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Abstract—Recent advances in sensing, data analytics and
manufacturing technologies (e.g., 3D printing, soft robotics,
nanotechnologies) provide the potential to produce highly cus-
tomized products by allowing flexible system design, endless de-
vice configurations, and unprecedented information flows. These
opportunities also increase the complexity of controlling such
systems optimally, which typically requires fast exploration of
an increasingly large number of alternative operation strategies.
Simulation and stochastic models have been particularly success-
ful to support control and optimization of production systems,
and methods have been developed to exploit them separately.
Herein, we argue that the simultaneous use of these models
can allow for better control and optimization by balancing the
simulation accuracy, and related high computational costs, with
the computational efficiency and lower accuracy of stochastic
models.

In this paper, we assume that high fidelity models have higher
accuracy and computational costs, and we present a novel multi-
fidelity approach, which utilizes several models at different levels
of fidelity to efficiently and effectively estimate and optimize
the performance of asynchronous serial production lines with
machines suffering multiple failure types. Experimental results
show that the multi-fidelity approach leads to better estimations,
requiring less computational effort for optimization compared
with the use of only high fidelity simulations.

Index Terms—Multi-fidelity modeling,
optimization, manufacturing, serial production line

simulation-

I. INTRODUCTION

The design and operation of increasingly complicated man-
ufacturing systems, and the related processes, require the
development of methods for optimization and control that
allow for the efficient evaluation and optimization of the
system performance [1]. Nevertheless, simulation based and
exact approaches have developed independently: (i) exact ap-
proaches generate solutions based on assumptions that hinder
their implementation in the real system, (ii) simulation based
approaches require less to no assumptions, but take a long
time to run, and rarely provide finite time guarantees on the
quality of the solution.
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As a motivating example, consider a serial production
system composed of machines with controllable processing
time (inverse of capacity/speed). In theory, maintaining higher
machine capacity will reduce the cycle time to produce a part.
However, the higher the capacity the machine has, the more
likely it will fail due to an accelerated degradation process.
For instance, increasing the speed of a polishing machine will
shorten the time to process the surface of a part, at the cost
of increased bearing fault [2]. Therefore, machine capacity
combinations should be carefully selected to maximize the
overall system production rate, and such combinations should
be identified quickly to enable online control of machine
capacities given the dynamic production environment [3].

In the scope of fast optimization, models with high accu-
racy and low computational cost, coupled with optimization
procedures, are of critical importance. However, such models
are generally not available. Analytical models, when used
for optimization, can lead to bad solutions, especially when
the system is complex, due to an error that is typically not
homogeneous across the solution space. Simulation models
have great accuracy, but the large computational cost of
running them effectively hinders their deployment into real
time production control settings.

The research area developing methods that attempt to mix
exact analytical and simulation based approaches is referred
to as multi-fidelity modeling and optimization, having its
foundational contributions, within the simulation and manufac-
turing literature, in [4], [5]. However, these methods were not
designed for continuous solution spaces. In statistical learning
theory, multi-fidelity has also attracted important attention,
usually assuming that the models of different fidelity can be
ranked, from lowest to highest accuracy, whether such rank
is known or needs to be learned [6], [7], [8]. Our approach
differs from the literature in both areas, by focusing on two
aspects: (1) how to generate models at different fidelity when
approximating a discrete event simulator, (2) how to develop
statistical learning of different model biases to correct them as
well as integrate them in a way that does not require models
to be ranked according to their accuracy (whether the rank is
known or needs to be learned), if not for the highest fidelity.
This aspect is important: while a highly detailed simulator
can be a high accuracy model, when approximations are
performed, we cannot generally guarantee that the error of
the models will be homogeneous in the space of the system
parameters. As a result, models can have a different rank in
different locations of the solution space.

The result of our effort is a novel optimization algorithm
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that samples from several models at different, and potentially
non-homogeneous, fidelity in order to efficiently provide an
estimate of the optimal solution.

The main contribution of this paper is three-fold: (1) develop
an automated procedure to produce approximations of a dis-
crete event model, (2) develop novel models that intelligently
mix low and high fidelity estimations for improved system
performance evaluation; (3) new Bayesian optimization sam-
pling procedures that effectively make use of the multi-fidelity
information.

The remainder of the paper is organized as follows: Sec-
tion II reviews the existing literature. Section III describes the
system of interest and formulates the problem and assump-
tions. In Section IV the new multi-fidelity models, and the as-
sociated multi-fidelity optimization framework are presented.
Section V provides the numerical studies on multi-fidelity
prediction models and the optimization framework. Finally,
Section VI is devoted to conclusions and future work.

II. LITERATURE REVIEW
A. Performance evaluation of complex production systems

Within the production system research community, an im-
portant effort has been devoted to the design of state-based
models to describe the evolution of the system in time [9],
[10], [11], [12]. However, due to the complexity of the
models, closed-form analytical expressions are available only
for short production lines, for example, two machines and one
buffer lines. For longer lines, researchers developed approx-
imation methods, such as aggregation approaches [13], [14],
decomposition methods [15], and numerical approaches [16].
State based models are helpful in predicting system perfor-
mance when given a state sample path. Nevertheless, these
approximation based models typically possess large and het-
erogeneous estimation bias, making them inappropriate for
optimization and control purposes [17]. Besides analytical
models, discrete event simulation (DES) has been one of
the most successful tools for the analysis of production sys-
tems [18], [19], [20]. In fact, simulation models are usually
constructed for the verification of analytical models, i.e., they
represent the state of the art benchmark [21]. This is due
to the fact that simulation models do not require particular
assumptions. Therefore, it is feasible to use simulation to
model complex systems in terms of the number of components,
interactions, and policies which are typically hard to reproduce
in analytical settings [22]. Nevertheless, simulation requires
high computational effort. In particular, long simulation runs,
as well as a large number of replications, are required to
obtain accurate estimations of the desired output measure,
since shorter simulation runs usually have larger bias and
noise. Shorter simulations result in computational savings at
the cost of accuracy loss [23], [24]. We refer to high accuracy
high cost models as high fidelity, while low cost low accuracy
representations are referred to as low fidelity.

Generally, the literature in performance estimation has
mainly focused on the selection and improvement of single
models for the target of higher accuracy and lower com-
putational cost. Only recently, the research community has

started to shed light on the opportunity coming from the
integration of several models that are already available in order
to achieve better performance than picking a single unique
model [25], [4]. Nevertheless, no general approach has been
proposed for this integration. While [25] focuses on a Kernel
based estimation framework considering only two models that
are assigned a static weight, [4] focuses on the optimization
task again only considering two models. Therefore, a method
enabling the integration of multiple models for achieving the
best compromise between accuracy and computational effort
is needed.

B. Black box optimization with sources at multiple fidelity

The problem to determine the combination of machine
capacities that maximizes the desired performance of the
entire production systems has long been researched in the
manufacturing literature [26], [27], [28], [29]. In general, this
problem falls within the category of non-linear non convex
optimization over continuous domain. Hence, two branches
of literature are relevant: (i) optimization of manufacturing
systems; (ii) black box optimization. In both, we focus on
approaches that consider models with multiple fidelity.

