b) for the 2-pulse folds. (d) Five representative solutions from

(b) and (c).

the trivial state u = 0 at ε3 and acquire linear stability beyond

the left fold of the blue branch, although they lose it again at

yet larger amplitude; see Figs. 13 and 18 below for details. As

before, the notion of stability always refers to stability with

respect to perturbations on the whole disk, even for solutions

computed on smaller sectors. Since the daisies represent sub-

critical periodic states, we expect to find, by analogy with

the 1D cubic-quintic SH equation [23], localized wall states

resembling a partially plucked daisy in appropriate parameter

regimes. We further expect snaking branches of such plucked

daisies where petals are added or removed after every other

fold. To obtain these states we start with a moderate sub-

criticality, ν = 1.4, and discuss how the scenario changes for

stronger subcriticality, namely ν = 1.5. In Fig. 12 we show

branches of localized daisies of odd (green) and even (red)

parity; sample states are shown in the panels on the right of

the figure, together with 1D profiles along their periphery.

These illustrate the analogy between these states and the 1D

SH scenario of [23]. As in the 1D SH case, the odd and

even branches of localized daisy states are connected via rung

states, shown in black and in the inset labeled “r”. There are

in fact four such branches owing to the symmetry u → −u.

These localized daisies bifurcate from the daisy branch at
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small amplitude (bottom right corner of the bifurcation dia-

gram in Fig. 12), undergo snaking whereby the solution adds

half a wavelength at either end after every left fold, eventually

leaving just one plucked petal of the daisy, before terminating

on the complete daisy state near its fold, likely via an Eckhaus

instability; cf. [37]. In addition to the even and odd branches

of localized states shown in Fig. 12, we also found 2-pulse

localized daisies [magenta branch in Fig. 13(a)], as well as

states of 3 or more pulses (not shown), all of which behave

similarly to the 1-pulse case.

The above 2-pulse states lie on a continuous branch that

snakes just like the 1-pulse branch but bifurcates from the

daisy state at larger amplitude than the 1-pulse branch, and

likewise terminates on this branch farther from its fold. This

is because the computed 2-pulse states are equidistant and so

behave like 1-pulse states on the half domain. We conjecture

that non-equispaced 2-pulse states lie on isolas, like the corre-

sponding states in the 1D SH equation [42], but we have not

computed such states.

It turns out that the daisy snaking scenario in Fig. 12

depends rather strongly on ν. In Fig. 13(a) we again show

the daisy branch at ν = 1.4 in blue, the branch of even 1-

pulse states in green and even 2-pulse states in magenta, and

number representative folds 1–4. Panels (b) and (c) show the

continuation of these folds in the (ν, ε) plane. In the 2-pulse

case the fold extends beyond ν = 1.5 but retreats at larger ν,

yielding two possible solutions at ν = 1.5 [magenta triangles,

panel (d)]. In the 1-pulse case, folds 1 and 3 exist at ν = 1.5

(and beyond), whereas fold 2 [in blue, panel (b)] turns back

before ν = 1.5.

Using the solutions at ν = 1.5 [vertical dashed line in

Figs. 13(b) and 13(c)] as starting points, we return in Fig. 14 to

one-parameter continuation. Keeping ν = 1.5 fixed and con-

tinuing the 2-pulse state both up and down in amplitude (green

and brown curves, respectively) yields the complete snaking

branch of even states of this type [Fig. 14(b)]. This branch

connects with the daisy branch at the top and bottom. We can

also perform one-parameter continuation of the 2-pulse state

in ν, leading to the isola shown in Fig. 14(a). Profiles 1 and

2 show that the states on this isola correspond to a localized

daisy whose petals at φ ≈ 0 are beginning to expand into the

interior of the disk.

Since fold 2 of the 1-pulse branch does not exist at ν = 1.5

[Figs. 13(a) and 13(b)], we expect to see a disconnection of

folds 1 and 3 when performing continuation in ε. This is

illustrated in Figs. 14(c) and 14(d). The upper fold 3 from

Fig. 13(a) connects to the daisy branch near its fold [green seg-

ment in Fig. 14(d)], and continuation in the opposite direction

yields snakelike behavior [brown segment in Fig. 14(d)] until

some of the petals of the solution grow toward the interior

of the disk, forming wormlike structures. Similarly, the lower

fold 1 from Fig. 13(a) connects to the daisy branch near the

bottom, and continuation in the opposite direction also leads

to snaking followed by the development of wormlike struc-

tures [Fig. 14(c)]. In both cases the continuation was stopped

at an arbitrary point for the sake of clarity. The 2-pulse snaking

branch likewise breaks at ν ≈ 1.535 when fold 4 in Fig. 13(a)

disappears [Fig. 13(c)].

