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Abstract—Recent advances in sensing, data analytics and
manufacturing technologies (e.g., 3D printing, soft robotics,
nanotechnologies) provide the potential to produce highly cus-
tomized products by allowing flexible system design, endless de-
vice configurations, and unprecedented information flows. These
opportunities also increase the complexity of controlling such
systems optimally, which typically requires fast exploration of
an increasingly large number of alternative operation strategies.
Simulation and stochastic models have been particularly success-
ful to support control and optimization of production systems,
and methods have been developed to exploit them separately.
Herein, we argue that the simultaneous use of these models
can allow for better control and optimization by balancing the
simulation accuracy, and related high computational costs, with
the computational efficiency and lower accuracy of stochastic
models.

In this paper, we assume that high fidelity models have higher
accuracy and computational costs, and we present a novel multi-
fidelity approach, which utilizes several models at different levels
of fidelity to efficiently and effectively estimate and optimize
the performance of asynchronous serial production lines with
machines suffering multiple failure types. Experimental results
show that the multi-fidelity approach leads to better estimations,
requiring less computational effort for optimization compared
with the use of only high fidelity simulations.

Index Terms—Multi-fidelity modeling, simulation-
optimization, manufacturing, serial production line

I. INTRODUCTION

The design and operation of increasingly complicated man-

ufacturing systems, and the related processes, require the

development of methods for optimization and control that

allow for the efficient evaluation and optimization of the

system performance [1]. Nevertheless, simulation based and

exact approaches have developed independently: (i) exact ap-

proaches generate solutions based on assumptions that hinder

their implementation in the real system, (ii) simulation based

approaches require less to no assumptions, but take a long

time to run, and rarely provide finite time guarantees on the

quality of the solution.
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As a motivating example, consider a serial production

system composed of machines with controllable processing

time (inverse of capacity/speed). In theory, maintaining higher

machine capacity will reduce the cycle time to produce a part.

However, the higher the capacity the machine has, the more

likely it will fail due to an accelerated degradation process.

For instance, increasing the speed of a polishing machine will

shorten the time to process the surface of a part, at the cost

of increased bearing fault [2]. Therefore, machine capacity

combinations should be carefully selected to maximize the

overall system production rate, and such combinations should

be identified quickly to enable online control of machine

capacities given the dynamic production environment [3].

In the scope of fast optimization, models with high accu-

racy and low computational cost, coupled with optimization

procedures, are of critical importance. However, such models

are generally not available. Analytical models, when used

for optimization, can lead to bad solutions, especially when

the system is complex, due to an error that is typically not

homogeneous across the solution space. Simulation models

have great accuracy, but the large computational cost of

running them effectively hinders their deployment into real

time production control settings.

The research area developing methods that attempt to mix

exact analytical and simulation based approaches is referred

to as multi-fidelity modeling and optimization, having its

foundational contributions, within the simulation and manufac-

turing literature, in [4], [5]. However, these methods were not

designed for continuous solution spaces. In statistical learning

theory, multi-fidelity has also attracted important attention,

usually assuming that the models of different fidelity can be

ranked, from lowest to highest accuracy, whether such rank

is known or needs to be learned [6], [7], [8]. Our approach

differs from the literature in both areas, by focusing on two

aspects: (1) how to generate models at different fidelity when

approximating a discrete event simulator, (2) how to develop

statistical learning of different model biases to correct them as

well as integrate them in a way that does not require models

to be ranked according to their accuracy (whether the rank is

known or needs to be learned), if not for the highest fidelity.

This aspect is important: while a highly detailed simulator

can be a high accuracy model, when approximations are

performed, we cannot generally guarantee that the error of

the models will be homogeneous in the space of the system

parameters. As a result, models can have a different rank in

different locations of the solution space.

The result of our effort is a novel optimization algorithm
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that samples from several models at different, and potentially

non-homogeneous, fidelity in order to efficiently provide an

estimate of the optimal solution.

The main contribution of this paper is three-fold: (1) develop

an automated procedure to produce approximations of a dis-

crete event model, (2) develop novel models that intelligently

mix low and high fidelity estimations for improved system

performance evaluation; (3) new Bayesian optimization sam-

pling procedures that effectively make use of the multi-fidelity

information.

The remainder of the paper is organized as follows: Sec-

tion II reviews the existing literature. Section III describes the

system of interest and formulates the problem and assump-

tions. In Section IV the new multi-fidelity models, and the as-

sociated multi-fidelity optimization framework are presented.

Section V provides the numerical studies on multi-fidelity

prediction models and the optimization framework. Finally,

Section VI is devoted to conclusions and future work.

II. LITERATURE REVIEW

A. Performance evaluation of complex production systems

Within the production system research community, an im-

portant effort has been devoted to the design of state-based

models to describe the evolution of the system in time [9],

[10], [11], [12]. However, due to the complexity of the

models, closed-form analytical expressions are available only

for short production lines, for example, two machines and one

buffer lines. For longer lines, researchers developed approx-

imation methods, such as aggregation approaches [13], [14],

decomposition methods [15], and numerical approaches [16].

State based models are helpful in predicting system perfor-

mance when given a state sample path. Nevertheless, these

approximation based models typically possess large and het-

erogeneous estimation bias, making them inappropriate for

optimization and control purposes [17]. Besides analytical

models, discrete event simulation (DES) has been one of

the most successful tools for the analysis of production sys-

tems [18], [19], [20]. In fact, simulation models are usually

constructed for the verification of analytical models, i.e., they

represent the state of the art benchmark [21]. This is due

to the fact that simulation models do not require particular

assumptions. Therefore, it is feasible to use simulation to

model complex systems in terms of the number of components,

interactions, and policies which are typically hard to reproduce

in analytical settings [22]. Nevertheless, simulation requires

high computational effort. In particular, long simulation runs,

as well as a large number of replications, are required to

obtain accurate estimations of the desired output measure,

since shorter simulation runs usually have larger bias and

noise. Shorter simulations result in computational savings at

the cost of accuracy loss [23], [24]. We refer to high accuracy

high cost models as high fidelity, while low cost low accuracy

representations are referred to as low fidelity.

Generally, the literature in performance estimation has

mainly focused on the selection and improvement of single

models for the target of higher accuracy and lower com-

putational cost. Only recently, the research community has

started to shed light on the opportunity coming from the

integration of several models that are already available in order

to achieve better performance than picking a single unique

model [25], [4]. Nevertheless, no general approach has been

proposed for this integration. While [25] focuses on a Kernel

based estimation framework considering only two models that

are assigned a static weight, [4] focuses on the optimization

task again only considering two models. Therefore, a method

enabling the integration of multiple models for achieving the

best compromise between accuracy and computational effort

is needed.