Within the manufacturing literature, an important contribu-
tion focusing on multi-fidelity models for the optimal design
of manufacturing systems was proposed in [4], where the
authors aim at identifying the optimal system configuration
for a complex job shop using simulation (high fidelity model)
together with a Jackson network (low fidelity model). The
resulting algorithm, Multi-Fidelity Optimization with Ordinal
Transformation and Optimal Sampling (MO?TOS) works over
a finite, discrete, solution space and it exploits the availability
of the Jackson network to inform a new version of the Optimal
Computing Budget Allocation (OCBA) algorithm [30]. The
Ordinal Transformation (OT) uses the low fidelity model to de-
rive a rank space for the alternatives based upon the associated
low fidelity performance. The best solution is then searched for
in this rank space using the high fidelity model and the optimal
sampling to select the alternative to evaluate. Few challenges
are not in the scope of the MO?TOS framework: (i) it was not
designed for continuous spaces; (ii) only a single low fidelity
representation can be exploited; (iii) no approach is provided
to derive low fidelity models.

Challenges (i) and (ii) have been addressed in several
ways within the statistical learning and Bayesian Optimiza-
tion communities. Indeed, multi-fidelity optimization has been
theoretically investigated not only in discrete [31], but also
continuous settings, which is the focus of this work. In gen-
eral, continuous approaches for multi-fidelity include extended
sequential methods [32], and methods for surrogate based op-
timization that make use of Co-Kriging meta-models in order
to construct a prediction for the sources at different fidelity,
and use the cross-correlation structure as a means to “transfer”
information [33], [7]. The Co-Kriging model was explored
in [34] to improve the efficiency of prediction and uncertainty
modeling when multiple information sources exist. Co-kriging
requires the knowledge of a ranking for the fidelity among the
sources, such that an auto-regressive model can be used and
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a single multi-output Gaussian process constructed to predict
the multiple sources. This fidelity ranking and auto regressive
modeling is leveraged in several approaches [32], [7]. With
quite restrictive assumptions [33] present an approach for the
multi-armed bandit problem which minimizes both simple and
cumulative regret under the assumption of a set of multi-
fidelity models with a known fidelity hierarchy, where the
maximum bias of an information source strictly decreases with
its fidelity. Though these methods are examples of solutions
to (i) and (ii), and allow multiple low fidelity models to be
used, they are restrictive in their need for low fidelity models
to be ranked in order of accuracy, and again give no approach
on how to generate low fidelity approximations.

In our problem setting, we make no such assumption on
the existence of any relationship or ranking between low
fidelity representations. A similar setting can be found in the
recent work on multiple information source optimization with
knowledge gradient (misoKG) that extends the knowledge
gradient methodology to multiple information sources [35].
There have been two other approaches proposed for the non-
hierarchical information source setting including an expected
improvement based algorithm proposed by Lam et al. in [36],
and multi-task Bayesian optimization (MTBO) [37], which, to
the authors’ knowledge, was among the first approaches for
non-hierarchical multi-fidelity optimization. MTBO proposes
a joint Gaussian process to model all information sources
by building upon the multi-task Gaussian process regression
literature [38], [39], [40], extending the Co-Kriging approach.
In MTBO the next sample point is chosen via the cost-sensitive
entropy search, sampling points that reduce uncertainty in
the optimum location, normalized by the query cost. Notably
different from the Co-Kriging approach, the approach of Lam
et. al. [36] is to model and maintain a Gaussian process
estimation of each individual information source and to then
coalesce these models into a single multi-fidelity Gaussian
process via the Winkler’s method [41]. A modified expected
improvement function is then applied to this single multi-
fidelity surrogate to determine what location to sample next.
However it was shown in [35] that misoKG experimentally
has superior performance to both previous algorithms. It is
important to highlight that, while misoKG does not require
a hierarchical ranking of low fidelity models, its sampling
criteria requires to define a cost function associated to each
information source. In essence these cost functions, which
are generally assumed to be continuous over the input space,
implicitly define a ranking over the low fidelity models.
We show later that, when there exist multiple low fidelity
models without a priori known cost functions, misoKG can
be outperformed.

Concerning challenge (iii), no general approach is currently
available to derive low fidelity models, and models of different
fidelity are constructed by experts and assumed to be available
for the optimizer [5], [42], [43]. Since this work looks into
discrete event systems, it is relevant to propose ways to gen-
erate the models for the optimizer. It is important to develop
generators that attempt to maximize the dependency between
the low and high fidelity, while guaranteeing a substantial gain
in computational effort. In this work, we take inspiration from

the automata learning techniques [44], [45], and we propose
a model driven approach for the generation of low fidelity for
Discrete Event Systems.

III. PROBLEM DESCRIPTION NOTATION & TERMINOLOGY

The structure of the class of serial production system
considered in this work is shown in Figure 1. The circles
and rectangles are used to represent machines and buffers,
respectively. The direction of arrows shows the flow of parts

throughout the system.
Ny N, Ny-1
my Bl m, BZ BM_1 my

Fig. 1. Illustration of a serial production line

The characteristics of machines, buffers, and their interac-
tions are listed below:

1) In the production system, there are M machines indexed
by k =1,...,M, and M — 1 buffers (By,...,Ba—-1)
decoupling them;
All machines are independent with deterministic process-
ing time, 77,k = 1,..., M, and corresponding capacity
(processing speed) ¢, = 1/7hv,k=1,..., M.
There are two types of time-dependent failures consid-
ered, type 1 and type 2. For a machine %k, which has
been operating for time ¢ since the last repair, the failure
rate of type u = {1,2} is A\p ,(t) = agf%t + aff% Let
alk) = [aﬁ),agg), g’;),ag)] denote all the values of
the failure rate for machine k. We can use an M x 4
matrix to represent the parameter matrix of the failure
rate, a = [aM); @) aM)],
When a failure occurs, repair must be performed, which
can fully recover the machine condition to as good as
new. The repair time of machine k is exponential with
rate I?;, independently from the failure type.
Buffer By, has finite capacity N, k=1,2,--- M — 1.
Machine k,k =1,2,--- , M —1 is blocked if it is up and
buffer k£ becomes full. Machine M is never blocked.
Machine k is starved if it is up and buffer k£ — 1 becomes
empty, k = 2,3,--- , M. Machine k = 1 is never starved.
The failure rate is linear in the capacity. For machine £,
the failure rate, as a function of the machine capacity, is
denoted as Ay, (t) = cx X Ay (8)  k=1,...,M,t > 0.
The system in Figure 1, is modeled in high-fidelity using the
Event Relationship Graph (ERG) formalism [46], a directed
weighted graph. The vertexes of the ERG represent the events
that take place in the system and they may correspond to
state changes. The directed arcs of the graph represent the
“triggering” relationship between the connected pair of events.
The state changes associated with each event vertex appear
in braces. Arcs can have weights that represent a delay
between the triggering (origin of the arc) and triggered event
(destination of the arc). An arc can carry a condition (reported

2)

3)

4)

5)
6)

7

8)
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in parenthesis), that expresses a constraint that needs to be
satisfied when the triggering event is executed for it to trigger
the destination event.

