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Abstract. Various aspects of orbifolds and cosets of the small N = 4 superconformal
algebra are studied. First, we determine minimal strong generators for generic and specific
levels. As a corollary, we obtain the vertex algebra of global sections of the chiral de Rham
complex on any complex Enriques surface. We also identify orbifolds of cosets of the small
N = 4 superconformal algebra with Com(V*(sly), V! (sly) ® W_5/2(sl4; frect)) and in
addition at special levels with Grassmanian cosets and principal W-algebras of type A
at degenerate admissible levels. These coincidences lead us to a novel level-rank duality
involving Grassmannian supercosets.

1. Introduction

The small N = 4 superconformal algebra V¥ (n4) at level k is a highly interesting
family of vertex operator superalgebras. It is defined as the minimal W-super-
algebra of the universal affine vertex superalgebra V_k_l(p5[2|2) of psly, at level
—k — 1, and its affine subalgebra is the universal affine vertex algebra V*(sl,)
of sly at level k. Moreover, it has four dimension 3/2 odd fields, hence the name
N = 4 superconformal algebra. This algebra is a key ingredient in various problems
of physics, as string theory on K3 surfaces [ET88] and hence Mathieu moonshine
[EOT11], the AdS3/CFT; correspondence [Mal99] and as chiral algebras of certain
four-dimensional super Yang—Mills theories [BMR19]. At level k& = 1, the simple
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quotient Li(ny) of V(ny) appears as the algebra of global sections of the chiral
de Rham complex of K3 surfaces [Sonl6]. More generally, for all integers n > 1 it
is expected that L, (ns) coincides with the algebra of global sections of the chiral
de Rham complex of 2n complex-dimensional hyper-Kahler manifolds, see, e.g.,
[Hel09].

V¥(ny) is exceptional in the sense that its group of outer automorphism is SL(2),
i.e., not a finite group. It is surely important to gain a better understanding of
vertex algebras related to N = 4 superconformal algebras. In this work, we study
invariant subalgebras of V*(ny), while in [CFL19] it is studied how small and also
large N = 4 superconformal algebras can themselves be realized as cosets.

One of our main motivations is to determine the algebra of global sections of
the chiral de Rham complex on Enriques surfaces.

1.1. Chiral de Rham complex of Enriques surfaces

It was shown in [MSV99] that there exists a natural way to attach a vertex
superalgebra valued sheaf QC4R, named the chiral de Rham sheaf, to any smooth
scheme X of finite type over C. It comes equipped with a square-zero differential
d, and there exists a canonical embedding of the de Rham complex (Q4R, ¢IF) —
(QC4R d) which is a quasi-isomorphism. The cohomology H*(X, Q¢R) with co-
efficients in QIR is always a vertex algebra, and the space of global sections
HO(X,QCR) s a vertex subalgebra. For any X, H°(X,Q%R) has a conformal
structure, and if the first Chern class vanishes this extends to an N = 2 super-
conformal structure. Moreover, if X is hyper-K&hler, this is further enhanced to
an N = 4 structure on H°(X,Q%R) with central charge ¢ = 3dimc(X) [Hel09)].
Additional structures on H*(X, QCIR) such as a chiral version of Poincaré duality
are known to exist [MS99b]. It has been shown that this sheaf has connections to
elliptic genera [BL00], [MS03], mirror symmetry [Bor01], and physics [Kap05].
Unfortunately, examples where the vertex algebra structure of H* (X, QC4R) is
understood are still lacking. Even the structure of H°(X,Q%R) is only known
in a few cases. For example, when X is a K3 surface it was shown in [Sonl6]
that H°(X, QR is isomorphic to the simple N = 4 vertex algebra L;(n4), which
has central charge ¢ = 6.1 (See also [MS99a] where H°(PY, Q¢R) was computed

~

as a slyyi-module.) Recently some progress was made in [Sonl8] where for X a
compact Ricci-flat Kiithler manifold H°(X, Q°IR) was shown to be isomorphic to
a subspace of a 8y — be-system that is invariant under the action of a certain Lie
algebra. A first motivation for this article is to provide a further example to this
list by concretely constructing the vertex algebra of global sections of Q€4R on any
complex Enriques surface. The following is shown in Corollary 6.3 and Remark 7.2

Theorem 1.1. The vertex algebra of global sections of the chiral de Rham complex
on a complex Enriques surface is of type W(l, 2,4%: %2, %2) This means that it has
a minimal strong generating set consisting of one even field in weight 1, one even
field in weight 2, four even fields in weight 4, two odd fields in weight 3/2, and two

odd fields in weight 7/2.

!See the preceeding work [Son15] for the construction restricting to Kummer surfaces.
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Any complex Enriques surface X can be constructed as the quotient of a K3
surface by a fixed-point free involution. Let ¢ be such an involution on a K3 surface
Y. The action of the involution lifts to an action on the sheaf QCIR and to its
cohomology via automorphisms on the vertex algebra. A general construction of
the chiral de Rham complex on orbifolds was given in [FS07]. For K3 surfaces the
automorphism on the vertex algebra induced by ¢ was already stated in [Sonl6].
The vertex algebra of global sections on Enriques surfaces is given by the fixed
point set under this involution H°(X, Q%R) = HO(Y, QCIR)¢ (see Theorem 6.6 in
op. cit.).

1.2. Invariant subalgebras of the small N = 4 superconformal algebra

It is useful to place the problem of describing the Z/2Z-orbifold of Li(ng) in
the larger context of orbifolds of V*(n,) under general reductive automorphisms
groups, and cosets of V*(ny) by general subalgebras. These problems have in fact
been considered in [ACKL17] for a general minimal W-algebra. By Theorem 4.10
of [ACKL17], for any simple g and any reductive automorphism group G, the coset
WE(g, fmin)€ is strongly finitely generated for generic values of k. Additionally, the
coset of W¥(g, fmin) by its affine subalgebra is also strongly finitely generated for
generic k; see Theorem 4.12 of [ACKL17]. However, these results are nonconst-
ructive, and it is useful to give explicit minimal strong generating sets in specific
cases. In this paper, we will give minimal strong generating sets for V’“(n4)z/ 2z
and VF(ng)V(M for generic values of k, and also determine the set of nongeneric
values where our description fails. We also correct the description of the coset
ek = Com(V*(sly),V¥*(ny)) that appeared in [ACKL17]; it is in fact of type
W(2,32,4,52,6). Furthermore, we show that C¥ has an additional action of U(1)
coming from the outer automorphism group of V¥(ny), and that (€*)V™) is of
type W(2,3,4,5,6,7,8). It arises as a quotient of the universal two-parameter
Woo-algebra constructed in [Linl7], and we identify it as a one-parameter VOA
with another, seemingly unrelated coset, namely,

Com(V¥(slz), VT (slz) @ W_sa(sl4, frect)),

where k and ¢ are related by k = —(¢ 4+ 1) /(£ + 2). Finally, using this identification,
we classify all isomorphisms between the simple quotient (€ k)U(l) and various other
structures such as type A principal W-algebras, generalized parafermion algebras,
and cosets of type A subregular W-algebras.

1.3. A new level-rank duality

Coincidences between (CF )U(l) and principal W-algebras of type A appear at
negative half-integer levels k. On the other hand these principal W-algebras of type
A also appear as cosets by [ACL19] and these cosets at positive integer level enjoy a
nice level-rank duality with Grassmannian cosets [0S14]. We found an extension of
this picture to negative integral levels and Grassmannian supercosets. Let L, (sl,,)
denote the simple quotient of V" (sl,,) and H(1) the rank one Heisenberg vertex
algebra. Our Theorem 8.1 is
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Theorem 1.2. Let r,n,m be positive integers. Then there exist vertex algebra ex-
tensions A™" (sl,,) and A™(sl,,,) of homomorphic images V=" (sl,,) and V'™ (sl,,,)
of V"(sly) and V™ (sl,,,) such that the level-rank duality

Com (V‘"“(slm), A" (sly) ® Lr<5[m))
= Com (V™" (shy) @ Lin(sly) © 3(1), A™ (sy1))

holds.

It is natural to ask if the statement of the Theorem can be improved, i.e., one
could ask for a level-rank duality of the form

Com (V=" (s1,,), V™" (50) @ Ly (sln))

=~ Com (V™" (sly) ® Ly (sl) @ H(1), V" (sL.,)).

Answering this question amounts to a better understanding of embeddings of the
involved vertex superalgebras in the rank rm be-system times the rank nm [v-
system, i.e., improving the results of [LSS15].

1.4. Organization

The structure of the paper is as follows. In Section 2 some necessary background
of the theory of vertex algebras is recalled and some notation is fixed. Then we
quickly prove in Section 3 that the group of outer automorphisms of V*(ny) is
SL(2). Sections 4 and 5 contain the construction of a few vertex algebras, the most
important ones being V*(ny)Y™® and V*(n4)%/?%. In Section 6 some structure of
the two central orbifolds from the previous sections are discussed and their simple
quotients at all but finitely many levels k are determined. In Section 7 we determine
cosets of V¥(n4) by its affine subalgebra at generic and specific levels. In particular,
we identify its U(1) orbifold with Com(V*(sly), VT (sly) ® W_j5 2(sl4, frect)) and
in addition at special levels with Grassmanian cosets and principal W-algebras of
type A at degenerate admissible levels. The last section then discusses the new
level-rank duality.

2. Background
2.1. Vertex algebras

We assume that the reader is familiar with the basics of the theory of vertex
algebras which has been discussed from multiple angles in the literature, some of
which can be found in [Bor86], [FBO01], [Kac01], [LZ95]. Given an element a in a
vertex algebra A, the corresponding field will be denoted by

a(z) = anz""" € End(A)[[z, 27 ]].
nez

The elements a,, € End(A) will be called the modes of a(z). We often drop the
formal variable z and identify a with a(z) when no confusion can arise. Given
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a,b € A, the normally ordered product will be denoted by : ab :, and the n'®
product will be denoted by a,)b for n € Z. Letting 0 denote the translation
operation 0/0z, we have : (0"a)b: = nla(_,_1)b, and in particular : ab: = a(_1)b.
For n > 0, the n'" product gives the pole of order n + 1 in the operator product
expansion (OPE) formula:

- (a(n)b) (w)
a(z)b(w) ~ nZ:O Gyt (2.1)
Here ~ means equal modulo terms which are regular at z = w.