B. Black box optimization with sources at multiple fidelity

The problem to determine the combination of machine

capacities that maximizes the desired performance of the

entire production systems has long been researched in the

manufacturing literature [26], [27], [28], [29]. In general, this

problem falls within the category of non-linear non convex

optimization over continuous domain. Hence, two branches

of literature are relevant: (i) optimization of manufacturing

systems; (ii) black box optimization. In both, we focus on

approaches that consider models with multiple fidelity.

Within the manufacturing literature, an important contribu-

tion focusing on multi-fidelity models for the optimal design

of manufacturing systems was proposed in [4], where the

authors aim at identifying the optimal system configuration

for a complex job shop using simulation (high fidelity model)

together with a Jackson network (low fidelity model). The

resulting algorithm, Multi-Fidelity Optimization with Ordinal

Transformation and Optimal Sampling (MO2TOS) works over

a finite, discrete, solution space and it exploits the availability

of the Jackson network to inform a new version of the Optimal

Computing Budget Allocation (OCBA) algorithm [30]. The

Ordinal Transformation (OT) uses the low fidelity model to de-

rive a rank space for the alternatives based upon the associated

low fidelity performance. The best solution is then searched for

in this rank space using the high fidelity model and the optimal

sampling to select the alternative to evaluate. Few challenges

are not in the scope of the MO2TOS framework: (i) it was not

designed for continuous spaces; (ii) only a single low fidelity

representation can be exploited; (iii) no approach is provided

to derive low fidelity models.

Challenges (i) and (ii) have been addressed in several

ways within the statistical learning and Bayesian Optimiza-

tion communities. Indeed, multi-fidelity optimization has been

theoretically investigated not only in discrete [31], but also

continuous settings, which is the focus of this work. In gen-

eral, continuous approaches for multi-fidelity include extended

sequential methods [32], and methods for surrogate based op-

timization that make use of Co-Kriging meta-models in order

to construct a prediction for the sources at different fidelity,

and use the cross-correlation structure as a means to “transfer”

information [33], [7]. The Co-Kriging model was explored

in [34] to improve the efficiency of prediction and uncertainty

modeling when multiple information sources exist. Co-kriging

requires the knowledge of a ranking for the fidelity among the

sources, such that an auto-regressive model can be used and
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a single multi-output Gaussian process constructed to predict

the multiple sources. This fidelity ranking and auto regressive

modeling is leveraged in several approaches [32], [7]. With

quite restrictive assumptions [33] present an approach for the

multi-armed bandit problem which minimizes both simple and

cumulative regret under the assumption of a set of multi-

fidelity models with a known fidelity hierarchy, where the

maximum bias of an information source strictly decreases with

its fidelity. Though these methods are examples of solutions

to (i) and (ii), and allow multiple low fidelity models to be

used, they are restrictive in their need for low fidelity models

to be ranked in order of accuracy, and again give no approach

on how to generate low fidelity approximations.

In our problem setting, we make no such assumption on

the existence of any relationship or ranking between low

fidelity representations. A similar setting can be found in the

recent work on multiple information source optimization with

knowledge gradient (misoKG) that extends the knowledge

gradient methodology to multiple information sources [35].

There have been two other approaches proposed for the non-

hierarchical information source setting including an expected

improvement based algorithm proposed by Lam et al. in [36],

and multi-task Bayesian optimization (MTBO) [37], which, to

the authors’ knowledge, was among the first approaches for

non-hierarchical multi-fidelity optimization. MTBO proposes

a joint Gaussian process to model all information sources

by building upon the multi-task Gaussian process regression

literature [38], [39], [40], extending the Co-Kriging approach.

In MTBO the next sample point is chosen via the cost-sensitive

entropy search, sampling points that reduce uncertainty in

the optimum location, normalized by the query cost. Notably

different from the Co-Kriging approach, the approach of Lam

et. al. [36] is to model and maintain a Gaussian process

estimation of each individual information source and to then

coalesce these models into a single multi-fidelity Gaussian

process via the Winkler’s method [41]. A modified expected

improvement function is then applied to this single multi-

fidelity surrogate to determine what location to sample next.

However it was shown in [35] that misoKG experimentally

has superior performance to both previous algorithms. It is

important to highlight that, while misoKG does not require

a hierarchical ranking of low fidelity models, its sampling

criteria requires to define a cost function associated to each

information source. In essence these cost functions, which

are generally assumed to be continuous over the input space,

implicitly define a ranking over the low fidelity models.

We show later that, when there exist multiple low fidelity

models without a priori known cost functions, misoKG can

be outperformed.

Concerning challenge (iii), no general approach is currently

available to derive low fidelity models, and models of different

fidelity are constructed by experts and assumed to be available

for the optimizer [5], [42], [43]. Since this work looks into

discrete event systems, it is relevant to propose ways to gen-

erate the models for the optimizer. It is important to develop

generators that attempt to maximize the dependency between

the low and high fidelity, while guaranteeing a substantial gain

in computational effort. In this work, we take inspiration from

the automata learning techniques [44], [45], and we propose

a model driven approach for the generation of low fidelity for

Discrete Event Systems.

III. PROBLEM DESCRIPTION NOTATION & TERMINOLOGY

The structure of the class of serial production system

considered in this work is shown in Figure 1. The circles

and rectangles are used to represent machines and buffers,

respectively. The direction of arrows shows the flow of parts

throughout the system.

Fig. 1. Illustration of a serial production line

The characteristics of machines, buffers, and their interac-

tions are listed below:

1) In the production system, there are M machines indexed

by k = 1, . . . ,M , and M − 1 buffers (B1, . . . , BM−1)

decoupling them;

2) All machines are independent with deterministic process-

ing time, τpk , k = 1, . . . ,M , and corresponding capacity

(processing speed) ck = 1/τpk v, k = 1, . . . ,M .

3) There are two types of time-dependent failures consid-

ered, type 1 and type 2. For a machine k, which has

been operating for time t since the last repair, the failure

rate of type u = {1, 2} is λk,u(t) = α
(k)
u,1t + α

(k)
u,2. Let

α(k) = [α
(k)
11 , α

(k)
12 , α

(k)
21 , α

(k)
22 ] denote all the values of

the failure rate for machine k. We can use an M × 4
matrix to represent the parameter matrix of the failure

rate, α = [α(1);α(2); . . . ;α(M)].
4) When a failure occurs, repair must be performed, which

can fully recover the machine condition to as good as

new. The repair time of machine k is exponential with

rate Rk independently from the failure type.

