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Localized and extended patterns in the cubic-quintic Swift-Hohenberg equation on a disk
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Axisymmetric and nonaxisymmetric patterns in the cubic-quintic Swift-Hohenberg equation posed on a disk
with Neumann boundary conditions are studied via numerical continuation and bifurcation analysis. Axisym-
metric localized solutions in the form of spots and rings known from earlier studies persist and snake in the usual
fashion until they begin to interact with the boundary. Depending on parameters, including the disk radius, these
states may or may not connect to the branch of domain-filling target states. Secondary instabilities of localized
axisymmetric states may create multiarm localized structures that grow and interact with the boundary before
broadening into domain-filling states. High azimuthal wave number wall states referred to as daisy states are also
found. Secondary bifurcations from these states include localized daisies, i.e., wall states localized in both radius
and angle. Depending on parameters, these states may snake much as in the one-dimensional Swift-Hohenberg
equation, or invade the interior of the domain, yielding states referred to as worms, or domain-filling stripes.
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I. INTRODUCTION

Pattern formation is a familiar feature of many physical,
chemical, and biological systems. Patterns generally form as
a result of a symmetry-breaking instability of a spatially ho-
mogeneous state. The simplest situation arises on an infinite
domain in one, two, or three space dimensions (1D, 2D, or 3D,
respectively), since this formulation admits spatially periodic
structures. These persist when the domain is replaced by a
periodic domain, or with some restrictions, by a domain with
Neumann boundary conditions. The subject is reviewed in the
books by Hoyle [1] and Cross and Greenside [2]. However,
in most applications, particularly in fluid dynamics and chem-
ical systems, the presence of lateral boundaries becomes of
fundamental importance. This paper is devoted to the expla-
nation of pattern formation on perhaps the simplest bounded
domain in 2D, the finite disk, focusing on phenomena asso-
ciated with subcritical instabilities of the homogeneous state,
i.e., associated with the presence of bistability between the
homogeneous state and different pattern states.

For this purpose we select the simplest pattern-forming
equation, the Swift-Hohenberg (SH) equation, a dissipative
evolution equation for a scalar field u(x, ¢) in 2D. The equa-
tion is characterized by a finite wave number instability that
takes place, in an infinite system, at ¢ = 0, where ¢ is the
bifurcation parameter. Because of its variational structure, all
time dependence ultimately dies out, allowing us to focus on
time-independent solutions. We choose the nonlinear terms
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to be of cubic-quintic type in order to allow for bistability
between the homogeneous state # = 0 and a stripelike pattern.
This type of equation arises as a plausible model of many
systems, particularly those arising in fluid dynamics, although
a rigorous derivation is lacking [3]. However, because of its
simplicity the equation has been the model of choice for many
pattern formation studies, and this is the case in the present
contribution as well.

In the case of a finite disk, two basic types of localized
states occur: states localized in the interior of the domain,
and states localized near its boundary. The former behave
much like analogous structures in the plane, at least until they
have grown to such a size that they begin to interact with the
boundary. In contrast, the latter, referred to here as wall states,
are present only because of the boundary, and so have no
analog in the infinite plane. We focus here on understanding
the basic properties of these solutions and their interaction
as parameters are varied, as well as on their interaction with
coexisting domain-filling structures such as target states and
other stripelike states. The former are parallel to the boundary,
while the latter are frequently perpendicular to it. Periodic
wall states are also of special interest. We refer to these as
daisy states, and since these also bifurcate subcritically, we
expect the presence of azimuthally localized daisy states re-
sembling partially plucked daisies. We find that these states do
indeed exist and that they snake, for moderate subcriticality,
much like the localized states in the 1D cubic-quintic SH
equation. However, this ceases to be the case for stronger
subcriticality, for which the localized daisies expand into the
domain interior instead of expanding along the boundary.
Figure 1 illustrates some of the solutions studied in this paper.

Some of our patterns resemble states generated in super-
critical steady state bifurcations from a trivial state on a disk,
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FIG. 1. States observed in Eq. (1) with the boundary conditions (2), ¢ = 1. (a) Spot (R, &, v) = (30, —0.580, 2), (b) target (R, &,v) =
(25, —0.780, 2), (c) ring state (R, &, v) = (50, —0.650, 2), (d) 4~ -arm localized state (R, &, v) = (14, —0.5980, 2), (e) 4~ -arm extended state
(R, &,v) = (14, —0.6460, 2), (f) 3*-arm state (R, ¢, v) = (14, —0.7048, 2), (g) daisy state (R, ¢, v) = (14, —0.353, 1.5), (h) plucked daisy
state (R, &, v) = (14, —0.3231, 1.5), (i) wormlike state (R, ¢, v) = (14, —0.2755, 1.4), and (j) stripelike state (R, ¢, v) = (14, —0.6, 2). Each
state is accompanied in a lower panel by a 1D profile along the dashed white line in the panel above; in (g)—(j) this line is slightly displaced

from the perimeter for ease of visibility.

for instance in convection in a cylinder [4-9] and in flame
dynamics above a circular burner [10]. However, in these
systems spatial localization is generally absent, because roll
convection sets in supercritically (the midplane or Boussinesq
symmetry of this system precludes subcritical hexagons at
onset) while combustion away from onset also behaves like
a supercritical system. Near onset, however, ignition is often
subcritical, a fact that may be responsible for the appearance
of localized hot spots and flickering in this regime [11]. Re-
lated structures are also seen in reaction-diffusion systems on
a disk [12], and in vertical cavity surface emitting lasers with
a round aperture [13].

Localized wall modes are present in rotating convection
in a cylinder [14,15]; these modes precess in a retrograde
fashion, and in the strongly nonlinear regime appear to be
responsible for the boundary zonal flows observed in exper-
iments at high Rayleigh number (strong forcing) [16]. Similar
rotating states are present even in nonrotating Rayleigh-
Bénard convection but appear via a symmetry-breaking Hopf
bifurcation from an axisymmetric state [17]. However, such
dynamical states cannot be described by variational sys-
tems such as the SH equation with Neumann boundary
conditions, although both mixed (i.e., Robin) boundary con-
ditions [18] or the so-called spiral boundary conditions [19]
admit the presence of Hopf bifurcations and hence persistent
dynamics.

The remainder of the paper is organized as follows.
Section II introduces the model, emphasizing symmetries,

effective number of parameters, and variational structure. In
addition, linear stability properties of the u =0 state are
determined and thresholds for different types of instabilities
are identified. Sections III and IV describe the results of nu-
merical continuation of some of the steady states generated
by these unstable modes, focusing on two distinct types of
solutions, namely axisymmetric solutions [Figs. 1(a)-1(c)]
and nonaxisymmetric solutions that include m-arm states
[Figs. 1(d)-1(f)], wall-mode states [Figs. 1(g) and 1(h)], and
worms and stripes [Figs. 1(i) and 1(j)]. The axisymmetric
states are studied in Sec. III via solutions of a nonautonomous
boundary value problem in the radial coordinate p, and their
relation to the results on an unbounded domain [20-22] is
explored. Section I'V describes the organization of nonaxisym-
metric solutions on the disk, which we classify into multiarm
solutions and daisy states. Bifurcations from daisy states
yield localized daisies, and for moderate subcriticality the
associated branches closely resemble the classical 1D snakes-
and-ladders scenario [23]. However, these snakes break up
with increased subcriticality, leading to worm states at the
wall. Section V shows a comparison between the solution
branches in terms of the free energy, while Sec. VI illustrates
additional patterns that are also present. The paper concludes
in Sec. VII with a discussion and suggestions for future work.
The Appendix contains some details on the numerics, and
further information, including movies stepping through some
of the bifurcation diagrams, is provided in the Supplemental
Material (SM) [24].
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FIG. 2. The domains €2; and €2, defined in Eqgs. (3a) and (3b)
showing the normal vector f.

