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Abstract. Various aspects of orbifolds and cosets of the small N = 4 superconformal
algebra are studied. First, we determine minimal strong generators for generic and specific
levels. As a corollary, we obtain the vertex algebra of global sections of the chiral de Rham
complex on any complex Enriques surface. We also identify orbifolds of cosets of the small
N = 4 superconformal algebra with Com(V `(sl2), V `+1(sl2) ⊗W−5/2(sl4, frect)) and in
addition at special levels with Grassmanian cosets and principal W-algebras of type A
at degenerate admissible levels. These coincidences lead us to a novel level-rank duality
involving Grassmannian supercosets.

1. Introduction

The small N = 4 superconformal algebra V k(n4) at level k is a highly interesting
family of vertex operator superalgebras. It is defined as the minimal W-super-
algebra of the universal affine vertex superalgebra V −k−1(psl2|2) of psl2|2 at level

−k − 1, and its affine subalgebra is the universal affine vertex algebra V k(sl2)
of sl2 at level k. Moreover, it has four dimension 3/2 odd fields, hence the name
N = 4 superconformal algebra. This algebra is a key ingredient in various problems
of physics, as string theory on K3 surfaces [ET88] and hence Mathieu moonshine
[EOT11], the AdS3/CFT2 correspondence [Mal99] and as chiral algebras of certain
four-dimensional super Yang–Mills theories [BMR19]. At level k = 1, the simple
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quotient L1(n4) of V 1(n4) appears as the algebra of global sections of the chiral
de Rham complex of K3 surfaces [Son16]. More generally, for all integers n ≥ 1 it
is expected that Ln(n4) coincides with the algebra of global sections of the chiral
de Rham complex of 2n complex-dimensional hyper-Kähler manifolds, see, e.g.,
[Hel09].

V k(n4) is exceptional in the sense that its group of outer automorphism is SL(2),
i.e., not a finite group. It is surely important to gain a better understanding of
vertex algebras related to N = 4 superconformal algebras. In this work, we study
invariant subalgebras of V k(n4), while in [CFL19] it is studied how small and also
large N = 4 superconformal algebras can themselves be realized as cosets.

One of our main motivations is to determine the algebra of global sections of
the chiral de Rham complex on Enriques surfaces.

1.1. Chiral de Rham complex of Enriques surfaces

It was shown in [MSV99] that there exists a natural way to attach a vertex
superalgebra valued sheaf ΩCdR, named the chiral de Rham sheaf, to any smooth
scheme X of finite type over C. It comes equipped with a square-zero differential
d, and there exists a canonical embedding of the de Rham complex (ΩdR, ddR) ↪→
(ΩCdR, d) which is a quasi-isomorphism. The cohomology H∗(X,ΩCdR) with co-
efficients in ΩCdR is always a vertex algebra, and the space of global sections
H0(X,ΩCdR) is a vertex subalgebra. For any X, H0(X,ΩCdR) has a conformal
structure, and if the first Chern class vanishes this extends to an N = 2 super-
conformal structure. Moreover, if X is hyper-Kähler, this is further enhanced to
an N = 4 structure on H0(X,ΩCdR) with central charge c = 3 dimC(X) [Hel09].
Additional structures on H∗(X,ΩCdR) such as a chiral version of Poincaré duality
are known to exist [MS99b]. It has been shown that this sheaf has connections to
elliptic genera [BL00], [MS03], mirror symmetry [Bor01], and physics [Kap05].

Unfortunately, examples where the vertex algebra structure of H∗(X,ΩCdR) is
understood are still lacking. Even the structure of H0(X,ΩCdR) is only known
in a few cases. For example, when X is a K3 surface it was shown in [Son16]
that H0(X,ΩCdR) is isomorphic to the simple N = 4 vertex algebra L1(n4), which
has central charge c = 6.1 (See also [MS99a] where H0(PN ,ΩCdR) was computed

as a ŝlN+1-module.) Recently some progress was made in [Son18] where for X a
compact Ricci-flat Kähler manifold H0(X,ΩCdR) was shown to be isomorphic to
a subspace of a βγ − bc-system that is invariant under the action of a certain Lie
algebra. A first motivation for this article is to provide a further example to this
list by concretely constructing the vertex algebra of global sections of ΩCdR on any
complex Enriques surface. The following is shown in Corollary 6.3 and Remark 7.2

Theorem 1.1. The vertex algebra of global sections of the chiral de Rham complex

on a complex Enriques surface is of type W
(
1, 2, 44; 3

2

2
, 72

2)
. This means that it has

a minimal strong generating set consisting of one even field in weight 1, one even
field in weight 2, four even fields in weight 4, two odd fields in weight 3/2, and two
odd fields in weight 7/2.

1See the preceeding work [Son15] for the construction restricting to Kummer surfaces.
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Any complex Enriques surface X can be constructed as the quotient of a K3
surface by a fixed-point free involution. Let ι be such an involution on a K3 surface
Y . The action of the involution lifts to an action on the sheaf ΩCdR and to its
cohomology via automorphisms on the vertex algebra. A general construction of
the chiral de Rham complex on orbifolds was given in [FS07]. For K3 surfaces the
automorphism on the vertex algebra induced by ι was already stated in [Son16].
The vertex algebra of global sections on Enriques surfaces is given by the fixed
point set under this involution H0(X,ΩCdR) = H0(Y,ΩCdR)ι (see Theorem 6.6 in
op. cit.).

1.2. Invariant subalgebras of the small N = 4 superconformal algebra

It is useful to place the problem of describing the Z/2Z-orbifold of L1(n4) in
the larger context of orbifolds of V k(n4) under general reductive automorphisms
groups, and cosets of V k(n4) by general subalgebras. These problems have in fact
been considered in [ACKL17] for a general minimal W-algebra. By Theorem 4.10
of [ACKL17], for any simple g and any reductive automorphism group G, the coset
Wk(g, fmin)G is strongly finitely generated for generic values of k. Additionally, the
coset of Wk(g, fmin) by its affine subalgebra is also strongly finitely generated for
generic k; see Theorem 4.12 of [ACKL17]. However, these results are nonconst-
ructive, and it is useful to give explicit minimal strong generating sets in specific
cases. In this paper, we will give minimal strong generating sets for V k(n4)Z/2Z

and V k(n4)U(1) for generic values of k, and also determine the set of nongeneric
values where our description fails. We also correct the description of the coset
Ck = Com(V k(sl2), V k(n4)) that appeared in [ACKL17]; it is in fact of type
W(2, 33, 4, 53, 6). Furthermore, we show that Ck has an additional action of U(1)
coming from the outer automorphism group of V k(n4), and that (Ck)U(1) is of
type W(2, 3, 4, 5, 6, 7, 8). It arises as a quotient of the universal two-parameter
W∞-algebra constructed in [Lin17], and we identify it as a one-parameter VOA
with another, seemingly unrelated coset, namely,

Com(V `(sl2), V `+1(sl2)⊗W−5/2(sl4, frect)),

where k and ` are related by k = −(`+ 1)/(`+ 2). Finally, using this identification,
we classify all isomorphisms between the simple quotient (Ck)U(1) and various other
structures such as type A principal W-algebras, generalized parafermion algebras,
and cosets of type A subregular W-algebras.

1.3. A new level-rank duality

Coincidences between (Ck)U(1) and principal W-algebras of type A appear at
negative half-integer levels k. On the other hand these principal W-algebras of type
A also appear as cosets by [ACL19] and these cosets at positive integer level enjoy a
nice level-rank duality with Grassmannian cosets [OS14]. We found an extension of
this picture to negative integral levels and Grassmannian supercosets. Let Lr(slm)
denote the simple quotient of V r(slm) and H(1) the rank one Heisenberg vertex
algebra. Our Theorem 8.1 is
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Theorem 1.2. Let r, n,m be positive integers. Then there exist vertex algebra ex-
tensions A−n(slm) and Am(slr|n) of homomorphic images Ṽ −n(slm) and Ṽ m(slr|n)
of V −n(slm) and V m(slr|n) such that the level-rank duality

Com
(
V −n+r(slm), A−n(slm)⊗ Lr(slm)

)
∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1), Am(slr|n)

)
holds.

It is natural to ask if the statement of the Theorem can be improved, i.e., one
could ask for a level-rank duality of the form

Com
(
V −n+r(slm), Ṽ −n(slm)⊗ Lr(slm)

)
??∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1), Ṽ m(slr|n)

)
.

Answering this question amounts to a better understanding of embeddings of the
involved vertex superalgebras in the rank rm bc-system times the rank nm βγ-
system, i.e., improving the results of [LSS15].

1.4. Organization

The structure of the paper is as follows. In Section 2 some necessary background
of the theory of vertex algebras is recalled and some notation is fixed. Then we
quickly prove in Section 3 that the group of outer automorphisms of V k(n4) is
SL(2). Sections 4 and 5 contain the construction of a few vertex algebras, the most
important ones being V k(n4)U(1) and V k(n4)Z/2Z. In Section 6 some structure of
the two central orbifolds from the previous sections are discussed and their simple
quotients at all but finitely many levels k are determined. In Section 7 we determine
cosets of V k(n4) by its affine subalgebra at generic and specific levels. In particular,
we identify its U(1) orbifold with Com(V `(sl2), V `+1(sl2)⊗W−5/2(sl4, frect)) and
in addition at special levels with Grassmanian cosets and principal W-algebras of
type A at degenerate admissible levels. The last section then discusses the new
level-rank duality.

2. Background

2.1. Vertex algebras

We assume that the reader is familiar with the basics of the theory of vertex
algebras which has been discussed from multiple angles in the literature, some of
which can be found in [Bor86], [FB01], [Kac01], [LZ95]. Given an element a in a
vertex algebra A, the corresponding field will be denoted by

a(z) =
∑
n∈Z

anz
−n−1 ∈ End(A)[[z, z−1]].

The elements an ∈ End(A) will be called the modes of a(z). We often drop the
formal variable z and identify a with a(z) when no confusion can arise. Given
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a, b ∈ A, the normally ordered product will be denoted by : ab :, and the nth

product will be denoted by a(n)b for n ∈ Z. Letting ∂ denote the translation
operation ∂/∂z, we have : (∂na)b : = n!a(−n−1)b, and in particular : ab : = a(−1)b.

For n ≥ 0, the nth product gives the pole of order n + 1 in the operator product
expansion (OPE) formula:

a(z)b(w) ∼
∞∑
n=0

(a(n)b)(w)

(z − w)n+1
. (2.1)

Here ∼ means equal modulo terms which are regular at z = w.
Let V be a vertex algebra. A set of fields S is said to strongly generate V if it

generates V as a differential algebra under normally ordered product. This means
that every field of V can be written as a normally ordered polynomial in the fields
in S and their iterated derivatives. If S is a minimal set with this property, and
consists of ni even fields of weight di for i = 1, . . . , r, and mj odd fields of weight
ej for j = 1, . . . , s, we say that V if of type

W(dn1
1 , . . . , dnr

r ; em1
1 , . . . , ems

s ).

2.2. Examples

In this subsection, we mention a few basic examples we shall need. First, let H(n)
be the Heisenberg vertex algebra of rank n. It is generated by even fields hi(z),
i = 1, . . . , n, which satisfy OPEs

hi(z)hj(w) ∼ δi,j
(z − w)2

.

The Virasoro element L(z) = 1
2

∑n
i=1 : hi(z)hi(z) : has central charge n, and all

generating fields are primary of weight 1. The automorphism group Aut(H(n)) is
isomorphic to the orthogonal group O(n).

Let A(n) be the symplectic fermion vertex algebra of rank n. It is generated by
odd fields ei(z), f i(z), i = 1, . . . , n, which satisfy

ei(z)f j(w) ∼ δi,j
(z − w)2

, f i(z)ej(w) ∼ − δi,j
(z − w)2

.

The Virasoro field L(z) = −
∑n
i=1 : ei(z)f i(z) : has central charge −2n, and all

generating fields are primary of weight 1. The automorphism group Aut(A(n)) is
isomorphic to the symplectic group Sp(2n).