5) Buffer Bk has finite capacity Nk, k = 1, 2, · · · ,M − 1.

6) Machine k, k = 1, 2, · · · ,M−1 is blocked if it is up and

buffer k becomes full. Machine M is never blocked.

7) Machine k is starved if it is up and buffer k−1 becomes

empty, k = 2, 3, · · · ,M . Machine k = 1 is never starved.

8) The failure rate is linear in the capacity. For machine k,

the failure rate, as a function of the machine capacity, is

denoted as Λk,u(t) = ck × λku (t) , k = 1, . . . ,M, t ≥ 0.

The system in Figure 1, is modeled in high-fidelity using the

Event Relationship Graph (ERG) formalism [46], a directed

weighted graph. The vertexes of the ERG represent the events

that take place in the system and they may correspond to

state changes. The directed arcs of the graph represent the

“triggering” relationship between the connected pair of events.

The state changes associated with each event vertex appear

in braces. Arcs can have weights that represent a delay

between the triggering (origin of the arc) and triggered event

(destination of the arc). An arc can carry a condition (reported
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in parenthesis), that expresses a constraint that needs to be

satisfied when the triggering event is executed for it to trigger

the destination event.

Fig. 2. ERG model for the serial production line

Figure 2 is the ERG representation of our manufacturing

system with the 8 characteristics listed above. The model is

characterized by eight types of events: Ea
k , k = 1, . . . ,M

represent the arrival of a job to the k-th queue, if the server is

the first (condition (k == 1) in Figure 2) then another arrival

is scheduled with a delay τa. In any case, the queue level is

increased Qk = Qk + 1. If a server is available (condition

Sk > 0), a start event Es
k is triggered for the server k of

interest, with k = 1, . . . ,M . When processing starts at a

station k, i.e., Es
k is executed, if the processing time (delay)

τpk is larger than the time to the next failure for either of

the two failures (τf1k , τf2k , that are generated from the related

distribution at each execution), then the corresponding failure

event is scheduled Ef1
k or Ef2

k , respectively. At this point, the

start event, Es
k, will be scheduled to occur after a random ex-

ponential time τ rf1k , or τ rf2k , depending on the failure type that

occurred. When a start event is executed, the server becomes

busy (Sk = 0), and a completion event Ec
k is scheduled to

occur with a delay τpk . Upon completion, the server is blocked

(event El
k), and the downstream buffer level is checked. If the

downstream level is below capacity (condition Qk+1 < Nk+1),

the server is unlocked by scheduling the unlocking event at

the current time, Eu
k . The execution of Eu

k sets the number

of blocked servers Dk at stage k back to 0 (Dk = 0), and

a departure event is scheduled for the current time Ed
k . A

departure schedules an arrival to the next stage k + 1 as long

as k < M ; otherwise the part leaves the system. At every

departure, the state of the upstream server k − 1 is checked:

if the server is blocked, i.e., Dk−1 > 0, then an unlock event

for the upstream stage Eu
k−1 is scheduled for the current time.

The problem to be addressed in this paper is: considering

the class of serial production lines with characteristics (1) - (8),

and the related simulation model in Figure 2, develop a high

accuracy/computationally efficient framework to evaluate and

optimize the production rate controlling the machine capacity

ck.

We approach this problem by: (1) proposing a way to

generate low fidelity models of the system in Figure 2, and

(2) leveraging the high fidelity representation along with the

several low fidelity approximations to sequentially sample

solutions within the system configuration space (made of the

capacities of each server).

IV. MULTI-FIDELITY METHODOLOGY

Formally, we assume the high fidelity simulator and its mul-

tiple low fidelity representations to be black-boxes, producing

point-wise observations of the function fHF (·) with fLF
i (·),

i = 1, . . . , n, when n low fidelity models are given. We aim

to optimize the high fidelity response by solving

x∗ ∈ arg min
x∈X⊂Rd

fHF (x),

where X is a d-dimensional continuous solution space over

which all fidelity models are defined. As each observation

of fHF (x) is computationally expensive to collect, we aim

to identify x∗ using as few high fidelity observations as

possible by augmenting them using the n low fidelity models,

that provide access to lower quality information at greatly

reduced computational costs. We propose novel methods to

draw upon these multiple low fidelity information sources and

ideally reduce the number of observations of fHF (·) needed

to identify x∗. This is accomplished by first evaluating the

low fidelities fLF
i (xh), i = 1, . . . , n, and the high fidelity

function fHF (xh) in a set of locations {xh}n0

h=0. These values

are then used to statistically model the observed relationship

between the low and high fidelity sources, to build an accurate

prediction of fHF , which we use for simulation purposes.

Fig. 3. The Multifidelity Optimization Approach for serial production lines

Figure 3 shows the outline of the approach. Section IV-A

presents the alternative methods for generating low fidelity

representations. Section IV-B focuses on our proposed multi-

fidelity statistical models, while Section IV-C introduces the

multi-fidelity optimization approaches.

A. Generating low fidelity models for Serial Production Lines

Once the high fidelity model is available (Figure 2), ac-

cording to the procedure sketched in Figure 3, the low fidelity
generation can be performed. In this work, we propose a first

principle state-based approximation of the ERG dynamics in

Figure 2 (Section IV-A1), and an ERG driven approach for

model simplification (Section IV-A2).
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1) Analytical model: We first build the analytical model

to estimate the desired system performance by introducing a

two-step aggregation approach. First, for each machine, we

aggregate the multiple failure modes into one. In order to do

so, we assume the failure time of each machine follows an

exponential distribution, with the mean being the average time

to failure from the multiple failures modes model specified

in Section III, characteristic 3. We then apply the machine

aggregation approach to derive the production rate resulting

from a serial production line with geometric machines.

a) Deriving the operational time: Considering the type

of failure described in characteristic 3 (Section III), the opera-

tional time for each machine k = 1, . . . ,M denoted as τ̃k for

the machines in the system can be expressed as follows:

τ̃k =

∫ ∞

0

t0(λ1(t0) + λ2(t0))×

e−
∫ t0
0 (λ1(t)+λ2(t))dtdt0.

(1)

We can further simplify the equations leading to:

τ̃k =

∫ ∞

0

t0

(
(α11t0 + α12) + (α21t0 + α22)

)
×

e−
∫ t0
0 (α11+α21)t+(α12+α22)dtdt0

= γ1e
− γ2

3
2 + γ2(1− Φ(γ3)),

(2)

where

γ1 =
2(α12 + α22)

(α11 + α21)3
e

(α12+α22)2

2(α11+α21) ,

γ2 =

√
2π

(α11 + α21)
5
2

e
(α12+α22)2

2(α11+α21) ,

γ3 =
α12 + α22√
α11 + α21

,

Φ(·) is the CDF of a standard normal distribution.