Let V be a vertex algebra. A set of fields § is said to strongly generate V if it
generates V as a differential algebra under normally ordered product. This means
that every field of V can be written as a normally ordered polynomial in the fields
in 8§ and their iterated derivatives. If 8 is a minimal set with this property, and
consists of n; even fields of weight d; for i =1,...,r, and m; odd fields of weight
ej for j =1,...,s, we say that V if of type

W, ... drmyel™, e,

»y ’-s

2.2. Examples

In this subsection, we mention a few basic examples we shall need. First, let H(n)
be the Heisenberg vertex algebra of rank n. It is generated by even fields h'(z),
i=1,...,n, which satisfy OPEs

57,',]'

R (2)h (w) ~ G- w)

3

The Virasoro element L(z) = 3" | : h'(z)h’(z) : has central charge n, and all
generating fields are primary of weight 1. The automorphism group Aut(H(n)) is
isomorphic to the orthogonal group O(n).
Let A(n) be the symplectic fermion vertex algebra of rank n. It is generated by
odd fields e‘(2), fi(z), i = 1,...,n, which satisfy
) ~ P ()
(z —w)*’ (z —w)*

The Virasoro field L(z) = — 1" | : €'(2) f*(2) : has central charge —2n, and all
generating fields are primary of weight 1. The automorphism group Aut(A(n)) is
isomorphic to the symplectic group Sp(2n).

Let 8(n) denote the Bv-system of rank n. It is generated by even fields 3%(z),
v{(2),i=1,...,n, which satisfy

S 5; o 5ii
Banit) ~ s, ()8 ) ~
The Virasoro field L(z) = £ 37" | : f(2)07'(2) : — : B'(2)7'(2) : has central

charge —n, and all generating fields are primary of weight 1/2. The automorphism
group Aut(8(n)) is isomorphic to the symplectic group Sp(2n).
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Let &(n) denote the be-system of rank n. It is generated by odd fields b*(z), ¢*(z),
i=1,...,n, which satisfy
67]}]

6i’j ) (w) ~ —2L
L @)~

(z —w)
The Virasoro field L(z) = —3 31", : bi(2)dc'(z) : + : Ob'(2)c'(2) : has central
charge n, and all generating fields are primary of weight 1/2. The automorphism
group Aut(€(n)) is isomorphic to the orthogonal group O(2n).

Given a simple finite-dimensional Lie algebra g, the universal affine vertex
algebra V*(g) is generated by fields £(z) which are linear in ¢ € g and satisfy

L kEm) & nl(w)

b'(2)c (w) ~

(2.2)

Here (-,-) denotes the normalized Killing form i (-,-). For all k # —h", V*(g)
has a conformal vector

M) = gy 2 6 (2.3

of central charge
~ k dim(g)

k+hY -
Here &; runs over a basis of g, and & is the dual basis with respect to (-,-). As a
module over g = g[t,t"1]@® C, V*(g) is isomorphic to the vacuum g-module. If k is
generic, the vacuum module is irreducible and V*(g) is a simple vertex algebra, but
at special values of k it is not simple and we denote by L (g) the simple quotient
of V¥(g) by its maximal proper graded ideal.
2.3. Filtrations

Let 'V be a vertex algebra. Suppose that V has a filtration

V(O) C V(l) C--- where V= U V(n) (2.4)

n=0

such that for any two elements a € V(,y and b € V() we have

wb e V(rts) for n <0,
() Virgs—1) for n>0.

Such filtrations were introduced by H. Li [Li04], and are known as good increasing
filtrations. Setting V(_;) = {0}, the associated graded algebra

gr(V) = P Vi) / V-1

i>0

is a graded, associative, (super-)commutative unital ring with a derivation where
the multiplication is induced from the Wick product. We refer to such a ring as
a 0-ring. A O-ring A is said to be generated by a set {a; € A | i € I} if the set
{0™a; | i € I, n > 0} generate A as a ring.

The following reconstruction property appears as Lemma 3.6 of [LLO7]
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Lemma 2.1. Let V be a vertex algebra with a good increasing filtration. Suppose
that gr(V) is generated as a 0-ring by a collection {a; | i € I}, where a; is homoge-
neous of degree d;. Choose vertex operators o;; € V(qy such that ¢q,(c;) = a;. Then
V is strongly generated by the collection {a; | i € I}.

In [ACL17], a slight modification called a weak increasing filtration was intro-
duced. This is a filtration (2.4) on a vertex algebra V as above, where

a(n)b S V(T.+s) for n € Z.

Setting V(_;y = {0} as above, the associated graded algebra

o0
gr(V) = B Vi) / V-1
=0

can be given a vertex algebra structure that is induced from V, which need not be
abelian. As above, a strong generating set for gr(V) gives rise to a strong generating
set for V; see Lemma 4.1 of [ACL17] and the discussion following it.

2.4. Associative G-modules and orbifolds

We will make use of an isomorphism that can be found in [KR96]. For similar work
see also [DLM96]. We recall here the result that will be used later on.

Let A be an associative algebra over C. Furthermore, let G be a reductive
group and let ¢ : G — Aut(A) be a group homomorphism. If a G-module V is
simultaneously an A-module that is G-equivariant, i.e.,

glav) = (¢(g)a)(gv) for g€ G,ac A veV,

then we call V' a (G, A)-module. Let Ay C A be the subalgebra that is invariant
under the G-action. Assume that V is a direct sum of at most countably many
finite-dimensional, irreducible G-modules. Let M C V be such a module and set
Vv = EBz M; to be the sum of all G-submodules of V' which are isomorphic to
M. The action of Ay and G commute which implies that Vj; is an Ap-module. In
particular, the action of Ay viewed as a map from M given by m — am for a € Aq
shows that this map is a G-homomorphism. Choosing a 1-dimensional subspace
f C M fixes unique 1-dimensional subspaces f; in all other G-modules M; C Vi
by Schur’s Lemma. Schur’s Lemma further implies that acting by any a € Ag
on f then either yields one of these subspaces f;i C M; or zero. Letting VM =
D, fi € Vu, we have that VM is an Ap-module. This leads to an isomorphism
Vi 2 M ® VM of (G, Ag)-modules. Therefore,

V%JEBVM%J@MeaVM,

MeS Mes

is a (G, Ag)-module isomorphism where 8 is the set of equivalence classes of simple
G-modules. We need the following result, which is the same as Theorem 1.1 of
[KR96] and has the same proof, except that it is stated for (G, A)-modules rather
than (g, A)-modules.
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Theorem 2.2. Let A be a semisimple G-module and let V' be a (G, A)-module
such that

(1) V is irreducible as an A-module.
(2) V is a direct sum of at most countably many finite-dimensional irreducible
G-modules.

Then each isotypic component Vs is an irreducible (G, Ag)-module. Equivalently,
each VM s irreducible as an Ag-module.

Later on we will make use of this isomorphism in the context when A is the
algebra of modes which span the vector space of a vertex algebra and view it as a
module over itself.

2.5. Associated vertex algebra to ny

In this article we denote the small N = 4 superconformal algebra by ny4 and its
associated vertex superalgebra at level k by V*(ny). Note that here the level refers
to the level of the affine subalgebra. V*(n,) is actually the minimal W-superalgebra
of psly), at level —k — 1. It has strong generators .J, JE,T,G** for x = 1,2, which
satisfy the following OPE relations:

ic n 2T (w) 0T (w)

T(2)T(w) ~ 5T ;

oo T emw? T ow)
I e
T(2)X (w) ~ (ZX_(TU))Q + ‘?‘Z”)f (;”)) for X € {J,J%},
T@E ) ~ £ e ) ~ (1 Y,
T~ e e~ 22, -
THE ) ~ e T
R g
GG (W) ~ _‘éfﬂ)g (Z‘]_(ij + T(w)(j_éf;ﬂ)‘] (w)

From here onwards we adopt the following conventions:

QT (2) =G*(2), G (2) = GT2(2),
Q (2) = GT(2)2, G~ (2) = G™(2).

Note that {.J, J*} and {J, T, G*} generate copies of V*(sly) and V*(ny), respec-
tively, inside V*(ny).
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3. Automorphisms of V*(ny)

For later use, we determine the group of automorphisms G of V¥(n4). First,
there is the group of inner automorphisms Gy, obtained by exponentiating the
zero modes of the weight 1 fields; this is a copy of SL(2). Since the affine subalgebra
V*(sly) has no outer automorphisms, the outer automorphism group Gou; of
V¥(ny) is just the subgroup of G consisting of automorphisms that fix V*(sly)
pointwise.

Lemma 3.1. Goyt s a normal subgroup of G, and G is the semidirect product
GOut X GInn~

Proof. Clearly any inner automorphism which fixes V¥ (sly) is trivial, 5o GrunNGout
is trivial. Let w € G. The restriction of w to V*(sly) is an automorphism of V*(sly),
which has only inner automorphisms, so there exists a € Gy, such that w = « on
VE(sly). Letting 8 = a~'w and v = wa ™!, it is easy to see that 3,7 € Gou and
are the unique elements of Gyt such that af = w = ya. The normality of Gout
is obvious from the definition, so the claim follows. [

By weight considerations, Gout must act linearly on the weight 3/2 subspace,
which is the span of {G*, Q%}, and since it preserves OPEs between the weight 1
fields and weight 3/2 fields, it must preserve the two-dimensional spaces {GT, Q™ }
and {Q", G~ }. Using the fact that Goyu preserves OPEs between the weight 3/2
fields, it is not difficult to check that w € Gpy must have the form

w(GT) =aGT +a1Q7, w(@Q)=bG" +hQ", (3.1a)
w(@Q") =aoQ" —a1G™, w(GT) = —bQF +0iG7, (3.1b)
for constants ag, a1, by, b1 € C, where agb; — a1by = 1. One can then identify Gous
with SL(2) via w — (ao

b .. .

a bo)' Moreover, it is easy to verify that G, commutes
1 0

with Gran. We obtain

Theorem 3.2. The automorphism group G of V¥(ny) is isomorphic to SL(2) x
SL(2).