Let S(n) denote the βγ-system of rank n. It is generated by even fields βi(z),
γi(z), i = 1, . . . , n, which satisfy

βi(z)γj(w) ∼ δi,j
(z − w)

, γi(z)βj(w) ∼ − δi,j
(z − w)

.

The Virasoro field L(z) = 1
2

∑n
i=1 : βi(z)∂γi(z) : − : ∂βi(z)γi(z) : has central

charge −n, and all generating fields are primary of weight 1/2. The automorphism
group Aut(S(n)) is isomorphic to the symplectic group Sp(2n).
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Let E(n) denote the bc-system of rank n. It is generated by odd fields bi(z), ci(z),
i = 1, . . . , n, which satisfy

bi(z)cj(w) ∼ δi,j
(z − w)

, ci(z)cj(w) ∼ δi,j
(z − w)

.

The Virasoro field L(z) = − 1
2

∑n
i=1 : bi(z)∂ci(z) : + : ∂bi(z)ci(z) : has central

charge n, and all generating fields are primary of weight 1/2. The automorphism
group Aut(E(n)) is isomorphic to the orthogonal group O(2n).

Given a simple finite-dimensional Lie algebra g, the universal affine vertex
algebra V k(g) is generated by fields ξ(z) which are linear in ξ ∈ g and satisfy

ξ(z)η(w) ∼ k(ξ, η)

(z − w)2
+

[ξ, η](w)

(z − w)
. (2.2)

Here (· , ·) denotes the normalized Killing form 1
2h∨ 〈· , ·〉. For all k 6= −h∨, V k(g)

has a conformal vector

L(z) =
1

2(k + h∨)

n∑
i=1

: ξi(z)ξ′i(z) : (2.3)

of central charge

c =
k dim(g)

k + h∨
.

Here ξi runs over a basis of g, and ξ′i is the dual basis with respect to (· , ·). As a
module over ĝ = g[t, t−1]⊕C, V k(g) is isomorphic to the vacuum ĝ-module. If k is
generic, the vacuum module is irreducible and V k(g) is a simple vertex algebra, but
at special values of k it is not simple and we denote by Lk(g) the simple quotient
of V k(g) by its maximal proper graded ideal.

2.3. Filtrations

Let V be a vertex algebra. Suppose that V has a filtration

V(0) ⊂ V(1) ⊂ · · · where V =

∞⋃
n=0

V(n) (2.4)

such that for any two elements a ∈ V(r) and b ∈ V(s) we have

a(n)b ∈

{
V(r+s) for n < 0,

V(r+s−1) for n ≥ 0.

Such filtrations were introduced by H. Li [Li04], and are known as good increasing
filtrations. Setting V(−1) = {0}, the associated graded algebra

gr(V) =
⊕
i≥0

V(i)/V(i−1)

is a graded, associative, (super-)commutative unital ring with a derivation where
the multiplication is induced from the Wick product. We refer to such a ring as
a ∂-ring. A ∂-ring A is said to be generated by a set {ai ∈ A | i ∈ I} if the set
{∂nai | i ∈ I, n ≥ 0} generate A as a ring.

The following reconstruction property appears as Lemma 3.6 of [LL07]
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Lemma 2.1. Let V be a vertex algebra with a good increasing filtration. Suppose
that gr(V) is generated as a ∂-ring by a collection {ai | i ∈ I}, where ai is homoge-
neous of degree di. Choose vertex operators αi ∈ V(d) such that φdi(αi) = ai. Then
V is strongly generated by the collection {αi | i ∈ I}.

In [ACL17], a slight modification called a weak increasing filtration was intro-
duced. This is a filtration (2.4) on a vertex algebra V as above, where

a(n)b ∈ V(r+s) for n ∈ Z.

Setting V(−1) = {0} as above, the associated graded algebra

gr(V) =

∞⊕
i=0

V(i)/V(i−1)

can be given a vertex algebra structure that is induced from V, which need not be
abelian. As above, a strong generating set for gr(V) gives rise to a strong generating
set for V; see Lemma 4.1 of [ACL17] and the discussion following it.

2.4. Associative G-modules and orbifolds

We will make use of an isomorphism that can be found in [KR96]. For similar work
see also [DLM96]. We recall here the result that will be used later on.

Let A be an associative algebra over C. Furthermore, let G be a reductive
group and let φ : G → Aut(A) be a group homomorphism. If a G-module V is
simultaneously an A-module that is G-equivariant, i.e.,

g(av) = (φ(g)a)(gv) for g ∈ G, a ∈ A, v ∈ V,

then we call V a (G,A)-module. Let A0 ⊂ A be the subalgebra that is invariant
under the G-action. Assume that V is a direct sum of at most countably many
finite-dimensional, irreducible G-modules. Let M ⊂ V be such a module and set
VM =

⊕
iMi to be the sum of all G-submodules of V which are isomorphic to

M . The action of A0 and G commute which implies that VM is an A0-module. In
particular, the action of A0 viewed as a map from M given by m 7→ am for a ∈ A0

shows that this map is a G-homomorphism. Choosing a 1-dimensional subspace
f ⊂ M fixes unique 1-dimensional subspaces fi in all other G-modules Mi ⊂ VM
by Schur’s Lemma. Schur’s Lemma further implies that acting by any a ∈ A0

on f then either yields one of these subspaces fi ⊂ Mi or zero. Letting VM =⊕
i fi ⊂ VM , we have that VM is an A0-module. This leads to an isomorphism

VM ∼= M ⊗ VM of (G,A0)-modules. Therefore,

V ∼=
⊕
M∈S

VM ∼=
⊕
M∈S

M ⊗ VM ,

is a (G,A0)-module isomorphism where S is the set of equivalence classes of simple
G-modules. We need the following result, which is the same as Theorem 1.1 of
[KR96] and has the same proof, except that it is stated for (G,A)-modules rather
than (g, A)-modules.
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Theorem 2.2. Let A be a semisimple G-module and let V be a (G,A)-module
such that

(1) V is irreducible as an A-module.
(2) V is a direct sum of at most countably many finite-dimensional irreducible

G-modules.

Then each isotypic component VM is an irreducible (G,A0)-module. Equivalently,
each VM is irreducible as an A0-module.

Later on we will make use of this isomorphism in the context when A is the
algebra of modes which span the vector space of a vertex algebra and view it as a
module over itself.

2.5. Associated vertex algebra to n4

In this article we denote the small N = 4 superconformal algebra by n4 and its
associated vertex superalgebra at level k by V k(n4). Note that here the level refers
to the level of the affine subalgebra. V k(n4) is actually the minimal W-superalgebra
of psl2|2 at level −k− 1. It has strong generators J, J±, T,G±,x for x = 1, 2, which
satisfy the following OPE relations:

T (z)T (w) ∼
1
2c

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
,

T (z)G±,x(w) ∼
3
2G
±,x(w)

(z − w)2
+
∂wG

±,x(w)

(z − w)
,

T (z)X(w) ∼ X(w)

(z − w)2
+
∂wX(w)

(z − w)
for X ∈ {J, J±},

J(z)G±,x(w) ∼ ±G
±,x(w)

(z − w)
, J±(z)G∓,x(w) ∼ (−1)x

G±,x(w)

(z − w)
,

J(z)J(w) ∼ 2k

(z − w)2
, J(z)J±(w) ∼ ±2J±(w)

(z − w)
,

J±(z)J∓(w) ∼ k

(z − w)2
± J(w)

(z − w)
,

G±,2(z)G±,1(w) ∼ 2J±(w)

(z − w)2
+
∂wJ

±(w)

(z − w)
,

G∓,2(z)G±,1(w) ∼
1
3c

(z − w)3
∓ J(w)

(z − w)2
+
T (w)∓ 1

2∂wJ(w)

(z − w)
.

(2.5)

From here onwards we adopt the following conventions:

Q+(z) = G−,2(z), G+(z) = G+,2(z),

Q−(z) = G+,1(z)2, G−(z) = G−,1(z).

Note that {J, J±} and {J, T,G±} generate copies of V k(sl2) and V k(n2), respec-
tively, inside V k(n4).
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3. Automorphisms of V k(n4)

For later use, we determine the group of automorphisms G of V k(n4). First,
there is the group of inner automorphisms GInn obtained by exponentiating the
zero modes of the weight 1 fields; this is a copy of SL(2). Since the affine subalgebra
V k(sl2) has no outer automorphisms, the outer automorphism group GOut of
V k(n4) is just the subgroup of G consisting of automorphisms that fix V k(sl2)
pointwise.

Lemma 3.1. GOut is a normal subgroup of G, and G is the semidirect product
GOut oGInn.

Proof. Clearly any inner automorphism which fixes V k(sl2) is trivial, soGInn∩GOut

is trivial. Let ω ∈ G. The restriction of ω to V k(sl2) is an automorphism of V k(sl2),
which has only inner automorphisms, so there exists α ∈ GInn such that ω = α on
V k(sl2). Letting β = α−1ω and γ = ωα−1, it is easy to see that β, γ ∈ GOut and
are the unique elements of GOut such that αβ = ω = γα. The normality of GOut

is obvious from the definition, so the claim follows. �

By weight considerations, GOut must act linearly on the weight 3/2 subspace,
which is the span of {G±, Q±}, and since it preserves OPEs between the weight 1
fields and weight 3/2 fields, it must preserve the two-dimensional spaces {G+, Q−}
and {Q+, G−}. Using the fact that GOut preserves OPEs between the weight 3/2
fields, it is not difficult to check that ω ∈ GOut must have the form

ω(G+) = a0G
+ + a1Q

−, ω(Q−) = b0G
+ + b1Q

−, (3.1a)

ω(Q+) = a0Q
+ − a1G−, ω(G−) = −b0Q+ + b1G

−, (3.1b)

for constants a0, a1, b0, b1 ∈ C, where a0b1− a1b0 = 1. One can then identify GOut

with SL(2) via ω 7→
(
a0 b0
a1 b1

)
. Moreover, it is easy to verify that GOut commutes

with GInn. We obtain

Theorem 3.2. The automorphism group G of V k(n4) is isomorphic to SL(2) ×
SL(2).

4. Construction of the vertex algebras

In this section we construct the orbifolds of V k(n4) and for this we use ideas
from [AL17], [ACL17], [CL18]. In order to describe the Z/NZ-orbifolds, it will
be convenient to first describe the orbifold under a certain copy of U(1) which
contains all these cyclic groups as subgroups. We are interested in a U(1)-action
that corresponds to a maximal torus of a diagonal SL(2) inside the automorphism
group SL(2)× SL(2). Concretely, λ ∈ U(1) acts as multiplication by λ on G+ and
J+, multiplication by λ−1 on G− and J− and it leaves the remaining generators
Q±, J and T invariant. Note that restricting to the subgroup Z/2Z ⊆ U(1) at level
k = 1 yields the automorphism on H0(X,ΩCdR) on a K3 surface X that is induced
from a fixed point free involution as mentioned in the introduction.

Our strategy will be to first find minimal strong generating sets for the subalgeb-
ras V k(sl2)U(1) and Vk(n2)U(1) of V k(n4)U(1). Then we will use these to construct
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a minimal strong generating set for V k(n4)U(1). Next, since Z/NZ is a subgroup
of U(1), we may regard V k(n4)Z/NZ as a V k(n4)U(1)-module. Using this module
structure, we will give a generating set for V k(n4)Z/NZ for all N . In the case
N = 2, we will obtain a minimal strong generating set for V k(n4)Z/2Z. Finally,
using the structure of singular vectors in the simple orbifold Lk(n4)Z/2Z, we will
obtain minimal strong generating sets for Lk(n4)Z/2Z at all values of k.