(3)

The failure rate for machine k results Pk = 1/τ̃k. Besides,

the repairing rate Rk for machine k follows the descriptions

of the characteristic 4) in Section III.

b) Deriving the production rate: Let us first consider a

two-machine-one-buffer line, defined by characteristic 1-8. A

continuous time and discrete state Markov chain, with states

defined as a combination of machine state and buffer level is

proposed to model the line. According to [12], the production

rate, denoted as f̂LF (x) ,x ∈ X, with X ⊆ RM
+ , can be

expressed as follows:

• If x1 �= x2 (i.e., the two machines have different capac-

ity),

f̂LF (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2η2K1e

θ1N1+x1η1K1e
θ2N1+x1η1K1e

−θ2N1

K1eθ1N1+K1eθ2N1+K1e−θ2N1
,

if x1 < x2,
x1e1K1e

−θ1N1+x2η1K2e
θ2N1+x2η2K1e

−θ2N1

K1e−θ1N1+K1eθ2N1+K1e−θ2N1
,

if x1 > x2,

(4)

where

η1 =
R1

P1 +R1
, η2 =

R2

P2 +R2
,

Q =

√
[
x1(1 + η2)

R2
− x2(1 + η1)

R1
]2 + 4x1x2P1P2,

ς1 =
x2
1R1(R1 +R2 + P2) + x2

2R2(R1 +R2 + P1)

2x1x2(x1 − x2)(R1 +R2)

− (R1 +R2 + P1 + P2)

2(x1 − x2)
− (R2P1 + P2R1)

2(x1 − x2)(R1 +R2)
,

ς2 =
(x1R1 + x2R2)Q

2x1x2(x2 − x1)(R1 +R2)
,

K1 = [x1(R1 +R2 + P2)− x2(R1 +R2 + P1)]R1Q

+R1Q
2,

K2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2R2P1[(x1 − x2)(R1 −R2)− (x2P1 + x1P2)

−Q], if x1 < x2,

x1R1P2[(x1 − x2)(R1 −R2)− (x2P1 + x1P2)

−Q], if x1 > x2,

K3 =

{
η2(x2−x1η1)K1+x1η1(1−η2)K2

x1η1(η2−1) , if x1 < x2,
η1(x1−x2η2)K1+x2η2(1−η1)K2

x2η2(η1−1) , if x1 > x2.

(5)

• If x1 = x2,

f̂LF (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1R1R2[P1(R2+P2)−P2(R1+P1)e

−ς3N1 ]
(P1+P2)(R1+R2)(R2P1−P2R1e−ς3N1 )

,

if P1

R1
�= P2

R2
,

x2
1R

2
2(R1+R2)+x1R1R2N1(P2+R2)

2

[x1(R1+R2)R1N1(P2+R2)](P2+R2)2
,

if P1

R1
�= P2

R2
,

(6)

where

ς3 =
(P1 + P2 +R1 +R2)(P1R2 − P2R1)

x1(P1 + P2)(R1 +R2)
. (7)

For a production line with more than two machines, there is

no closed-form expression for the production rate. Therefore,

we use the aggregation-based recursive method to obtain the

production performance of the serial production lines. To

facilitate the presentation of the procedure, we introduce new

notations xb
i (u) and xf

i (u), representing the capacity in the

uth backward and forward aggregation iteration of machine

i, respectively. The detailed aggregation procedure is shown

as follows:

Procedure 1.

xb
i (u+ 1) =

xi

ηix
f
i (u)

f̂LF (xf
i (u), x

b
i+1(u+ 1)|

Pi, Ri, Pi+1, Ri+1, Ni), i = 1, . . . ,M − 1,

xf
i (u+ 1) =

xi

ηixb
i (u+ 1)

f̂LF (xf
i−1(u+ 1), xb

i (u+ 1)|
Pi−1, Ri−1, Ri, Pi, Ni−1), i = 2, . . . ,M,

(8)

Fixing the initial conditions for the procedure to xf
i (0) =

xi, i = 2, . . . ,M−1, with boundary conditions being xf
1 (u) =
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x1, x
b
M (u) = xM , u = 0, 1, . . ., then xf

i is known to converge

to a unique solution (result presented in [12], Theorem 11.3,

Page 350).

xf
i := lim

u→∞xf
i (u), x

b
i := lim

u→∞xb
i (u). (9)

And, the production rate becomes:

f̂LF (x) = xb
1e1 = xf

MeM (10)

Equation (8) shows the updated aggregate capacity for

machine i at iteration u+1 using the f̂LF estimator obtained

from Equations (1)-(7) with the updated parameters at iteration

u. The initial parameters at iteration u = 0 are the same as the

capacity value for each machine. Since the first machine and

the last machine are the initial machines for the forward and

backward aggregation, respectively, the capacity of these two

machines remains unchanged throughout the procedure. The

convergence of the integration shown in Equation (9) provides

the stopping criteria for the iterative procedure. Finally, the

production rate can be obtained using the aggregate capacity

of all the machines upon convergence of the xf
M from the

forward aggregation, or the xb
1 from the backward aggregation,

times the efficiency of the corresponding machines, which is

illustrated in Equation (10).

2) Simulation Models: Considering the characteristics (1)-

(8), and the related discrete event simulation (DES) in Fig-

ure 2, the fidelity of the output resulting from the execution

of the model will be controlled by means of two approaches:

(1) simulation parameters driven approach; (2) graph based
approach.

a) Simulation parameters driven approach: The first

approach is grounded in the simulation output analysis lit-

erature [47], [48], [49], and returns the output generated from

the simulation of a low number of jobs. As a result, the output

from the simulation model will be substantially impacted by

initialization bias when compared with the high fidelity model.