4. Construction of the vertex algebras

In this section we construct the orbifolds of V*(ny) and for this we use ideas
from [AL17], [ACL17], [CL18]. In order to describe the Z/NZ-orbifolds, it will
be convenient to first describe the orbifold under a certain copy of U(1) which
contains all these cyclic groups as subgroups. We are interested in a U(1)-action
that corresponds to a maximal torus of a diagonal SL(2) inside the automorphism
group SL(2) x SL(2). Concretely, A € U(1) acts as multiplication by A on G* and
JF, multiplication by A™! on G~ and J~ and it leaves the remaining generators
Q7,J and T invariant. Note that restricting to the subgroup Z/27Z C U(1) at level
k = 1 yields the automorphism on H%(X, Q%®) on a K3 surface X that is induced
from a fixed point free involution as mentioned in the introduction.

Our strategy will be to first find minimal strong generating sets for the subalgeb-
ras V*(sl)"™ and V¥ (ny)VM of V*(ny )V, Then we will use these to construct
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a minimal strong generating set for V*(ny)V(M. Next, since Z/NZ is a subgroup
of U(1), we may regard V*(ny)?/N% as a V*(ng)VM-module. Using this module
structure, we will give a generating set for Vk(n4)Z/ NZ for all N. In the case
N = 2, we will obtain a minimal strong generating set for Vk(n4)Z/ ?Z, Finally,
using the structure of singular vectors in the simple orbifold Ly (ng)%/?%, we will
obtain minimal strong generating sets for Ly (ng)%/?% at all values of k.

4.1. Construction of V*(sly)V()

We begin by determining the U(1)-orbifold of the vertex subalgebra V = V¥(sly)
that is generated by {J, J*¥}. The structure of this algebra is well known (see
Theorem 2.1 of [DLWY10]), but we provide details for the benefit of the reader.
First, V has a good increasing filtration

V(O)CV(UCV@)C“-, V= UV(T)7

>0

where V,.y is spanned by all iterated normally ordered monomials in the generators
J,J* and their derivatives, of length at most r. We defined V(~1) = {0}; then

grﬁﬂ::{})VQﬂ/VO_i)%(HJ;8J;82J,..,J’,8J7,62J’,”.,J+,8J+382J+,”j
r>0

as O-rings, that is, differential commutative rings. Since U(1) acts linearly on the
generators, this action preserves the filtration. By restriction, we obtain a filtration
on the orbifold VU(1):

U(1) — pU() — pUD) U(1) _ U
Vy V) €V Cooy Vi =V v,

Moreover, since U(1) preserves the filtration on V, it is apparent that
gr(V)U(l) = gr(VU(l)).
The commutative ring gr(V)V() is spanned by monomials of the form
9N ... O JON gt . s JroR g .. gk T

These can all be generated by {0°J}:°, together with the quadratics {u;; =
OtJToIT " }§5=0- From the point of view of J-rings, there is some redundancy in
this generating set due to the Leibniz relations Ou; ; = wit1,; +ui j+1. It is easy to
verify that sets {8kun70}$§k:0 and {u;;}75_ span the same vector space, so that

{J 1,032, also generates gr(V)V(M) as a d-ring. In fact, it is easy to verify that

this is a minimal generating set for gr(V)V™M) as a d-ring.
We now define the corresponding fields
Ui j(z) =: 0T (2)d T (2) : € VIO, (4.1)

Lemma 4.1. VO is strongly generated by the fields {J(2), Upn.o(2)}5% -
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Proof. Since the corresponding elements {J, u, 0}5%, generate gr(V)'M) as a o-
ring, this follows immediately from Lemma 2.1. O
Even though {J,u,0}3%, is a minimal generating set for gr(V)V") as a o-

ring, it turns out that a much smaller set than {J(z),U, 0(2)}52, is needed to
strongly generate VU(1) because of the existence of decoupling relations arising from
quantum corrections to classical relations. Observe that the following relations hold
in the commutative ring gr(V)V™:

Uq,bUc,d — Ua,dUc,b = 0.
However, the corresponding normally ordered expression
: Ua7bUc,d P Ua,dUcJJ :

in VY does not vanish due to the noncommutativity and nonassociativity of the
Wick product, and it requires a correction. By weight considerations, we may write

cUapUcd: — : UgaUcp : = enUno+ f(J,Uoo,--.,Un-1,0)

for some scalar ¢y where a+b+c+d+2 = N and f is a sum of normally ordered
monomials in the fields J,Up g, ...,Un—1,0 and their derivatives. The Leibniz rule
yields the identity Uy p = S0 o(—1)"(%)8* *Uaytio, and similarly for U, 4. This
implies that the last equality can be rewritten

enUno = 9(J,Ubo, ..., Un-1,0),

where ¢ is again a normally ordered polynomial in J,Upy,...,Unx—1,0 and their
derivatives. This shows that Uy o can be written as a normally ordered polynomial
in strong generators of lower conformal weight and their derivatives, provided that
ey does not vanish. Following [ACL17] we will refer to such an expression as a
decoupling relation.

What follows are two technical Lemmas which will serve as a preparation for the
proof of Proposition 4.4. For some n € N we may write a given element w € \7?2()1)
of conformal weight n + 2 in the form

w = gw(J7 U0,07 B Un,O)u

where g, is a sum of normally ordered monomials in J,Up,...,Up 0, and their
derivatives. Such an expression is not unique due to the existence of decoupling
relations as well as different conventions for normal ordering. Let the coefficient of
Up—i,i in g, be denoted by ¢, ;(w) and define

Lemma 4.2. For anyw € \7?2()1) of weight n+5 for n € N the coefficient of Uypy30
appearing in g, is independent of all choices of normal orderings and is equal to
Cns3(w).



T. CREUTZIG, A. R. LINSHAW, W. RIEDLER

Proof. The proof is analogous to the proof of Lemma 5.2 in [ACL17]. O

Remark 4.1. Note that we use strong generators of the form U, o (cf. loc. cit.). We
may simply rewrite these by using the Leibniz rule as above with their difference
being a total derivative. The factor (—1)™ does not appear in our case because of
the different choice in strong generators.

Lemma 4.3. Let n € Ny and let P, denote a sum of normally ordered products
of strong generators of V9V of weight less than m and their derivatives. We have

2 k 1
:UpoUin i = Ui pso — ——Us,
0,0U1, (n+2+n—|—2> 1,n+2 il 2nt1t
2
1 - U U Pn b
+( +3) 3’n+(n+1)(n+2)(n+3) n+3.0 + Fnts
2 k
:UpnUip : :(m + §)U1,n+2 — Uz i1+

2 1k
* {(n+1)(n+2)(n+3)+(_1) <n7—5—1+n7—|—3

)} Un+3,0+ Pays.

Proof. The proof is a straightforward computation using only the definition of
normal ordering and the commutation relations of sly at level k. [J

Proposition 4.4. For any non-vanishing level k the vertex algebra V*(sly)V™) s
of type W(1,2,3,4,5). A set of minimal strong generators is {J, U, 0}3_,.

Proof. We consider relations of the form

def
Wy = Uo,oUl,n — Uo,nUl,O :

for n € N. The quadratic term vanishes due to the relation w01, — ugnt1,0 =0
in gr(V)'M, s0 w, € Vg()l). Writing w,, as a sum of normally ordered monimials
in J,Up,...,Unt3,0 and their derivatives, the coefficient of U, 3,0 is canonical in
the sense of Lemma 4.2. Due to Lemma 4.3 it can be easily computed and equals

n(n +5)
Cngs(wn) = (=) He———— "L
+a(wn) = (=1) 6(n+2)(n +3)
This shows existence of a decoupling relation for U,i4,0 for all n € Ny at any
non-vanishing level k. Hence, V¥ (sl3)V(V) is strongly generated by {.J, U, 0}3_, for
k # 0. Since there are no relations in gr(V)V(") among J, Up,o for n < 3, there can
be no further decoupling relation among the above strong generators. [

4.2. Construction of V*(ny)v®

The last Proposition can be used to prove a similar statement about V*(ny)
It will be convenient to introduce the following fields

U1

Voo XL gagrara - .
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Proposition 4.5. For any level k # 0, —2 the vertex algebra V¥ (ny)V( is of type
W(1,2,3,4,5). A set of minimal strong generators is {J,T,V,o0}2_o.

Proof. Denote the standard strong generators of V¥(sly) by {H, X*} and let € be
the be-system of rank 1. Considering the tensor product V*(sly) ® €, we will abuse
notation and denote the strong generators by the same symbols. Let K = %H -
be :. The zero mode K integrates to a U(1)-action on V*(sly) ® €. Lemma 8.6 in
[CL19] shows that if k # —2 then

V¥(ng) = Com(Hy, VF(sly) ® &) (4.2)

with central charge 3k/(k + 2) where H; is the Heisenberg vertex algebra generated
by K. The zero mode Hj integrates to a U(1)-action as well. Denote the group
associated to the zero mode of K (resp. H) by Gp (resp. G2) and let Hy be the
Heisenberg vertex algebra generated by H. We have

G1
Iy @ Ving) %2 = (VF(sly) ® €)%2)
=~ (Hy ® Com(Hy, VE(sly) @ €)1
. g‘fg & COHI(:}‘CQ, Vk(ﬁ[g)) ® EGI .

The commutativity of the two group actions was used in the first equality. All G;-
invariant fields in € can be strongly generated by the fields : 9°b87¢ : for 4,5 > 0.
By the action of the derivation a set of strong generators is given by {: 9'bc :}22,,.
It is easy to show that the equality

(- O ) (- ..fn+2.n+1.
:(:0 bc.)(.bc.).fn_i_l.@ be : +0w

holds for n > 0 where w is a linear combination of the fields 9"~ : d%be : for
i = 0,...,n. This implies that : bc : strongly generates €. From the above
isomorphism one can deduce

V¥(ng)% = Com(H;, Hy ® Com(Ho, VF(sly)) @ EC1).