II. THE MODEL

We consider the SH model with a cubic-quintic nonlinear-
ity,
du=cecu+vi’ —u’ — (q2 + A)zu, (D)

where u(X, t) is a real-valued scalar field and ¢, v, and g are
parameters. In contrast to much of the earlier literature, here
the equation is posed on a disk of radius R subject to the
boundary conditions

referred to as Neumann boundary conditions. We solve this
problem on two distinct domains, a finite disk €2; of radius R
illustrated in Fig. 2(a) and a sector 2, of opening angle 2¢y
illustrated in Fig. 2(b):

Q) ={xe(p,9) eR’p €[0,R], ¢ €[0,27]}, (3a)
Q ={xe(p,p) eR’|p €[0,R], ¢ € [—¢o, dol}. (3b)

In the following the symmetry u — —u of Eq. (1) will play
a fundamental role. Although the problem is specified by four
parameters, ¢, v, g, R, we can without loss of generality set
g = 1 since other values of g can be accommodated by the
rescaling

A=gN, u=qi, 8, =q¢*3,, e=¢'qg*, v=1'g*. 4

Thus R is measured in units of g~!.

The model (1), posed on the finite disk €2; with the
boundary conditions (2), possesses variational structure. More
precisely, the free energy

— L) 2 €0 Vo L
f[u]:fﬂ(zuq AP 4”+6”>d" )

satisfies, on using integration by parts and the boundary con-
ditions,

ar _ / (—eu — vie® + 15 + 1 + VOul} (Bu) dx
dt Q
+ / (@ + V2)ulV2(3,u) dx
Q

= — [ (Bu)dx. (6)
Q
Since F[u] is bounded from below, it decreases along trajecto-
ries until 9, = 0. The variational structure of Egs. (1) and (2)
thus rules out persistent dynamics and we therefore focus on
time-independent solutions of the problem.

Our main tool for exploring time-independent solutions
of (1) is numerical continuation. We make extensive use of
the packages AUTO [25] and pde2path [26-28]. For numeri-
cal continuation in 2D, the number of states often increases
rapidly with the size of the domain and branch jumping,
i.e., uncontrolled and undetected switching of states from
one solution branch to another, becomes a problem in the
neighborhood of bifurcation points. One strategy to mitigate
this problem is to employ symmetries to restrict the study to
a smaller domain, a procedure that also reduces numerical
effort. See [27, Sec. 3.6.1, Sec. 8.3.1] for further comments.
Here we fix a moderate value for the disk radius and in some
settings study the problem on the sectorial domain (3b) instead
of the whole disk (3a). For the opening angle 2¢, we take
¢o = /n with n an integer and impose Neumann boundary
conditions along ¢ = %¢y in addition to r = R.

A. Linear stability of the trivial state u = 0

The linearization of (1) about the homogeneous solution
u = 0 reads

dv=1[e —(¢*+ AP, v <I. (7)

Equation (7) can be solved via separation of variables,
using the eigenfunctions of the Laplacian in polar coordi-
nates (p, @), i.e., we seek solutions of the form v(p, ¢,1) =
e’ w(p, ¢) with

w(p, ) = Jn(kp) cos(me + a), )

where o, «, and k are constants to be determined for each
value of the azimuthal wave number m € Ny. Substituting
v(p, @, t) into (7) yields the dispersion relation

o=¢— (4% — k)% )

Instability sets in when o crosses zero. The resulting critical
case 0 =0 admits four values of k, ki = /¢ + /e.
However, with m € Ny it follows that J,,(—x) = (—1)"J,,,(x)
and consequently that only two of these solutions are linearly
independent. Thus

IU(,O, ¢) = [Ame(k+/0) + Bme(k—P)] COS(m¢ + O[)a (10)

where ki = /g% & \/e. In order to determine the constants
A, By, and o, we impose the boundary conditions (2). In
the case of the full disk (domain €2;), the solution must be
periodic in the angular variable ¢, implying that m € Ny. In
the case of a slice of half-angle ¢y = 7 /n (domain €2, with
1 < n € N), the boundary conditions in the angular coordi-

nate yield
) g
sin <m— + a) =0,
n

which can be satisfied by either

T 21— n
— m=
2 2
where without loss of generality we take [ = 1. We interpret
this result as follows. Either n = m in which case n copies
of the solution generate an m-fold solution on the whole

disk, or n = 2m implying that n is an even integer and one
must first double the domain, e.g., via reflection in ¢ = ¢ or

,ZGN(),

a=0 m=In, ora =
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FIG. 3. The first six eigenfunctions on the half disk predicted
by linear stability analysis of the u = 0 state when (a) R = 14 and
(b) R = 15. The eigenfunctions are sorted according to the eigenval-
ues ¢. In each case, ¢ and the corresponding azimuthal number m are
specified.

¢ = —¢y, before replicating the result to obtain an m = n/2-
fold state [29]. In particular, u = sin m¢ satisfies u = =1 on
¢ = £m /n, n = 2m, together with Neumann boundary con-
ditions. This solution is not periodic on ¢ € [—¢y, ¢o] but is
periodic on ¢ € [—2¢y, 2¢] and so represents a periodic state
on the disk with wave number m = n/2.

The boundary conditions at p = R are the same for both
the full disk and the sector: these yield a set of two linear
equations for A,,, B, given by

Ap 0 kiJ (kyR
M( >:<) ME<+m(+)
By, 0 k3J),(kyR)
To find nontrivial solutions of this equation for given m and R
we determine & from

det(M) = —2/2v/q* — eJ. (ko R)J.,(k_R) =0.  (11)

If e =0, then k_ = k. > 0, and condition (11) is satisfied
trivially. In this case Eq. (9) shows that no instability takes
place. Similarly, e = ¢* also satisfies (11) for all m. We disre-
gard this case because we are interested in small values of ¢
and g ~ O(1). Condition (11) thus reduces to

T (kR (k_R) = 0.

k_J,(k_R)
kiJ;,,(k_m)'

In order to illustrate the predictions from this condition, we
consider the cases g = 1, ¢p = 7 (half disk) and R = 14 and
R = 15 (Fig. 3). Using computer algebra we find the first six
values of e satisfying (11). On the full disk, we obtain the
same eigenvalues, but for m # 0 these are of double multi-
plicity.

The values found are in good agreement with the bifurca-
tion points found from one-parameter numerical continuation
of the trivial state u = 0 of (1) on the half disk. The per-
centage difference between the predicted and observed values
of ¢ is always under 1%. Figure 3 illustrates the first six
predicted (and numerically computed) eigenvectors when R =
14 and R = 15, sorted by the corresponding eigenvalues ¢.
Remarkably, the only mode that is common to both lists is
m = 3, indicating a strong dependence on R of the initial

bifurcation sequence. Although the number of possibilities
increases rapidly with the domain size, we can always identify
two qualitatively different types of eigenvectors: axisymmet-
ric solutions characterized by m =0 [when R = 14 these
appear at &5 ~ 8.88x 1073, Fig. 3(a); when R = 15 the on-
set of axisymmetric states is delayed to &3 ~ 4.20x 1072
and 14 ~ 4.50x1072, i.e., two such modes arise in close
succession] and wall modes characterized by a high wave
number m and confined to the periphery p ~ R of the do-
main [e.g., &3 & 2.92x107* at R= 14 and & ~ 8.6x107°
at R = 15, Figs. 3(a) and 3(b)]. The organization, stability,
and interconnections among the solution branches spawned
by these modes, radial and wall, are discussed in the following
sections. We start with these modes because (a) the radial
mode is essentially 1D and, on the infinite disk and for the
quadratic—cubic case, has been studied before; (b) the daisy
mode is expected to be associated with quasi-1D snaking of
localized daisies. Additionally, both show interesting further
bifurcations. These two states are thus a natural starting point
for discussing the organization of the very rich solution struc-
ture that exists even on small to moderate size disks.