However, given that the system is initialized under the same

condition across all the replications and considering the short

simulation length, the variance of the output estimator is

negligible, to the point that we will consider a deterministic

simulation response. Although the underlying system logic

is unaffected, the truncated simulation runs lead to a large

initialization bias, thus methods aimed at recovering this model

bias should be effective. We executed a preliminary testing

and analysis of long and short run (high and low fidelity)

simulations, and found a positive correlation with varying

magnitudes between the models.

b) Graph reduction approach: The second approach

takes as input the graph in Figure 2 and reduces it in order to

decrease the simulation time. Let Eξ
k and eξk denote the events

occurring in the system and their occurrence times, respec-

tively, where ξ ∈ T is the event type (i.e., a, s, f1, f2, c, l, u, d
as in Figure 2), and k indicates that the event belongs to

machine k = 1, 2, . . . ,M . Let W = {Eξ
k|ξ ∈ T, k ∈

{1, . . . ,M}} be the set of all the events. For each event Eξ
k,

let I
(
Eξ

k

)
be the set of input events for Eξ

k, and let O
(
Eξ

k

)

be the set of output events for Eξ
k. We can define the set of

arcs in the model as:

E =

{(
Eξ

k, E
ξ
′

j

)
: Eξ

′

j ∈ O

(
Eξ

k

)}
k=1,...,M ;ξ∈T

∪
{(

Eξ
′

j , Eξ
k

)
: Eξ

′

j ∈ I

(
Eξ

k

)}
k=1,...,M ;ξ∈T

.

Finally, for each arc, we can define a weight (delay) and a

condition forming the pair

(
wξ,ξ

′

k,j , Cξ,ξ
′

k,j

)
, thus generating the

label set L by considering all arcs in E. In this work, we define

two operators to reduce the ERGs:

• A1: Aggregate failure event types to form a single event.

Formally, the event set after aggregation can be expressed

as:

WA1 =W \ {Eξ
k|ξ ∈ {f1, f2}, k ∈ {1, . . . ,M}}∪

{Ef̄
k |k ∈ {1, . . . ,M}},

EA1 =E \ EElim ∪ ENew,

LA1 =L \ LElim ∪ LNew,

EElim =

{(
E

fj
k , Eξ

′

j

)
: Eξ

′

j ∈ O

(
E

fj
k

)
, j = 1, 2

}
∪{(

Eξ
′

j , E
fj
k

)
: Eξ

′

j ∈ I

(
E

fj
k

)
, j = 1, 2

}
,

ENew =

{(
Ef̄

k , E
ξ
′

j

)
: Eξ

′

j ∈ O

(
Ef̄

k

)}
∪{(

Eξ
′

j , Ef̄
k

)
: Eξ

′

j ∈ I

(
Ef̄

k

)}
.

In the definitions, Ef̄
k is the aggregated failure event in

Figure 4. The two failure events, Ef1
k , Ef2

k , are aggregated

for each server to form the aggregated node Ef̄k . In

this way, the total number of nodes, and executions,

will be reduced by k events. As a result, the arcs are

updated eliminating the 4k connections reducing the size

of the set ENew to 2k. These arcs need to have weights,

representing the failure time, the condition for failure, and

the repair time, recomputed. In particular, the set of new

weights LNew is derived by changing the distribution used

to generate the time to the next failure τ
fj
k , j = 1, 2, k =

1, . . . ,M . To do so, we use the parameters obtained in

the analytical model, and set τ f̄k ∼ expo (πk) for each

server k, where πk is obtained through Equation (2).

Fig. 4. ERG model for operator A1
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• A2: Aggregate all the events related to all the machines

except the first and the last one in the system into

one event. Formally, the graph after aggregation can be

expressed as:

WA2
=W \ {Eξ

k|ξ ∈ T,mk ∈ Q} ∪ {Eξ
Φ},

EA2
=E \ EElim ∪ ENew,

LA2
=L \ LElim ∪ LNew,

EElim =

{(
Eξ

k, E
ξ
′

k

)
: Eξ

k, Eξ
′

k ∈ O

(
Eξ

k

)}
∪{(

Eξ
′

k , Eξ
k

)
: Eξ

′

k , Eξ
k ∈ I

(
Eξ

k

)}
, k ∈ Q,

Enew =

{(
Eξ

A2
, Eξ

′

A2

)
: Eξ

A2
, Eξ

′

A2
∈ O

(
Eξ

A2

)}
∪{(

Eξ
′

A2
, Eξ

A2

)
: Eξ

′

A2
, Eξ

A2
∈ I

(
Eξ

A2

)}
, ξ, ξ′ ∈ T′,

T′ = {a, s, c, l, u, d}.
Notice that, with such an approach, all the events as-

sociated with machines in Q, are eliminated. For the

production system analyzed in this work, we aggregated

all the events of machine in Q = {2, . . . ,M − 1}. We

use a single virtual unit to mimic the part flow through

the machines in Q of the physical system, with events

denoted as Eξ
A. Figure 5 shows the resulting model.

Furthermore, comparing with the event types set T in the

high fidelity model, the aggregated virtual unit contains

no failure events, with the set T′ = {a, s, c, l, u, d}. In

this model, the processing time τpA is assumed to be

random. In particular, we consider the lower bound of the

processing time as the sum of the unit processing time

of the individual machines; subsequently, we model the

processing time τpA as a lognormal distribution to scale

up the total processing time of the aggregated machine

based on the aforementioned lower bound, which can be

expressed as follows:

τpA ∼ (
M−1∑
k=2

τpk )× (1 + LogN(0, 1)),

where LogN(0, 1) is the log normal distribution with

parameters (0, 1). The events of the other machines in the

system remain unchanged. It can be found that, compared

with A1, this operator has a net reduction of all the events

of (M − 3) machines, which is far less than the total

number of events resulting from the use of operator A1.

B. Multi-Fidelity Statistical Models

The analytical model as well as the low fidelity simulation

models, presented in Section IV-A, can be used in combination

with the high fidelity simulation model to produce estimations

of the performance response across the solution space. In

particular, our strategy is to produce a prediction for the high

fidelity model that relies on the bias estimation of each low

fidelity model throughout the solution space. To produce the

bias prediction, we assume that the bias of each low fidelity

model is adequately modeled as a realization of a Gaussian

Fig. 5. ERG model for operator A2

process. Formally, let us refer to BLF
i (x) as the bias of the

i-th low fidelity model. Subsequently, we investigate several

ways to use the bias information. In particular, let us refer

to fLF
i (x) as the response from the ith low fidelity model

of solution x ∈ X, and let us assume, as justified previously,

that fLF
i (x) can be evaluated with no noise. Also, fHF (x),

representing the response from the very long simulation run,

can be assumed as deterministic. As a result, every point

estimate of the bias is noiseless. We propose two different

model types for the prediction of the high fidelity response

that make different use of the low fidelity information:

• Mi uses the results from the i-th low fidelity and the

high fidelity simulation to derive the bias prediction

model B̂LF
i (x) |X,f , where X,f represent the sampled

locations and the corresponding high fidelity simulation

value. The resulting model to predict the response of un-

sampled points is f̂HF (x) = f̂LF
i (x) + B̂LF

i (x);
• Mg considers the results of multiple types of low fidelity

models. Let’s assume that n low fidelity models are

generated from the analytical and simulation models, with

predicted response f̂LF
i (x)|X and bias B̂LF

i (x)|X,f
for model i, where X represents the sampled locations,

f represents the corresponding high fidelity simulation

value and i ∈ {1, . . . , n}. We further consider the control

variate f̄LF
i = f̂LF

i (x)+B̂LF
i (x), and the corresponding

weight βi(x) for model i. Therefore, we can weight all

the n models by the MSE-optimal coefficient β∗(x) =
{β1, . . . , βn}, for the estimator on the sampled points:

f̂HF (x) = f̄HF (x) +

β∗ (x)

⎡⎢⎣f̄
LF
1 (x)− E

[
f̄LF
1 (x)

]
...