In contrast with the 1D case, here the extra degree of free-

dom in the radial direction leads to fat wall-attached worms

FIG. 14. Continuation of representative states in Fig. 13(d) in the

parameter (a) ν, starting from the downward pink triangle, (b) ε,

starting from the upward pink triangle, (c) ε, starting from the red

upward triangle, and (d) ε, starting from the upward green triangle.

In (b)–(d), green (red) corresponds to continuation for increasing (de-

creasing) ‖u‖2. Profiles with representative solutions are included.

confined to part of the full disk. As a result, the branch of lo-

calized daisy states is no longer able to terminate on the daisy

branch and we have been unable to determine its ultimate fate.

We note that fat wormlike states are well-known solutions of

the SH equation in the plane, and these may be held together

both by curvature of the boundary and by pinning due a wave

number gradient normal to the boundary [38]; in other cases

these states are unstable leading to temporal growth [43]. We

associate the appearance of the fat worms with the initiation

of the filling transition, whereby the disk gradually fills with

an extended stripe state as parameters change. Evidently this

transition occurs as a result of the advance of the front con-

necting the wall-attached stripe state to the trivial state, toward

the origin of the disk. How the location and shape of this front

depend on parameters is an important question; dynamical

integration suggests that outside the snaking region the worm

state either collapses (to the left of the snaking region) or else

grows dynamically leading to dynamic filling of the domain

interior (to the right of the snaking region). See Sec. VI for

further discussion.

V. ENERGY OF THE SOLUTIONS

Since the SH equation seeks to minimize the free en-

ergy (5), the global energy minimum is of particular interest.
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FIG. 15. Solutions for ν = 2 as a function of ε shown in terms of

(a)–(c) their norm ‖u‖2 (15) or (d)–(f) their energy (5) per unit area.

The trivial branch is in green. Panel (a) compares the axisymmetric

(magenta) and daisy (brown) states. Panels (b) and (c) show the

4−-arm (black) and 6−-arm (red) branches, respectively. In each

case, sample points are marked with a star to illustrate the mapping

between the norm and the energy F/|�|. All computations are for a

disk with R = 14, q = 1.

In this section we therefore compare the energies of the pre-

viously obtained solutions, restricting the discussion to the

parameter regime R = 14, q = 1, and treat the cases ν = 2

(Figs. 15 and 16) and ν = 1.4 (Fig. 17) separately, aiming to

identify the branches with the lowest energy. In both cases

we show the norm ‖u‖2 [Eq. (14)] and the corresponding

energy per unit area F/|�| [Eq. (5)] in the top and bottom

panels, respectively. In the energy representation the folds in

the former become cusps, making the branches hard to distin-

guish. Consequently, we have split the branches into different

subfigures, and indicate some sample solutions (using a star

or an arrow) in order to illustrate the mapping between these

two representations. In all cases the energy vanishes close to

the Maxwell point for the target state.

Figure 15 shows four branches emerging from the trivial

state (green) when ν = 2. Panel (a) compares the axisymmet-

ric (magenta) and daisy (brown) states. For small values of ε,

the least energy state is the trivial state u = 0. At ε ≈ −0.63,

the energy of the axisymmetric states crosses zero becoming

negative and the minimum energy state is a target state. For

larger values of ε, the energy of the daisy states also becomes

negative but remains larger than that of the target states.

The m−-arm branches emerge from the trivial branch as

localized solutions. Further continuation leads to a series of

folds, filling the domain with a multiarm extended pattern

with the symmetry D−
m . Figure 15 shows the branches for

m = 4 and m = 6 in black [panel (b)] and red [panel (c)],

respectively. As the branch undergoes the above-mentioned

FIG. 16. Secondary bifurcations from (a), (b) the axisymmetric

branches and (c) the daisy branch when ν = 2, using the same con-

vention as in Fig. 15. Blue and green branches represent the 3+-arm

and 4+-arm solutions, respectively. Panel (c) shows the branch of lo-

calized daisy states (purple) bifurcating from the daisy branch (gray).