III. THE AXISYMMETRIC CASE

A. Boundary value formulation

The steady state problem for axisymmetric solutions u =
u(p), p € [0, R], with the boundary conditions (2) can be
written as the nonautonomous 1D boundary value problem

vi = V3, (12a)
vy = s, (12b)
vy = v, — vy — =, (12¢)
Vs

/ 3 5 2 V4
vy =&V +Vv] —v] — ¢ v = (12d)

5
vs = 1, (12e)
where v) = %’ i=1,...,5. The connection between the

components of v = (v, vy, v3, Vg, vs) and u is as follows:

vi=u, v=(G+Au, vi=v), v=v, vs=np.
The system (12) is not the only choice for studying steady ax-
isymmetric solutions of Eq. (1) as a boundary value problem,
and similar formulations have been used before to explore the
quadratic-cubic SH model [20-22]. The advantage of (12) is
that the boundary conditions (2) for the system on the disk

yield the uncoupled boundary conditions

v3|p:O,R =0= apu|p=07R = Vu. i)IBQ’ (13a)
Valpmor = 0 = 3,(q*u + Aw)lp—or = V(Au) - plag, (13b)
v5|p:0 = 0 = plp:Ov (13C)

which allow a simple numerical implementation, for instance,
using the boundary value routine of AUTO, even for large R.
This approach does not provide linear stability information,
however, unless one solves the linearized problem in parallel
(see, e.g., [30-33]).
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FIG. 4. (a) Comparison between the 1D (AUTO, left) and 2D
(pde2path, right) continuation of axisymmetric states on a disk of
radius R = 14 when v = 2 and g = 1. Thick line segments in the 2D
case indicate stable solutions. (b) Radial profiles of representative
spot and target states at locations indicated in (a) by an open circle
and a star. Open red circles correspond to 1D computations while
the solid blue line shows the corresponding profile obtained from 2D
computations.

Since we are also interested in continuation of the branches
that bifurcate from axisymmetric states, we also compute such
states in 2D (albeit for moderate R) using pde2path, which
yields linear stability information without additional effort.

B. Axisymmetric solutions on a small disk

We begin by demonstrating the equivalence between the
AUTO solution of the 1D boundary value problem (12) and
the pde2path solution of the 2D problem (1). In Fig. 4 we
compare the spot and target patterns computed by both proce-
dures when R = 14, v = 2, g = 1. Panel (a) shows the branch
of axisymmetric solutions emerging from the trivial branch
u = 0 at ¢ = g5 in the 1D and 2D formulations. To present the
solution branches we employ the quasi-1D norm

1 R
— | 2
llull, = R/o u(p)dp. (14)

This norm is preferred since it avoids suppressing spots at the
center of the disk, in contrast to the 2D L2 norm used later
for nonaxisymmetric states. Panel (b) shows the radial pro-
files of two representative axisymmetric solutions at locations
indicated by a circle and a star in the bifurcation diagrams in
(a). These correspond to a spot and a target state, respectively.
Because of the symmetry u — —u of the cubic-quintic SH
equation, there is only one type of spot in this system, in
contrast to the quadratic-cubic SH equation [21].

In contrast to the 1D problem on the real line [23], in
the axisymmetric case described by (12) the u = 0 branch
becomes unstable to an already localized state given by a
Bessel function of the first kind of index zero. This is a
consequence of the linear analysis in Sec. IT A and is therefore
the same regardless of the nonlinearity in (1). Continuation of
this localized state produces characteristic snaking behavior
(Fig. 4), qualitatively similar to that present in the quadratic-
cubic case [20,21]. We therefore refer to this branch as the
spot branch. As one follows this branch, a half wavelength is
added to the spot solution after every other saddle node and
the solution thereby grows in spatial extent until it fills the
domain, becoming a target state [Fig. 1(b)]. Using pde2path
over the disk we computed in parallel the linear stability of the
solutions along this branch, with stable (unstable) segments
of the branch indicated by thick (thin) lines [Fig. 4(b)]. The
result shows that most of the localized states on this branch
are unstable, except for short segments after every fold on
the left. Stable large-amplitude domain-filling target states
acquire stability shortly after the leftmost fold.

The transitions just described, namely the continuous evo-
lution from the primary bifurcation into a spatially localized
snaking structure, followed by a continuous transition into a
domain-filling state, is characteristic of systems with nonstan-
dard boundary conditions, as explained in [34]; in problems
with Neumann or periodic boundary conditions, such as the
SH equation on a periodic interval in 1D, localized solutions
appear in a secondary bifurcation from a periodic state that
occurs at small amplitude, and these localized states reconnect
to the domain-filling state near the fold of the latter. Thus
the transition to and from localized structures takes place via
bifurcations involving the periodic state, and does not occur
smoothly following a single branch. In the present problem
this departure from the periodic case is a consequence of
the nonautonomous nature of the radial problem and not the
boundary conditions.

C. Axisymmetric solutions on a large disk

Previous studies of axisymmetric solutions of the SH
equation with a quadratic-cubic nonlinearity assumed an in-
finitely large (R — oo) disk [20-22]. In order to illustrate
the similarities and differences between these studies and the
cubic-quintic case studied here, we perform numerical con-
tinuation of (12) on a disk large enough (R = 90) to admit
approximately 30 wavelengths across a diameter. The results
are summarized in Figs. 5 and 6.

As in the case with R = 14 (Fig. 4), the branch of localized
states for R = 90 bifurcates from u =0 at ¢ = 0 as a spot
solution, undergoes a series of folds, adding a half wavelength
to the solution after every other fold as in the unbounded
case [21] or the 1D cubic-quintic SH equation [23]. How-
ever, in contrast with the case R = 14, the branch eventually
ceases to add more oscillations and instead starts to lose them.
Figure 5(b) shows two copies of this branch; the left and right
panels highlight the portions of the branch where the solution
adds oscillations (blue) and loses oscillations (red).

Figure 5(b), left panel, shows that the process of adding
oscillations to the spot solution continues for a number of
folds, but instead of connecting to the target solution, there
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FIG. 5. Solution branch for the boundary value problem (12) on
a disk of radius R =90 when v =2, g = 1 (b). Spot solutions are
represented in blue (left) and evolve into ring solutions in red (right).
The trivial solution # = 0 is in black. Each segment of the bifurca-
tion diagram is accompanied by representative solutions (a) shown
at locations indicated by different symbols (triangles, squares, and
stars).

is now a transition where the solution changes from having a
maximum at the origin (spot) to a local minimum (ring) [green
star in (a)]. Further continuation of the branch [Fig. 5(b), right
panel] leads to a progressive loss of oscillations by the same
mechanism, thereby reversing the process described above.
This contraction process continues until the ring solution has
only one maximum and one minimum. Subsequently the so-
lution branch connects to a rightmost fold located at ¢ ~ 0
(left-pointing triangle), corresponding to a small-amplitude
spatially modulated periodic state. Further continuation of the
solution past this fold results in states with an additional ring-
like structure near the wall at p = R. This state, indicated by a
star symbol in Fig. 5(b), right panel, is thus a combination of a
spot at the origin and a ringlike structure along the wall. Like
the states centered on p = 0, these wall structures are of two
types, distinguished by whether they peak at the wall (a wall
spot) or near the wall (a wall ring). Further continuation leads
to further snaking of these combination states, either gaining
or losing maxima, and eventually passing through a fold and
turning into a yet different combination state (not shown) in
a process that does not appear to terminate. The exact details
depend strongly on the size of the disk, much as found in the
1D problem with Robin boundary conditions [35], and have
not been studied in detail.