...

f̄LF
n (x)− E

[
f̄LF
n (x)

]
⎤⎥⎦ , (11)

where f̄HF represents the expensive high fidelity es-

timator obtained with the simulation model. Assuming

Gaussian processes for the responses, we can have an

analytical form for the MSE, allowing the computation

of the optimal coefficient β throughout the solution space.

It is apparent that we will have a single statistical model of

type Mg , and as many statistical models of the type Mi as

low fidelity models we constructed or were given.
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C. Multi-Fidelity Optimization
Our novel approach to optimization in the context of

multi-fidelity models extends standard Bayesian Optimization

(BO) to integrate multiple information sources when making

sampling decisions over the costly high fidelity models. In

particular, we present two approaches: (1) the model driven
multi-fidelity optimization (MD-MFO); and (2) the sampling
driven multi-fidelity optimization (SD-MFO). Figure 6 depicts

our multi-fidelity approach within the context of a standard

surrogate based simulation optimization (SSO). At the kth

iteration, SSO fits a surrogate prediction model from observed

input/output data (Figure 6, top). Over this surrogate model,

a “sampling criteria” or acquisition function a(x) can be

constructed and maximized to determine the next location to

sample xk+1 (Figure 6, center). The location xk+1 is then

sampled (Figure 6, bottom) and the SSO framework proceeds

refitting the surrogate prediction model. Figure 6 highlights

the additional low fidelity and bias prediction surrogate models

that are fit in our multi-fidelity context.

Fig. 6. General Bayesian optimization approach in the multi-fidelity context.

1) Model Driven Multi-Fidelity Optimization MD-MFO:
The basic idea of MD-MFO is to use the high fidelity

predictions generated from the low fidelity models from

Section IV-B, {Mi} , i = 1, . . . , n, to feed an acquisition

function/sampling criteria. The sampling location at the kth

xk iteration is generated using the model Mg to evaluate

the sampling criterion. Equivalently, the MD-MFO approach

uses Mg as the surrogate model handed from the top to the

center box of Figure 6. In fact, equation (11) shows how

Mg is constructed as a mixture of the high fidelity model,

θ̄HF , and all of the low fidelity models, θ̂LF
i . The weight

of the ith low fidelity mixture component is assigned by the

observed relationship between the ith low fidelity and high

fidelity information source, which is modeled by the parameter

β∗
i (x).
Regarding the overall MD-MFO approach, we use the

expected improvement acquisition function in (12) as the

sampling criteria over the mixture model Mg [50].

a(x) = EI(x) = max

{[
ΔHF (x)Φ

(
ΔHF (x)

s(x)

)
(12)

+s2(x)φ

(
ΔHF (x)

s(x)

)]
, 0

}

where s(x) =

√
Var(f̂HF (x)), ΔHF (x) = fHF (x∗) −

f̂HF (x), and x∗ is the best observed high fidelity sam-

ple and f̂HF is the prediction produced by model Mg .

Choosing xk+1 ∈ argmaxx∈X EIk(x) yields a sequence of

{xk, k = 1, 2, . . .}, where h denotes expected improvement

iteration, that is influenced by all of the low fidelity sources.

For MD-MFO, we can view the influence of the low fidelity

information as being exerted during the model building step

of calculating f̂HF from Mg .

2) Sampling Driven Multi-Fidelity Optimization SD-MFO:
An alternative to the model driven approach is to focus on

the sampling function a(x) (Figure 6, center box). Specifi-

cally, SD-MFO aims to combine several surrogate prediction

models, each embedding low fidelity and bias information.

As a result, several surrogate models are passed from the

top box to the center box in Figure 6. Let us assume that

n Gaussian processes are used to produce predictions f̂i(x)
across x ∈ X for i = 1, 2, . . . , n. Given that the surrogate

model forms selected are Gaussian processes, we know that

conditional predictions at a given location f̂i(x)|x ∈ X are

normally distributed. Moreover, if we assume that these n
processes are independent, then the i resulting conditional

predictions can easily be combined under the idea of assigning

a single unique score to each point x in the solution space.

Assume that, at any given location, an acquisition function,

or sampling criteria, can yield a sampling score Ii(x) that is

well defined when only one model is considered. It is possible

to design a random function G (I1 (x) , . . . , In (x)) and an

associated density FG. These two ingredients define the novel

concept of joint score functions. In the case where Ii (x) is the

improvement function, i.e., Ii (x) = max
(
f∗ − f̂i (x) , 0

)
,

this idea leads to the novel Joint Expected Improvement (JEI)
defined as:

JEI (x) = max (EG [G (I1 (x) , . . . , In (x))] , 0)

= max
(∫∞

0
g (x) · dFG(g), 0

)
. (13)

And the point is selected which satisfies:

xk ∈ argmax
x/∈S

(JEI (x)) . (14)

Nevertheless, how to derive G and its distribution is all but

trivial. In this manuscript, we propose two competing strate-

gies and provide the underlying motivations. Specifically, we

introduce: (a) the average joint expected improvement (aJEI),

and (b) the consensus joint expected improvement (cJEI).

a) aJEI: A first way to embed the predictions generated

by the n low fidelity models, is to consider the point that max-

imizes the Expected Average Improvement. This corresponds

to the following G random function:

G (x) = 1
n

∑n
i=1 f

∗ − F̂i (x) . (15)

Conditional upon the location x, Gx is a normal random

variable obtained as the scaled sum of independent normal ran-
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dom variables, centered around f∗, i.e., Gx ∼ N (
μGx , σ

2
Gx

)
,

where:

μGx =
1

n

n∑
i=1

(f∗ − μi (x)) , (16)

σ2
Gx

=
1

n2

n∑
i=1

σ2
i (x) . (17)

At this point, it can be observed that we can simply apply

equation (13) to derive aJEI for all locations x in the feasible

space X.