4.1. Construction of V k(sl2)U(1)

We begin by determining the U(1)-orbifold of the vertex subalgebra V = V k(sl2)
that is generated by {J, J±}. The structure of this algebra is well known (see
Theorem 2.1 of [DLWY10]), but we provide details for the benefit of the reader.
First, V has a good increasing filtration

V(0) ⊂ V(1) ⊂ V(2) ⊂ · · · , V =
⋃
r≥0

V(r),

where V(r) is spanned by all iterated normally ordered monomials in the generators
J, J± and their derivatives, of length at most r. We defined V(−1) = {0}; then

gr(V)=
⊕
r≥0

V(r)/V(r−1)∼=C[J, ∂J, ∂2J, . . . , J−, ∂J−, ∂2J−, . . . , J+, ∂J+, ∂2J+, . . .]

as ∂-rings, that is, differential commutative rings. Since U(1) acts linearly on the
generators, this action preserves the filtration. By restriction, we obtain a filtration
on the orbifold VU(1):

V
U(1)
(0) ⊂ V

U(1)
(1) ⊂ V

U(1)
(2) ⊂ · · · , V

U(1)
(i) = VU(1) ∩ V(i).

Moreover, since U(1) preserves the filtration on V, it is apparent that

gr(V)U(1) ∼= gr
(
VU(1)

)
.

The commutative ring gr(V)U(1) is spanned by monomials of the form

∂i1J · · · ∂irJ∂j1J+ · · · ∂jsJ+∂k1J− · · · ∂ksJ−.

These can all be generated by {∂iJ}∞i=0 together with the quadratics {ui,j =
∂iJ+∂jJ−}∞i,j=0. From the point of view of ∂-rings, there is some redundancy in
this generating set due to the Leibniz relations ∂ui,j = ui+1,j +ui,j+1. It is easy to
verify that sets {∂kun,0}∞n,k=0 and {ui,j}∞i,j=0 span the same vector space, so that

{J, un,0}∞n=0 also generates gr(V)U(1) as a ∂-ring. In fact, it is easy to verify that
this is a minimal generating set for gr(V)U(1) as a ∂-ring.

We now define the corresponding fields

Ui,j(z) = : ∂iJ+(z)∂jJ−(z) : ∈ VU(1). (4.1)

Lemma 4.1. VU(1) is strongly generated by the fields {J(z), Un,0(z)}∞n=0.
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Proof. Since the corresponding elements {J, un,0}∞n=0 generate gr(V)U(1) as a ∂-
ring, this follows immediately from Lemma 2.1. �

Even though {J, un,0}∞n=0 is a minimal generating set for gr(V)U(1) as a ∂-
ring, it turns out that a much smaller set than {J(z), Un,0(z)}∞n=0 is needed to
strongly generate VU(1) because of the existence of decoupling relations arising from
quantum corrections to classical relations. Observe that the following relations hold
in the commutative ring gr(V)U(1):

ua,buc,d − ua,duc,b = 0.

However, the corresponding normally ordered expression

: Ua,bUc,d : − : Ua,dUc,b :

in VU(1) does not vanish due to the noncommutativity and nonassociativity of the
Wick product, and it requires a correction. By weight considerations, we may write

: Ua,bUc,d : − : Ua,dUc,b : = cNUN,0 + f(J, U0,0, . . . , UN−1,0)

for some scalar cN where a+ b+ c+d+ 2 = N and f is a sum of normally ordered
monomials in the fields J, U0,0, . . . , UN−1,0 and their derivatives. The Leibniz rule

yields the identity Ua,b =
∑b
i=0(−1)i

(
b
i

)
∂b−iUa+i,0, and similarly for Uc,d. This

implies that the last equality can be rewritten

cNUN,0 = g(J, U0,0, . . . , UN−1,0),

where g is again a normally ordered polynomial in J, U0,0, . . . , UN−1,0 and their
derivatives. This shows that UN,0 can be written as a normally ordered polynomial
in strong generators of lower conformal weight and their derivatives, provided that
cN does not vanish. Following [ACL17] we will refer to such an expression as a
decoupling relation.

What follows are two technical Lemmas which will serve as a preparation for the

proof of Proposition 4.4. For some n ∈ N we may write a given element ω ∈ V
U(1)
(2)

of conformal weight n+ 2 in the form

ω = gω(J, U0,0, . . . , Un,0),

where gω is a sum of normally ordered monomials in J, U0,0, . . . , Un,0, and their
derivatives. Such an expression is not unique due to the existence of decoupling
relations as well as different conventions for normal ordering. Let the coefficient of
Un−i,i in gω be denoted by cn,i(ω) and define

cn(ω) =

n∑
i=0

(−1)icn,i(ω).

Lemma 4.2. For any ω ∈ V
U(1)
(2) of weight n+5 for n ∈ N the coefficient of Un+3,0

appearing in gω is independent of all choices of normal orderings and is equal to
cn+3(ω).
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Proof. The proof is analogous to the proof of Lemma 5.2 in [ACL17]. �

Remark 4.1. Note that we use strong generators of the form Un,0 (cf. loc. cit.). We
may simply rewrite these by using the Leibniz rule as above with their difference
being a total derivative. The factor (−1)n does not appear in our case because of
the different choice in strong generators.

Lemma 4.3. Let n ∈ N0 and let Pm denote a sum of normally ordered products
of strong generators of VU(1) of weight less than m and their derivatives. We have

: U0,0U1,n : =

(
2

n+ 2
+

k

n+ 2

)
U1,n+2 −

1

n+ 1
U2,n+1+

+

(
1 +

k

3

)
U3,n +

2

(n+ 1)(n+ 2)(n+ 3)
Un+3,0 + Pn+5,

: U0,nU1,0 : =
( 2

n+ 2
+
k

2

)
U1,n+2 − U2,n+1+

+

{
2

(n+1)(n+2)(n+3)
+(−1)n

( 1

n+1
+

k

n+3

)}
Un+3,0+Pn+5.

Proof. The proof is a straightforward computation using only the definition of
normal ordering and the commutation relations of ŝl2 at level k. �

Proposition 4.4. For any non-vanishing level k the vertex algebra V k(sl2)U(1) is
of type W(1, 2, 3, 4, 5). A set of minimal strong generators is {J, Un,0}3n=0.

Proof. We consider relations of the form

ωn
def
= : U0,0U1,n − U0,nU1,0 :

for n ∈ N. The quadratic term vanishes due to the relation u0,0u1,n− u0,nu1,0 = 0

in gr(V)U(1), so ωn ∈ V
U(1)
(2) . Writing ωn as a sum of normally ordered monimials

in J, U0,0, . . . , Un+3,0 and their derivatives, the coefficient of Un+3,0 is canonical in
the sense of Lemma 4.2. Due to Lemma 4.3 it can be easily computed and equals

cn+3(ωn) = (−1)n+1k
n(n+ 5)

6(n+ 2)(n+ 3)
.

This shows existence of a decoupling relation for Un+4,0 for all n ∈ N0 at any
non-vanishing level k. Hence, V k(sl2)U(1) is strongly generated by {J, Un,0}3n=0 for
k 6= 0. Since there are no relations in gr(V)U(1) among J, un,0 for n ≤ 3, there can
be no further decoupling relation among the above strong generators. �

4.2. Construction of V k(n2)U(1)

The last Proposition can be used to prove a similar statement about V k(n2)U(1).
It will be convenient to introduce the following fields

Va,b
def
= : ∂aG+∂bG− : .
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Proposition 4.5. For any level k 6= 0,−2 the vertex algebra V k(n2)U(1) is of type
W(1, 2, 3, 4, 5). A set of minimal strong generators is {J, T, Vn,0}2n=0.

Proof. Denote the standard strong generators of V k(sl2) by {H,X±} and let E be
the bc-system of rank 1. Considering the tensor product V k(sl2)⊗E, we will abuse
notation and denote the strong generators by the same symbols. Let K = 1

2H− :
bc :. The zero mode K0 integrates to a U(1)-action on V k(sl2)⊗ E. Lemma 8.6 in
[CL19] shows that if k 6= −2 then

V `(n2) ∼= Com(H1, V
k(sl2)⊗ E) (4.2)

with central charge 3k/(k + 2) where H1 is the Heisenberg vertex algebra generated
by K. The zero mode H0 integrates to a U(1)-action as well. Denote the group
associated to the zero mode of K (resp. H) by G1 (resp. G2) and let H2 be the
Heisenberg vertex algebra generated by H. We have

H1 ⊗ V `(n2)G2 ∼=
(
(V k(sl2)⊗ E)G2

)G1

∼= (H2 ⊗ Com(H2, V
k(sl2)⊗ E))G1

∼= H2 ⊗ Com(H2, V
k(sl2))⊗ EG1 .

The commutativity of the two group actions was used in the first equality. All G1-
invariant fields in E can be strongly generated by the fields : ∂ib∂jc : for i, j ≥ 0.
By the action of the derivation a set of strong generators is given by {: ∂ibc :}∞i=0.
It is easy to show that the equality

: (: ∂nbc :)(: bc :) : =
n+ 2

n+ 1
: ∂n+1bc : +∂ω

holds for n ≥ 0 where ω is a linear combination of the fields ∂n−i : ∂ibc : for
i = 0, . . . , n. This implies that : bc : strongly generates EG1 . From the above
isomorphism one can deduce

V `(n2)G2 ∼= Com(H1,H2 ⊗ Com(H2, V
k(sl2))⊗ EG1).

It now follows from Proposition 4.4 that the only strong generator of weight 1 is an
element of the commutant Com(H1,H2⊗EG1) which is isomorphic to a Heisenberg
vertex algebra. Hence, V k(n2)G2 is of type W(1, 2, 3, 4, 5). The Heisenberg and the
Virasoro field of V k(n2) are elements of the kernel of H0. The isomorphism in (4.2)
for the weight 3/2 fields is given by

: X+b : 7→ δ+G+, : X−c : 7→ δ−G−, where δ+δ− = 2 + k.

From the action of the zero mode H0 it is immediate that a set of strong generators
of V k(n2)G2 of weight 3, 4 and 5 can be given by {Vn,0}2n=0. �
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4.3. Construction of V k(n4)U(1)

We are now ready to find a minimal strong generating set for V k(n4)U(1), where
λ ∈ U(1) acts as multiplication by λ on G+ and J+, multiplication by λ−1 on
G− and J−, and fixes the remaining generators Q±, J and T . First, we define a
filtration on V k(n4),

V k(n4)(0) ⊂ V k(n4)(1) ⊂ · · · ,

where V k(n4)(n) is spanned by all normally ordered monomials in the generators
J, J±, T,G±, Q± and their derivatives, such that the total number of fields G±, Q±

and their derivatives, is at most n. It is easily verified from the OPE algebra that
this is a weak increasing filtration. Setting V k(n4)(−1) = {0}, let

W = gr(V k(n4)) =
⊕
n≥0

V k(n4)(n).

The OPEs among G±, Q± are now regular in W but the remaining OPEs are
unchanged.

Next, W has a good increasing filtration where W(n) is spanned by all normally
ordered monomials in the generators J, J±, T,G±, Q± and their derivatives of total
length at most n. Clearly gr(W) is just the differential polynomial superalgebra on
these generators and their derivatives. It is evident that the action of U(1) preserves
the weak filtration on V k(n4) as well as the good filtration on W = gr(V k(n4)).
Restricting the filtrations to the U(1) orbifolds, it follows that

gr(V k(n4)U(1)) ∼= WU(1), gr(WU(1)) ∼= gr(W)U(1).

The commutative ring gr(W)U(1) is clearly generated as a ∂-ring by the even
elements J, T, Un,0, Vn,0 together with the odd elements

Q±, an,0 = ∂nJ+G−, bn,0 = ∂nJ−G+, n ≥ 0.