L1
Lo
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0.8 > 1
Lo
-1
< 1
Lo
0.6 -1
* L1
= 1
g L1
0.41 J\/\}G
-1
* -1
J\/@
L1
. 3 0.2
i -0.2
3 . F0.5
i 3
0.0 : L 0.5
0.8 6.6 6.4 -8.2€ 00 P 90

FIG. 6. Disconnected branch of solutions evolving from a target
state for the boundary value problem (12) when R =90, v =2,
q = 1 (left, blue curve). The trivial solution # = 0 is in black. Dif-
ferent symbols (square, diamond, star, crosses, and triangles) mark
the location of representative solutions (most along the dashed line
& = —0.7), illustrated on the right.

In contrast with the spot to ring transition described above,
the existence of the target solution is independent of the ra-
dius of the disk. Figure 6 shows a target solution for R = 90
(see the up-pointing triangle in inset) and its connection to
the wall spot solutions (e.g., right-pointing triangle in inset).
Further continuation of the branch leads to wavelength loss,
much as observed after the transition from a spot to a ring
[Fig. 5(b), right panel]. The different insets illustrate this pro-
cess (left-pointing triangle, star, and crosses). The wall-spot
solution reaches a single maximum close to the prominent
fold at ¢ ~ 0 (diamond in inset) heralding a transition to a
new combination state, consisting of a wall spot at p = R
and a spot at the center of the domain, p = 0. As far as we
can tell both branches (that bifurcating from # = 0 and the
continuation of the target branch) execute similar repeated
upward and downward snaking but never connect, i.e., the
target state remains disconnected from u = 0.

To understand this disconnection process we return in
Fig. 7 to the moderate R case and discuss the transition from

014208-6



LOCALIZED AND EXTENDED PATTERNS IN THE ..

PHYSICAL REVIEW E 104, 014208 (2021)

o
—

(]
[J
N

I=ERT

[+
o,

+*

+*

fé‘ - [+ ?
N o )

°

8 Nl

L
=

3=

o
IS

BEERNSHS

0.75 0.0 o P 14.
(c)

FIG. 7. Bifurcation diagram for axisymmetric states when
(@) R=14, (b) R =14.6, (c) R = 14.7, and (d) R = 15 illustrating
the pair of disconnections that are responsible for transforming the
structure of (a) into (d). Sample radial profiles, at locations indi-
cated by symbols (blue dots and green or red crosses), are included
alongside.

R = 14 (direct connection of the primary u# = 0 branch to
the target) to R = 15 (no such connection) in greater detail.
Specifically, the figure shows the bifurcation diagrams for R =
14, R =14.6, R = 14.7, and R = 15 together with sample
solutions. The plot at R = 14 includes the second branch of
axisymmetric states (green curve) that bifurcates from u = 0
at ¢ ~ 0.148, in addition to the first branch (blue) that arises
already at es5. At this value of R these two branches are
distinct [Fig. 7(a)] but this situation changes as R increases.
At R = 14.6 [Fig. 7(b)] the spot state is still connected to the
large-amplitude target state although we are beginning to see
a cusplike feature in place of the leftmost fold on the blue
branch. In addition, we have found a branch of axisymmetric
states lying on an isola (red curve). Such isolas of spatially
extended states are present even in the 1D cubic-quintic SH
equation [36]. This isola also possesses a cusplike feature in
the vicinity of the cusp on the spot branch indicating that a
codimension-2 reconnection is about to happen. Figure 7(c)
for R = 14.7 describes the situation after this reconnection.
The spot branch (blue) remains connected to the target states
but now incorporates the isola states in the process. State 4 on
the first target branch differs from state 8 on the second target
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n+1/2
n

0.12 A
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0.08 1

0.06 A

€14

. 61(’/
» \
0.02 /

14.0 14.2 14.4 14.6 14.8 15.0 15.2

15'.4R

FIG. 8. Mode crossing in the linear stability problem (7) as a
function of the radius R when ¢ = 1. A marginal mode with n
wavelengths (blue) is superseded by a marginal mode with n + (1/2)
wavelengths (green) at R &~ 14.98. Here n = 2. The eigenvalues €3
and ¢4 at R = 15 are indicated with red dots as are the corresponding
eigenvalues at R = 14.6 and 14.7, the radii employed in Fig. 7.

branch by approximately half a wavelength, as expected of
solutions ultimately connected via a fold.

A further transition occurs by R =15 [Fig. 7(d)].
Figure 7(c) shows that the leftmost fold on the second spot
branch (green) is approaching close to the first branch (blue)
at ¢ & —0.76 and amplitude |ju||, =~ 0.76, suggesting that a
further reconnection takes place. This is indeed the case and
Fig. 7(d) shows that as a result the blue branch becomes
disconnected from the target states, and instead connects back
to u = 0 at g4, i.e., at the origin of the second spot branch.
The proximity of €13 and €4 at this value of R is responsible
for the appearance of the cusplike feature at u = O in the blue
branch seen in the figure. Moreover, the target states on both
the blue (profile 4) and green (profile 8) branches in Fig. 7(c)
are now connected. These are part of a sequence of small
and large amplitude states that are disconnected from u = 0
and shown in red. These may form via the incorporation of
additional isolas into the branch. In fact, at R = 15 the target
states are part of a heavily folded upper branch responsible for
the appearance of additional target states at large amplitude.

Evidently, the transition that leads to the break up of the
branch connecting the first spot branch to the corresponding
target states is exceedingly complex. In fact, we expect that
the transition shown in Fig. 7 is one of many such transitions.
This is because the system has a preferred radial wavelength.
As aresult, as R increases, the system must repeatedly execute
disconnections of this type, in order that the new lowest radial
mode is again able to connect to the target state with the
correct number of wavelengths. These transitions are triggered
linearly when successive bifurcation points on u = 0 pass
through one another as R increases (Fig. 8), and these are
inevitably associated with additional nonlinear transitions of
the type shown in Fig. 7. Similar behavior occurs in 1D as
well [37].
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FIG. 9. Branches of multiarm solutions for R = 14, v =2, ¢ = 1. (a)=(c) m = 2, 3, 4 branches bifurcating from an axisymmetric spot
at low |lu||,. Stability with respect to perturbations on the full disk is indicated by thick line segments. In each case, illustrative solutions
are numbered and shown in corresponding insets. (d) Zoom of the bifurcation diagram with the m = 12 crown branch (magenta) and the
branches of 1-arm (orange), 2-arm (blue), 3-arm (red), and 4-arm (green) states that bifurcate from it; the m = 3, 4-arm states connect to the
corresponding branches in panels (b) and (c). The four critical eigenfunctions on the m = 12 crown branch are shown alongside, together
with the solution profile at location 5 on this branch. See Fig. 10 for further continuation and sample profiles along the m = 1, 2 branches

bifurcating from the first two bifurcation points on the crown branch.