Theorem 1. (Variance Reduction under aJEI) Consider a
number of predictive models n = 2, without loss of generality,
express σ2 = Ψσ1. In this setting, a reduction in posterior
variance is achieved if and only if:

√
3

3
≤ Ψ ≤

√
3. (18)

Proof. Consider the following:

σ2
1 + σ2

2

4
≤ σ2

1 &
σ2
1 + σ2

2

4
≤ σ2

2

⇐⇒ 1 + Ψ2

4
≤ 1 &

1 + Ψ2

4
≤ Ψ2 (19)

⇐⇒
√
3

3
≤Ψ ≤

√
3.

Thus when the distributions have similar variances this results

in a higher overall confidence in the distribution. However,

if they vary substantially, then the distribution with lower

accuracy tends to dilute the accuracy of the other.

b) cJEI: The second approach we take to combine the

n predictive models biases the sampling towards locations

that maximize the “agreement” among different predictors, we

refer to this second approach as consensus Joint Expected Im-
provement. We consider the random improvement at location

x of the ith random model with known distribution FIi(x) (y),
where y represents the realization of the improvement. Let

us consider the probability ρ that all the models achieve an

improvement at most y. Under the independence assumption,

we obtain:

ρ =
n∏

i=1

FIi(x) (y) (20)

With a reasoning similar to the derivation of Bayesian poste-

riors, the distribution of G, conditional upon the point x, will

satisfy:

FGx ∝ ρ, (21)

where the proportionality constant is known or can be es-

timated as 1

2π 2
√∏n

i=1 σ2
i

. Ignoring such a constant, Gx ∼
N (

μGx , σ
2
Gx

)
, where:

μGx =

∑n
i=1 μF̂i

/σ2
F̂i∑n

i=1 1/σ
2
F̂i

, (22)

σ2
Gx

=

√
1∑n

i=1 1/σ
2
F̂i

. (23)

V. NUMERICAL STUDY

In this section, we present the numerical analysis of the

proposed approach. In particular, we first, separately and

empirically, validate the modeling and optimization methods.

Finally, we propose a case study as a proof of concept of the

overall approach.

A. Statistical Modeling Validation

A first test is carried out over two dimensions on a box-

constrained domain (x1, x2) ∈ [0.5, 1.5]× [0.5, 1.5]. The high

fidelity model is a Gaussian Process, GP (μ,Σ), with μ =
[0.5, 0.5]T ,Σ = [0.5, 0; 0, 0.5]. The prediction resulting from

3000 randomly sampled points is shown in Figure 7(a). As

synthetic low fidelity models, we use two Gaussian processes,

one with positive bias GP (1.5μ,Σ) and one with negative bias

GP (−0.5μ,Σ). The bias process associated to the low fidelity

models is referred to as BLF
1 and BLF

2 , respectively.

In order to test the quality of our multi-fidelity model, we

estimate M1 and M2, and Mg sampling 50 locations at

random in the solution space.

The plot of the true response surface and the corresponding

predictions for our proposed modeling methods are reported

in Figure 7. In Figure 7(a)-7(d), the horizontal axes refer

to the location coordinate, and the vertical axis represents

the prediction produced by the Gaussian process model. In

Figure 7 it can be observed that the bias-adjusted models

Mi, i = 1, 2 (Figures 7(b)-7(c), respectively) reflect the

behavior of the high fidelity model. For example, the positions

of the peaks and the valleys of the prediction in Figure 7(b)

match the true response in Figure 7(a). For the predictions

considering multiple models, Figure 7(d), the prediction is

very close to the true response surface.

We test the predictive capabilities of our three proposed

models, M1, M2, and Mg , against a baseline approach which

only makes use of high fidelity information and ignores all low

fidelity models. This baseline, denoted as MHF , considers the

same 50 sample points from the true high fidelity response

surface used for the models M1,M2,Mg , and builds a

predictive Gaussian process. In fact, the models M1, M2,

and Mg , augment the same 50 high fidelity response samples

with the low fidelity response values at those locations. We

compare the effectiveness of our modeling method in improv-

ing predictive capabilities when high fidelity information is

augmented with low fidelity information.

Specifically, we use the following performance metric to

capture the error measures of each model:

δmodel =
|f̂HF − fHF |

fHF
× 100%, (24)

where f̂HF denotes the prediction obtained from the one of the

models (M1, M2, Mg , or MHF ) and fHF denotes the true

function value. Such a measure shows the percentage deviation

of the prediction model compared with the corresponding true

function values. The mean, standard deviation, and maximum

of δmodel are reported in Table I. It can observed from the plot

and the measures that the mixture model, Mg performs the
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(a) True response surface to match. (b) Predictive model M1.

(c) Predictive model M2. (d) Predictive model Mg .

Fig. 7. Plot of the multi-fidelity models in the theoretical examples

best among all the different types of prediction models includ-

ing the baseline approach of MHF , where only high fidelity

samples are considered. Mg is able to effectively leverage the

extra low fidelity response information (in combination with

the 50 high fidelity response samples) to produce a highly

accurate response surface with only 50 high fidelity samples

and each low fidelity model.

TABLE I
THEORETICAL MODEL ACCURACIES (IN %)

Model Mean δmodel Std Dev δmodel Max δmodel

M1 76 59 399
M2 114 89 598.5
Mg 7.04e−6 6.51e−6 4.26e−5

MHF 6.7 6.5 42.1

B. Multi-Fidelity Optimization Validation

In the scope of testing the optimization approach, we

selected the d-dimensional functions reported in Table II,

where the correlation between the high fidelity and each low

fidelity model is also reported. Testing was carried out in four

dimensions (d = 4) over a box-constrained domain from the

Cartesian product of intervals
∏d

1[0.1, 1] with a high fidelity

function evaluation budget of b = 100, i.e., allowing 100
evaluations of the high fidelity source.

TABLE II
THEORETIC HIGH AND LOW FIDELITY TEST FUNCTIONS.

Model Functional Form Correlation

HF Model −2.5
∏d

i=1 sin(πxi)−
∏d

i=1 sin(5πxi)

LF Model 1 −2
∏d

i=1 sin(πxi) 0.87

LF Model 2 −0.8
∏d

i=1 sin(5πxi) 0.49

LF Model 3 2
∏d

i=1 sin(πxi) −0.87

LF Model 4 0.8
∏d

i=1 sin(5πxi) −0.49

We tested five competing algorithms.