It then follows from Lemma 2.1 and the analogous statement for weak filtrations,
that the corresponding fields in V k(n4)U(1), namely, the even fields J, T, Un,0, Vm,0
together with the odd fields

Q±, An,0 = : ∂nJ+G− :, Bn,0 = : ∂nJ−G+ :, n ≥ 0,

are a strong generating set for V k(n4)U(1).
In particular, note that the vertex algebras from Proposition 4.4 and 4.5 are

vertex subalgebras of V k(n4)U(1). We already have shown that Un,0 and Vm,0 for
n ≥ 4 and m ≥ 3, are unnecessary. Even though U3,0 was needed in V k(sl2)U(1), it
turns out to be unnecessary in V k(n4)U(1) since there exists a decoupling relation
for all non-vanishing levels k; see (A.1). In order to find a minimal strong generating
set for V k(n4)U(1), we shall construct decoupling relations for An,0 and Bn,0 for all
n ≥ 3. The proofs of the following two Lemmas are straightforward computations
and will be omitted.
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Lemma 4.6. Let Pm be a sum of normally ordered products of weight m such that
each summand includes the field ∂iT or ∂jJ , and at most one field ∂kVl,0 for some
i, j, k, l,m ∈ N0. Let n ∈ N0.

k(6+n)

3(3+n)
Vn+3,0 =: V0,0Vn,0 : +k∂Vn+2,0−

(
1

2+2n
+k

)
∂2Vn+1,0+

k

3
∂3Vn,0+Pn+6.

Lemma 4.7. Let n ∈ N0 and let Pm be a sum of normally ordered products of
strong generators of V k(n4)U(1) of weight less than m and their derivatives.

nk

2(n+ 2)
An+2,0 + Pn+ 9

2
= : Un,0A0,0 : − : U0,0An,0 : + : (Un+1,0 − ∂Un,0)Q− :

− 1

n+ 1

n+1∑
i=0

(−1)i
(
n

i

)
: ∂iUn+1−i,0Q

− :

nk

2(n+ 2)
Bn+2,0 + Pn+ 9

2
=

n∑
i=0

(−1)i
(
n

i

){
: ∂iUn−i,0B0,0 : + : ∂iUn+1−i,0Q

+ :
}

− 1

n+ 1
: Un+1,0Q

+ : +(−1)n+1 : U0Bn,0 :

The last Lemma shows the existence of decoupling relations for the fields in the
set {Ai,0, Bi,0}∞i=3. As before it can be checked directly that there are no decoupling
relations for the remaining strong generators. Hence, this yields the following.

Theorem 4.8. For any level k 6= −2, 0 the vertex algebra V k(n4)U(1) is of type

W(1, 22, 32, 42, 5; 3
2

2
, 52

2
, 72

2
, 92

2
). A set of minimal strong generators is given by

{J,Q±, T, Ui,0, Ai,0, Bi,0, Vi,0}2i=0.

5. Construction of the cyclic orbifold

Let U(n4)G be the universal enveloping algebra of n4 that is invariant under the
group G. From here onwards we will restrict the group to be cyclic G ∼= Z/NZ.
As shown in Section 2.4, there are isomorphisms

N−1⊕
i=0

Ci ⊗Wi
∼= V k(n4) ∼=

∞⊕
i=−∞

Ci ⊗ Vi

as a (Z/NZ,U(n4)Z/NZ)-module and as a (U(1),U(n4)U(1))-module, respectively.
By restriction this leads to an isomorphism

Wa
∼=

∞⊕
k=−∞

VkN+a

for a = 0, . . . , N − 1 as a U(n4)Z/NZ-module.
It will be convenient to define the following fields

Y (σ(i)±
a1,...,ajN , z) = Σ(i)±

a1,...,ajN

def
=: ∂a1J± · · · ∂ajN−iJ±∂ajN−i+1G± · · · ∂ajNG± :

for i = 0, . . . , jN and ai ∈ N0.
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Lemma 5.1. The vertex algebra V k(n4)Z/NZ is strongly generated by the strong

generators of V k(n4)U(1) and the fields Σ
(i)±
a1,...,aN for i=0, . . . , N and a1, . . . , aN ≥0.

Proof. Let V± =
⊕

j∈N V±jN and let i = 0, . . . , N . Each vector space VjN for

j ∈ Z\{0} is a U(n4)U(1)-module and generated by the vectors in the set

{σ(i)+
a1,...,ajN }

∞
a1,...,ajN=0.

Note that V0⊕ V+ is a vertex subalgebra of V k(n4)Z/NZ. Due to commutativity of

the fields in the set {Σ(i)+
a1,...,aN }Ni=0, V0 ⊕ V+ is strongly generated by these fields

and the strong generators of V0. By the same argument the vertex subalgebra

V0⊕V− is strongly generated by the fields in the set {Σ(i)−
a1,...,aN }Ni=0 and the strong

generators of V0. Observe that the fields that appear in the OPEs between the
strong generators in VN and V−N are necessarily elements of V0. This proves the
proposition. �

Remark 5.1. If k is generic, V k(n4) is simple, and hence V k(n4)Z/2Z and V k(n4)U(1)

are both simple as well [DLM96]. It follows from Theorem 2.2 that each of the
V k(n4)U(1)-modules Vi is irreducible. In particular, the V k(n4)U(1)-submodule of

VN generated by Σ
(0)+
0,...,0 = : (J+)N :, must be all of VN . Similarly, V−N is generated

by Σ
(0)−
0,...,0 = : (J+)N : over V k(n4)U(1). This implies that V k(n4)Z/2Z is generated

(but not strongly) by : (J+)N : and : (J−)N : together with V k(n4)U(1).

In order to construct a more economical strong generating set for V k(n4)Z/2Z, we

first observe that some of the fields Σ
(i)+
a1,...,ajN are superfluous as strong generators

due to the action of the translation operator ∂. The generating function of the

fields Σ
(l)±
a1,...,aN for fixed l with respect to weight will show which of these can be

neglected as strong generators. It can be obtained by a simple counting argument.

Lemma 5.2. The generating function for the number of fields Σ
(l)±
a1,...,aN with re-

spect to conformal weight is

qN+ l2

2

N−l∏
i=1

1

1− qi
l∏

j=1

1

1− qj
.

Proof. The weight of the field Σ
(l)±
a1,...,aN equals N+1

2 l+a+b for a=
∑N−l
i=1 ai and b =∑N

i=N−l+1 ai. Due to (anti-)commutativity of the fields in the set {∂iJ+, ∂iG+}∞i=0

the number of fields at a given weight is determined by the number of partitions of
a with at most N−l parts and the number of partitions of b with exactly l and with
exactly l − 1 parts such that all summands are distinct in both cases. The latter
condition exists since at most one of the coefficients in the set {aN−i+1, . . . , aN}
can be zero, otherwise Σ

(i)±
a1,...,aN vanishes. �
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Let V(l) be the subspace of V k(n4) spanned by the vectors in the set

{σ(l)±
a1,...,aN }

∞
a1,...,aN=0.

It is obvious that the translation operator ∂ acts on V(l) and increases the conformal
weight by 1. Since we are looking for strong generators, we can eliminate any

elements in the space ∂V(l). Dropping vectors in the set {σ(l)±
a1,...,aN }∞a1,...,aN=0 which

decouple for this reason amounts to multiplying the generating function from
Lemma 5.2 by (1− q).

Next, it follows from Theorem 4.10 [ACKL17] that for generic k, only finitely

many of the fields Σ
(i)±
a1,...,aN are needed to strongly generate V k(n4)Z/2Z. This

ultimately boils down to the fact that each of the modules Vi is C1-cofinite as a
module over V k(n4)U(1); a proof can be given along the lines of Theorems 6.1 and
6.3 of [CKLR19].

It is a difficult problem to determine the minimal set of fields of the form

Σ
(i)±
a1,...,aN that are needed to strongly V k(n4)Z/2Z for all N , but we shall carry this

out in the case N = 2. First, multiplying the generating function from the previous
Lemma by (1− q) yields

l = 0 :

∞∑
i=0

q2n+2, l = 1 :

∞∑
i=0

qn+
5
2 , l = 2 :

∞∑
i=0

q2n+4.

Thus, Lemma 5.1 can be improved upon since a set of strong generators of the
vertex algebra V k(n4)Z/2Z is given by the strong generators of V k(n4)U(1) together

with the fields in the set {Σ(0)±
2n,0 ,Σ

(1)±
n,0 ,Σ

(2)±
2n+1,0}∞n=0. The following Lemma will set

up the proof of Theorem 5.4.

Lemma 5.3. Let n ∈ N and c
(i)
n , d

(i)
n ∈ Q for i = 0, 1, 2. Then we have

: U2n,0Σ
(0)+
0,0 − U0,0Σ

(0)+
2n,0 : = p(0)n (k) Σ

(0)+
2n+2,0+

2n∑
i=0

c
(0)
i : ∂iHΣ

(0)+
2n−i,0 :

: U2n−1,0Σ
(0)+
1,0 − U0,0Σ

(0)+
2n−1,1 : = q(0)n (k) Σ

(0)+
2n+2,0+

2n∑
i=0

d
(0)
i : ∂iHΣ

(0)+
2n−i,0 :

: Σ
(0)+
n,0 B0,0 − Un,0Σ

(1)+
0,0 + Σ

(0)+
n+1,0Q

+ : = p(1)n (k) Σ
(1)+
n+2,0 +

n+1∑
i=0

c
(1)
i : ∂iHΣ

(1)+
n+1−i,0 :

: Σ
(0)+
n,0 B0,0 − U0,0Σ

(1)+
n,0 + Σ

(0)+
n,1 Q+ : = q(1)n (k) Σ

(1)+
n+2,0 +

n+1∑
i=0

d
(1)
i : ∂iHΣ

(1)+
n+1−i,0 :

: B0,0Σ
(1)+
2n−1,0 − Σ

(1)+
2n−1,1Q

+ : = p(2)n (k) Σ
(2)+
2n+1,0+

2n∑
i=0

c
(2)
i : ∂iHΣ

(2)+
2n−i,0 :

: B2n−1,0Σ
(1)+
0,0 +

1

2n
Σ

(1)+
0,2nQ

+ : = q(2)n (k) Σ
(2)+
2n+1,0+

2n∑
i=0

d
(2)
i : ∂iHΣ

(2)+
2n−i,0 :
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p
(0)
n (k) = − 8n

2n + 1
+

n

2n + 2
k,

q
(0)
n (k) =

4

3
+

7 + 2n

6(2n + 1)
k,

p
(1)
n (k) =

2

n + 2

[(
n− 1 + (−1)n

n + 1

)
+ (−1)n

k

2

]
,

q
(1)
n (k) =

1

n + 2

[
(−1)

n + 1
[4n + 5 + (−1)n+1(2n + 1)] +

k

2
[n + 2(−1)n]

]
,

p
(2)
n (k) =

2 + k

2n + 1
,

q
(2)
n (k) =

2 − k

2n + 1
.

Proof. Computing the left-hand side of each of these equations is straightforward
and leads directly to the right-hand side by using only the definition of normal
ordering and the commutation relations of n4 which are equivalent to the OPEs
as stated in (2.5). �

Theorem 5.4. Let k 6= −2, 0, 4, 16. The vertex algebra V k(n4)Z/2Z is of type

W(1, 24, 32, 45; 3
2

2
, 52

4
, 72

4
). A set of minimal strong generators is

S = {H,Q±, T, Ui,0, Ai,0, Bi,0, Vi,0,Σ(i)±
0,0 ,Σ

(0)±
2,0 ,Σ

(1)±
1,0 ,Σ

(2)±
1,0 }1i=0.