It now follows from Proposition 4.4 that the only strong generator of weight 1 is an
element of the commutant Com (3, Ho®EY1) which is isomorphic to a Heisenberg
vertex algebra. Hence, V*(n5)%2 is of type W(1,2,3,4,5). The Heisenberg and the
Virasoro field of V*(ny) are elements of the kernel of Hy. The isomorphism in (4.2)
for the weight 3/2 fields is given by

XTh:—=6TGY, X c¢:— 6 G, where §t6T =2+ k.

From the action of the zero mode Hj it is immediate that a set of strong generators
of V*(ny)%2 of weight 3, 4 and 5 can be given by {V,,0}2_,. O
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4.3. Construction of V*(n )v®

We are now ready to find a minimal strong generating set for V¥ (n4)U(1), where
A € U(1) acts as multiplication by A on G* and J*, multiplication by A~! on
G~ and J—, and fixes the remaining generators Q*,J and 7. First, we define a
filtration on V*(ny),

Vk'(n4)(0) - Vk(114)(1) G

where V¥( n% is spanned by all normally ordered monomials in the generators
J,JET, Gi and their derivatives, such that the total number of fields G+, Q*
and thelr derlvatlves, is at most n. It is easily verified from the OPE algebra that
this is a weak increasing filtration. Setting V*(ng)(_1) = {0}, let

W = gr(V¥(ny)) @V n4)(n)-

n>0

The OPEs among G*,Q* are now regular in W but the remaining OPEs are
unchanged.

Next, W has a good increasing filtration where W,y is spanned by all normally
ordered monomials in the generators .J, J*, T, G*, Q* and their derivatives of total
length at most n. Clearly gr('W) is just the differential polynomial superalgebra on
these generators and their derivatives. It is evident that the action of U(1) preserves
the weak filtration on V¥(ns) as well as the good filtration on W = gr(V*(ny)).
Restricting the filtrations to the U(1) orbifolds, it follows that

gr(V¥(n) V) 2 WU, gr(WU) 2 gr(w) V),

The commutative ring gr(W)V() is clearly generated as a d-ring by the even
elements J, T, U, o, Vy,0 together with the odd elements

Q*, no=0"J TG, buo=0"JGY, n>0.

It then follows from Lemma 2.1 and the analogous statement for weak filtrations,
that the corresponding fields in V*(ny)V(), namely, the even fields .J, T, Un.0, Vino
together with the odd fields

QF, A,o=:0"J'G": Bpo= :0"JG': n>0,

are a strong generating set for V*(ny )V,

In particular, note that the vertex algebras from Proposition 4.4 and 4.5 are
vertex subalgebras of V¥ (n4)U(1). We already have shown that U, o and V,, ¢ for
n > 4 and m > 3, are unnecessary. Even though Us o was needed in V*(sly)V() it
turns out to be unnecessary in Vk(n4)U(1) since there exists a decoupling relation
for all non-vanishing levels k; see (A.1). In order to find a minimal strong generating
set for V¥ (n4)U(1), we shall construct decoupling relations for A,, o and B,, o for all
n > 3. The proofs of the following two Lemmas are straightforward computations
and will be omitted.
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Lemma 4.6. Let P, be a sum of normally ordered products of weight m such that
each summand includes the field 'T or 87.J, and at most one field 9%V o for some
i,7,k,l,m € Ng. Let n € Ny.

k(6+n)
3(3+n)

Lemma 4.7. Let n € Ny and let P,, be a sum of normally ordered products of

1 k
Vn+370 =: V070Vn,0 : +k5Vn+2,0* <2+2n+k> 82Vn+1,0+§83Vn,0+Pn+6.

strong generators of Vk(n4)U(1) of weight less than m and their derivatives.
nikA + P =:Uno0d00:—:UpoAno:+: (U —Un0)Q~
2(n+ 2) n+2,0 n+% = - Un,0410,0 - - V0,043n,0 - . n+1,0 n,0
1 n+1 /n )
— E —1) 2 0'Upi1-.0Q
n—|—1i:0( ) (z) O Unt1-10Q
— B, P = -1) :OUn—i0Boo:+:0WUni1-i0Q" :
219 +20+ P9 = ;0( )(i){aU 0Boo 40 Unt1-i0Q" 1}
1
-0, M "t UpBn,
T +1,0Q7 1 +(=1) 0Bno:

The last Lemma shows the existence of decoupling relations for the fields in the
set { A0, Bio}25. As before it can be checked directly that there are no decoupling
relations for the remaining strong generators. Hence, this yields the following.

Theorem 4.8. For any level k # —2,0 the vertex algebra Vk(n4)U(1) is of type

W(1,22,32% 4% 5; 327 32, ;27 22) A set of minimal strong generators is given by

{Ja Q 7Ta Ul,Oa Az,O7 Bz,Oa 170}2_0-

5. Construction of the cyclic orbifold

Let U(n4)€ be the universal enveloping algebra of ny that is invariant under the
group G. From here onwards we will restrict the group to be cyclic G & Z/NZ.
As shown in Section 2.4, there are isomorphisms

N—1
Pcieow = an4:@<C®V
=0 i=—00

as a (Z/NZ,U(ny)%N%)-module and as a (U(1), U(ns)Y"))-module, respectively.
By restriction this leads to an isomorphism

VVag @ VkN+a

k=—o0

fora=0,...,N —1 as a U(ng)?N%-module.
It will be convenient to define the following fields

Y (o () E(z)i f 9o gt ... guin-i JEgaiN—it1GE . guNGE .

a17 HAiN? ) AN

fori=0,...,jN and a; € Ng.
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Lemma 5.1. The vertex algebra Vk(ml)Z/NZ is strongly generated by the strong

generators of V*(ny )V and the fields Eg?,,i,,,aN fori=0,...,N andaq,...,an>0.

Proof. Let Vi = @jeN Vijn and let ¢ = 0,...,N. Each vector space V;n for
j € Z\{0} is a U(ny)"M-module and generated by the vectors in the set

{U(i)Jr o0
a1,...,a5N al,...,ajN:O'

Note that V@V is a vertex subalgebra of V*(n,)%/V%. Due to commutativity of
the fields in the set {Zal, an 10, Vo ® Vi is strongly generated by these fields
and the strong generators of V. By the same argument the vertex subalgebra
Vo @ V_ is strongly generated by the fields in the set {Zah LN }i]\io and the strong
generators of V. Observe that the fields that appear in the OPEs between the
strong generators in Vy and V_y are necessarily elements of V{y. This proves the
proposition. [

Remark 5.1. If k is generic, V*(ny) is simple, and hence V*(ny)%/?2 and V*(n, )’
are both simple as well [DLM96]. It follows from Theorem 2.2 that each of the
V*(ng)Y@-modules V; is irreducible. In particular, the V*(ny)Y™-submodule of
Vi generated by E(OH =: (J)N :, must be all of Viy. Similarly, V_ is generated
by E(()(,).)..,O = (JE)N : over VF(ny)VM). This implies that V*(ny)%/?% is generated
(but not strongly) by : (JT)V : and : (J7)V : together with V*(n, )V,

In order to construct a more economical strong generating set for V* (n4)Z/ 2z

, We
first observe that some of the fields E,(Iil)i,,a ,~ are superfluous as strong generators
due to the action of the translation operator 0. The generating function of the
fields E&’ff,,a y for fixed [ with respect to weight will show which of these can be
neglected as strong generators. It can be obtained by a simple counting argument.
Lemma 5.2. The generating function for the number of fields ZS}E?E_M with re-
spect to conformal weight is

711

Jj=1

N-—
412
: H

1—q3

Proof. The weight of the field Eal, an €quals N—l—%l—&—a—i—b for azZﬁv:_ll a; and b =
ZiAFHl a;. Due to (anti-)commutativity of the fields in the set {9?'JT,9'GT}°,
the number of fields at a given weight is determined by the number of partitions of
a with at most IV —1[ parts and the number of partitions of b with exactly [ and with
exactly [ — 1 parts such that all summands are distinct in both cases. The latter
condition exists since at most one of the coefficients in the set {ay_it1,...,an}

. i)+ .
can be zero, otherwise 221),...,@ vanishes. [
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Let V{;) be the subspace of V¥(n,) spanned by the vectors in the set

{O—((lll),i ,aN al, Lan=0"
It is obvious that the translation operator d acts on V/;y and increases the conformal
weight by 1. Since we are looking for strong generators, we can eliminate any
elements in the space 9V/(;). Dropping vectors in the set {aal,i an fas.., —o which
decouple for this reason amounts to multiplying the generating functlon from
Lemma 5.2 by (1 — q).

Next, it follows from Theorem 4.10 [ACKL17] that for generic k, only finitely
many of the fields Egil)f,w are needed to strongly generate V*(ny4)%/?Z. This
ultimately boils down to the fact that each of the modules V; is C;-cofinite as a
module over V¥ (n4)U(1); a proof can be given along the lines of Theorems 6.1 and
6.3 of [CKLR19].

It is a difficult problem to determine the minimal set of fields of the form
E((fl),i ax that are needed to strongly V*(ng)%/?Z for all N, but we shall carry this
out in the case N = 2. First, multiplying the generating function from the previous
Lemma by (1 — ¢) yields

oo o0 [e.9]
5
[=0: g ¢t l=1: E "t =2 E g
=0 i=0 =0

Thus, Lemma 5.1 can be improved upon since a set of strong generators of the
vertex algebra V*(ny)%/? is given by the strong generators of V*(ny )V together

with the fields in the set {Zgﬁg%, Zfllz)i, Z(i)fl 01o2 . The following Lemma will set
up the proof of Theorem 5.4.

Lemma 5.3. Letn € N and c(z) d(l) € Q fori=20,1,2. Then we have

:Usn oS — UooZors : = pO (k) S50, 0+Zc°) OHSY)

Uz 1,020 = Un oS, | —q£°><k>z§(3fr2,o+2d§°>w‘HEé?Bi,o-
1=0

: Z(O)+B() 0~ Un,oz(lH + En+1 0Q+ = pg) 2(1 +Z C(l) : ainglllT—i,O :
- 2OF By — Up o2t + 5O QH - = g0 (k) SO, +Z dV oas(T L

2n
1 1 2 2 i 2
: BO,OEén):LLo - Eén)ijJr = p{&( )2273:1,0+ch )19 Hzgn)ji,O :

2n
1 .
t Ba_10560 " + =S50 QT 1 = gD (k) Eé??ﬁﬁzd?) LOHSE!