5c=-1)

Fig. 2. ERG model for the serial production line

Figure 2 is the ERG representation of our manufacturing
system with the 8 characteristics listed above. The model is
characterized by eight types of events: i,k = 1,...,M
represent the arrival of a job to the k-th queue, if the server is
the first (condition (k == 1) in Figure 2) then another arrival
is scheduled with a delay 7“. In any case, the queue level is
increased QQp = Qi + 1. If a server is available (condition
Sk > 0), a start event £} is triggered for the server k£ of
interest, with & = 1,..., M. When processing starts at a
station k, i.e., E} is executed, if the processing time (delay)
74 is larger than the time to the next failure for either of
the two failures (Tf t T,f ?, that are generated from the related
distribution at each execution), then the corresponding failure
event is scheduled E,J:l or E,’:Q, respectively. At this point, the
start event, I}, will be scheduled to occur after a random ex-
ponential time 7, h ,or 7y, f %, depending on the failure type that
occurred. When a start event is executed, the server becomes
busy (S = 0), and a completion event Ej is scheduled to
occur with a delay 75 . Upon completion, the server is blocked
(event E]lc), and the downstream buffer level is checked. If the
downstream level is below capacity (condition Q41 < Ni41),
the server is unlocked by scheduling the unlocking event at
the current time, E}'. The execution of E}' sets the number
of blocked servers Dy at stage k back to 0 (Dy = 0), and
a departure event is scheduled for the current time EZ. A
departure schedules an arrival to the next stage k + 1 as long
as k < M; otherwise the part leaves the system. At every
departure, the state of the upstream server k£ — 1 is checked:
if the server is blocked, i.e., Dj_1 > 0, then an unlock event
for the upstream stage F/;'_, is scheduled for the current time.

The problem to be addressed in this paper is: considering
the class of serial production lines with characteristics (1) - (8),
and the related simulation model in Figure 2, develop a high
accuracy/computationally efficient framework to evaluate and
optimize the production rate controlling the machine capacity
Ck.

We approach this problem by: (1) proposing a way to
generate low fidelity models of the system in Figure 2, and
(2) leveraging the high fidelity representation along with the
several low fidelity approximations to sequentially sample
solutions within the system configuration space (made of the
capacities of each server).

Authorized licensed use limited to: ASU Library. Downloade:

IV. MULTI-FIDELITY METHODOLOGY

Formally, we assume the high fidelity simulator and its mul-
tiple low fidelity representations to be black-boxes, producing
point-wise observations of the function f7F(.) with fL¥(.),
i =1,...,n, when n low fidelity models are given. We aim
to optimize the high fidelity response by solving
H F(

x* € arg min

X
xEXCR4 )’

where X is a d-dimensional continuous solution space over
which all fidelity models are defined. As each observation
of fHF(x) is computationally expensive to collect, we aim
to identify x* using as few high fidelity observations as
possible by augmenting them using the n low fidelity models,
that provide access to lower quality information at greatly
reduced computational costs. We propose novel methods to
draw upon these multiple low fidelity information sources and
ideally reduce the number of observations of fF(.) needed
to identify x*. This is accomplished by first evaluating the
low fidelities f£¥(xp),i = 1,...,n, and the high fidelity
function f77(x},) in a set of locations {x,} . These values
are then used to statistically model the observed relationship
between the low and high fidelity sources, to build an accurate
prediction of f# ¥, which we use for simulation purposes.

4-{ Real System ‘
High Fidelity Model
fHF(x)
(T E— B
I R
Low Fidelit
:‘ S ) H '@ ‘ : Genemtiony
N _l -—— - _‘ - .l. ______ .»I
Multiple Fidelity
Optimization
|

Fig. 3. The Multifidelity Optimization Approach for serial production lines

Figure 3 shows the outline of the approach. Section IV-A
presents the alternative methods for generating low fidelity
representations. Section I'V-B focuses on our proposed multi-
fidelity statistical models, while Section IV-C introduces the
multi-fidelity optimization approaches.

A. Generating low fidelity models for Serial Production Lines

Once the high fidelity model is available (Figure 2), ac-
cording to the procedure sketched in Figure 3, the low fidelity
generation can be performed. In this work, we propose a first
principle state-based approximation of the ERG dynamics in
Figure 2 (Section IV-Al), and an ERG driven approach for
model simplification (Section IV-A2).
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1) Analytical model: We first build the analytical model where
to estimate the desired system performance by introducing a Ry R
two-step aggregation approach. First, for each machine, we mn= P+ R1’772 - Py + Ry’
aggregate the multiple failure modes into one. In order to do
so, we assume the failure time of each machine follows an Q= \/[xl(l +12) _ za(1+ 771)]2 1 dgy 2o P, Py,
exponential distribution, with the mean being the average time Ry Ry
to failure from the multiple failures modes model specified :v% Ri(Ri + Ry + Py) + {[;% Ry(Ry + Ry + Py)
in Section III, characteristic 3. We then apply the machine S1= 2a129(x1 — x2)(Ry + R2)
aggregation approach to derive the production rate resulting (Ry + Ry + P, + P) (RoP) + PoRy)
from a serial production line with geometric machines. - (a1 — ) D) (@1 — 22)(R1 + Ra)’
a) Deriving the operational time: Considering the type (21R1 + 22R2)Q
of failure described in characteristic 3 (Section III), the opera- S = 5 (02 —21)(R1 + Ra)’
tional time for each machine £ = 1,..., M denoted as 7, for T1T2{Tz = T1)\Uh 2
the machines in the system can be expressed as follows: K1 = [z1(R1 + Rz + P2) — 22(Ri + Ry + P1)|RaQ
+ Rl Q27
T = / to(M1(to) + Aa(to)) x 0 roRyPi[(x1 — 22)(R1 — Ra) — (22 P1 + 21 P%)
0 .
o= fnto(kl(t)ﬁL)‘Z(t))dtdtO. Ky = Q]7 if 21 < xg,

leng[(xl — I‘Q)(Rl — RQ) — (1’2P1 -+ l‘lpz)

_— . . —QJ, if x1 > 2,
We can further simplify the equations leading to:
n2(z2—z1m1) Ki+ai1ni (1-n2) Ko

if v, <z
- 1 1( 2_1) , 1 1 2,
) 0o Ks = m(u—m?ﬁ)?ﬁiwznz(l—mﬂ(z if o >
T = / to ((Oéllto + 0412) + (a21t0 4+ CYQQ)) X xam2(n1—1) ) 1 2. .
0
e foto(au+a21)t+(a12+a22)dtdt0 2) o If 2y = 29
2
_3 CeaN
=vie 2 +9(l - , 1 R Ro[Py (Ro+Po)—Pa(Ri+Pr)e *371]
n 72( (7)) (Pi+P2)(R1+R2)(R2 P—P2Rye=s3N1)
h I if % a %’
where f (X) - 2] R3(R1+Ra)+z1 R1 RoNy (P2 +Rp)? ' ’
z1(R1+R2)R1 N1 (Pa+Ro)](Pa+R2)2
2(0[12+(122) (2a12+o<22)2 i) f N (P )l 1) if Py 7§ Py
Nn=—""-13¢€ (arrFoz1) Ry Ry’
(011 + a21) (6)
V2 (agptann)?
Yo = 77r§62(ﬂ§1+321)7 (3) where
(Zizigz;ﬁ o Pt Pt Rat B)(PiRy — Boy) o
5 = .
=2 = P+ P
3= Jan Ton PP )
(- is the CDF of a standard normal distribution. For a production line with more than two machines, there is

no closed-form expression for the production rate. Therefore,
we use the aggregation-based recursive method to obtain the
production performance of the serial production lines. To
facilitate the presentation of the procedure, we introduce new
notations ?(u) and z/ (u), representing the capacity in the
u! backward and forward aggregation iteration of machine
1, respectively. The detailed aggregation procedure is shown