At level k = 4 a set of minimal strong generators is S ∪ {Σ(1)±
2,0 }. At level k = 16

a set of minimal strong generators is S ∪ {U2,0, A2,0, B2,0}.
Proof. By Lemma 5.1 and the discussion thereafter the vertex algebra V k(n4)Z/2Z

is strongly generated by the strong generators of V k(n4)U(1) and the fields in the

set {Σ(0)±
2n,0 ,Σ

(1)±
n,0 ,Σ

(2)±
2n+1,0}∞n=0. Observe in Lemma 5.3 that for any i ∈ {0, 1, 2}

the roots of p
(i)
n and q

(i)
n are distinct for all n ∈ N. It follows that the fields

{Σ(0)+
2n+4,0,Σ

(1)+
n+3,0,Σ

(2)+
2n+3,0}∞n=0 decouple at any level k. Let θ ∈ Aut(V k(n4)) such

that it restricts to an involution on the strong generators of V k(sl2) given by

θ(J+) = J−, θ(J) = −J, θ(J−) = J+

and such that θ(G+) = G−. These requirements fix the action on the remaining
strong generators. The map θ is an automorphism of V k(n4)Z/2Z a fortiori and
acting on the decoupling relations of Lemma 5.3 shows that the fields

{Σ(0)−
2n+4,0,Σ

(1)−
n+3,0,Σ

(2)−
2n+3,0}∞n=0

decouple at any level k as well. The existence of decoupling relations for all

remaining strong generators can be checked directly.2 The field Σ
(1)+
2,0 decouples at

all levels k 6= 4 (see (A.2)). Acting on the decoupling relation of Σ
(1)+
2,0 with the

automorphism θ shows that Σ
(1)+
2,0 also decouples at all levels k 6= 4. Furthermore,

the fields U2,0, A2,0 and B2,0 decouple at all levels k 6= 16 (see (A.3)–(A.5)) and V2,0
decouples at all levels k 6= 0 (see (A.6) and (A.7)). These exhaust all decoupling
relations for the minimal strong generators, which proves the Theorem. �

2In our case this was done using Thielemans’ MathematicaTMpackage [Thi91].
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6. Structure of the vertex algebras

We will now look at sub-structures and simple quotients of the two orbifolds of
V k(n4) that were constructed in the previous section. It will be helpful to define
the following: Let Ri ∈ V k(n4) be a field and define

Ci = (Q+)(0)R
i, Di = −(Q−)(0)R

i, Si = 1
2

(
(Q−)(0)C

i + (Q+)(0)D
i
)
.

Note that the Lie superalgebra gl1|1 has basis ψ±, N,E where ψ± are odd and

N,E are even and the non-zero commutation relations are [N,ψ±] = ±ψ± and
[ψ+, ψ−] = E, so that the algebra spanned by (Q±)(0), J(0) and [(Q+)(0), (Q

−)(0)]
is isomorphic to gl1|1. The definition of Ri, Ci, Di and Si thus organizes fields into
representations of this gl1|1-algebra.

Taking R0 = H and Ri+1 = Ui,0 for i = 0, 1, 2 it can be checked that the
fields in the set S = {Si}3i=0 strongly generate V k(n4)U(1) at all levels k 6= 0,−2

(cf. Theorem 4.8). Furthermore, taking R3 = Σ
(0)+
0,0 and R4 = Σ

(1)+
1,0 as well as

Rn+2 = θ(Rn) for n = 3, 4 with θ being the automorphism defined in the proof of
Theorem 5.4 we see that the set {Si}6i=0 contains all minimal strong generators of
V k(n4)Z/2Z at levels k 6= −2, 0, 4, 16 (cf. Theorem 5.4).

Theorem 6.1. Let k 6= 0,−2. For all but finitely many levels k the simple quotient

Lk(n4)U(1) is of type W(1, 22, 32, 42, 5; 3
2

2
, 52

2
, 72

2
, 92

2
). The full list of exceptions is

stated in the following table:

level k central charge type

− 5
2 −15 W(1, 22, 32, 4; 3

2

2
, 52

2
, 72

2
)

− 3
2 −9 W(1, 2, 4, 5; 3

2

2
, 92

2
)

− 4
3 −8 W(1, 22, 32, 4; 3

2

2
, 52

2
, 72

2
)

− 2
3 −4 W(1, 22, 32, 42; 3

2

2
, 52

2
, 72

2
, 92

2
)

− 1
2 −3 W(1, 22, 3; 3

2

2
, 52

2
)

1 6 W(1, 2; 3
2

2
)

2 12 W(1, 22, 3; 3
2

2
, 52

2
)

3 18 W(1, 22, 32, 4; 3
2

2
, 52

2
, 72

2
)

4 24 W(1, 22, 32, 42; 3
2

2
, 52

2
, 72

2
, 92

2
)

Proof. It is straightforward to establish a level dependent basis for the vector space
of singular fields at a fixed weight using [Thi91]. Let S ∈ V k(n4)U(1). A singular
field of the form S + · · · where the ellipsis indicates a sum of normally ordered
products induces a decoupling relation for the field S in the simple quotient. The
type of the simple quotient can therefore be determined by obtaining all possible
levels which contain singular fields of the form S + · · · for which the field S is
a minimal strong generator. All relevant singular fields are listed in Appendix B.
Note that the V k(n2)-module structure induces decoupling relations for further
minimal strong generators. �
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Theorem 6.2. Let k 6= 0,−2. For all but finitely many levels k the simple quotient

Lk(n4)Z/2Z is of type W(1, 24, 32, 45; 3
2

2
, 52

4
, 72

4
). The full list of exceptions is stated

in the following table:

level k central charge type

− 5
2 −15 W(1, 24, 32, 44; 3

2

2
, 52

4
, 72

4
)

− 3
2 −9 W(1, 23; 3

2

2
, 52

2
)

− 4
3 −8 W(1, 24, 32, 44; 3

2

2
, 52

4
, 72

4
)

− 1
2 −3 W(1, 24, 3; 3

2

2
, 52

4
)

1 6 W(1, 2, 44; 3
2

2
, 72

2
)

2 12 W(1, 24, 3, 42; 3
2

2
, 52

4
, 72

2
)

3 18 W(1, 24, 32, 43; 3
2

2
, 52

4
, 72

4
)

4 24 W(1, 24, 32, 45; 3
2

2
, 52

4
, 72

4
, 92

2
)

16 96 W(1, 24, 32, 46; 3
2

2
, 52

4
, 72

4
, 92

2
)

Proof. The proof is analogous to the proof of Theorem 6.1. All relevant singular
fields are listed in Appendix C. Again, note that the V k(n2)-module structure as
well as the action of the automorphism θ as defined in the proof of Theorem 5.4
induce decoupling relations for further minimal strong generators. �

Given that the proofs of Theorems 6.1 and 6.2 are purely computational some
remarks are in order:

Remark 6.1. It is apparent from the singular fields in Appendix C that for k =
1, Lk(n4) admits an action of the simple vertex algebra Lk(sl2) at level k = 1.
This statement can also be seen using free field realizations of L1(n4), see [CH14,
Lem. 3.4]. For positive integer n, Ln+1(sl2) embeds in Ln(sl2)⊗L1(sl2) and since n4
is a Lie superalgebra also a homomorphic image of V n+1(n4) embeds into Ln(n4)⊗
L1(n4). It thus follows that this homomorphic image of V n+1(n4) contains a copy
of Ln+1(sl2) and so especially the simple quotient Ln+1(n4) contains a copy of
Ln+1(sl2)

Remark 6.2. The levels − 1
2 (3 + 2n) for a positive integer n, are also special. We

will see in Theorem 7.4 that at these levels, an orbifold of a coset of Lk(n4) is
a principal W-algebra of type A. The special cases k = −1/2 and k = −3/2 are
already well understood. Namely, L−1/2(n4) ∼= (A(1)⊗S(1))Z/2Z by [CKL19, Thm.
4.14]. Here A(1) is the rank one symplectic fermion algebra and S(1) the rank one
βγ system. The construction of Lk(n4) at level k = −3/2 is first given in [Ada16],
and in Theorem 2.5 of [CGL18] it is shown that

L− 3
2
(n4) ∼=

∞⊕
n=0

L− 3
2
(nω)⊗ ρnω

as L− 3
2
(sl2)⊗SU(2)-modules. In this notation, ω denotes the fundamental weight of

sl2, ρnω denotes the irreducible sl2-module with highest weight nω, and L− 3
2
(nω)

denotes the corresponding irreducible L− 3
2
(sl2)-module.
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Let us also note that this series of special points is suggested in [BMR19] to
be subalgebras of the chiral algebras of certain four-dimensional super Yang–Mills
theories.

Corollary 6.3. The vertex algebra of global sections of the chiral de Rham complex

on a complex Enriques surface is of type W(1, 2, 44; 3
2

2
, 72

2
). It is strongly generated

by the fields

J(z), Q±(z), T (z),Σ
(1)±
1,0 ,Σ

(0)±
2,0 ,Σ

(2)±
1,0 .

Proof. This follows immediately from Theorem 6.6 of [Son18], together with the
description of L1(n4)Z2 given in Theorem 6.2. �

7. Coset of V k(n4) by its affine subalgebra

In this section, we study the coset

Ck = Com(V k(sl2), V k(n4)), (7.1)

and we regard V k(n4) as an extension of V k(sl2)⊗Ck. In Theorem 5.4 of [ACKL17],
Ck was incorrectly stated to be of type W(2, 33, 4, 53, 6, 73, 8). In this section, we
give the correct description as well as some more details about its structure.

As in Section 4 of [ACKL17], if we rescale the generators of V k(n4) by 1/
√
k,

there is a well-defined limit as k →∞, and

lim
k→∞

V k(n4) ∼= H(3)⊗ T ⊗ Godd(4).

In this notation, H(3) is the rank 3 Heisenberg vertex algebra, T is a generalized
free field algebra with one even generator T satisfying T (z)T (w) ∼ 6/(z − w)4, and
Godd(4) is the generalized free field algebra with odd generators G±, Q± satisfying

G+(z)G−(w) ∼ 2

(z − w)3
, Q+(z)Q−(w) ∼ 2

(z − w)3
.

Note that our normalizations of the generator differ slightly from those in
[ACKL17], but this does not change the above result. Note that the action of
the inner automorphism group GInn

∼= SL(2) on V k(n4) coming from integrating
the zero-mode action of sl2 gives rise to the action of SL(2) on Godd(4), such that
{G+, Q+} and {G−, Q−} both transform as copies of the standard module C2.

As shown in [ACKL17] right before Theorem 4.12, Ck has a well-defined limit
as k →∞, and

lim
k→∞

Ck ∼= T ⊗
(
Godd(4)

)SL(2)
.

Moreover, the structure of
(
Godd(4)

)SL(2)
can be worked out using classical inva-

riant theory. First, we have the infinite generating set

mj = : G+∂jQ+ : + : ∂jG+Q+ :,

pj = : G−∂jQ− : + : ∂jG−Q− :,

wj = : G+∂jG− : + : Q+∂jQ− : .

(7.2)

for j ≥ 0. Note that mj , pj , wj each have weight j + 3. It is straightforward to
check that {w0,m0, p0} generates the algebra (Godd(4))SL(2), and that the set
{wi,mj , pj | i = 0, 1, 2, 3, j = 0, 2} is closed under OPE, and hence strongly
generates the algebra. We obtain
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Theorem 7.1.
(
Godd(4)

)SL(2)
is of type W(33, 4, 53, 6), so that the coset Ck is of

type W(2, 33, 4, 53, 6) for generic values of k.

In [ACKL17], it was also stated (correctly) that Ck contains a vertex subalgebra
of type W(2, 3, 4, 5, 6, 7, 8). We now give more details about this subalgebra. First
of all, inside the outer automorphism group GOut

∼= SL(2), there is a copy of U(1),
and a corresponding outer action of the one-dimensional abelian Lie algebra t.
Note that the fields wi,mj , pj are eigenvectors with eigenvalue 0,−2, 2 under this
action, respectively. It follows that the orbifold (Ck)U(1) is strongly generated by
the fields {wi| i ≥ 0} together with all monomials

: ∂a1pj1∂a2pj2 · · · ∂aspjs∂b1mk1∂b2mk2 · · · ∂bsmks :,

where ai, bi, ji, ki are nonnegative integers, and s ≥ 1.
Moreover, one can verify by computer calculation that the fields {wi| i =

0, 1, 2, 3, 4, 5} close under OPE, and that for a, b ≥ 0 and j, k = 0, 2, the field
: ∂apj∂bmk : lies in the subalgebra generated by {wi| i = 0, 1, 2, 3, 4, 5}. From this
observation, and by induction on s, we obtain

Theorem 7.2. (Ck)U(1) is strongly generated by fields {wi | i = 0, 1, 2, 3, 4, 5},
and hence is of type W(2, 3, 4, 5, 6, 7, 8).

We may take the weight 3 field w0 to be primary of weight 3 and we normalize
it so that its sixth order pole with itself is k(3 + 2k)/(2 + k) = c/3. Following the
notation in [Lin17], we denote this field by W 3; it has the explicit form

W 3 =
1√

8 + 4k
(: G+G− : + : Q+Q− : −∂T ).