2n ‘
=0
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(0) __ 8n n
p(h) = =5 T o2
0,y _ 4 7+ 2n
an )= 3+ ganr o

pm = 25 (- EED) 4 o]

Al p— {(71)[4n+5+(71)n+1(2n+1)]+§[n+2(71)"],

n+2|n+1
(2) _ 24+ k
pro(k) =5 01
(2) _ 2—k
(k) =5 7

Proof. Computing the left-hand side of each of these equations is straightforward
and leads directly to the right-hand side by using only the definition of normal
ordering and the commutation relations of ngy which are equivalent to the OPEs
as stated in (2.5). O

Theorem 5.4. Let k # —2,0,4,16. The vertex algebra V*(ny)%/?% is of type

W(1,24,32,4°; %2, %4, %4). A set of minimal strong generators is

e + + +
8= {H7 Qi7 T7 Ui,Ov Ai,07 Bi,()v ‘/i,()v 215)7)0 ) Zg,)()) ) 2]f()) ) Ef()) }zlz()'

At level k = 4 a set of minimal strong generators is 8§ U {nggi}. At level k = 16
a set of minimal strong generators is 8 U{Us o, A2, B2}

Proof. By Lemma 5.1 and the discussion thereafter the vertex algebra V*(ny)%/?%

is strongly generated by the strong generators of V* (n4)U(1) and the fields in the
set {Eggf,ﬁ(l)i Zgi)i,o}zo:o' Observe in Lemma 5.3 that for any ¢ € {0,1,2}

n,0
the roots of pgf) and q,(f) are distinct for all n € N. It follows that the fields
{Eéﬁ?@)o,ES_%;O,E%):&O}%O:O decouple at any level k. Let 6 € Aut(V¥(ny)) such
that it restricts to an involution on the strong generators of V*(sly) given by

oI =J", 0(J)=—J, 6 )=J"

and such that 6(GT) = G~. These requirements fix the action on the remaining
strong generators. The map 6 is an automorphism of V*(ng)%/?% a fortiori and
acting on the decoupling relations of Lemma 5.3 shows that the fields

{20 a0 Bids0 Bk} oo
decouple at any level k as well. The existence of decoupling relations for all
remaining strong generators can be checked directly.? The field Eg()ﬁ_ decouples at
all levels k # 4 (see (A.2)). Acting on the decoupling relation of Zg?f with the

automorphism 6 shows that Zgng also decouples at all levels k # 4. Furthermore,

the fields Us g, A o and By g decouple at all levels k # 16 (see (A.3)—(A.5)) and Va o
decouples at all levels k # 0 (see (A.6) and (A.7)). These exhaust all decoupling
relations for the minimal strong generators, which proves the Theorem. [

2In our case this was done using Thielemans’ Mathematica™™ package [Thi91].
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6. Structure of the vertex algebras

We will now look at sub-structures and simple quotients of the two orbifolds of
V¥(n4) that were constructed in the previous section. It will be helpful to define
the following: Let R* € V¥(ny) be a field and define

C'=(Q@N) R, D'=—-(Q )k, S=3(Q )0l +(Q)wD").

Note that the Lie superalgebra gl|; has basis *, N, E where ¢)* are odd and
N, E are even and the non-zero commutation relations are [N,¢*] = +¢* and
[, 9~] = E, so that the algebra spanned by (Qi)(o), Joy and [(Q*)(O)7 Q7))
is isomorphic to gly);. The definition of R*, C", D" and S* thus organizes fields into
representations of this gly|;-algebra.

Taking R = H and R = U, for i = 0,1,2 it can be checked that the
fields in the set 8§ = {8'}3_, strongly generate V*(ny)V™M) at all levels k # 0, —2
(cf. Theorem 4.8). Furthermore, taking R3 = Zé?3+ and R* = Zg}ng as well as
R"2 = g(R") for n = 3,4 with @ being the automorphism defined in the proof of
Theorem 5.4 we see that the set {8'}%_, contains all minimal strong generators of
V*(ny)%/?% at levels k # —2,0,4,16 (cf. Theorem 5.4).

Theorem 6.1. Letk # 0,—2. For all but finitely many levels k the simple quotient
Li(ng) YD) s of type W(1,22,32, 42, 5; %2, 32, %2, %2). The full list of exceptions is
stated in the following table:

l level k | central charge | type ‘
-3 ~15 W(1,22 32, 4; 3% 52 1%
—3 9 W(1,2,4,5;§2,§2)
—4 -8 w(i,2%,3%, 4 3%, 5%, 1)
-3 4 W(1,22 32 42, 3% 3% 72 92
~1 -3 w(1,22,3; 3% 5%
1 6 w(1,2; 3%
2 12 w(1,22,3; 3% 2%
3 18 W(1,22 32, 4; 3% 5% 1%
4 24 W(1,22 32, 42, 3% 5% 72 92

Proof. Tt is straightforward to establish a level dependent basis for the vector space
of singular fields at a fixed weight using [Thi91]. Let S € V*(ng)V(M). A singular
field of the form S + --- where the ellipsis indicates a sum of normally ordered
products induces a decoupling relation for the field S in the simple quotient. The
type of the simple quotient can therefore be determined by obtaining all possible
levels which contain singular fields of the form S + --- for which the field S is
a minimal strong generator. All relevant singular fields are listed in Appendix B.
Note that the V*(ny)-module structure induces decoupling relations for further
minimal strong generators. [
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Theorem 6.2. Letk # 0,—2. For all but finitely many levels k the simple quotient
L (ng)2/?% is of type W(1,24, 32, 45; %27 %4, %4), The full list of exceptions is stated
in the following table:

l level k | central charge | type ‘
—3 ~15 W(1,2% 32, 44, 3% 3% T4
_3 9 w1, 2% 3% 5%
—% -8 W(1,2% 32, 44, 3% 3% T4
-1 -3 w(1,2% 3, 3% 2%
1 6 w(1,2,4% 3% 7%
2 12 W(1,2% 3,42 3% 5% 1%
3 18 W(1,24 32, 43; 3% 3% 74
4 24 W(1,2% 32 45, 3% 5% 74 92
16 96 W(1,2% 32, 46, 3% 3% 74 92

Proof. The proof is analogous to the proof of Theorem 6.1. All relevant singular
fields are listed in Appendix C. Again, note that the V*(ny)-module structure as
well as the action of the automorphism 6 as defined in the proof of Theorem 5.4
induce decoupling relations for further minimal strong generators. [

Given that the proofs of Theorems 6.1 and 6.2 are purely computational some
remarks are in order:

Remark 6.1.1t is apparent from the singular fields in Appendix C that for k =
1, Li(ng) admits an action of the simple vertex algebra Li(sls) at level k = 1.
This statement can also be seen using free field realizations of L;(ny), see [CH14,
Lem. 3.4]. For positive integer n, L, +1(sl2) embeds in L, (sla)® L1 (sl2) and since ny
is a Lie superalgebra also a homomorphic image of V" *1(n4) embeds into L, (ny) ®
Ly (nyg). It thus follows that this homomorphic image of V" *!(n,) contains a copy
of L,11(sly) and so especially the simple quotient L,1(ny) contains a copy of
Lpi1(sls)

Remark 6.2. The levels 7%(3 + 2n) for a positive integer n, are also special. We
will see in Theorem 7.4 that at these levels, an orbifold of a coset of Lj(ny) is
a principal W-algebra of type A. The special cases k = —1/2 and k = —3/2 are
already well understood. Namely, L_ (ns) = (A(1)®8(1))%/?% by [CKL19, Thm.
4.14]. Here A(1) is the rank one symplectic fermion algebra and 8$(1) the rank one
By system. The construction of Li(ny) at level k = —3/2 is first given in [Adal6],
and in Theorem 2.5 of [CGL18] it is shown that

o0

as L_3 (sl2)®@SU(2)-modules. In this notation, w denotes the fundamental weight of
sls, pnw denotes the irreducible sly-module with highest weight nw, and Lfg (nw)
denotes the corresponding irreducible L_ 3 (slz)-module.
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Let us also note that this series of special points is suggested in [BMR19] to
be subalgebras of the chiral algebras of certain four-dimensional super Yang—Mills
theories.

Corollary 6.3. The vertez algebra of global sections of the chiral de Rham complex
on a complex Enriques surface is of type W(1,2,4%; %2, 52) It is strongly generated
by the fields

J(2),Q*(2), T(2), 2", 20, =Y.
Proof. This follows immediately from Theorem 6.6 of [Sonl8], together with the
description of Li(ny)%2 given in Theorem 6.2. [

7. Coset of V¥(ny) by its affine subalgebra

In this section, we study the coset
ek = Com(VF¥(sly), VF(ny)), (7.1)
and we regard V¥ (ny) as an extension of V*(sly)®CF. In Theorem 5.4 of [ACKL17],
€k was incorrectly stated to be of type W(2,33 4,53 6,73, 8). In this section, we
give the correct description as well as some more details about its structure.
As in Section 4 of [ACKLI17], if we rescale the generators of V*(ny) by 1/vVE,
there is a well-defined limit as k — oo, and

Jim. VF(ny) 2 H(3) ® T @ Goaa(4).

In this notation, H(3) is the rank 3 Heisenberg vertex algebra, T is a generalized
free field algebra with one even generator T satisfying T'(2)T (w) ~ 6/(z — w)*, and
Godd(4) is the generalized free field algebra with odd generators G*, QT satisfying

n _ 2 " _ 2
G ()G (w) ~ Gow)p QT (2)Q (w) ~ Gowp

Note that our normalizations of the generator differ slightly from those in
[ACKL17], but this does not change the above result. Note that the action of
the inner automorphism group G, = SL(2) on V*(n,) coming from integrating
the zero-mode action of sly gives rise to the action of SL(2) on Gq4(4), such that
{G*,Q*} and {G~,Q~} both transform as copies of the standard module C2.