The failure rate for machine & results P, = 1/7. Besides,
the repairing rate R, for machine %k follows the descriptions
of the characteristic 4) in Section III.

b) Deriving the production rate: Let us first consider a
two-machine-one-buffer line, defined by characteristic 1-8. A
continuous time and discrete state Markov chain, with states

. . ~> as follows:
defined as a combination of machine state and buffer level is
proposed to model the line. According to [12], the production
rate, denoted as fIF (x),x € X, with X C R¥, can be
expressed as follows: Procedure 1.
€T ~
o If 2y # x5 (i.e., the two machines have different capac- 2l (u+1) :%fLF(xf(u),:c?H(u +1)]
ity), nix; (u)
ByRi7Pi+l7Ri+17Ni)7i = 1u .. '7M - 17 (8)
- KeP1N1 4 pmy Ky e%2N1 1o Kie—92N1 €Xs ~
T e e e ——, el (u+1) :mf”(xf_l(u +1), 28 (u+ 1)
- if 2y < 9, et ,
f (x) T merKie N fayn; Koe®2 M gy Ky em %2 M PiflvRiflvRi’PivNifl)vl:27"~7M’
K16791N1+K1692N1+K16792N1 I
if 21 > 2o,  Fixing the initial conditions for the procedure to xf 0) =

(4) i@ =2,...,M—1, with boundary conditions being x{ (u) =
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xl,xljw(u) =xy,u=0,1,..., then l‘{ is known to converge
to a unique solution (result presented in [12], Theorem 11.3,
Page 350).

fo_ 9 f b._ b
x = uh—>Holo x; (u), @ : uh_)n;o x; (u). 9)
And, the production rate becomes:
FEE(x) = aber = wfsem (10)

Equation (8) shows the updated aggregate capacity for
machine ¢ at iteration u + 1 using the f LF estimator obtained
from Equations (1)-(7) with the updated parameters at iteration
u. The initial parameters at iteration © = 0 are the same as the
capacity value for each machine. Since the first machine and
the last machine are the initial machines for the forward and
backward aggregation, respectively, the capacity of these two
machines remains unchanged throughout the procedure. The
convergence of the integration shown in Equation (9) provides
the stopping criteria for the iterative procedure. Finally, the
production rate can be obtained using the aggregate capacity
of all the machines upon convergence of the x7;, from the
forward aggregation, or the % from the backward aggregation,
times the efficiency of the corresponding machines, which is
illustrated in Equation (10).

2) Simulation Models: Considering the characteristics (1)-
(8), and the related discrete event simulation (DES) in Fig-
ure 2, the fidelity of the output resulting from the execution
of the model will be controlled by means of two approaches:
(1) simulation parameters driven approach; (2) graph based
approach.

a) Simulation parameters driven approach: The first
approach is grounded in the simulation output analysis lit-
erature [47], [48], [49], and returns the output generated from
the simulation of a low number of jobs. As a result, the output
from the simulation model will be substantially impacted by
initialization bias when compared with the high fidelity model.
However, given that the system is initialized under the same
condition across all the replications and considering the short
simulation length, the variance of the output estimator is
negligible, to the point that we will consider a deterministic
simulation response. Although the underlying system logic
is unaffected, the truncated simulation runs lead to a large
initialization bias, thus methods aimed at recovering this model
bias should be effective. We executed a preliminary testing
and analysis of long and short run (high and low fidelity)
simulations, and found a positive correlation with varying
magnitudes between the models.

b) Graph reduction approach: The second approach
takes as input the graph in Figure 2 and reduces it in order to
decrease the simulation time. Let E,f and ei denote the events
occurring in the system and their occurrence times, respec-
tively, where £ € T is the event type (i.e., a, s, f1, f2,¢, 1, u,d
as in Figure 2), and % indicates that the event belongs to
machine k& = 1,2,...,M. Let W = {ES|¢ € T,k €
{1,...,M}} be the set of all the events. For each event E:,
let I ( E,E) be the set of input events for E,E and let O (Eg

be the set of output events for E,ﬁ We can define the set of
arcs in the model as:

E{<E,§E§> S e@(E,E)}
u{(EfE,ﬁ) B¢ eH(E,ﬁ)}

Finally, for each arc, we can define a weight (delay) and a

k=1,...,M;6€T

k=1,...,M;€€T

condition forming the pair (wig ,C,ff , thus generating the
label set IL by considering all arcs in E. In this work, we define
two operators to reduce the ERGs:

o Aj: Aggregate failure event types to form a single event.
Formally, the event set after aggregation can be expressed
as:

Wa, =W\ {ES€ € {f1, o}k € {1,..., M}}U
(Ellke{1,...,M}},

]E.Al :E\EE]im UEN&WJ

L, =L\ Ly ULy,

EEH,,,:{<E£J',EJ§) : B e@(E,{f),j 1,2}u

{<E§ E,{J) : B EH(E,{J)jIQ}

In the definitions, E,{ is the aggregated failure event in
Figure 4. The two failure events, E,fl , E,?, are aggregated
for each server to form the aggregated node E7¢. In
this way, the total number of nodes, and executions,
will be reduced by k events. As a result, the arcs are
updated eliminating the 4%k connections reducing the size
of the set E,., to 2k. These arcs need to have weights,
representing the failure time, the condition for failure, and
the repair time, recomputed. In particular, the set of new
weights Ly, is derived by changing the distribution used
to generate the time to the next failure T,f" =12 k=
1,..., M. To do so, we use the parameters obtained in
the analytical model, and set 7/* ~ expo () for each
server k, where 7, is obtained through Equation (2).

(k==1)

{Q=0+1}

(S =-1}

Fig. 4. ERG model for operator Aq

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE&)ermission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on July 15,2021 at 01:54:10

C from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3025143, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL . XXX, NO. XXX, XXXX 7

o As: Aggregate all the events related to all the machines (Qp > 0)
except the first and the last one in the system into 7
one event. Formally, the graph after aggregation can be
expressed as:

W, =W\ {ES|€ € T,my € Q} U {ES},
]E.A2 :E \ IEElim U IENew7
]L.Ag =L \ ]I‘Elim U LNCW)

EE]im = { <E;§,E£ > : E]E, E,E 0} (E]E)}U

{(ES’E]?) : E]E/’ Ei e (E1€>} ) Fig. 5. ERG model for operator Ao

{Se =0}

{Qo = Qo + 1}

B = { (Es 27 Ef‘\z)  ES 27 Eiz €0 (Ef‘b) } U process. Formally, let us refer to BiLF (x) as the bias of the
/ / i-th low fidelity model. Subsequently, we investigate several
{(Eiz’EiQ) :Egzv Eﬁtz el (Ef%)} 6,6 € T/Ways to use the bias information. In particular, let us refer
T = {a.5.c.Lud) to fEF(x) as the response from the i*" low fidelity model
A of solution x € X, and let us assume, as justified previously,
Notice that, with such an approach, all the events as- that 2 (x) can be evaluated with no noise. Also, f7¥(x),
sociated with machines in @, are eliminated. For the representing the response from the very long simulation run,
production system analyzed in this work, we aggregated can be assumed as deterministic. As a result, every point
all the events of machine in Q = {2,...,M — 1}. We estimate of the bias is noiseless. We propose two different
use a single virtual unit to mimic the part flow through model types for the prediction of the high fidelity response
the machines in Q of the physical system, with events that make different use of the low fidelity information:
denoted as Ef;l. Figure 5 shows the resulting model.
Furthermore, comparing with the event types set T in the
high fidelity model, the aggregated virtual unit contains
no failure events, with the set T = {a, s,¢,l,u,d}. In
this model, the processing time 7% is assumed to be
random. In particular, we consider the lower bound of the
processing time as the sum of the unit processing time
of the individual machines; subsequently, we model the
processing time 7% as a lognormal distribution to scale
up the total processing time of the aggregated machine
based on the aforementioned lower bound, which can be
expressed as follows:

o M, uses the results from the i-th low fidelity and the
high fidelity simulation to derive the bias prediction
model BZLF (x) |X, f, where X, f represent the sampled
locations and the corresponding high fidelity simulation
value. The resulting model to predict the response of un-
sampled points is f7F (x) = fEF (x) + BEF (x);

o M, considers the results of multiple types of low fidelity
models. Let’s assume that n low fidelity models are
generated from the analytical and simulation models, with
predicted response fFF(x)|X and bias BEF(x)|X, f
for model 7, where X represents the sampled locations,
f represents the corresponding high fidelity simulation

. M1 ) value and i € {1,...,n}. We further consider the control
T (Z 71,) % (14 LogN(0,1)), variate fFF = fLF (x)+BEF (x), and the corresponding
k=2 weight 3;(x) for model i. Therefore, we can weight all
where LogN(0,1) is the log normal distribution with the n models by the MSE-optimal coefficient 3" (x) =
parameters (0, 1). The events of the other machines in the {B1,...,0n}, for the estimator on the sampled points:
system remain unchanged. It can be found that, compared
with A4, this operator has a net reduction of all the events fH F (x) = FEF (x) +
of (M — 3) machines, which is far less than the total FLF (x) — E [fEF (%))
. 1 1
number of events resulting from the use of operator A;. . ) )
B (x) : X , (1)
FLF FLF
B. Multi-Fidelity Statistical Models o x) - B [fn (x)]

The analytical model as well as the low fidelity simulation
models, presented in Section IV-A, can be used in combination
with the high fidelity simulation model to produce estimations
of the performance response across the solution space. In
particular, our strategy is to produce a prediction for the high
fidelity model that relies on the bias estimation of each low
fidelity model throughout the solution space. To produce the It is apparent that we will have a single statistical model of
bias prediction, we assume that the bias of each low fidelity type Mg, and as many statistical models of the type M, as
model is adequately modeled as a realization of a Gaussian low fidelity models we constructed or were given.

where fHF represents the expensive high fidelity es-
timator obtained with the simulation model. Assuming
Gaussian processes for the responses, we can have an
analytical form for the MSE, allowing the computation
of the optimal coefficient 3 throughout the solution space.
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C. Multi-Fidelity Optimization

Our novel approach to optimization in the context of
multi-fidelity models extends standard Bayesian Optimization
(BO) to integrate multiple information sources when making
sampling decisions over the costly high fidelity models. In
particular, we present two approaches: (1) the model driven
multi-fidelity optimization (MD-MFO); and (2) the sampling
driven multi-fidelity optimization (SD-MFO). Figure 6 depicts
our multi-fidelity approach within the context of a standard
surrogate based simulation optimization (SSO). At the k"
iteration, SSO fits a surrogate prediction model from observed
input/output data (Figure 6, top). Over this surrogate model,
a “sampling criteria” or acquisition function a(x) can be
constructed and maximized to determine the next location to
sample xj1 (Figure 6, center). The location xj; is then
sampled (Figure 6, bottom) and the SSO framework proceeds
refitting the surrogate prediction model. Figure 6 highlights
the additional low fidelity and bias prediction surrogate models
that are fit in our multi-fidelity context.

Fit prediction models over
solution space

{F17 (o), fF (), BM ()}

|

Find maximum of acquisition
function over solution space
X, =argmaxa(x

next g Xex ( )

|

Sample all information
sources at Xy qy¢, calculate
bias B = fHF — fLF

Fig. 6. General Bayesian optimization approach in the multi-fidelity context.

1) Model Driven Multi-Fidelity Optimization MD-MFO:
The basic idea of MD-MFO is to use the high fidelity
predictions generated from the low fidelity models from
Section IV-B, {M;},i = 1,...,n, to feed an acquisition
function/sampling criteria. The sampling location at the k™"
X}, iteration is generated using the model M, to evaluate
the sampling criterion. Equivalently, the MD-MFO approach
uses M, as the surrogate model handed from the top to the
center box of Figure 6. In fact, equation (11) shows how
My, is constructed as a mixture of the high fidelity model,
6HF and all of the low fidelity models, éfF . The weight
of the i*" low fidelity mixture component is assigned by the
observed relationship between the iy, low fidelity and high
fidelity information source, which is modeled by the parameter
85 ().

Regarding the overall MD-MFO approach, we use the
expected improvement acquisition function in (12) as the
sampling criteria over the mixture model M, [50].

) (12)

&

AHF(X)

9 (245

where s(x) Var(fHF(x)), App(x) = fIF(x.) —
fHF (x), and x, is the best observed high fidelity sam-
ple and fHF is the prediction produced by model M,.
Choosing xj+1 € arg maxyxex El(x) yields a sequence of
{Xk,k=1,2,...}, where h denotes expected improvement
iteration, that is influenced by all of the low fidelity sources.
For MD-MFO, we can view the influence of the low fidelity
information as being exerted during the model building step
of calculating f#F from M.

2) Sampling Driven Multi-Fidelity Optimization SD-MFO:
An alternative to the model driven approach is to focus on
the sampling function a(x) (Figure 6, center box). Specifi-
cally, SD-MFO aims to combine several surrogate prediction
models, each embedding low fidelity and bias information.
As a result, several surrogate models are passed from the
top box to the center box in Figure 6. Let us assume that
n Gaussian processes are used to produce predictions fl(x)
across x € X for ¢ = 1,2,...,n. Given that the surrogate
model forms selected are Gaussian processes, we know that
conditional predictions at a given location f;(x)|x € X are
normally distributed. Moreover, if we assume that these n
processes are independent, then the ¢ resulting conditional
predictions can easily be combined under the idea of assigning
a single unique score to each point x in the solution space.
Assume that, at any given location, an acquisition function,
or sampling criteria, can yield a sampling score I;(x) that is
well defined when only one model is considered. It is possible
to design a random function G (I (x),...,I, (x)) and an
associated density Fi;. These two ingredients define the novel
concept of joint score functions. In the case where I; (x) is the

improvement function, i.e., I; (x) = max ( f* — f; (x),O),
this idea leads to the novel Joint Expected Improvement (JEI)
defined as:

JEI (x) = max(Eq[G (1 (x),...,1,(x))],0)
= max ([7* g (x) - dFa(9),0) . (13)
And the point is selected which satisfies:
x), € argmax (JEI (x)). (14)

x¢S

Nevertheless, how to derive G and its distribution is all but
trivial. In this manuscript, we propose two competing strate-
gies and provide the underlying motivations. Specifically, we
introduce: (a) the average joint expected improvement (aJEI),
and (b) the consensus joint expected improvement (cJEI).

a) aJEI: A first way to embed the predictions generated
by the n low fidelity models, is to consider the point that max-
imizes the Expected Average Improvement. This corresponds
to the following G random function:

Gx) =1 (15)

T n

Z?:lf*_ﬁi(x)~

Conditional upon the location x, Gx is a normal random
variable obtained as the scaled sum of independent normal ran-

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE&)ermission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on July 15,2021 at 01:54:10

C from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3025143, IEEE

Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL . XXX, NO. XXX, XXXX

dom variables, centered around f*, ie., Gx ~ N (,qu, oéx),
where:

n

SO = (%)

i=1
1 n

0l = EZU’Z (x).
i=1

At this point, it can be observed that we can simply apply
equation (13) to derive aJEI for all locations x in the feasible
space X.