Moreover, it is not difficult to verify that it generates (Ck)U(1). Following the
convention of [Lin17], we may take the strong generating set for (Ck)U(1) to be
{L,W i| i = 3, 4, 5, 6, 7, 8}, where W i = W 3

(1)W
i−1 for i = 4, 5, 6, 7, 8.

It is readily verified that the hypotheses of Theorem 6.2 of [Lin17] are satisfied,
so that (Ck)U(1) can be realized as a quotient of W(c, λ) of the form WI(c, λ) =
WI(c, λ)/I. In this notation, I ⊆ C[c, λ] is some prime ideal in the ring of para-
meters C[c, λ], and I is the maximal proper graded ideal of WI(c, λ) = W(c, λ)/I ·
WI(c, λ).

By computing the third order pole of W 3 with itself, it is straightforward to
verify that I is the ideal (λ + 1

16 ). Rather surprisingly, this same vertex algebra
was studied in Section 11 of [Lin17]. Combining this calculation with Corollary
10.3 of [Lin17], we obtain:

Theorem 7.3. (Ck)U(1) is isomorphic to the coset

Com(V `(sl2), V `+1(sl2)⊗W−5/2(sl4, frect)),

where the parameters k and ` are related by k = −(`+ 1)/(`+ 2).

Remark 7.1. This Theorem nicely relates to the coset realization of V k(n4) of

[CFL19]. Let Lk(nω) denote the irreducible highest-weight module of ŝl2 of highest
weight nω at level k. ω is the fundamental weight of sl2 and ρmω denotes the
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irreducible highest-weight module of SU(2) of highest weight mω. Also let n̄ be
equal to 0 if n is even and 1 otherwise. We have the following list of isomorphisms:

(1) In [CKLR19, Sect. 5] diagonal Heisenberg cosets of the tensor product of a
rank n βγ system with a rank m bc system were studied. These cosets were denoted
by C(n,m) and C(2, 0) ∼= W−5/2(sl4, frect) [CKLR19, Rem. 5.3] and C(2, 2) ∼=
L1(sl2|2) [CKLR19, Thm. 5.5]. Moreover C(0, 2) is nothing but the lattice VOA

L1(sl2) and so we have that W−5/2(sl4, frect) ⊂ Com
(
L1(sl2), L1(sl2|2)

)
and by

passing to the simple quotient L1(psl2|2) of L1(sl2|2) we also have W−5/2(sl4, frect)

⊂ Com
(
L1(sl2), L1(psl2|2)

)
. The branching rules [Cre17, Cor. 5.3] and [CG17,

Rem. 9.11]

W−5/2(sl4, frect) ∼=
∞⊕
n=0

L−1(2mω) (7.3)

and
L1(psl2|2) ∼=

∞⊕
n=0

L−1(nω)⊗ ρnω ⊗ L1(n̄ω)

tell us that
W−5/2(sl4, frect) ∼= Com

(
L1(sl2), L1(psl2|2)

)U(1)
.

(2) In [CFL19] a vertex superalgebra Y (λ) that is related to L1(d(2, 1;−λ)) ⊗
L1(psl2|2) has been constructed. It satisfies

Y (λ)Z/2Z ∼= Com
(
L1(sl2)⊗ L1(sl2), L1(d(2, 1;−λ))⊗ L1(psl2|2)

)
.

(3) Y (λ) decomposes

Y (λ) :=

∞⊕
n,m=0

Lk1(nω)⊗ Lk2(nω)⊗ L−1(mω)⊗ ρmω

as Lk1(sl2) ⊗ Lk2(sl2) ⊗ L−1(sl2) ⊗ SU(2)-module for generic complex λ. Here
k1 = λ−1 − 1, k2 = λ − 1 and note that for generic λ the universal affine vertex
operator algebras of sl2 at levels k1 and k2 are simple. Then by [CFL19] and for
irrational λ we have that

V k2(n4) ∼= Com (Lk1−1(sl2), Y (λ)) .

(4) Putting all these together we get

(Ck2)U(1)

∼= Com
(
Lk2(sl2)⊗ Lk1−1(sl2), Y (λ)

)U(1)

∼= Com
(
Lk2(sl2)⊗Lk1−1(sl2),

∞⊕
n,m=0

Lk1(nω)⊗Lk2(nω)⊗L−1(mω)⊗ρmω)
)U(1)

∼= Com
(
Lk1−1(sl2),

∞⊕
m=0

Lk1(sl2)⊗ L−1(mω)⊗ ρmω)
)U(1)

∼= Com
(
Lk1−1(sl2),

∞⊕
m=0

Lk1(sl2)⊗ L−1(2mω))
)
,

which using (7.3) and noticing that k2 = −k1/(k1 + 1), nicely compares to the
Theorem.
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We now present some consequences of the identification of (Ck)U(1) with a
quotient of W(c, λ). Recall from Section 10 of [Lin17], we can obtain coincidences
between the simple quotient of (Ck)U(1) with various other algebras arising as
quotients of W(c, λ) by finding the intersection points on their truncation curves.

Recall that if we regard Ck as a one-parameter vertex algebra, with k a formal
variable, the specialization of Ck at a complex number k = k0 need not coincide
with the actual coset, but this can only fail when k0 + 2 ∈ Q≤0. This property is
inherited by the orbifold (Ck)U(1) if we also omit the point k0 = 0. By abuse of
notation, in the results below, (Ck0)U(1) will always refer to the specialization of the
one-parameter vertex algebra (Ck)U(1) at the point k = k0, even if is strictly larger
than the actual algebra Com(V k0(sl2), V k0(n4))U(1). We also denote by (Ck0)U(1)

the simple quotient of (Ck0)U(1).
The next result follows immediately from Theorem 7.3 and Theorem 11.4 of

[Lin17].

Theorem 7.4. For n ≥ 3, aside from the critical levels k = −2 and ` = −n, and
the degenerate cases given by Theorem 10.1 of [Lin17], all isomorphisms (Ck)U(1) ∼=
W`(sln, fprin) appear on the following list.

k = −1

2
(n+ 2), k = −2(n− 1)

n− 2
, ` = −n+

n− 2

n
, ` = −n+

n

n− 2
, (7.4)

which has central charge c = −3(n− 1)(n+ 2)/(n− 2).

Next, in the terminology of [Lin17], recall the generalized parafermion algebra

G`(n) = Com(V `(gln), V `(sln+1)),

and its simple quotient G`(n). By Theorem 8.2 of [Lin17], this also arises as a
quotient of W(c, λ) and the corresponding truncation curve is given explicitly by
(8.4) of [Lin17]. Additionally, by (8.5) of [Lin17], this curve has the following
rational parametrization using the level ` as parameter:

λ(`) =
(n+ `)(1 + n+ `)

(`− 2)(2n+ `)(2 + 2n+ 3`)
, c(`) =

n(`− 1)(1 + n+ 2`)

(n+ `)(1 + n+ `)
. (7.5)

Theorem 7.5. For n ≥ 3, aside from the critical levels k = −2, ` = −n, and ` =
−n−1, and the degenerate cases given by Theorem 10.1 of [Lin17], all isomorphisms
(Ck)U(1) ∼= G`(n) appear on the following list:

(1) k = n, k = −3 + 2n

n+ 2
, ` = −2(1 + n),

which has central charge c = 3n(3 + 2n)/(2 + n).

(2) k = −n− 3

n− 2
, k = − n

n− 1
, ` = −2,

which has central charge c = −3n(n− 3)/(n− 2)(n− 1).

(3) k =
1

3
(n− 3), k = −3 + 2n

3 + n
, ` = −2n

3
,

which has central charge c = (n− 3)(3 + 2n)/(3 + n).



INVARIANT SUBALGEBRAS

Proof. We first exclude the values ` = 2, −2n, − 1
3 (2n + 2) which are poles of

function λ(`) given by (7.5). As explained in [Lin17], at these points, G`(n) is not
obtained as a quotient of W(c, λ) at these points. Note that the truncation curve
for (Ck)U(1) has parametrization

c(k) =
3k(3 + 2k)

2 + k
, λ = − 1

16
,

and since the pole k = −2 has already been excluded, there are no additional points
where (Ck)U(1) cannot be obtained as a quotient of W(c, λ). By Corollary 10.2 of
[Lin17], aside from the cases c = 0,−2, all remaining isomorphisms (Ck)U(1) ∼=
G`(n) correspond to intersection points on the curves V (Km) and V (I), where Km

is given by (8.4) of [Lin17], and I = (λ+ 1
16 ), as above. For each n ≥ 2, there are

exactly three intersection points (c, λ), namely,(
3n(3 + 2n)

2 + n
,− 1

16

)
,

(
− 3n(n− 3)

(n− 2)(n− 1)
,− 1

16

)
,

(
(n− 3)(3 + 2n)

3 + n
,− 1

16

)
.

It is immediate that the above isomorphisms all hold, and that our list is complete
except for possible coincidences at the excluded points ` = 2, −2n, − 1

3 (2n+ 2).
At ` = 2, G`(n) has central charge c = n(5 + n)/(2 + n)(3 + n) and the weight

3 field is singular. However, the weight 3 field in (Ck)U(1) is not singular at this
central charge, so there is no coincidence at this point. Similarly, at ` = −2n and
` = − 1

3 (2n + 2), G`(n) has central charge c = (2n+ 1)(3n− 1)/(n− 1) and c =
n(2n+ 5)/(n− 2), respectively, and has a singular vector in weight 3, but at these
central charges, (Ck)U(1) does not. Therefore there are no additional coincidences
at these points. �

Remark 7.2. The first family (1) in Theorem 7.5 is of particular interest since
it concerns the case where k is a positive integer n. By Remark 6.1, the map
V n(sl2)→ V n(n4) descends to a map of simple vertex algebras Ln(sl2)→ Ln(n4).
By Corollary 2.2 of [ACKL17], the coset Com(Ln(sl2), Ln(n4)) is simple, and hence
coincides with the simple quotient Cn of Cn. Moreover, by [DLM96], the simplicity
of Cn is preserved by taking the U(1)-orbifold. It follows that for all n ∈ N,

Com(Ln(sl2), Ln(n4)) ∼= G−2(1+n)(n).

In the case n = 1, note that G−4(1) is just the parafermion algebra N−4(sl2) =
Com(H, L−4(sl2)). Therefore L1(n4) may be regarded as an extension of L1(sl2)⊗
N−4(sl2). Likewise, L1(n4)Z/2Z, which is isomorphic to the global section algebra of
the chiral de Rham complex of an Enriques surface, is an extension of H⊗N−4(sl2),
where H is the Heisenberg algebra generated by J .

Consider the coset Com
(
V k+2(sln)⊗H(1), Lk(sln+1)⊗ E(2n)

)
where E(2n)

denotes the bc-system of rank 2n and the Heisenberg algebra action is taken to be
the diagonal one in such a way that this coset has four odd dimension 3/2 fields.
Its weight one subspace is H(1)⊗Ln(sl2) and if we specialize to k = −2(n+1) then
it is easy to check that the H(1) becomes central and so by uniqueness of minimal
W-superalgebras [ACKL17, Thm. 3.1] at this level the coset contains Ln(n4) as
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subalgebra. This fits into the observation of the first family (1) in Theorem 7.5 as
this coset also obviously contains G−2(1+n)(n).

This observation somehow extends to negative levels and thus connects Theo-
rems 7.4 and 7.5. For this consider Com

(
V k−2(sln)⊗H(1), Lk(sln|1)⊗S(2n)

)
. The

rank 2n βγ-system S(2n) carries an action of V −n(sl2) ⊗ V −2(sln) ⊗ H(1) and
in the commutant we choose the Heisenberg diagonally so that the coset has four
dimension 3/2 fields. As in the previous case the weight one subspace is H(1) ⊗
V −n(sl2) and if we specialize to k = −2(n−1) then it is easy to check that the H(1)
becomes central and so by uniqueness of minimal W-superalgebras [ACKL17, Thm.
3.1] at this level the coset contains a homomorphic image of V −n(n4) as subalgebra.
This coset also contains SGk(n) := Com

(
V k(sln)⊗H(1), Lk(sln|1)

)
as subalgebra,

and its central charge for k = −2(n− 1) is precisely −3(2n2 − 3n)/(n− 2), which
is the central charge of (C−n)U(1) ∼= W`(sl2(n−1), fprin) at ` = −2(n − 1) +
(n− 2)/(n− 1). This observation actually leads us to a new level-rank duality
that we will introduce in Section 8.