As shown in [ACKL17] right before Theorem 4.12, C* has a well-defined limit
as k — oo, and

lim CF~2T® (9odd(4))SL(2).

k— o0

Moreover, the structure of (Sodd(4)) can be worked out using classical inva-
riant theory. First, we have the infinite generating set

m! =:GTIQT: + :9GTQT

P=:G¥Q: + G Q -, (7.2)

w =:GTYGT + QT Q .
for j > 0. Note that m7,p’, w’/ each have weight j + 3. It is straightforward to
check that {w® m® p°} generates the algebra (Goqa(4))S“(?), and that the set
{wi,m/ p/| i = 0,1,2,3, j = 0,2} is closed under OPE, and hence strongly
generates the algebra. We obtain

SL(2)
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Theorem 7.1. (Sodd(4))SL(2) is of type W(3%,4,5%,6), so that the coset C* is of
type W(2,33,4,5% 6) for generic values of k.

In [ACKL17], it was also stated (correctly) that C¥ contains a vertex subalgebra
of type W(2,3,4,5,6,7,8). We now give more details about this subalgebra. First
of all, inside the outer automorphism group Gout = SL(2), there is a copy of U(1),
and a corresponding outer action of the one-dimensional abelian Lie algebra t.
Note that the fields w’, m?,p’ are eigenvectors with eigenvalue 0, —2,2 under this
action, respectively. It follows that the orbifold (€¥)V() is strongly generated by
the fields {w’| i > 0} together with all monomials

. Qa1,.91.9a2,.7 as, Js qb1,.. k1 b,k bs, ks .
20N P92 p2 - 9% T 0 m 92 m” 2 - 9% e

where a;, b;, j;, k; are nonnegative integers, and s > 1.

Moreover, one can verify by computer calculation that the fields {w’| i =
0,1,2,3,4,5} close under OPE, and that for a,b > 0 and j,k = 0,2, the field
: 9%pI9PmF : lies in the subalgebra generated by {w’| i = 0,1,2,3,4,5}. From this
observation, and by induction on s, we obtain

Theorem 7.2. (C¥)Y(M) s strongly generated by fields {w® | i = 0,1,2,3,4,5},
and hence is of type W(2,3,4,5,6,7,8).

We may take the weight 3 field w® to be primary of weight 3 and we normalize
it so that its sixth order pole with itself is k(3 + 2k)/(2 + k) = ¢/3. Following the
notation in [Lin17], we denote this field by W?3; it has the explicit form

3 _ 1 ot Ot -
w *8+4k('GG 4 QTQT  —0T).
Moreover, it is not difficult to verify that it generates (@k)U(l). Following the
convention of [Linl7], we may take the strong generating set for (€*)U() to be
{L,W? i=3,4,5,6,7,8}, where Wi = VV(?’I)VVi_1 for 1 =4,5,6,7,8.

It is readily verified that the hypotheses of Theorem 6.2 of [Linl7] are satisfied,
so that (C*)U(M) can be realized as a quotient of W(c, \) of the form Wy (e, \) =
W (e, \)/J. In this notation, I C Clc, \] is some prime ideal in the ring of para-
meters C|e, ], and J is the maximal proper graded ideal of W (e, \) = W(e, \)/I -
Wi(e, \).

By computing the third order pole of W32 with itself, it is straightforward to
verify that I is the ideal (A + 1—16) Rather surprisingly, this same vertex algebra
was studied in Section 11 of [Linl7]. Combining this calculation with Corollary
10.3 of [Linl7], we obtain:

Theorem 7.3. (C*)V() s isomorphic to the coset
COHl(Ve(S[Q), V€+1(5[2> ® W75/2(5[47 frect))a

where the parameters k and ¢ are related by k= —(0+1)/(¢ + 2).

Remark 7.1. This Theorem nicely relates to the coset realization of V*(ny) of
[CFL19]. Let Ly (nw) denote the irreducible highest-weight module of sl of highest
weight nw at level k. w is the fundamental weight of sl and p,,., denotes the
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irreducible highest-weight module of SU(2) of highest weight mw. Also let 2 be
equal to 0 if n is even and 1 otherwise. We have the following list of isomorphisms:

(1) In [CKLR19, Sect. 5] diagonal Heisenberg cosets of the tensor product of a
rank n B system with a rank m be system were studied. These cosets were denoted
by C(n,m) and C(2,0) = W_s/5(sl4, frect) [CKLR19, Rem. 5.3] and C(2,2) =
Ly (sly2) [CKLR19, Thm. 5.5]. Moreover C(0,2) is nothing but the lattice VOA
Ly(slz) and so we have that W_g5(sly, frect) C Com (L1 (slz), L1(sla2)) and by
passing to the simple quotient L1 (psly5) of Li(sly2) we also have W_5 /5 (sl4, frect)
C Com (L1 (sly), L1 (psly5)). The branching rules [Crel7, Cor. 5.3] and [CG17,
Rem. 9.11]

W_s/2(sl4, frect) @L (2mw) (7.3)

and
Li(psly)o) = @ L_1(nw) ® ppw @ L1(fiw)

tell us that
W55l freet) 2 Com (L1 (s12), L (pslypp)) " .
(2) In [CFL19] a vertex superalgebra Y () that is related to Li(0(2,1;—))) ®
Li(pslyjo) has been constructed. It satisfies
Y (A\)?/?% = Com (L1 (sl2) ® Ly (sl2), L1(d(2, 1; —\)) @ Ly (pslyp)) -
(3) Y(\) decomposes

Y(A) = @ Li, (nw) @ L, (nw) @ L_1(mw) & pmew

n,m=0

as Ly, (sly) ® Ly, (sly) ® L_1(sly) ® SU(2)-module for generic complex A. Here
ki = X' —1,k; = XA — 1 and note that for generic A the universal affine vertex
operator algebras of sly at levels k; and ko are simple. Then by [CFL19] and for
irrational A we have that

Vk2(ny) 2 Com (Ly, —1(sl2), Y (V).
(4) Putting all these together we get
(Gk‘g)U(l)
U(1)
Liy (s12) @ L, -1 (sk2), Y (1))

U(1)
L, (sl2) @ Ly, —1(s12), @ L, (nw)@ Ly, (nw)e@L,l(mw)@pmw))

n,m=0

= Com(Lkl_l(slg), @ Lkl (5[2) X L_1(mOJ) ® pmw)>U(1)

= Com Ly, —1(sl2), @D L, (sl2) © L_l(Qmw))>,

which using (7.3) and noticing that ks = —k;/(k1 + 1), nicely compares to the
Theorem.
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We now present some consequences of the identification of (€F)V(M) with a
quotient of W(c, A). Recall from Section 10 of [Linl7], we can obtain coincidences
between the simple quotient of (Gk)U(l) with various other algebras arising as
quotients of W(c, A) by finding the intersection points on their truncation curves.

Recall that if we regard C¥ as a one-parameter vertex algebra, with k a formal
variable, the specialization of C* at a complex number k = k¢ need not coincide
with the actual coset, but this can only fail when kg + 2 € Q<¢. This property is
inherited by the orbifold (€¥)V() if we also omit the point kg = 0. By abuse of
notation, in the results below, (€*)V() will always refer to the specialization of the
one-parameter vertex algebra (€*)U(Y) at the point k = kg, even if is strictly larger
than the actual algebra Com(V*0(sly), V¥ (ny))V(). We also denote by (€, )"
the simple quotient of (€*o)U(),

The next result follows immediately from Theorem 7.3 and Theorem 11.4 of
[Linl7].

Theorem 7.4. For n > 3, aside from the critical levels k = —2 and { = —n, and
the degenerate cases given by Theorem 10.1 of [Linl7], all isomorphisms (@k)U(l) =
We(sly, forin) appear on the following list.

2(n—1) B n—2 B n

1

which has central charge c = —3(n —1)(n+2)/(n — 2).

Next, in the terminology of [Linl7], recall the generalized parafermion algebra
§°(n) = Com(V*(gl,), V*(slnt1)),

and its simple quotient Gy(n). By Theorem 8.2 of [Linl7], this also arises as a
quotient of W(¢, \) and the corresponding truncation curve is given explicitly by
(8.4) of [Linl7]. Additionally, by (8.5) of [Linl7], this curve has the following
rational parametrization using the level £ as parameter:

(n+ 01 +n+20)
((—2)2n+0)(2 +2n+30)

n(l—1)(14+n+ 2¢)

) = n+01+n+0)

c(l) =

(7.5)

Theorem 7.5. Forn > 3, aside from the critical levels k = —2, £ = —n, and £ =
—n—1, and the degenerate cases given by Theorem 10.1 of [Linl7], all isomorphisms
(€x)Y ™ = Gy(n) appear on the following list:

3+ 2n
1) k=n, k=— 0=-2(1
(1) k=n, k=-2120 (1+n)
which has central charge ¢ = 3n(3 +2n)/(2 +n).
n—3 n
Nk=-"L"2 p=—""1 y=9
@ n—2 n—1 ’

which has central charge ¢ = —3n(n —3)/(n — 2)(n — 1).
3) k= %(nf?)), po St o, 2
which has central charge ¢ = (n —3)(3+2n)/(3+n).

34+n’ RN
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Proof. We first exclude the values £ = 2, —2n, f%(Qn + 2) which are poles of
function A(¢) given by (7.5). As explained in [Lin17], at these points, G(n) is not
obtained as a quotient of W(c, \) at these points. Note that the truncation curve
for (€)Y has parametrization

3k(3+ 2k 1
oty = PO
24k 16
and since the pole £ = —2 has already been excluded, there are no additional points

where (€;)V() cannot be obtained as a quotient of W(¢, \). By Corollary 10.2 of
[Lin17], aside from the cases ¢ = 0,—2, all remaining isomorphisms (C;)V() =
Ge(n) correspond to intersection points on the curves V(K,,) and V(I), where K,
is given by (8.4) of [Lin17], and I = (A + %), as above. For each n > 2, there are
exactly three intersection points (¢, \), namely,

It is immediate that the above isomorphisms all hold, and that our list is complete
except for possible coincidences at the excluded points £ = 2, —2n, —%(Zn +2).