IV. NONAXISYMMETRIC SOLUTIONS ON A DISK
A. Multiarm states

We now explore secondary bifurcations from axisymmetric
states to nonaxisymmetric structures. For this 2D problem we
use pde2path on the half disk of radius R = 14 but compute
the stability of the solutions on the whole disk. The results are
presented using the 2D L? norm

l[ull2 =,/&/ﬂu2(X)dx, 5)

where |€2] is the area of the domain €2, with ¢ serving as the
continuation parameter, unless otherwise stated. The results
are summarized in Fig. 9.

For R = 14, the m = 2 mode is the first nonaxisymmetric
mode that bifurcates from the axisymmetric state with a spot
at the center of the domain [Fig. 9(a)]. The bifurcation is
characterized by the appearance of new maxima on opposite
sides of the spot (state 1). The resulting branch snakes, a
behavior that is associated with the successive nucleation of
additional maxima at the tips of the resulting arms after every
second fold (states 2 and 3), in a process that resembles the
growth of localized structures in the 1D cubic-quintic SH
equation. However, in contrast to the 1D SH equation, as this
is taking place the structure broadens into a worm [38] prior

to reaching the boundary at p = R and refocusing (state 4).
In addition, further continuation of the m = 2 branch did not
lead to lateral broadening of the arms and the branch does
not approach a domain-filling target state, in contrast to the
cases m = 3, 4 discussed next. Instead the m = 2 arms retract
toward the boundary forming a pair of spots at opposite ends
of a diameter (not shown).

We next discuss the m = 3 [panel (b)] and m = 4 [panel
(c)] branches. These consist of 3-arm and 4-arm states, re-
spectively. Like the m = 2 branch, these branches start at low
norm on the branch of axisymmetric states (state 1), and grow
by essentially the same snaking process as the m = 2 branch
until they reach the boundary. However, at this point snaking
gives way to a “vertical” increase in the norm that is associated
with rapid lateral expansion of the arms. This type of growth is
not associated with snaking because of the absence of pinning
in this direction [38] and takes place in the vicinity of the
Maxwell point, i.e., the ¢ value at which the energy JF[u]
of the target state vanishes. This lateral expansion generates
states that almost completely fill the domain, leaving 3 (resp.
4) radial gaps or holes. The snaking observed at the top of this
interval of rapid expansion is associated with the successive
formation of complete rings around the disk center, i.e., with
the gradual retraction of the radial holes toward the boundary.

Surprisingly, we find that neither state connects to a
domain-filling target state. Instead, this connection takes place
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FIG. 10. Continuation of Fig. 9 showing the m = 1, 2 branches
from their origin on the m = 12 crown branch. Stability with respect
to perturbations on the full disk is indicated by thick line segments.

via a new, intermediate state we refer to as a crown state. This
state bifurcates from the target branch at the point where the
target branch stabilizes, and represents a near-axisymmetric
state with an m = 12 modulation superposed on the stripe ad-
jacent to the wall [magenta branch in panel (d) and sample plot
5]. The right column in panel (d) shows the first 4 bifurcation
directions along the magenta branch. These correspond to the
appearance of 1, 2, 3, and 4 equispaced holes along the wall,
and we find that the m = 3, 4 branches in panels (b) and (c)
terminate on the m = 12 crown branch at the corresponding
m = 3, 4 bifurcations (red and green branches). Thus, con-
trary to expectation, none of these states connect directly to
the target state.

The 1-arm (orange) and 2-arm (blue) hole states that bifur-
cate from the magenta branch in panel (d) have been continued
away from the crown branch and the results are illustrated
in Fig. 10. Both branches extend to low norm and do so
via rapid broadening of the hole that turns the hole into a
l-arm (resp. 2-arm) state. However, neither branch connects
to the branch of axisymmetric spots. Instead, the 1-arm state
gradually retracts toward the boundary via snaking and turns
into a wall-attached spot [state 4 in panel (a)]. The 2-arm state
likewise shrinks into a pair of spots on the boundary [state 4
in panel (b)]. In both cases these spots subsequently regrow
new spots toward the interior, but no longer along the radius
(not shown).

In summary, for m = 3,4 we have a connection between
the radial spot at low norm and the m = 12 crown branch very
close to the top left fold on the target branch. For m = 2 we
have two disconnected branches of 2-arm states, one emerging
from a small-amplitude spot, and the other from the m = 12
crown branch at the top, both exhibiting very similar 2-arm
states in between, for |u|, =~ 0.4, say, but the two branches

-0.8 -06-04-02 0

-0.8 -0.6 -0.4 -0.2 €0

(a) (b)

FIG. 11. Branches of solutions with the symmetry D,, emerging
from bifurcations of the trivial state u = 0. Panels (a) and (b) show
the 4™ -arm and 6~ -arm states, respectively. The bottom panels show
the corresponding bifurcation diagrams in red and blue. Sample
states at locations indicated by filled dots are shown in the top panels.
Stability with respect to perturbations on the full disk is indicated by
thick line segments.

do not connect. For m = 1 we only have one branch, with no
bifurcation to a 1-arm state from an axisymmetric spot at low
|lull>- Remarkably, all of these m-arm branches include some
stable states.

The m = 1, 2, 3, 4-arm states computed above are invari-
ant under rotations ¢ — ¢ + 27 /m and reflections across a
suitable line. These operations generate the group D,, and our
continuation procedure respects this symmetry, unless tertiary
bifurcations take place that break it. D,,-symmetric states may
also bifurcate directly from the trivial state; see, for instance,
the 2nd, 3rd, and 6th mode in Fig. 3(a). In addition, branches
of D, -symmetric states are also present; these states change
sign upon rotation by 27 /m. In Figs. 11(a) and 11(b) we show
two such states, with symmetry D, and D, respectively.
These states are D,- and Ds-invariant but not D4- and Dsg-
invariant.

Like the multiarm solutions of Figs. 9 and 10, the D, states
start as localized structures near the center of the domain but
develop m arms as one proceeds to larger amplitude which
broaden into extended D, target states after reaching the wall
(insets 1-3 in each case). Because of the D,, symmetry these
states fill the domain with a target-like structure consisting of
27 /m slices of the disk with the same pattern but alternating
sign (see inset 4 in each case). The D,, symmetry is present in
the problem because of the # — —u symmetry of the cubic-
quintic SH equation. Mathematically, the same symmetry is
present in porous media convection and it therefore comes as
no surprise that states similar to the m = 4 states in Fig. 9(c)
were found in numerical continuation of the relevant equa-
tions of fluid dynamics on a periodic domain with a square
cross section [39,40]. In particular, in this problem one finds
both D4- and D, -symmetric structures. However, because of

014208-9



VERSCHUEREN, KNOBLOCH, AND UECKER

PHYSICAL REVIEW E 104, 014208 (2021)

03 -02 -01 O0E€ET ° '

FIG. 12. The wall modes or daisy states (blue) and their sec-
ondary bifurcations computed from Eq. (1) when R = 14, v = 1.4,
and g = 1. The secondary branches of (e)ven (red) and (0)dd (green)
localized states are connected via (r)ung states (black). A zoom of the
bifurcation diagram provides more detail of the localized branches.
Representative solutions marked with dots in the bifurcation diagram
are represented in the respective insets. The 1D profiles correspond
to each solution along its periphery.

the periodicity of the spatial domain, these states bifurcate
from a branch of periodic structures rather than directly from
the trivial state.

B. Daisy states and their bifurcations

Our next family of nonaxisymmetric states is characterized
by high azimuthal wave number. For this reason these states
are localized toward the periphery of the domain; i.e., they are
wall modes. Following [41] we refer to them as daisy states.
Figure 1(g) shows an example for R = 14 and v = 1.5. The
daisies are periodic in the angle ¢ and have symmetry D,,,
m > 1. Consequently they are easily computed on smaller
sectorial domains with opening angle 27 /m or even 7 /m; in
the latter case the solution will have the property u(p, 7 /m) =
—u(p, 0) for all p, with ug(p, w/m) = uy(p, 0) = 0, modulo
rotations of the state.