There is another interesting family of vertex algebras that arise as quotients of
W(c, λ), namely, the cosets

D`(n) = Com(H,W`(sln, fsubreg);

see Corollary 6.15 of [CL20]. The explicit truncation curve can be obtained by
specializing Theorem 6.1 of [CL20] to the case m = 1, which also appears as
Conjecture 9.5 of [Lin17]. We obtain

Theorem 7.6. For n ≥ 3, aside from the critical levels k = −2 and ` = −n, and
the degenerate cases given by Theorem 10.1 of [Lin17], all isomorphisms (Ck)U(1) ∼=
D`(n) appear on the following list:

(1) k = − n

1 + n
, k = −3 + n

2 + n
, ` = −n+

2 + n

1 + n
,

which has central charge c = −3n(3 + n)/(1 + n)(2 + n).

(2) k = −n, k =
3− 2n

−2 + n
, ` = −n+

n− 2

n− 1
,

which has central charge c = −3n(2n− 3)/(n− 2).

(3) k = −1

3
(3 + n), k =

3− 2n

n− 3
, ` = −n+

n

n− 3
,

which has central charge c = −(3 + n)(2n− 3)/(n− 3).

The proof is similar to the proof of Theorem 7.5, and is left to the reader.

8. Level-rank dualities

We will now explain that the central charge agreement observed in Remark 7.2
is not a coincidence and it fits into the following bigger picture. Firstly, the central
charge of the cosets SG−m(n) and of Com

(
V −n+1(slm), L−n(slm)⊗ L1(slm)

)
are

both equal to

c = m− 1− m(m2 − 1)

(m− n)(m− n+ 1)
.
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On the other hand recall that the simple quotient of the coset

Com
(
V −n+1(slm), L−n(slm)⊗ L1(slm)

)
is isomorphic to W`(slm, fprin) at level ` = −m+(m− n)/(m− n+ 1) by the main
Theorem of [ACL19].

We can be more general, namely consider now

SG−m(n|r) := Com
(
V −m(sln)⊗ V m(slr)⊗H(1), L−m(sln|r)

)
together with

Com
(
V −n+r(slm), L−n(slm)⊗ Lr(slm)

)
and again their central charges turn out to coincide, i.e., they are equal to

c =
(m2 − 1)nr(n− r − 2m)

(m− n)(m+ r)(m+ r − n)
.

This observation can be lifted to a new type of level-rank duality. For this
consider E(mn)⊗ S(`n) and recall that we denote by E(m) the bc-system of rank
m and by S(m) the βγ-system of rank m. The vertex superalgebra E(mn)⊗S(`n) is
viewed as the bcβγ-system for Cn⊗Cm|`, i.e., for the tensor product of the standard
representations of gln and slm|`. It thus carries a commuting action of V m−`(gln) ∼=
V m−`(sln)⊗H(1) and V n(slm|`). We normalize the Heisenberg field to have norm

one, so that the b, c, β and γ all have Heisenberg weight µ = 1/
√
n(m− `). The

conformal weight ∆ of the module V m−`(ω1)⊗πµ⊗V n(ω1) of V m−`(sln)⊗H(1)⊗
V n(slm|`) is

∆ =
(n2 − 1)

2(n+m− `)
+

1

2n(m− `)
+

((m− `)2 − 1)

2(n+m− `)
=

1

2

so that [AKFPP16, Cor. 2.2] applies, i.e., there is a conformal embedding of
V m−`(sln)⊗H(1)⊗ V n(slm|`) in E(mn)⊗ S(`n). We set

An(slm|`) := Com
(
V m−`(gln),E(mn)⊗ S(`n)

)
and if m = 0, then we write A−n(sl`) for An(sl0|`). For descriptions of some of the
cosets of these types see [LSS15]. We also need [OS14, Thm. 4.1], i.e.,

Com (Ln(glm),E(mn)) ∼= Lm(sln). (8.1)

With this notation and information we can slightly modify the argument of [ACL19,
Thm. 13.1] to get

Com
(
V −n+r(slm), A−n(slm)⊗ Lr(slm)

)
∼= Com

(
V −n+r(slm),Com

(
V −m(gln)⊗ Lm(glr), S(mn)⊗ E(mr)

))
∼= Com

(
V −n+r(slm)⊗ V −m(gln)⊗ Lm(glr), S(mn)⊗ E(mr)

)
∼= Com

(
V −n+r(glm)⊗ V −m(sln)⊗ Lm(slr)⊗H(1), S(mn)⊗ E(mr)

)
∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1),Com

(
V −n+r(glm), S(mn)⊗ E(mr)

))
∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1), Am(slr|n)

)
We thus have proven the level-rank duality theorem.
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Theorem 8.1. Let r, n,m be positive integers. Then there exist vertex algebra
extensions A−n(slm) and Am(slr|n) of homomorphic images Ṽ −n(slm) and

Ṽ m(slr|n) of V −n(slm) and V m(slr|n) such that the level-rank duality

Com
(
V −n+r(slm), A−n(slm)⊗ Lr(slm)

)
∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1), Am(slr|n)

)
holds.

Remark 8.1. It is natural to ask if the statement of the Theorem can be improved,
i.e., one could ask for a level-rank duality of the form

Com
(
V −n+r(slm), Ṽ −n(slm)⊗ Lr(slm)

)
??∼= Com

(
V −m(sln)⊗ Lm(slr)⊗H(1), Ṽ m(slr|n)

)
.

Remark 8.2. One might wonder if there are other levels k for which the coset

Com
(
V k(sln)⊗ V −k(slr)⊗H(1), V k(sln|r)

)
coincides with a W-algebra, and indeed there are indications that these cosets
sometimes coincide with rectangular W-algebras of type A [CH19, Appendix D].

A. Decoupling relations

For the convenience of the reader we repeat the chosen conventions.

Q+ = G−,2, Q− = G+,1,

G+ = G+,2, G− = G−,1,

Un,0 = : ∂nJ+J− :, Vn,0 = : ∂nG+G− :,

An,0 = : ∂nJ+G− :, Bn,0 = : ∂nJ−G+ :,

Σ
(0)±
2n,0 = : ∂2nJ±J± :, Σ

(1)±
n,0 =: ∂nJ±G± :, Σ

(2)±
2n+1,0 = : ∂2n+1G±G± : .

All relations below were verified by computer [Thi91]. Note that applying the
automorphism θ specified in the proof of Theorem 5.4 on the decoupling relation

for Σ
(1)+
2,0 (see A.2) yields a decoupling relation for Σ

(1)−
2,0 that holds at all levels

k 6= 4.

0 =
k

3
U3,0 −

k

2
V2,0 + ∂U2,0 −

1

2
: U2,0J : + (1 + k) ∂V1,0+ : V1,0J :

− : A1,0Q
+ : − : B1,0Q

− : −1

2
∂2U1,0+ : U1,0T : −1

2
: U1,0∂J :

+
1− k

2
∂2V0,0− : ∂V0,0J : − : V0,0U0,0 : + : ∂A0,0Q

+ : − : A0,0B0,0 :

+ : A0,0∂Q
+ : + : ∂B0,0Q

− : + : B0,0∂Q
− : +

1

6
∂3U0,0+ : U0,0∂T :

+
1 + k

6
∂3T +

1

2
: ∂2TJ : −1

2
: ∂2Q+Q− : − : ∂Q+∂Q− :

− 1

2
: Q+∂2Q− : +

3 + k

24
∂4J +

1

12
: ∂3JJ :,

(A.1)
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0 =(4− k)Σ
(1)+
2,0 − 6 : JΣ

(1)+
1,0 : −2 : U0,0Σ

(1)+
0,0 : −2 : ∂JΣ

(1)+
0,0 :

+ 2 : Σ
(0)+
0,0 B0,0 : + : ∂Σ

(0)+
0,0 Q+ :,

(A.2)

0 =(16− k)U2,0 − (8 + k)∂U1,0 − 6 : JU1,0 : +
2 + k

2
∂2U0,0+ : J∂U0,0 :

− : U0,0U0,0 : − : ∂JU0,0 : −k
6
∂3J − 1

2
: ∂2JJ : + : Σ

(0)+
0,0 Σ

(0)−
0,0 := 0,

(A.3)

0 =
16−k

2
A2,0−3 : JA1,0 :− : U0,0A0,0 :− : ∂JA0,0 :+3 : U1,0Q

− :

− : ∂U0,0Q
− :+

1

2
: ∂2JQ− :+: Σ

(0)+
0,0 Σ

(1)−
0,0 :,

(A.4)

0 =
16−k

2
B2,0+2(k−4)∂B1,0+3 : JB1,0 :+(2−k)∂2B0,0−2 : J∂B0,0 :

− : U0,0B0,0 :+
k−1

3
∂3Q++: J∂2Q+ :+2 : U0,0∂Q

+ :+3 : U1,0Q
+ :

+: Σ
(1)+
0,0 Σ

(0)−
0,0 :,

(A.5)

k
(
(6−k)V2,0− : A0,0∂Q

+ :+: ∂B0,0Q
− :−∂

2Q+Q− :

2
:+: Σ

(1)+
0,0 Σ

(1)−
0,0 :

)
+(k−4)

(
∂U2,0+: ∂TU0,0 :+

(k+1)

6
∂3T− : J∂V0,0 :− : A0,0B0,0 :

+
1

12
: ∂3JJ :+

1

2
: ∂2TJ :

)
−4 : JV1,0 :+

20−13k

2
∂2U1,0−4 : TU1,0 :

+(2−k)
(

: JU2,0 :+: ∂JU1,0 :+2 : U0,0V0,0 :
)

+(k2−5k−4)∂V1,0

+
4+4k−k2

2
∂2V0,0+

7k−10

3
∂3U0,0+(4−3k)(: A1,0Q

+ :+: B1,0Q
− :)

+
k2−26k+32

24
∂4J = 0,

(A.6)

(32 + 3k)
(k

2
V2,0 − (1 + k)

(
∂V1,0 −

∂2V0,0
2

+
∂3T

6

)
− : JV1,0 :

− : TU1,0 : + : J∂V0,0 : + : U0,0V0,0 : + : B1,0Q
− : + : A0,0B0,0 :

− 1

2
: ∂2TJ : + : A1,0Q

+ : −5

6
∂3U0,0− : ∂TU0,0 :

)
+

32− 7k

2
: JU2,0 :

− (32 + 11k + 2k2)∂U2,0 +
160 + 19k + 2k2

2
∂2U1,0 +

32− k
2

: ∂JU1,0 :

+ k
(
k : J∂U1,0 : −2 : U0,0U1,0 : − : ∂2JU0,0 : + : ∂Σ

(0)+
0,0 Σ

(0)−
0,0 :

)
− (8 + k)(5k − 32)

24
∂4J

32 + 7k

12
: ∂3JJ := 0.

(A.7)
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B. Singular fields in V k(n4)U(1)

In this Appendix as well as the next one, the symbol ∝ is used to indicate
equality up to multiplication by a non-zero constant over the base field which is
assumed to be C throughout the article.

Level k = −5/2

U2,0 − V1,0 +
1

2
∂V0,0− : JV0,0 : −∂U1,0 +

3

4
∂2U0,0− : U0,0U0,0 :

− : TU0,0 : + : ∂JU0,0 : −1

2
: JJU0,0 : −5

8
∂2T +

3

4
: TT :

+
1

2
: T∂J : −1

4
: TJJ : −1

8
∂3J − 1

8
: ∂J∂J : +

1

4
: ∂JJJ :

− 1

16
: JJJJ : +

3

2
: ∂Q+Q− : −3

2
: Q+∂Q− : + : JQ+Q− :

− 2 : Q+A0,0 : +2 : Q−B0,0 : .