At £ =2, Go(n) has central charge ¢ = n(5+n)/(2 +n)(3 +n) and the weight
3 field is singular. However, the weight 3 field in (Ck)U(l) is not singular at this
central charge, so there is no coincidence at this point. Similarly, at £ = —2n and
¢ = —1(2n + 2), G¢(n) has central charge ¢ = (2n+1)(3n —1)/(n— 1) and ¢ =
n(2n + 5)/(n — 2), respectively, and has a singular vector in weight 3, but at these
central charges, (C;)"™) does not. Therefore there are no additional coincidences
at these points. [

Remark 7.2. The first family (1) in Theorem 7.5 is of particular interest since
it concerns the case where k is a positive integer n. By Remark 6.1, the map
V" (sly) — V™(ny) descends to a map of simple vertex algebras L, (sla) — Ly, (n4).
By Corollary 2.2 of [ACKL17], the coset Com(L,,(sl2), L, (n4)) is simple, and hence
coincides with the simple quotient €,, of €™. Moreover, by [DLM96], the simplicity
of G, is preserved by taking the U(1)-orbifold. It follows that for all n € N,

Com(Ly(slz), Ly(ng)) = G_o14n)(n).

In the case n = 1, note that §_4(1) is just the parafermion algebra N_4(sly) =
Com(JH, L_4(sl3)). Therefore Li(nys) may be regarded as an extension of L;(slz) ®
N_4(sly). Likewise, L;(n4)%/?%, which is isomorphic to the global section algebra of
the chiral de Rham complex of an Enriques surface, is an extension of HQN_4(sl2),
where H is the Heisenberg algebra generated by J.

Consider the coset Com (VF¥2(sl,) @ H(1), Ly (sl,+1) ® €(2n)) where €(2n)
denotes the be-system of rank 2n and the Heisenberg algebra action is taken to be
the diagonal one in such a way that this coset has four odd dimension 3/2 fields.
Its weight one subspace is H(1)® Ly, (sl2) and if we specialize to k = —2(n+1) then
it is easy to check that the 3(1) becomes central and so by uniqueness of minimal
W-superalgebras [ACKL17, Thm. 3.1] at this level the coset contains L,(ny) as
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subalgebra. This fits into the observation of the first family (1) in Theorem 7.5 as
this coset also obviously contains G_g(14,,)(n).

This observation somehow extends to negative levels and thus connects Theo-
rems 7.4 and 7.5. For this consider Com (V*72(sl,,) ®H(1), Ly (sl,1) ®8(2n)). The
rank 2n [y-system 8§(2n) carries an action of V~""(sly) ® V~2(sl,) ® H(1) and
in the commutant we choose the Heisenberg diagonally so that the coset has four
dimension 3/2 fields. As in the previous case the weight one subspace is H(1) ®
V" (sly) and if we specialize to k = —2(n—1) then it is easy to check that the H(1)
becomes central and so by uniqueness of minimal W-superalgebras [ACKL17, Thm.
3.1] at this level the coset contains a homomorphic image of V" (ny) as subalgebra.
This coset also contains 8§ (n) := Com (VF(sl,) ® H(1), Li,(sl,,1)) as subalgebra,
and its central charge for k = —2(n — 1) is precisely —3(2n? — 3n)/(n — 2), which
is the central charge of (C_,)V(") = We(sly(n—1), forin) at £ = —2(n — 1) +
(n —2)/(n —1). This observation actually leads us to a new level-rank duality
that we will introduce in Section 8.

There is another interesting family of vertex algebras that arise as quotients of
W(e, \), namely, the cosets

D(n) = Com(H, W (sly, foubreg);

see Corollary 6.15 of [CL20]. The explicit truncation curve can be obtained by
specializing Theorem 6.1 of [CL20] to the case m = 1, which also appears as
Conjecture 9.5 of [Linl7]. We obtain

Theorem 7.6. Forn > 3, aside from the critical levels k = —2 and { = —n, and
the degenerate cases given by Theorem 10.1 of [Linl7], all isomorphisms (€)Y =
De(n) appear on the following list:

n 3+n 2+n
1) k=———, k=— L= —
@ L+n’ 2t n’ AT
which has central charge ¢ = —3n(3+n)/(1+n)(2 + n).
3—2n n—2
2) k=-n, k= l=—-n+——
(2) n, o nt
which has central charge ¢ = —3n(2n — 3)/(n — 2).

1 3—2n n
(3)k__§(3+n)7k_ n_3a E__n—’_is;

n
which has central charge ¢ = — (34 n)(2n —3)/(n — 3).

The proof is similar to the proof of Theorem 7.5, and is left to the reader.

8. Level-rank dualities

We will now explain that the central charge agreement observed in Remark 7.2
is not a coincidence and it fits into the following bigger picture. Firstly, the central
charge of the cosets 8§~ (n) and of Com (V=" !(sl,,), L, (sl,,,) ® Ly(sly,)) are
both equal to
m(m? — 1)
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On the other hand recall that the simple quotient of the coset
Com (V™" (sl,,), L_p(sl,) @ L1 (sl,))

is isomorphic to We(sl,,, forin) at level £ = —m+(m — n)/(m — n + 1) by the main
Theorem of [ACL19].
We can be more general, namely consider now

857 (n|r) := Com (V~""(sl,,) @ V™ (sl,) ® H(1), L_(sly),))
together with
Com (V"% (sl,,), L_,(80n) ® Ly (s1,))
and again their central charges turn out to coincide, i.e., they are equal to
(m? — Vnr(n —r —2m)

€= (m—n)m+r)im+r—mn)

This observation can be lifted to a new type of level-rank duality. For this
consider &(mn) @ 8(¢n) and recall that we denote by &(m) the be-system of rank
m and by §(m) the S7-system of rank m. The vertex superalgebra &(mn)®8(¢n) is
viewed as the befy-system for C*@C™¢ i.e., for the tensor product of the standard
representations of gl,, and sl,, ;. It thus carries a commuting action of vm=t(gl,) =
Vm=(sl,) @ H(1) and V" (sl,,¢). We normalize the Heisenberg field to have norm
one, so that the b, ¢, 5 and ~ all have Heisenberg weight © = 1/y/n(m — £). The
conformal weight A of the module V™= (w;) ®@m, @ V" (w1) of V™ =¢(sl,) @ H(1) ®
V7 (5ly)e) is

(n?—1) 1 (m—-02-1) 1

20n+m—+£)  2n(m—+~)  2n+m—+£) 2

so that [AKFPP16, Cor. 2.2] applies, i.e., there is a conformal embedding of
Vm=t(sl,) @ H(1) @ V™ (slye) in &(mn) @ $(¢n). We set

A" (sl,,1¢) := Com (V™ ¥(gl,,), E(mn) @ 8(¢n))

and if m = 0, then we write A™"(sl;) for A" (sly|¢). For descriptions of some of the
cosets of these types see [LSS15]. We also need [0S14, Thm. 4.1], i.e

Com (L (gl,,), E(mn)) = Ly, (s,). (8.1)

With this notation and information we can slightly modify the argument of [ACL19,
Thm. 13.1] to get

Com (V™" (sl,), A~ (slmn) ® Ly (sl,))
=~ Com (V~"*"(sl,,), Com (V~"™(gl,) ® L (gl,.),8(mn) @ &E(mr)))
= Com (V""" (sl,,) @ V™" (gl,,) ® Lin(gl,.), 8(mn) ® &(mr))
=~ Com (V™" (gl,,,) @ V""" (sl,,) ® Ly, (sl,) ® H(1),8(mn) @ E(mr))
= Com (V™"(sl,,) ® Ly (s,) ® H(1), Com (V"7 (gl,,), $(mn) @ &(mr)))
= Com (V™"(sl,) ® Ly, (s,) ® H(1), A™ (sl,,,))

We thus have proven the level-rank duality theorem.

Vv
v
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Theorem 8.1. Let r,n,m be positive integers. Then there exist vertex algebra

extensions A" (sly,) and A™(sl.,) of homomorphic images V~"(sl,) and
\7’”(5[,‘”) of V7"(sly,) and V'™ (sl,,,) such that the level-rank duality
Com (V""" (sly,), A" (sly) ® Ly (1))
=~ Com (V™"(sl,) @ L (s,) ® H(1), A" (sl,,,))
holds.

Remark 8.1. Tt is natural to ask if the statement of the Theorem can be improved,
i.e., one could ask for a level-rank duality of the form

Com (V=" (s1,,), V" (50) @ Ly (s1,))

2 Com(V""(sl,) @ Lyn(sl.) @ F(1), V™ (sLy1)).
Remark 8.2. One might wonder if there are other levels k for which the coset
Com (V*(sl,) @ V7 (sl,) ® H(1), VF(sl,,))

coincides with a W-algebra, and indeed there are indications that these cosets
sometimes coincide with rectangular W-algebras of type A [CH19, Appendix D].

A. Decoupling relations

For the convenience of the reader we repeat the chosen conventions.