1

HGyx = —
n

(16)

a7)

Theorem 1. (Variance Reduction under aJEI) Consider a
number of predictive models n = 2, without loss of generality,
express oo = Voq. In this setting, a reduction in posterior
variance is achieved if and only if:

v3
3
Proof. Consider the following:

< U <V3. (18)

2 2 2 2
o +o ol +o
1 242 g A 2 < 52

g 1+ p2
<1 & +4

— §<\p§\/§.

1+

Thus when the distributions have similar variances this results
in a higher overall confidence in the distribution. However,
if they vary substantially, then the distribution with lower
accuracy tends to dilute the accuracy of the other. O

b) ¢JEI: The second approach we take to combine the
n predictive models biases the sampling towards locations
that maximize the “agreement” among different predictors, we
refer to this second approach as consensus Joint Expected Im-
provement. We consider the random improvement at location
x of the i random model with known distribution F7, x) (v),
where y represents the realization of the improvement. Let
us consider the probability p that all the models achieve an
improvement at most y. Under the independence assumption,
we obtain:
n
p=11Freo W) (20)
i=1
With a reasoning similar to the derivation of Bayesian poste-
riors, the distribution of GG, conditional upon the point x, will
satisfy:
Fa, «<p, (2D

where the proportionality constant is known or can be es-
timated as L ~. Ignoring such a constant, G ~

2 /T n
2m /1T, o

N (nay,08,). where:
21;1 Nﬁi/giﬂi
HGx = ~—=mn 773 >
it 1/0%

o = _
Gx = .
it 1/‘7%

(22)

(23)

V. NUMERICAL STUDY

In this section, we present the numerical analysis of the
proposed approach. In particular, we first, separately and
empirically, validate the modeling and optimization methods.
Finally, we propose a case study as a proof of concept of the
overall approach.

A. Statistical Modeling Validation

A first test is carried out over two dimensions on a box-
constrained domain (z1,2) € [0.5,1.5] x [0.5,1.5]. The high
fidelity model is a Gaussian Process, GP(u,Y), with u =
[0.5,0.5]7,% = [0.5,0;0,0.5]. The prediction resulting from
3000 randomly sampled points is shown in Figure 7(a). As
synthetic low fidelity models, we use two Gaussian processes,
one with positive bias GP(1.5u, ) and one with negative bias
GP(—0.5u,%). The bias process associated to the low fidelity
models is referred to as BX¥ and BLY, respectively.

In order to test the quality of our multi-fidelity model, we
estimate M; and Moy, and M, sampling 50 locations at
random in the solution space.

The plot of the true response surface and the corresponding
predictions for our proposed modeling methods are reported
in Figure 7. In Figure 7(a)-7(d), the horizontal axes refer
to the location coordinate, and the vertical axis represents
the prediction produced by the Gaussian process model. In
Figure 7 it can be observed that the bias-adjusted models
M;, i = 1,2 (Figures 7(b)-7(c), respectively) reflect the
behavior of the high fidelity model. For example, the positions
of the peaks and the valleys of the prediction in Figure 7(b)
match the true response in Figure 7(a). For the predictions
considering multiple models, Figure 7(d), the prediction is
very close to the true response surface.

We test the predictive capabilities of our three proposed
models, M1, Mj, and M, against a baseline approach which
only makes use of high fidelity information and ignores all low
fidelity models. This baseline, denoted as M g, considers the
same 50 sample points from the true high fidelity response
surface used for the models M, M3, M,, and builds a
predictive Gaussian process. In fact, the models M;, Mo,
and M, augment the same 50 high fidelity response samples
with the low fidelity response values at those locations. We
compare the effectiveness of our modeling method in improv-
ing predictive capabilities when high fidelity information is
augmented with low fidelity information.

Specifically, we use the following performance metric to
capture the error measures of each model:

P

Omodel = X 100%7 (24)

fHF
where f HFE denotes the prediction obtained from the one of the
models (M, My, Mg, or Mpgp) and FHT denotes the true
function value. Such a measure shows the percentage deviation
of the prediction model compared with the corresponding true
function values. The mean, standard deviation, and maximum
of 0,041 are reported in Table 1. It can observed from the plot
and the measures that the mixture model, M, performs the
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Fig. 7. Plot of the multi-fidelity models in the theoretical examples

best among all the different types of prediction models includ-
ing the baseline approach of My, where only high fidelity
samples are considered. M, is able to effectively leverage the
extra low fidelity response information (in combination with
the 50 high fidelity response samples) to produce a highly
accurate response surface with only 50 high fidelity samples
and each low fidelity model.

TABLE I
THEORETICAL MODEL ACCURACIES (IN %)

Model | Mean 0,,0qe;  Std DeV 0pm0de; = Max Opmodel
My 76 59 399
Mo 114 89 598.5
My 7.04e=6 6.51e6 4.26e7°

Mur 6.7 6.5 42.1

B. Multi-Fidelity Optimization Validation

In the scope of testing the optimization approach, we
selected the d-dimensional functions reported in Table II,
where the correlation between the high fidelity and each low
fidelity model is also reported. Testing was carried out in four
dimensions (d = 4) over a box-constrained domain from the
Cartesian product of intervals Hil[().l, 1] with a high fidelity
function evaluation budget of b = 100, i.e., allowing 100
evaluations of the high fidelity source.

TABLE I
THEORETIC HIGH AND LOW FIDELITY TEST FUNCTIONS.

Model Functional Form Correlation
HF Model  —2.5 H?:l sin(7z;) — Hle sin(57z;)
LF Model 1 —2TIL, sin(mz;) 0.87
LF Model 2 —0.8TT%, sin(5mz;) 0.49
LF Model 3 2 H:’l:l sin(7a;) —0.87
LF Model 4 0.8 []L, sin(5ma;) —0.49
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We tested five competing algorithms.

1) CV BO: This model driven multi-fidelity optimization
(MD-MFO) approach adopts a standard expected im-
provement acquisition function calculated using the M,
model in equation (11);

2) aJEI: This sampling driven multi-fidelity optimization
(SD-MFO) is executed jointly over multiple bias adjusted
low fidelity models M;, i = 1,...,n, utilizing the aJEI
acquisition function to reconcile the predictions;
¢JEI: This sampling driven multi-fidelity optimization
(SD-MFO) is executed jointly over multiple bias adjusted
low fidelity models M;, i = 1,...,n, utilizing the cJEI
acquisition function to reconcile the multiple predictions;
4) HF BO: The EGO algorithm uses expected improvement
defined only using the high fidelity source, and ignoring
any low fidelity information [50].
misoKG: The misoKG algorithm takes sampling de-
cisions by trading the value of information resulting
from sampling the i low fidelity source at location x,
against the cost of that information, where such cost
is provided by the user. The value of information is
the expected gain in the quality of the best observation,
which is then normalized by the cost of sampling. This
is formalized through the use of Gaussian processes to
estimate model discrepancies and the maximization of the
MKG acquisition function, an extension of the knowledge
gradient [35]. We chose misoKG as it was empirically
shown to outperform both expected improvement based
multi-fidelity in [36] and multi task Bayesian Optimiza-
tion (MTBO) [37], which can all handle un-ranked low
fidelity models.