The blue branch in Fig. 12 represents the computed daisy
states, with sample states at locations “wu” and “wd” shown
in the top panels. The daisy states bifurcate subcritically from

(a) ' ' ' (b)
0.5l | -0.28
. 6 2
o -0.30
= 3 ] 3
4 -0.32 \
\ | 1
0.3 1.42 15 1/
2 (©)
1 1 -0.30 4
€
0.1 1 -0.32
14

FIG. 13. Branches of one- and two-pulse solutions on the half
disk for the case R = 14, ¢ = 1, together with continuation of se-
lected folds in v. (a) Bifurcation diagram of the daisy branch (blue),
together with the branches of 1-pulse (green) and 2-pulse (magenta)
localized daisy states when v = 1.4, with four representative folds
numbered 1-4. (b) Continuation of folds 1-3 on the 1-pulse branch
in the (v, ¢) plane. The numbers next to each curve correspond to
the folds in (a); states at v = 1.5 are marked by triangles. (c) Same
as (b) for the 2-pulse folds. (d) Five representative solutions from
(b) and (c).

the trivial state u = 0 at ¢3 and acquire linear stability beyond
the left fold of the blue branch, although they lose it again at
yet larger amplitude; see Figs. 13 and 18 below for details. As
before, the notion of stability always refers to stability with
respect to perturbations on the whole disk, even for solutions
computed on smaller sectors. Since the daisies represent sub-
critical periodic states, we expect to find, by analogy with
the 1D cubic-quintic SH equation [23], localized wall states
resembling a partially plucked daisy in appropriate parameter
regimes. We further expect snaking branches of such plucked
daisies where petals are added or removed after every other
fold. To obtain these states we start with a moderate sub-
criticality, v = 1.4, and discuss how the scenario changes for
stronger subcriticality, namely v = 1.5. In Fig. 12 we show
branches of localized daisies of odd (green) and even (red)
parity; sample states are shown in the panels on the right of
the figure, together with 1D profiles along their periphery.
These illustrate the analogy between these states and the 1D
SH scenario of [23]. As in the 1D SH case, the odd and
even branches of localized daisy states are connected via rung
states, shown in black and in the inset labeled “r””. There are
in fact four such branches owing to the symmetry u — —u.
These localized daisies bifurcate from the daisy branch at
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small amplitude (bottom right corner of the bifurcation dia-
gram in Fig. 12), undergo snaking whereby the solution adds
half a wavelength at either end after every left fold, eventually
leaving just one plucked petal of the daisy, before terminating
on the complete daisy state near its fold, likely via an Eckhaus
instability; cf. [37]. In addition to the even and odd branches
of localized states shown in Fig. 12, we also found 2-pulse
localized daisies [magenta branch in Fig. 13(a)], as well as
states of 3 or more pulses (not shown), all of which behave
similarly to the 1-pulse case.

The above 2-pulse states lie on a continuous branch that
snakes just like the 1-pulse branch but bifurcates from the
daisy state at larger amplitude than the 1-pulse branch, and
likewise terminates on this branch farther from its fold. This
is because the computed 2-pulse states are equidistant and so
behave like 1-pulse states on the half domain. We conjecture
that non-equispaced 2-pulse states lie on isolas, like the corre-
sponding states in the 1D SH equation [42], but we have not
computed such states.

It turns out that the daisy snaking scenario in Fig. 12
depends rather strongly on v. In Fig. 13(a) we again show
the daisy branch at v = 1.4 in blue, the branch of even 1-
pulse states in green and even 2-pulse states in magenta, and
number representative folds 1-4. Panels (b) and (c) show the
continuation of these folds in the (v, ¢) plane. In the 2-pulse
case the fold extends beyond v = 1.5 but retreats at larger v,
yielding two possible solutions at v = 1.5 [magenta triangles,
panel (d)]. In the 1-pulse case, folds 1 and 3 exist at v = 1.5
(and beyond), whereas fold 2 [in blue, panel (b)] turns back
before v = 1.5.

Using the solutions at v = 1.5 [vertical dashed line in
Figs. 13(b) and 13(c)] as starting points, we return in Fig. 14 to
one-parameter continuation. Keeping v = 1.5 fixed and con-
tinuing the 2-pulse state both up and down in amplitude (green
and brown curves, respectively) yields the complete snaking
branch of even states of this type [Fig. 14(b)]. This branch
connects with the daisy branch at the top and bottom. We can
also perform one-parameter continuation of the 2-pulse state
in v, leading to the isola shown in Fig. 14(a). Profiles 1 and
2 show that the states on this isola correspond to a localized
daisy whose petals at ¢ =~ 0 are beginning to expand into the
interior of the disk.

Since fold 2 of the 1-pulse branch does not existat v = 1.5
[Figs. 13(a) and 13(b)], we expect to see a disconnection of
folds 1 and 3 when performing continuation in . This is
illustrated in Figs. 14(c) and 14(d). The upper fold 3 from
Fig. 13(a) connects to the daisy branch near its fold [green seg-
ment in Fig. 14(d)], and continuation in the opposite direction
yields snakelike behavior [brown segment in Fig. 14(d)] until
some of the petals of the solution grow toward the interior
of the disk, forming wormlike structures. Similarly, the lower
fold 1 from Fig. 13(a) connects to the daisy branch near the
bottom, and continuation in the opposite direction also leads
to snaking followed by the development of wormlike struc-
tures [Fig. 14(c)]. In both cases the continuation was stopped
at an arbitrary point for the sake of clarity. The 2-pulse snaking
branch likewise breaks at v & 1.535 when fold 4 in Fig. 13(a)
disappears [Fig. 13(c)].

In contrast with the 1D case, here the extra degree of free-
dom in the radial direction leads to fat wall-attached worms
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FIG. 14. Continuation of representative states in Fig. 13(d) in the
parameter (a) v, starting from the downward pink triangle, (b) e,
starting from the upward pink triangle, (c) €, starting from the red
upward triangle, and (d) &, starting from the upward green triangle.
In (b)—(d), green (red) corresponds to continuation for increasing (de-
creasing) ||u||,. Profiles with representative solutions are included.

confined to part of the full disk. As a result, the branch of lo-
calized daisy states is no longer able to terminate on the daisy
branch and we have been unable to determine its ultimate fate.
We note that fat wormlike states are well-known solutions of
the SH equation in the plane, and these may be held together
both by curvature of the boundary and by pinning due a wave
number gradient normal to the boundary [38]; in other cases
these states are unstable leading to temporal growth [43]. We
associate the appearance of the fat worms with the initiation
of the filling transition, whereby the disk gradually fills with
an extended stripe state as parameters change. Evidently this
transition occurs as a result of the advance of the front con-
necting the wall-attached stripe state to the trivial state, toward
the origin of the disk. How the location and shape of this front
depend on parameters is an important question; dynamical
integration suggests that outside the snaking region the worm
state either collapses (to the left of the snaking region) or else
grows dynamically leading to dynamic filling of the domain
interior (to the right of the snaking region). See Sec. VI for
further discussion.