The branch initially snakes (localized daisy states) but subsequent

continuation leads to a wormlike state and then to an �-shaped state

(inset) as the stripes extend far into the domain (star).

series of folds, the free energy oscillates between adjacent

cusps. Continuation of the branch in the direction of increas-

ing norm leads to increasing energy until the solution reaches

the fold at the top left of the bifurcation diagram in the top

panels. Beyond this point, the energy decreases again and

eventually becomes negative. This occurs first for m = 4 and

then for m = 6. In both cases the energy is always greater than

that of the target state at the same value of ε.

Figure 16 illustrates the energy of the secondary branches

when ν = 2, showing the branches of the 3+-arm and 4+-arm

solutions in panels (a) and (b) and the corresponding free

energy in panels (d) and (e). The latter resemble the plots in

Fig. 15. Panel (c) shows the fate of a localized daisy solu-

tion, after it emerges from the daisy branch. As discussed in

Sec. IV B, the localized daisy states initially add new petals

every other fold. In the present case the solution subsequently

develops into a 1-worm-like structure instead of adding more

petals, with the stripes extending farther and farther into the

domain, eventually generating an �-shaped structure [panels

(c) and (f)], in contrast to what happens in Fig. 18(b) below.

Figure 16(f) shows that as the structure expands, energy starts

to decrease and the � state (star, inset) that results has negative

energy. At this value of ε, this is the solution with the smallest

energy after the target state.

As shown in Sec. IV B, when ν = 1.4, the localized daisy

states instead exhibit snaking behavior analogous to the 1D

SH equation [23], and this also holds for the energy. In Fig. 17
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FIG. 17. Solutions for ν = 1.4 using the same convention as in

Fig. 15. The daisy branch is shown in brown with branches of even

[red, panel (a)], odd [green, panel (c)] and equispaced 2-pulse [yel-

low, panel (b)] localized daisy solutions also shown. Representative

folds of the localized branches are numbered to enable comparison

with the energy plots in panels (d)–(f).

we show the even (red), odd (green), and equispaced two-

pulse (yellow) branches of localized daisy states, with repre-

sentative folds marked with arrows and numbered. In all cases,

localized solutions with higher ‖u‖2 norm have lower energy.

The rung states are not shown. The 2-pulse states always have

greater energy than the odd and even single-pulse states.

In summary, the energy provides the following description

in terms of the lowest energy states: for small values of ε,

i.e., for sufficiently negative ε, the branch with the smallest

energy is the trivial one. As ε increases, axisymmetric states

become energetically more favorable. For yet larger values of

ε, the energy of the 4− and 6− branches becomes negative as

is the energy of the � state in Fig. 16(f) but these states never

become global energy minima. In general spatially extended

states have lower energy than localized states.

VI. FURTHER PATTERNS

We now briefly discuss some patterns to the right of the

snaking region of the localized daisy states, and also per-

form some direct numerical simulations (DNSs). The loss

of stability of the daisy branches with increasing amplitude

generically results in wall-attached worms, but the subsequent

behavior is sensitive to the value of ν. In Fig. 18 we again

contrast the cases ν = 1.4 and ν = 2 when R = 14. Panel (a),

computed on the half disk for ν = 1.4, shows that the first

FIG. 18. Branches bifurcating from the daisy branch (blue) when

it loses stability at large amplitude. (a) ν = 1.4. The first bifurcating

branch (orange) initially consists of stable wall-attached 3-worms,

which disintegrate upon further continuation into various combina-

tions of boundary and center spots but never again become stable.

The next branch consists of wall-attached 4-worms (green) which

turn into a combination of stripes perpendicular to the wall, spots

in between, and a hole at the disk center, with intervals of stability

up to ε ≈ −0.1. State 4 is generated from DNS starting from state

3, slightly to the right of the stability range of the green branch.

(b) ν = 2. The first bifurcating branch is now a snaking branch

of wall-attached 4-worms similar to those in (a); state 4 is again

obtained from DNS starting from state 3.

bifurcating branch (orange) contains states similar to those

in Fig. 14, namely a stable wall-attached 3-worm which sub-

sequently turns into a mix of wall spots and interior spots,

but does not become stable again. The next branch (green)

bifurcates very close to the first, starts as a wall-attached

4-worm, and turns into a mix of stripes perpendicular to

the wall with spots in between. Stable solutions exist up to

ε ≈ −0.1. Solution 4 is the result of DNS from state 3, just

after its loss of stability, and yields vertical stripes near the

disk center. Essentially the same states are obtained on the full

disk, where DNS from unstable initial conditions generates

various combinations of stripes near the center, depending on

meshing details, or differences in initial perturbations.