3)

5)

We macro-replicated each of the five algorithms 30 times
and observed the average performance and the associated stan-
dard error. In particular, we assess two performance metrics:
(1) the average Euclidean distance of the proposed solution
from the true minimum Zjil |[%xF —x*[|2/30; (2) the average
absolute function value error Z;’il |f(x5)— f(x*)[/30, where
f(-) is the high fidelity function evaluation and X} is the
identified minimum from the ;™ macro-replication. The two
metrics (with standard error) are reported in Table III for each
of the four tested algorithms.

In Figure 8, we report the average distance as a function
of the simulation budget, and the mean cumulative regret,
defined as: )| 250:1 (f(%xi5) — f(x*)) /30, where i indicates
the number of high fidelity samples taken, i.e., i = 1,...,b.
Note that the benchmark algorithm, HF BO, which excludes all
low fidelity information, serves as a control experiment to ob-
serve how embedding the low fidelity information impacts the
algorithms performance. Figures 8(a)-8(b) show the progress
against the total number of high fidelity evaluations allowed.
Figure 8(a) shows the Euclidean distance of the best observed
location relative to the true minimum as the simulation budget
is exhausted, and Figure 8(b) shows the average cumulative
regret as the cumulated gap between the best observed function
value and the true minimum.

Table III and Figure 8(a) show that all algorithms perform
well over the theoretical test environment with budget b = 100.
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TABLE III

OPTIMIZATION ALGORITHM RESULTS AFTER 100 SAMPLES ON 4
DIMENSIONAL THEORETIC PROBLEM.

Algorithm Te= == 7] Std Error TE =7 Std Error
k E
CV BO 0.0388 0.0105 0.1550 0.0268
aJEl 0.0212 0.0085 0.0853 0.0206
cJEIf 0.00987  0.0084 .02641 0.0161
HF BO 0.0213 0.0088 0.0893 0.0210
misoKG 0.1680 0.0200 1.0803 0.0987
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i statistical best performance at oy = 0.01

From Figures 8(a) and 8(b), we observe that misoKG does not
perform well in this test environment. There are two related
aspects of misoKG that affect algorithm performance: 1) for
each information source ¢ misoKG requires a cost function
¢¢(x) to be defined by a user as input for the algorithms to
run, and 2) misoKG proceeds by sampling a single source ¢
at location x by maximizing the MKG acquisition function,
which is defined for each (¢,x) pair. The MKG acquisition
function is defined as:

I = y;k+1
ce(x)

where f; = minyex f{7F(x) is the value of the minimum
high fidelity prediction at the 7" iteration, and c,(x) is a nor-
malizing term for the potential information gain of sampling
(¢,x). Each (¢,x) sample decision from MKG is a greedy
maximization of improvement in high fidelity prediction rela-
tive to the sample/source cost. Thus, information sources are
viewed as competitors and each iteration samples from the
“best” source. Our approach views the sources cooperatively,
and makes sampling decisions using all sources collectively.
When there are several information sources, as in this case,
we observe that misoKG suffers by making sampling decisions
based upon the MKG normalized acquisition function, which
only considers a single source at a time.

In particular, the advantage of sampling sources simul-
taneously appears to be confirmed by the performance of
the consensus Joint Expected Improvement, which coalesces
a sampling decision from all the models simultaneously,
and outperforms all other algorithms. Over the 30 macro-
replications cJEI accurately identifies the true global minimum
of the high fidelity simulator, on average using only 30 high
fidelity evaluations. After 10 simulations, the cJEI approach
identifies solutions that are substantially closer to the true
global minimum, than either of the algorithms that explicitly
fit a Gaussian process (GP) to the high fidelity responses.
Considering that every GP fit in the cJEI algorithm uses
low fidelity information, the performance of cJEI highlights
the effectiveness of fitting bias corrected models and how
simultaneous consideration of all low fidelity proposals yields
better results.

MKGl(g, X) = Ez |€i+1 = é, Xi+1 =X

C. Case study

In this part of the analysis, we present the experimental
results of the cJEI algorithm, the best performer among the
algorithms previously analyzed, against common state-of-the-
art global optimization algorithms that are embedded into com-
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Fig. 8. Optimization algorithm progression as simulation budget is exhausted.

mercial simulation software and are therefore popular within
the manufacturing community: particle swarm optimization
(PSO), genetic algorithm (GA), simulated annealing (SA),
and pattern search (PS). All these algorithms make use of
only high fidelity information. These algorithms are widely
used in commercial simulation software such as Rockwell
Arena, Simio, Matlab-Simulink. We use the implementations
for the aforementioned algorithms available within the MatLab
global optimization toolbox. Testing is conducted using the
high fidelity simulator of the production line described in
Section III, along with the analytical and simulation-based
low fidelity models presented in Sections IV-Al and IV-A2
respectively. Due to the complexity of the serial production
line, the true global optimum (x*, f(x*)) is not known for
any number of machines M > 2 and for multiple failures as
it is the case for us. As a result, the only metric available to
judge the competing optimization algorithms is f(%X*), i.e., the
best observed objective function value (corresponding to the
system throughput).

In order to analyze the performance of the proposed ap-
proach we generate random instances for 5-machine produc-
tion lines. For the given system M = 5, we randomly draw the
remaining static parameters for the system, Ny € {3,...,8},
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TABLE IV
EXPERIMENTAL PARAMETER SETTINGS
Case o N MTTR o
| |1036.022.041.0.11; 0.46,0.02,0.40,0.22; 0.37.0.08, [3.4, [2.83.3.44.2.00, .
0.26,0.41:0.49,0.17,0.40,0.45; 0.47,0.05,0.21,0.09] 5.5]  2.60,2.29] 24T ETTTS —1
5 [10:28,0.32,036,0.08; 0.35,0.10,0.44,0.44; 0.35,043, [4,4, [2.87.2.05,3.10, ) |
0.22,0.26:0.22,0.22,0.23,0.07; 0.38,0.12,0.23,0.12] 6,4]  2.87.2.84] REL
5 [10.33.0.02,034,0.33; 0.28,0.35,0.38,0.02; 0.37.0.14, [8.3, [3.10.3.41,2.58, £
0.32,0.15:0.41,0.23,0.25,0.28; 0.43,0.16,0.27,0.20] 4,3]  3.02,3.79] =
4 |10:33.0.40,0.26,0.44; 0.50,0.09,0.38,0.01; 0.32.0.03, [4.8, [3.93.3.09.3.95, £12
0.49,0.23; 0.48,0.40,0.46,0.10; 0.22,0.31,0.25,0.38 | 3.4]  3.433.40] 3
s [10-27.0.05,042.0.23; 0.25,0.45,0.28,0.22; 0.29.032, [6.7, [2.44,3.74,2.41, SRR
0.37,0.31:0.28,0.15,0.28,0.17; 0.24,0.09,0.49,049] 6.4]  3.84.2.98] %
¢ |1039.023,0.42,027; 0.37.0.33,0.50,0.42; 0.32,045, [6.6, [3.79,2.663.64, L
0.45,0.04:0.42,0.41,0.42,0.36; 0.36,0.07,0.49,0.21] 5.5]  2.08.2.22] g .
;7 |10.35,035,0.44.0.20; 0.22,0.15,047.0.12; 034,048, [6.6, [2.15.3.56.2.88, g —F P50
0.21,0.31:0.49,0.13,0.36,0.46; 0.24,0.27,0.43,0.34] 3.4]  3.453.96] Zos Ga
g |[0340.29.036,0.39; 0.41.0.32,0.33,0.15; 0.49,0.17, [3,5, [3.75.3.94.3.74, I T
0.27,0.04;0.49,0.07,0.30,0.05; 0.27,0.21,0.47,0.18] 5,6  3.06.2.47] 0 b ‘ ‘ ‘
o | [030.0.09.0.46,0.49:0.21.0.36,0.37.0.46:0.40,028, [4.5, [2.02.3.00.2.99, “20 30 50 75 150
0.41,0.20:0.41,0.42,0.34,0.48:0.44,0.50,0.25,027]  43]  2.27.2.28] Budget Allotted
10 | 10:23.0.35.0.49.0.01: 035,0.42.0.38.0.37:0.29.0.47, [44, [3.54.2.04.3.27,
0.41,0.28:0.24,0.20,0.40,0.23; 0.33,0.32,0.35,0.34] 7.4]  3.050,3.00]