QT =G7, Q =G,
Gt = G+,27 G~ = Gf‘rl
Uno=:0"J"J":, Vuo=:0"GTG™ 1,
An70 = 8nJ+G_ 5 Bn,O =:0"J" G+ 5
o =0t gtEgt s S = orgtet 20T = ottiatat

All relations below were verified by computer [Thi91]. Note that applying the
automorphism 6 specified in the proof of Theorem 5.4 on the decoupling relation
for Z(Q}()f (see A.2) yields a decoupling relation for Eg())_ that holds at all levels
k #£ 4.

k

k 1
=§U3,0 — §V2,o + 090Uz — 3 Usod : +(1+ k) OV 0+: Viod -

— A1 0QT = B oQ : —%aQUl,(H- 2 U 0T —% :U1,00J :

+ %52‘/@,0— : Vo0 = VooUoo : +: 0A00Q" + —: AgoBopo : A1)

+: Ay, 00QT 1 +: 0Bo,0Q : +: Bp,00Q : —&—é@gUo,(ﬁ— 2 Up 00T : .
Ml k83T $ 50T 32Q+Q— L 0QTOQ -

3 —|— k

Q+62Q P — 84J+ CO3JJ
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0=(4— k)BT —6: 8" —2: Uiyt —2: 0usi)"
+2: 200 Boo s +: 08, Q" -,

2+k
0 2(16 - k‘)Ug,o - (8 + k)aULQ —6: JUl,O : —&-%82%’0—&- : J8U0,0 :

k 1 _
—:UpoUpp:—:0JUpy : —663J ~3 COPJT Zé?gﬁ}]é% =0,

16—k

0= A20—31JA10Z—ZUooAOOZ—Z@JAO,02+3ZU17QQ7

—: U 0@~ +f 927Q -+ x0T sl

16—k
0= 67320-1—2(/{ 4)0B10+3: JB1g :-H2—k)0*Boo—2: JOBoy :

—:Up,0Bo,0 :+T83Q++: J82Q+ 42 U0708Q+ 3 U1’0Q+ :

. 9?QTQ _
k((ﬁ—k)%p—: 140708Q+ i 8BO QQ :—% B o 28())4_28()) Z)

+(k—4)(8U20—|— OTUp : 4@8%  JOVio i —: AooBoy -

20— 13k

LT i 0T ) =4 Vi i+ 02U 0—4:TUy -

+(2—k)(: JUQ,O 4 8JUo 42 Ugo Voo : >+(k —5k—4)9Vy

A+4k—k? Tk—10 _
#82%}0—% 63U0’0+(4—3k)(2 AL()Q—’_ 4 BI,OQ Z)

k2 —26k+32
+ 24

9t =

9%V, 3T
9,0 )— SV

k
(32+3k)(7V270—(1+k;)<8V170— 0+

- TU10 +:J0Vho:+:UpoVoo: 4+ : B1,oQ :+: AooBoo:

- 5 OPTJ 41 ApoQt 7683UO,07 L 0T Uy - ) 32Tk

160 + 19k + 22
2

+ k(k L JOULg =2 UpoUrg: —: 0°JUpg s +: 050 TS0 )

B+ k)(Bk-32),, 32+Tk

4 S
o1 0°J 12 :0°JJ = 0.

: JUQ,O :

32k (A7)

— (324 11k + 2k*)0Us o + 0*Uy o + :0JUL g




T. CREUTZIG, A. R. LINSHAW, W. RIEDLER

B. Singular fields in V¥*(ns)Y®

In this Appendix as well as the next one, the symbol  is used to indicate
equality up to multiplication by a non-zero constant over the base field which is

assumed to be C throughout the article.
Level k = —5/2
1 3
U270 — Vl,O + 58‘/0,0— : JVO_’O : *8U1’0 + 182(]070* : U()’()Uo_’o :

:TUpp: +:0JUp g : :JJUOO:—éazT—s—%:TT:
f:Taj:—f:TJJ —763J—f 8JoJ : +i 8JJJ -
——:JJJJ: +f oQRTQ ™ : —= Q+8Q 4+ JQTQ

16
—2.Q+A0,0.+2.Q BO,O L.

Level k = —3/2
4U0)0 — 2T — 28J+ cJJ o

—4U170+68U0,0+41JU070 : —38T—4:TJ:—|—:JJJ:+2:Q+Q_ .

Level k = —4/3
T av L e —teun, - tow,
9 2,0 3 1,0 0,0 0,0 - 9 1,0 9 0,0

1
—4: U()’OU0,0 : +£ : Tono t 44 8JU0 0:—2: JJU()’O : +%({92T

3

23 8. . 4 3 % 2 .
~ g T =5 :T0T 45 TTT: + a 5 ORI

11 :0J0J : +0JJJ : i JJJJ:+§:8Q+Q_:

- g :QToQ™ - —&—5 2 JQTQ - Q+A0’0 t4+:Q By -

= w
SRS
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Level k = —2/3

200 88
—77% 8U20+7 JU20 8V10—§IJV1’02

32 200
32U10+ J3U10 _,_7 U00U10 9 TU10:
116 116
:0JUL +— JJUy ——82V00+— JVo

112
:Up oVi — TVyo: —:8JV :——(“)U
0,0Y0,0 : + 9 0,0 : 3 0,0 57 0,0

16 28 2
8UO’0U0’0 : +§ : TaU0,0 : +§ : 8J6U0’0 :

3
112
Jano +16 : JUO0U00—16 8TU00 TJU070:

3
56 292
+ = 1 UpoQTQ™ 1 +== 5 0% JUpg - =16 : 3JJUp g :

3
116 3 56
+8:JJJUgo : +—83 C 0T +§ aTdJ -

56 112 742 56
- TT :TQTQ~ - TH? . T
5 J: - QTQ 5 9%J +5 8JJ

28 88 88 112
cTJJT cA10QT i+ — 1 B1oQ i ——= 1 0A00Q " :
'3 9 ’ 9 9 ’
112 28
+16: Ag0Boy : g ¢ : Ao, 00QT : —=— s J Ay, 0Q7
112 112 28 _
1 0By 0Q~ 9 : By, o0Q~ +* JBy Q™ :

JO?Uy o :

w\ww‘ﬁw\oow\oo

62Q+Q + :0QTOQ™ - =.J0QTQ :
Q+82Q + JQToQ™ - : aJQ+Q— :

113 190
9

+—84J——:83JJ: 82J8J +t 9%JJJ -

9
1
7 20JOJT —4:0JJJJ 4+ JJJJJ .

Level k = —1/2

4U1,0 — 5V0,0 - 28U0,0 + 8: JUO,O :—10:TJ:

B.6
+70%T —4:0JJ :42:JJJ :+5:QTQ ™ :, (B-6)

— 3U270 + 5V1’0 + 48U170+ : JUL(] : —82U0,0
—: J8U070 ;=8 U070U070 :4+10: TU070 t 45 8JU070 :

2
—2:JJUoo: +§63J —4:0%JJ:45: QT Agp : .
Level k =1
(E )@ Z0T o —2Uno + 8+ : JJ -, (B.8)
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(Eé?())f))(g)Eé?())Jg X 30U1,0 — 188U0_’0 —12: JU070 :
+:JJJ +9:0JJ 4482,

(Z 0 0.0) (0 St h0 0 — 480Uz, + 5648U; o — 1740°Uy g
+ 36 : Up,oUp,o : +288 : JU 0 :
—180: JOUy : =36 : JJUp o : (B.10)
—72:0JUpg:4: JJJJ: +30:0JJJ :
+39:0J0J : +58: 9%JJ : +210°J.

Level £k = 2
(26?35)(3)2803;6 X 12U17() — 68U0,0 —6: JUO’() : (B 11)
+ 02T +3:0JT:+:JJJ
(S0 0.0)@ESaho 0 — 252Us 0 + 2769U; o — 840°Up o
+ 18 : ono, on() . +156 : JUl,O :
—90:J0Uyp:—24:JJUyyp : (B.12)
—30:0JUpp :+:JJJJ:
+18:0JJJ : +15:0J0J :
+25:0%JJ : +119%J.
Level K =3
(S0 0.0) @S 0h 0 0 — 90Us 0 + 909U, o + 60 : JU, o : —270%Up g
—30: J8U070 :+6: UO.,OUO,O :—6: 8JU070 : (B].?))

—12: JJUgp : +40°J +7:0°JJ :
+30J0J 1 4+6:9JJT 4 JIJJ ;.

Level Kk =4

Note that the field Us ¢ appears in the expression below. Using A.1 we see that the
singular field induces a decoupling relation for the field V5 o in the simple quotient.

(200 0.0.0) (1) Eea b 0.0 0 880U, — 13200Uz 9 + 108082U7 9
—2800%U0,0 — 120 : Uy oUoo : +60 : 0Uy oUp o :
+30: JUpoUp o : —660 : JUsz g : +660 : JOU, g :
— 240 : JO*Up g : +60: 0JU; g : —60 : JOUy g :
+180: JJU 1 : =90 : JJOUyo : —20: JJJUy :
—30:0JJUp : +10: 82JU070 e+ JJJIT
+10:9JJJJ : +15:0J0JJ : 425 : 9*JJJ :
+10:0%J0J : +55: 03JJ : +519%.

(B.14)
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C. Singular fields in V*(n4)%/2%

Note that some singular fields in this section involve the strong generator Us

which decouples at all levels k # 16 (see A.3).
Level k = —5/2

1 3
Uso—Vio+ §3V0,0— s JJVoo: —0U o + 132(]0,0— :Up,oUo o :

1
—:TU0,0:+:6JU0,0:——:JJUOO:—§82T+%:TT:
1 1 1
+§:T8J:—1:TJJ —fadj—f a0JoJ : +1 0JJJ :
—1—6 cJJJT +f QR TQ ™ — :Q*@Q*:+:JQ+Q*;

—2.Q+A0,0.+2.Q Boo : .
Level k = —3/2
4U070—2T—23J+2JJZ,

—4U, o +60Uq o +4: JUpg : —30T
—4:TJ:+:JJJ:+2:QTQ -,
—580 T + 300t JZ T 42 QTR -
Level k = —4/3
—1811Ua0 + 12V190 — 60V — 9 : JVpo : +6910U1 o
+630: JUo: —18: QT Agg: +18: Q By : —440°*Up o

—105: JOUy : +33 : Uy oUo,o : +96 : TUp o : +177: 0JUp o :
—36:JJU(),O:—|—f(92T—23:TT:—48:T6J:+24:TJJ:

—105: 35, 2R+ —8‘3J—— 8.JOJ : +18 : 0JJ.J :

— g S JJJT  424:0QTQ T —24:QTOQ ™ :4+9:JQTQ .

Level k = —1/2
4U1’0 — 5‘/})’0 — 28U070 +8: JU(),O —10:TJ :
+70°T —4:0JJ :42:JJJ:4+5:QTQ ™ «,

~158 (0t 4808y 2 as) T Qs

Level k =1

(S50 )@ Shn " oc —2Uno +8J+: JJ ¢,

(=00 0)3) S50 o< 30U 0 — 180Ug0 — 12 : JUg :
4+ JJJT:+49:0JJ : +49%J.

(C.5)

(C.10)
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Level £k = 2
(60.0)) Z00.0 & 1210 ~ 60000 — 6 : TUpyo (C.11)
+0%T+3:0JJ:+:JJJ:,
S = UpoShy ™ 4+2: 0I5 (C.12)
Level Kk = 3
4SOt =2 U oSyt - 450750
2,0 0,040,0 0,0 (0.13)

—8:JOZ T = 0Is0) T 43 JTs
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