V. ENERGY OF THE SOLUTIONS

Since the SH equation seeks to minimize the free en-
ergy (5), the global energy minimum is of particular interest.
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FIG. 15. Solutions for v = 2 as a function of & shown in terms of
(a)—(c) their norm ||u|> (15) or (d)—(f) their energy (5) per unit area.
The trivial branch is in green. Panel (a) compares the axisymmetric
(magenta) and daisy (brown) states. Panels (b) and (c) show the
4~-arm (black) and 6 -arm (red) branches, respectively. In each
case, sample points are marked with a star to illustrate the mapping
between the norm and the energy F/|2|. All computations are for a
disk withR = 14,9 = 1.

In this section we therefore compare the energies of the pre-
viously obtained solutions, restricting the discussion to the
parameter regime R = 14, g = 1, and treat the cases v =2
(Figs. 15 and 16) and v = 1.4 (Fig. 17) separately, aiming to
identify the branches with the lowest energy. In both cases
we show the norm |lul|, [Eq. (14)] and the corresponding
energy per unit area F/|2| [Eq. (5)] in the top and bottom
panels, respectively. In the energy representation the folds in
the former become cusps, making the branches hard to distin-
guish. Consequently, we have split the branches into different
subfigures, and indicate some sample solutions (using a star
or an arrow) in order to illustrate the mapping between these
two representations. In all cases the energy vanishes close to
the Maxwell point for the target state.

Figure 15 shows four branches emerging from the trivial
state (green) when v = 2. Panel (a) compares the axisymmet-
ric (magenta) and daisy (brown) states. For small values of ¢,
the least energy state is the trivial state u = 0. At ¢ &~ —0.63,
the energy of the axisymmetric states crosses zero becoming
negative and the minimum energy state is a target state. For
larger values of ¢, the energy of the daisy states also becomes
negative but remains larger than that of the target states.

The m™-arm branches emerge from the trivial branch as
localized solutions. Further continuation leads to a series of
folds, filling the domain with a multiarm extended pattern
with the symmetry D,,. Figure 15 shows the branches for
m =4 and m = 6 in black [panel (b)] and red [panel (c)],
respectively. As the branch undergoes the above-mentioned
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FIG. 16. Secondary bifurcations from (a), (b) the axisymmetric
branches and (c) the daisy branch when v = 2, using the same con-
vention as in Fig. 15. Blue and green branches represent the 3*-arm
and 4™ -arm solutions, respectively. Panel (c) shows the branch of lo-
calized daisy states (purple) bifurcating from the daisy branch (gray).
The branch initially snakes (localized daisy states) but subsequent
continuation leads to a wormlike state and then to an ©2-shaped state
(inset) as the stripes extend far into the domain (star).

series of folds, the free energy oscillates between adjacent
cusps. Continuation of the branch in the direction of increas-
ing norm leads to increasing energy until the solution reaches
the fold at the top left of the bifurcation diagram in the top
panels. Beyond this point, the energy decreases again and
eventually becomes negative. This occurs first for m = 4 and
then for m = 6. In both cases the energy is always greater than
that of the target state at the same value of €.

Figure 16 illustrates the energy of the secondary branches
when v = 2, showing the branches of the 3*-arm and 4*-arm
solutions in panels (a) and (b) and the corresponding free
energy in panels (d) and (e). The latter resemble the plots in
Fig. 15. Panel (c) shows the fate of a localized daisy solu-
tion, after it emerges from the daisy branch. As discussed in
Sec. IV B, the localized daisy states initially add new petals
every other fold. In the present case the solution subsequently
develops into a 1-worm-like structure instead of adding more
petals, with the stripes extending farther and farther into the
domain, eventually generating an 2-shaped structure [panels
(c) and (f)], in contrast to what happens in Fig. 18(b) below.
Figure 16(f) shows that as the structure expands, energy starts
to decrease and the 2 state (star, inset) that results has negative
energy. At this value of ¢, this is the solution with the smallest
energy after the target state.

As shown in Sec. IV B, when v = 1.4, the localized daisy
states instead exhibit snaking behavior analogous to the 1D
SH equation [23], and this also holds for the energy. In Fig. 17
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FIG. 17. Solutions for v = 1.4 using the same convention as in
Fig. 15. The daisy branch is shown in brown with branches of even
[red, panel (a)], odd [green, panel (c)] and equispaced 2-pulse [yel-
low, panel (b)] localized daisy solutions also shown. Representative
folds of the localized branches are numbered to enable comparison
with the energy plots in panels (d)—(f).

we show the even (red), odd (green), and equispaced two-
pulse (yellow) branches of localized daisy states, with repre-
sentative folds marked with arrows and numbered. In all cases,
localized solutions with higher | ||, norm have lower energy.
The rung states are not shown. The 2-pulse states always have
greater energy than the odd and even single-pulse states.

In summary, the energy provides the following description
in terms of the lowest energy states: for small values of ¢,
i.e., for sufficiently negative ¢, the branch with the smallest
energy is the trivial one. As ¢ increases, axisymmetric states
become energetically more favorable. For yet larger values of
&, the energy of the 4~ and 6~ branches becomes negative as
is the energy of the 2 state in Fig. 16(f) but these states never
become global energy minima. In general spatially extended
states have lower energy than localized states.

VI. FURTHER PATTERNS

We now briefly discuss some patterns to the right of the
snaking region of the localized daisy states, and also per-
form some direct numerical simulations (DNSs). The loss
of stability of the daisy branches with increasing amplitude
generically results in wall-attached worms, but the subsequent
behavior is sensitive to the value of v. In Fig. 18 we again
contrast the cases v = 1.4 and v = 2 when R = 14. Panel (a),
computed on the half disk for v = 1.4, shows that the first

-0.6
€

FIG. 18. Branches bifurcating from the daisy branch (blue) when
it loses stability at large amplitude. (a) v = 1.4. The first bifurcating
branch (orange) initially consists of stable wall-attached 3-worms,
which disintegrate upon further continuation into various combina-
tions of boundary and center spots but never again become stable.
The next branch consists of wall-attached 4-worms (green) which
turn into a combination of stripes perpendicular to the wall, spots
in between, and a hole at the disk center, with intervals of stability
up to ¢ &~ —0.1. State 4 is generated from DNS starting from state
3, slightly to the right of the stability range of the green branch.
(b) v =2. The first bifurcating branch is now a snaking branch
of wall-attached 4-worms similar to those in (a); state 4 is again
obtained from DNS starting from state 3.

bifurcating branch (orange) contains states similar to those
in Fig. 14, namely a stable wall-attached 3-worm which sub-
sequently turns into a mix of wall spots and interior spots,
but does not become stable again. The next branch (green)
bifurcates very close to the first, starts as a wall-attached
4-worm, and turns into a mix of stripes perpendicular to
the wall with spots in between. Stable solutions exist up to
& ~ —0.1. Solution 4 is the result of DNS from state 3, just
after its loss of stability, and yields vertical stripes near the
disk center. Essentially the same states are obtained on the full
disk, where DNS from unstable initial conditions generates
various combinations of stripes near the center, depending on
meshing details, or differences in initial perturbations.

For v =2 [panel (b)], the first bifurcation is to a
Z4-symmetric wall-attached 4-worm, which subsequently
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FIG. 19. Patterns for v = 2 obtained from DNS with straight
horizontal stripes as initial condition (state 1), and subsequent con-
tinuation in &.

expands into the interior of the disk in the form of regular
stripes but then breaks up, due to overcrowding, into a mix of
spots and stripes, leaving a hole at the disk center. DNS from
the Z,-symmetric state 3 yields state 4, where the Z, symmetry
is lost when stripes recombine to fill the interior.