(B.1)

Level k = −3/2

4U0,0 − 2T − 2∂J+ : JJ :, (B.2)

−4U1,0 + 6∂U0,0 + 4 : JU0,0 : −3∂T − 4 : TJ : + : JJJ : +2 : Q+Q− : . (B.3)

Level k = −4/3

1

2
U2,0 +

2

3
V1,0 −

1

3
∂V0,0 −

1

2
: JV0,0 : −1

2
∂U1,0 −

1

2
∂2U0,0

− 4 : U0,0U0,0 : +
16

3
: TU0,0 : +4 : ∂JU0,0 : −2 : JJU0,0 : +

5

12
∂2T

− 23

18
: TT : −8

3
: T∂J : +

4

3
: TJJ : +

37

24
∂3J − 35

12
: ∂2JJ :

− 11

8
: ∂J∂J : +∂JJJ : −1

4
: JJJJ : +

4

3
: ∂Q+Q− :

− 4

3
: Q+∂Q− : +

1

2
: JQ+Q− : − : Q+A0,0 : + : Q−B0,0 : .

(B.4)
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Level k = −2/3

− 200

27
V2,0 −

32

3
∂U2,0 +

4

3
: JU2,0 : −88

27
∂V1,0 −

88

9
: JV1,0 :

+
92

9
∂2U1,0 +

20

3
: J∂U1,0 : +

32

3
: U0,0U1,0 : −200

9
: TU1,0 :

+
8

3
: ∂JU1,0 : +

8

3
: JJU1,0 : −116

9
∂2V0,0 +

116

9
: J∂V0,0 :

− 8

3
: U0,0V0,0 : +

112

9
: TV0,0 : +

28

3
: ∂JV0,0 : −14

27
∂3U0,0

− 22

3
: J∂2U0,0 : −16

3
: ∂U0,0U0,0 : +

28

9
: T∂U0,0 : +

2

3
: ∂J∂U0,0 :

− 4

3
: JJ∂U0,0 : +16 : JU0,0U0,0 − 16 : ∂TU0,0 : −112

3
: TJU0,0 :

+
56

3
: U0,0Q

+Q− : +
292

9
: ∂2JU0,0 : −16 : ∂JJU0,0 :

+ 8 : JJJU0,0 : +
116

27
∂3T − 38

3
: ∂2TJ : +

56

9
: ∂T∂J :

+
56

3
: TTJ : −112

9
: TQ+Q− : −742

27
: T∂2J : +

56

3
: T∂JJ :

− 28

3
: TJJJ : +

88

9
: A1,0Q

+ : +
88

9
: B1,0Q

− : −112

9
: ∂A0,0Q

+ :

+ 16 : A0,0B0,0 : −112

9
: A0,0∂Q

+ : −28

3
: JA0,0Q

+ :

− 112

9
: ∂B0,0Q

− : −112

9
: B0,0∂Q

− : +
28

3
: JB0,0Q

− :

+
56

9
: ∂2Q+Q− : +

112

27
: ∂Q+∂Q− : −56

9
: J∂Q+Q− :

+
56

9
: Q+∂2Q− : +

56

9
: JQ+∂Q− : −28

3
: ∂JQ+Q− :

+
89

18
∂4J − 17

9
: ∂3JJ : −113

9
: ∂2J∂J : +

190

9
: ∂2JJJ :

+
17

3
: ∂J∂JJ : −4 : ∂JJJJ : + : JJJJJ : .

(B.5)

Level k = −1/2

4U1,0 − 5V0,0 − 2∂U0,0 + 8 : JU0,0 : −10 : TJ :

+ 7∂2J − 4 : ∂JJ : +2 : JJJ : +5 : Q+Q− :,
(B.6)

− 3U2,0 + 5V1,0 + 4∂U1,0+ : JU1,0 : −∂2U0,0

− : J∂U0,0 : −8 : U0,0U0,0 : +10 : TU0,0 : +5 : ∂JU0,0 :

− 2 : JJU0,0 : +
2

3
∂3J − 4 : ∂2JJ : +5 : Q+A0,0 : .

(B.7)

Level k = 1

(Σ
(0)−
0,0 )(2)Σ

(0)+
0,0 ∝ −2U0,0 + ∂J+ : JJ :, (B.8)
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(Σ
(0)−
0,0,0)(3)Σ

(0)+
0,0,0 ∝ 30U1,0 − 18∂U0,0 − 12 : JU0,0 :

+ : JJJ : +9 : ∂JJ : +4∂2J,
(B.9)

(Σ
(0)−
0,0,0,0)(4)Σ

(0)+
0,0,0,0 ∝ − 480U2,0 + 564∂U1,0 − 174∂2U0,0

+ 36 : U0,0U0,0 : +288 : JU1,0 :

− 180 : J∂U0,0 : −36 : JJU0,0 :

− 72 : ∂JU0,0 : + : JJJJ : +30 : ∂JJJ :

+ 39 : ∂J∂J : +58 : ∂2JJ : +21∂3J.

(B.10)

Level k = 2

(Σ
(0)−
0,0,0)(3)Σ

(0)+
0,0,0 ∝ 12U1,0 − 6∂U0,0 − 6 : JU0,0 :

+ ∂2J + 3 : ∂JJ : + : JJJ :,
(B.11)

(Σ
(0)−
0,0,0,0)(4)Σ

(0)+
0,0,0,0 ∝ − 252U2,0 + 276∂U1,0 − 84∂2U0,0

+ 18 : U0,0, U0,0 : +156 : JU1,0 :

− 90 : J∂U0,0 : −24 : JJU0,0 :

− 30 : ∂JU0,0 : + : JJJJ :

+ 18 : ∂JJJ : +15 : ∂J∂J :

+ 25 : ∂2JJ : +11∂3J.

(B.12)

Level k = 3

(Σ
(0)−
0,0,0,0)(4)Σ

(0)+
0,0,0,0 ∝− 90U2,0 + 90∂U1,0 + 60 : JU1,0 : −27∂2U0,0

− 30 : J∂U0,0 : +6 : U0,0U0,0 : −6 : ∂JU0,0 :

− 12 : JJU0,0 : +4∂3J + 7 : ∂2JJ :

+ 3∂J∂J : +6 : ∂JJJ : + : JJJJ : .

(B.13)

Level k = 4

Note that the field U3,0 appears in the expression below. Using A.1 we see that the
singular field induces a decoupling relation for the field V2,0 in the simple quotient.

(Σ
(0)−
0,0,0,0,0)(4)Σ

(0)+
0,0,0,0,0 ∝ 880U3,0 − 1320∂U2,0 + 1080∂2U1,0

− 280∂3U0,0 − 120 : U1,0U0,0 : +60 : ∂U0,0U0,0 :

+ 30 : JU0,0U0,0 : −660 : JU2,0 : +660 : J∂U1,0 :

− 240 : J∂2U0,0 : +60 : ∂JU1,0 : −60 : ∂J∂U0,0 :

+ 180 : JJU1,0 : −90 : JJ∂U0,0 : −20 : JJJU0,0 :

− 30 : ∂JJU0,0 : +10 : ∂2JU0,0 : + : JJJJJ :

+ 10 : ∂JJJJ : +15 : ∂J∂JJ : +25 : ∂2JJJ :

+ 10 : ∂2J∂J : +55 : ∂3JJ : +51∂4J.

(B.14)
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C. Singular fields in V k(n4)Z/2Z

Note that some singular fields in this section involve the strong generator U2,0

which decouples at all levels k 6= 16 (see A.3).

Level k = −5/2

U2,0 − V1,0 +
1

2
∂V0,0− : JV0,0 : −∂U1,0 +

3

4
∂2U0,0− : U0,0U0,0 :

− : TU0,0 : + : ∂JU0,0 : −1

2
: JJU0,0 : −5

8
∂2T +

3

4
: TT :

+
1

2
: T∂J : −1

4
: TJJ : −1

8
∂3J − 1

8
: ∂J∂J : +

1

4
: ∂JJJ :

− 1

16
: JJJJ : +

3

2
: ∂Q+Q− : −3

2
: Q+∂Q− : + : JQ+Q− :

− 2 : Q+A0,0 : +2 : Q−B0,0 : .

(C.1)

Level k = −3/2

4U0,0 − 2T − 2∂J+ : JJ :, (C.2)

− 4U1,0 + 6∂U0,0 + 4 : JU0,0 : −3∂T

− 4 : TJ : + : JJJ : +2 : Q+Q− :,
(C.3)

−5Σ
(1)+
1,0 + 3∂Σ

(1)+
0,0 + : JΣ

(1)+
0,0 : +2 : Q+Σ

(0)+
0,0 : . (C.4)

Level k = −4/3

− 1811U2,0 + 12V1,0 − 6∂V0,0 − 9 : JV0,0 : +691∂U1,0

+ 630 : JU1,0 : −18 : Q+A0,0 : +18 : Q−B0,0 : −44∂2U0,0

− 105 : J∂U0,0 : +33 : U0,0U0,0 : +96 : TU0,0 : +177 : ∂JU0,0 :

− 36 : JJU0,0 : +
15

2
∂2T − 23 : TT : −48 : T∂J : +24 : TJJ :

− 105 : Σ
(0)+
0,0 Σ

(0)−
0,0 : +

53

12
∂3J − 99

4
: ∂J∂J : +18 : ∂JJJ :

− 9

2
: JJJJ : +24 : ∂Q+Q− : −24 : Q+∂Q− : +9 : JQ+Q− : .

(C.5)

Level k = −1/2

4U1,0 − 5V0,0 − 2∂U0,0 + 8 : JU0,0 − 10 : TJ :

+ 7∂2J − 4 : ∂JJ : +2 : JJJ : +5 : Q+Q− :,
(C.6)

−15Σ
(1)+
1,0 + 8∂Σ

(1)+
0,0 + 2 : JΣ

(1)+
0,0 : +4 : Q+Σ

(0)+
0,0 : . (C.7)

Level k = 1

Σ
(0)+
0,0 , (C.8)

(Σ
(0)−
0,0 )(2)Σ

(0)+
0,0 ∝ −2U0,0 + ∂J+ : JJ :, (C.9)

(Σ
(0)−
0,0,0)(3)Σ

(0)+
0,0,0 ∝ 30U1,0 − 18∂U0,0 − 12 : JU0,0 :

+ : JJJ : +9 : ∂JJ : +4∂2J.
(C.10)
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Level k = 2

(Σ
(0)−
0,0,0)(3)Σ

(0)+
0,0,0 ∝ 12U1,0 − 6∂U0,0 − 6 : JU0,0 :

+ ∂2J + 3 : ∂JJ : + : JJJ :,
(C.11)

Σ
(0)+
2,0 − : U0,0Σ

(0)+
0,0 : +2 : ∂JΣ

(0)+
0,0 : . (C.12)

Level k = 3

4Σ
(0)+
2,0 − 2 : U0,0Σ

(0)+
0,0 : +5∂2Σ

(0)+
0,0

− 8 : J∂Σ
(0)+
0,0 : − : ∂JΣ

(0)+
0,0 : +3 : JJΣ

(0)+
0,0 : .

(C.13)
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infinite decompositions in conformal embeddings, Comm. Math. Phys. 348
(2016), 445–473.

[ACKL17] T. Arakawa, T. Creutzig, K. Kawasetsu, A. R. Linshaw, Orbifolds and cosets
of minimal W-algebras, Comm. Math. Phys. 355 (2017), 339–372.

[ACL17] T. Arakawa, T. Creutzig, A. R. Linshaw, Cosets of Bershadsky–Polyakov
algebras and rational W-algebras of type A, Sel. Math. New Ser. 23 (2017),
2369–2395.

[ACL19] T. Arakawa, T. Creutzig, A. R. Linshaw, W-algebras as coset vertex algebras,
Invent. Math. 218 (2019), no. 1, 145–195.
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