For ν = 2 [panel (b)], the first bifurcation is to a

Z4-symmetric wall-attached 4-worm, which subsequently
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FIG. 19. Patterns for ν = 2 obtained from DNS with straight

horizontal stripes as initial condition (state 1), and subsequent con-

tinuation in ε.

expands into the interior of the disk in the form of regular

stripes but then breaks up, due to overcrowding, into a mix of

spots and stripes, leaving a hole at the disk center. DNS from

the Z4-symmetric state 3 yields state 4, where the Z4 symmetry

is lost when stripes recombine to fill the interior.

The target patterns and the m-arm states from Sec. III

all consist of stripes parallel to the wall, while the daisies,

localized daisies, and patterns 4 from Figs. 18(a) and 18(b)

consist of stripes perpendicular to the wall. In contrast, the

� pattern from Fig. 16(f) has both. Evidently, away from

the stability regions of the patterns discussed so far, we may

expect patterns of spots and stripes with some stripes parallel

and others perpendicular to the wall. One example, shown

in Fig. 19, is the result of DNS at (ε, ν, q) = (−0.6, 2, 1)

starting at t = 0 with parallel stripes (u1(x, y), u2(x, y)) =
( cos(4πy/14), 0) in terms of the 2-component second-order

system (A1). The solution quickly converges to (the stable)

state 1. On continuing the solution from location 1 to larger

ε, i.e., toward less negative ε, we find that the pattern remains

stable for all ε values reached without qualitative change in

shape (not shown). Continuation to smaller ε, i.e., toward

more negative ε, yields the magenta branch, which initially

shows some snaking whereby the top and bottom stripes

disintegrate into spots. Shortly after state 3 the branch loses

stability and never regains it; the disintegration (and partial

recovery) of the stripes continues, however, but the branch ap-

parently never connects to any of the states already discussed.

Similar behavior is obtained for ν = 1.4 and ε in the range

−0.3 to −0.1 (not shown).

VII. DISCUSSION

We have explored numerically the variety of states de-

scribed by the prototypical subcritical SH equation on a finite

disk with Neumann boundary conditions. We have chosen

the cubic-quintic case in order to eliminate the preference

for hexagonal structures in, for example, the quadratic-cubic

case. The key point about the SH equation is its characteristic

scale 2π/q. In the quadratic-cubic case, hexagonal structures

on this scale are more easily accommodated within a disk of

radius R than the stripes that are preferred in the cubic-quintic

case. Thus the latter is more interesting from a physics point

of view, and the number of wavelengths 2π/q that can be

accommodated along the diameter or the circumference of

the disk becomes a key parameter. Throughout we focused

on steady states since all time-asymptotic states of the model

are necessarily steady.

Because the primary bifurcation in our model is subcritical

we expect both spatially extended structures and spatially

localized structures. We focused on relatively small disks but

even these already allow a large variety of (stable) patterns in

the subcritical regime. Spatially extended states include target

patterns consisting of concentric stripes parallel to the bound-

ary and worm states with stripes normal to the boundary, while

the localized structures can be divided into two types: those

localized at the center of the domain and those localized at

the boundary. States exhibiting some stripes that are normal

to the boundary and others that are parallel to it, such as the

� pattern in Fig. 16(f), have also been obtained. However,

neither PanAm-type patterns with convex stripes whose cur-

vature is not imposed by the boundary nor spirals [44] were

found, suggesting that such states require large-scale flows for

their maintenance. Such flows are of course absent from the

model studied here.

For axisymmetric states we also considered the case of

large R. The states then either have a monotonically decaying

envelope and are then referred to as spots, or one that peaks

away from the center or boundary, in which case we refer

to them as rings. We found that in relatively small disks the

central spot exhibited typical snaking behavior as it grew in

extent, eventually filling the domain and becoming a target

state. In contrast, in larger disks the spot state undergoes a

transition to a domain-filling ringlike state that subsequently

breaks up into a pair of ring structures, one near the center

and one near the outer boundary. As one follows the solution

branch further the connection between these states repeatedly

forms and breaks, leading to exceedingly complex behavior of

the solution branch.