Ry € (0.25,0.5),a%) € (0.2,0.5), olf) € (0,0.5),5 =
1,2,k =1,...,5. The parameters are generated following the
cases discussed in [21], which considers the randomness in the
manufacturing systems, such as the failure rate, repairing rate
and the transitions among multiple failure modes. The selec-
tions of the parameters are also representative to widely cover
the application scenarios in the real systems. The resulting
testing conditions are reported in Table IV.

We analyze the impact of the total number of simulations in
high fidelity required to obtain a satisfactory solution; allowing
for a fair comparison of the performance between the proposed
cJEI algorithm and the state of the art competitors. In order to
do so, we performed experiments over Case 1 in Table IV. We
performed 50 macro-replications and the obtained results are
reported in Table V for all the algorithms with the statistical
significance. Figure 9 pictures the confidence intervals around
the optimal estimated function value flf , where b represents the
number of allowed simulations in high-fidelity and it is set to
b = {10, 20, 30, 50, 75, 150}. First, we observe, from Figure 9,
that the incremental improvement in performance decreases for
increasing simulation budget. In particular, the improvement
for cJEI is minor if we go from b = 50 to b = 75 and even
more from 75 to 150. Since simulations are expensive, we
wish to use the lowest possible budget. Also, we can observe
that the proposed algorithm is never dominated by any of the
competitors independently from the budget used.

D. Randomized Testing

In practice, the budget should be set such that it is as small
as possible while still providing a high quality solution. Based
on the preliminary results in Table V and Figure 9, we chose to
further investigate two budget values b = 30 and b = 50; b =
30 is the smallest value that shows good performance, while
b = 50 is the smallest value that shows solution convergence.
In order to explore the performance of the proposed approach
over random system configurations, we proceed testing the
same algorithms over all the cases in Table IV with the two
alternative budget values.

Fig. 9. Mean performance of cJEI against competitors across alternative
allotted sampling budget scenarios.
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Fig. 11. Mean performance of cJEI against competitors across randomized
cases with 50 sampling budget, b = 50.
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TABLE V
CJEI PERFORMANCE WITH VARYING BUDGET

show that the multi-fidelity model could provide higher ac-
curacy than individual models, and is computationally quicker
than the high fidelity simulation model. Moreover, we pro-

Algorithm | b — T e pose novel methods for utilizing multiple fidelity models to
58 111253 88%; optimize over a high fidelity model and show applications in
CJEI 30 | 13495t 0.0121 determlpmg the .cap:flcgy combmatlop to maximize a system
50 | 1.3915t  0.0051 production rate in limited computation time scenarios. Our
75 | 14095  0.0006 proposed consensus joint expected improvement method has
150 | 1.40971  0.0006 d d the abili hal b f soluti
0 T0023  0.0258 emonstrated the ability to search a large number of solutions
20 1.1426  0.0229 with tight time budget and the results outperform existing
PSO 30 1.2064  0.0206 solution methods.
50 1.3472  0.0142 .
75 13793 00069 Future work can b.e extended to more complicated systems,
150 | 1.3909 0.0071 such as assembly lines and production networks. For the
;(0) 32536 8-851; decision variables, more factors can be included, such as pro-
8807 021 . .. . . .. . .
GA 30 09537  0.0205 duc'tlon quantities, Wth:h can provide add1t1on.al }nforma.tlon
50 1.0165 0.0164 to improve the modeling accuracy for machine’s up time.
75 11091 0.0156 Furthermore, different types of low fidelity models, such as
115(? é;g’gg 88;‘1‘8 empirical and statistical models, can be further investigated
20 10012 0029 and incorporated in the proposed decision framework.
SA 30 1.0566  0.0272
50 1.1601  0.0228
75 1.1893  0.0215 REFERENCES
150 1.2468  0.0191
10 L1122 0.0181 [1]1 Y. Lu and F. Ju, “Smart manufacturing systems based on cyber-physical
20 12099 0.0123 manufacturing services (cpms),” IFAC-PapersOnLine, vol. 50, no. 1, pp.
PS 30 1.285  0.0082 1588315889, 2017.
50 1.3518 0.005 [2] J. R. Stack, T. G. Habetler, and R. G. Harley, “Effects of machine speed
75 13858 0.0024 on the development and detection of rolling element bearing faults,”
150 1.4024  0.0015 IEEE Power Electronics Letters, vol. 99, no. 1, pp. 19-21, 2003.
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and Figure 10, while the results for b = 50 are displayed in
Table VII and Figure 11. While the optimal solution location
is unknown, we notice that, under all the tested cases with
both b = 30 and b = 50, the proposed approach outperforms
state of the art algorithms, thus establishing the empirical
relevance of the proposed algorithm. The differences between
Figure 10 and Figure 11 echo the results seen in Figure 9, with
cJEI’s confidence intervals collapsing to indicate convergence
of the method. While the advantage of cJEI compared to
the alternative algorithms (i.e., the performance improvement
with respect to the benchmark algorithms) appears to be
varying in both budget scenarios across the randomized system
conditions, the performance appears to be consistent across the
random case selected.

VI. CONCLUSION

In this work, a multi-fidelity optimization approach is de-
signed to estimate and optimize the production performance
of a serial production system with asynchronous machines in
multi-failure modes. In particular, analytical models and sim-
ulation models are used. High fidelity simulation experiments
are run with both a large number of replications and large
run length. For low fidelity simulation models, the simulation
length is shortened, combined with an aggregation approach
to further reduce the computational cost. This enables running
a large number of evaluations with the low fidelity models,
which can be used to predict the high fidelity result with very
few high fidelity expensive simulations. Experiment results
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TABLE VI
COMPARISON OF THE ALGORITHMS UNDER RANDOMIZED CASES WITH b = 30
case cJEI ] PSO GA SA PS

f bar std err f | f bar std err f | f bar std err f | f bar std err f | f bar std err f
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COMPARISON OF THE ALGORITHMS UNDER RANDOMIZED CASES WITH b = 50
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