The target patterns and the m-arm states from Sec. III
all consist of stripes parallel to the wall, while the daisies,
localized daisies, and patterns 4 from Figs. 18(a) and 18(b)
consist of stripes perpendicular to the wall. In contrast, the
Q pattern from Fig. 16(f) has both. Evidently, away from
the stability regions of the patterns discussed so far, we may
expect patterns of spots and stripes with some stripes parallel
and others perpendicular to the wall. One example, shown
in Fig. 19, is the result of DNS at (¢, v, g) = (—0.6,2,1)
starting at + = 0 with parallel stripes (u(x,y), ux(x,y)) =
(cos(4my/14),0) in terms of the 2-component second-order
system (A1). The solution quickly converges to (the stable)
state 1. On continuing the solution from location 1 to larger
&, 1.e., toward less negative ¢, we find that the pattern remains
stable for all ¢ values reached without qualitative change in
shape (not shown). Continuation to smaller ¢, i.e., toward
more negative ¢, yields the magenta branch, which initially
shows some snaking whereby the top and bottom stripes
disintegrate into spots. Shortly after state 3 the branch loses
stability and never regains it; the disintegration (and partial
recovery) of the stripes continues, however, but the branch ap-
parently never connects to any of the states already discussed.
Similar behavior is obtained for v = 1.4 and ¢ in the range
—0.3 to —0.1 (not shown).

VII. DISCUSSION

We have explored numerically the variety of states de-
scribed by the prototypical subcritical SH equation on a finite
disk with Neumann boundary conditions. We have chosen
the cubic-quintic case in order to eliminate the preference
for hexagonal structures in, for example, the quadratic-cubic
case. The key point about the SH equation is its characteristic
scale 277 /g. In the quadratic-cubic case, hexagonal structures
on this scale are more easily accommodated within a disk of
radius R than the stripes that are preferred in the cubic-quintic
case. Thus the latter is more interesting from a physics point

of view, and the number of wavelengths 2 /g that can be
accommodated along the diameter or the circumference of
the disk becomes a key parameter. Throughout we focused
on steady states since all time-asymptotic states of the model
are necessarily steady.

Because the primary bifurcation in our model is subcritical
we expect both spatially extended structures and spatially
localized structures. We focused on relatively small disks but
even these already allow a large variety of (stable) patterns in
the subcritical regime. Spatially extended states include target
patterns consisting of concentric stripes parallel to the bound-
ary and worm states with stripes normal to the boundary, while
the localized structures can be divided into two types: those
localized at the center of the domain and those localized at
the boundary. States exhibiting some stripes that are normal
to the boundary and others that are parallel to it, such as the
Q pattern in Fig. 16(f), have also been obtained. However,
neither PanAm-type patterns with convex stripes whose cur-
vature is not imposed by the boundary nor spirals [44] were
found, suggesting that such states require large-scale flows for
their maintenance. Such flows are of course absent from the
model studied here.

For axisymmetric states we also considered the case of
large R. The states then either have a monotonically decaying
envelope and are then referred to as spots, or one that peaks
away from the center or boundary, in which case we refer
to them as rings. We found that in relatively small disks the
central spot exhibited typical snaking behavior as it grew in
extent, eventually filling the domain and becoming a target
state. In contrast, in larger disks the spot state undergoes a
transition to a domain-filling ringlike state that subsequently
breaks up into a pair of ring structures, one near the center
and one near the outer boundary. As one follows the solution
branch further the connection between these states repeatedly
forms and breaks, leading to exceedingly complex behavior of
the solution branch.

The axisymmetric states are subject to secondary symm-
etry-breaking bifurcations. We explored these on a relatively
small disk, and identified secondary states with D,, D3, and
D4 symmetry, representing states with 2, 3, and 4 arms that
gradually extend in length while remaining laterally localized.
Once the arms reach the boundary, they begin to spread lat-
erally, terminating on a “crown” state that bifurcates from a
domain-filling target state close to its fold [Fig. 9(d)]. This is
not the case, however, for primary D, -symmetric states, for
which rotations by 27 /m are equivalent to changing the sign
of u (Fig. 11). These states exhibit similar growth behavior but
cannot connect to a target state.

In addition we also studied subcritical azimuthally periodic
wall states (daisies), and showed that these were accompanied
by azimuthally localized daisy states. For weak to moderate
subcriticality (v < 1.5, say), these localized states grow in
azimuthal extent in the same manner as localized states in
the 1D cubic-quintic SH equation, but for larger subcriticality
we found that they instead expand into the interior, forming
wall-attached wormlike states similar to those present in the
plane [38,43].

It is significant, though not altogether surprising, that the
structures we identified in this simple model problem resem-
ble similar structures observed in fluid flows, combustion,
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laser physics, and indeed other spatially confined systems.
Convection in a vertical cylinder provides the closest real-
ization of these states despite the absence of subcriticality.
Numerical continuation studies of this system [6,7] in cylin-
ders with moderately small aspect ratio identified not only
target states but also nonaxisymmetric states with the sym-
metry Dy, D, D3, D4, Dy, and D¢ . As in our case, some of
these appear through a primary instability of the conduction
state, while others appear through secondary bifurcations of
axisymmetric states. In a similar vein, existing studies of
porous media binary fluid convection on a periodic domain
with a square cross section identified four-armed states with
both D, and D, symmetry [39,40] and studied their snaking
behavior as the arms grew in extent, ultimately interacting
with their images.

Despite the wealth of new phenomena described here, a
number of critical questions remain. Even in our stripped
down problem it proved impossible to follow many of the
solution branches all the way, and in larger domains it remains
unclear whether the localized structures ever connect to a
domain-filling state. The domain-filling transition of the wall
state likewise remains to be fully characterized. Much of the
interesting behavior of this system can be traced to the com-
petition between stripes parallel to the wall or perpendicular
to it. This competition is sensitive to both the domain radius
R and the subcriticality parameter v, and appears responsible
for absence of a direct connection between the D,,-symmetric
m-arm states and axisymmetric target states. Nevertheless,
this study should serve as a useful guide to subcritical pattern
formation in a bounded 2D domain beyond the standard case
of squares and rectangles with Neumann or periodic boundary
conditions.
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APPENDIX: THE pde2path IMPLEMENTATION

In its standard setting, the MATLAB package pde2path
[26-28] uses the finite element method (FEM) to spatially
discretize systems of second-order PDEs, and combines this
with a variety of numerical continuation and bifurcation al-
gorithms, including some simple DNSs. We therefore rewrite
the 4th-order SH equation (1) as a parabolic-elliptic system
for (u;, up) = (u, Au) and setting g = 1,

Mdaf <u1>=<—Au2—2u2 —_ (1—£)M1+f(ul))’ (Al)

up —Auy +up

with a singular dynamical mass matrix M; = ((1] g), flu) =

vu? — u? , and Neumann boundary conditions for u; and u,.

See, e.g., [27, Remark 8.1] for the equivalence of (1) and (A1)
over convex Lipschitz domains, or general domains with a
smooth boundary. For the patterns studied here, it turns out
that careful meshing [27, Sec. 4.1.1] is crucial to maintain
symmetry of the solution branches, i.e., to mitigate branch
jumping, and throughout this work we used axisymmetric
meshes. Additionally, instead of the standard piecewise linear
FEM we chose 6-node triangles [45, Sec. 5.1], i.e., piecewise
quadratic elements. With these, a typical discretization of the
R = 14 disk uses about 17 000 nodes, yielding a total of
34 000 degrees of freedom for (A1).

The basic pde2path implementation can be found in [46],
where the main script produces the radial, daisy, and localized
daisy branches. Additionally, movies illustrating the solutions
along the branches explored in this paper are included in the
SM [24].
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