The axisymmetric states are subject to secondary symm-

etry-breaking bifurcations. We explored these on a relatively

small disk, and identified secondary states with D2, D3, and

D4 symmetry, representing states with 2, 3, and 4 arms that

gradually extend in length while remaining laterally localized.

Once the arms reach the boundary, they begin to spread lat-

erally, terminating on a “crown” state that bifurcates from a

domain-filling target state close to its fold [Fig. 9(d)]. This is

not the case, however, for primary D−
m-symmetric states, for

which rotations by 2π/m are equivalent to changing the sign

of u (Fig. 11). These states exhibit similar growth behavior but

cannot connect to a target state.

In addition we also studied subcritical azimuthally periodic

wall states (daisies), and showed that these were accompanied

by azimuthally localized daisy states. For weak to moderate

subcriticality (ν < 1.5, say), these localized states grow in

azimuthal extent in the same manner as localized states in

the 1D cubic-quintic SH equation, but for larger subcriticality

we found that they instead expand into the interior, forming

wall-attached wormlike states similar to those present in the

plane [38,43].

It is significant, though not altogether surprising, that the

structures we identified in this simple model problem resem-

ble similar structures observed in fluid flows, combustion,
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laser physics, and indeed other spatially confined systems.

Convection in a vertical cylinder provides the closest real-

ization of these states despite the absence of subcriticality.

Numerical continuation studies of this system [6,7] in cylin-

ders with moderately small aspect ratio identified not only

target states but also nonaxisymmetric states with the sym-

metry D2, D−
2 , D3, D4, D−

4 , and D−
6 . As in our case, some of

these appear through a primary instability of the conduction

state, while others appear through secondary bifurcations of

axisymmetric states. In a similar vein, existing studies of

porous media binary fluid convection on a periodic domain

with a square cross section identified four-armed states with

both D4 and D−
4 symmetry [39,40] and studied their snaking

behavior as the arms grew in extent, ultimately interacting

with their images.

Despite the wealth of new phenomena described here, a

number of critical questions remain. Even in our stripped

down problem it proved impossible to follow many of the

solution branches all the way, and in larger domains it remains

unclear whether the localized structures ever connect to a

domain-filling state. The domain-filling transition of the wall

state likewise remains to be fully characterized. Much of the

interesting behavior of this system can be traced to the com-

petition between stripes parallel to the wall or perpendicular

to it. This competition is sensitive to both the domain radius

R and the subcriticality parameter ν, and appears responsible

for absence of a direct connection between the Dm-symmetric

m-arm states and axisymmetric target states. Nevertheless,

this study should serve as a useful guide to subcritical pattern

formation in a bounded 2D domain beyond the standard case

of squares and rectangles with Neumann or periodic boundary

conditions.
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APPENDIX: THE pde2path IMPLEMENTATION

In its standard setting, the MATLAB package pde2path

[26–28] uses the finite element method (FEM) to spatially

discretize systems of second-order PDEs, and combines this

with a variety of numerical continuation and bifurcation al-

gorithms, including some simple DNSs. We therefore rewrite

the 4th-order SH equation (1) as a parabolic-elliptic system

for (u1, u2) ≡ (u,�u) and setting q = 1,

Md∂t

(

u1

u2

)

=
(−�u2−2u2 − (1−ε)u1+ f (u1)

−�u1 + u2

)

, (A1)

with a singular dynamical mass matrix Md = (
1 0

0 0), f (u1) =
νu3

1 − u5
1, and Neumann boundary conditions for u1 and u2.

See, e.g., [27, Remark 8.1] for the equivalence of (1) and (A1)

over convex Lipschitz domains, or general domains with a

smooth boundary. For the patterns studied here, it turns out

that careful meshing [27, Sec. 4.1.1] is crucial to maintain

symmetry of the solution branches, i.e., to mitigate branch

jumping, and throughout this work we used axisymmetric

meshes. Additionally, instead of the standard piecewise linear

FEM we chose 6-node triangles [45, Sec. 5.1], i.e., piecewise

quadratic elements. With these, a typical discretization of the

R = 14 disk uses about 17 000 nodes, yielding a total of

34 000 degrees of freedom for (A1).

The basic pde2path implementation can be found in [46],

where the main script produces the radial, daisy, and localized

daisy branches. Additionally, movies illustrating the solutions

along the branches explored in this paper are included in the

SM [24].
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