1) CV BO: This model driven multi-fidelity optimization

(MD-MFO) approach adopts a standard expected im-

provement acquisition function calculated using the Mg

model in equation (11);

2) aJEI: This sampling driven multi-fidelity optimization

(SD-MFO) is executed jointly over multiple bias adjusted

low fidelity models Mi, i = 1, . . . , n, utilizing the aJEI

acquisition function to reconcile the predictions;

3) cJEI: This sampling driven multi-fidelity optimization

(SD-MFO) is executed jointly over multiple bias adjusted

low fidelity models Mi, i = 1, . . . , n, utilizing the cJEI

acquisition function to reconcile the multiple predictions;

4) HF BO: The EGO algorithm uses expected improvement

defined only using the high fidelity source, and ignoring

any low fidelity information [50].

5) misoKG: The misoKG algorithm takes sampling de-

cisions by trading the value of information resulting

from sampling the ith low fidelity source at location x,

against the cost of that information, where such cost

is provided by the user. The value of information is

the expected gain in the quality of the best observation,

which is then normalized by the cost of sampling. This

is formalized through the use of Gaussian processes to

estimate model discrepancies and the maximization of the

MKG acquisition function, an extension of the knowledge

gradient [35]. We chose misoKG as it was empirically

shown to outperform both expected improvement based

multi-fidelity in [36] and multi task Bayesian Optimiza-

tion (MTBO) [37], which can all handle un-ranked low

fidelity models.

We macro-replicated each of the five algorithms 30 times

and observed the average performance and the associated stan-

dard error. In particular, we assess two performance metrics:

(1) the average Euclidean distance of the proposed solution

from the true minimum
∑30

j=1 ||x̂∗
j −x∗||2/30; (2) the average

absolute function value error
∑30

j=1 |f(x̂∗
j )−f(x∗)|/30, where

f(·) is the high fidelity function evaluation and x̂∗
j is the

identified minimum from the jth macro-replication. The two

metrics (with standard error) are reported in Table III for each

of the four tested algorithms.

In Figure 8, we report the average distance as a function

of the simulation budget, and the mean cumulative regret,

defined as:
∑i

1

∑30
j=1 (f(x̂ij)− f(x∗)) /30, where i indicates

the number of high fidelity samples taken, i.e., i = 1, . . . , b.
Note that the benchmark algorithm, HF BO, which excludes all

low fidelity information, serves as a control experiment to ob-

serve how embedding the low fidelity information impacts the

algorithms performance. Figures 8(a)-8(b) show the progress

against the total number of high fidelity evaluations allowed.

Figure 8(a) shows the Euclidean distance of the best observed

location relative to the true minimum as the simulation budget

is exhausted, and Figure 8(b) shows the average cumulative

regret as the cumulated gap between the best observed function

value and the true minimum.

Table III and Figure 8(a) show that all algorithms perform

well over the theoretical test environment with budget b = 100.
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TABLE III
OPTIMIZATION ALGORITHM RESULTS AFTER 100 SAMPLES ON 4

DIMENSIONAL THEORETIC PROBLEM.

Algorithm ||x̂∗̄
k
−x∗|| Std Error |f(x̂∗̄

k
)−f(x∗)| Std Error

CV BO 0.0388 0.0105 0.1550 0.0268
aJEI 0.0212 0.0085 0.0853 0.0206

cJEI† 0.0098† 0.0084 .0264† 0.0161
HF BO 0.0213 0.0088 0.0893 0.0210
misoKG 0.1680 0.0200 1.0803 0.0987

† statistical best performance at αsig = 0.01

From Figures 8(a) and 8(b), we observe that misoKG does not

perform well in this test environment. There are two related

aspects of misoKG that affect algorithm performance: 1) for

each information source � misoKG requires a cost function

c�(x) to be defined by a user as input for the algorithms to

run, and 2) misoKG proceeds by sampling a single source �
at location x by maximizing the MKG acquisition function,

which is defined for each (�,x) pair. The MKG acquisition

function is defined as:

MKGi(�,x) = Ei

[
f∗
i − y∗i+1

c�(x)
|�i+1 = �,xi+1 = x

]
where f∗

i = minx∈X f̂HF
i (x) is the value of the minimum

high fidelity prediction at the ith iteration, and c�(x) is a nor-

malizing term for the potential information gain of sampling

(�,x). Each (�,x) sample decision from MKG is a greedy

maximization of improvement in high fidelity prediction rela-

tive to the sample/source cost. Thus, information sources are

viewed as competitors and each iteration samples from the

“best” source. Our approach views the sources cooperatively,

and makes sampling decisions using all sources collectively.

When there are several information sources, as in this case,

we observe that misoKG suffers by making sampling decisions

based upon the MKG normalized acquisition function, which

only considers a single source at a time.

In particular, the advantage of sampling sources simul-

taneously appears to be confirmed by the performance of

the consensus Joint Expected Improvement, which coalesces

a sampling decision from all the models simultaneously,

and outperforms all other algorithms. Over the 30 macro-

replications cJEI accurately identifies the true global minimum

of the high fidelity simulator, on average using only 30 high

fidelity evaluations. After 10 simulations, the cJEI approach

identifies solutions that are substantially closer to the true

global minimum, than either of the algorithms that explicitly

fit a Gaussian process (GP) to the high fidelity responses.

Considering that every GP fit in the cJEI algorithm uses

low fidelity information, the performance of cJEI highlights

the effectiveness of fitting bias corrected models and how

simultaneous consideration of all low fidelity proposals yields

better results.

C. Case study

In this part of the analysis, we present the experimental

results of the cJEI algorithm, the best performer among the

algorithms previously analyzed, against common state-of-the-

art global optimization algorithms that are embedded into com-

(a) Mean Euclidean distance to optimum ||x̂i − x∗|| over 30
replications.

(b) Mean cumulative regret from optimal value over 30 replica-
tions.

Fig. 8. Optimization algorithm progression as simulation budget is exhausted.

mercial simulation software and are therefore popular within

the manufacturing community: particle swarm optimization

(PSO), genetic algorithm (GA), simulated annealing (SA),

and pattern search (PS). All these algorithms make use of

only high fidelity information. These algorithms are widely

used in commercial simulation software such as Rockwell

Arena, Simio, Matlab-Simulink. We use the implementations

for the aforementioned algorithms available within the MatLab
global optimization toolbox. Testing is conducted using the

high fidelity simulator of the production line described in

Section III, along with the analytical and simulation-based

low fidelity models presented in Sections IV-A1 and IV-A2

respectively. Due to the complexity of the serial production

line, the true global optimum (x∗, f(x∗)) is not known for

any number of machines M ≥ 2 and for multiple failures as

it is the case for us. As a result, the only metric available to

judge the competing optimization algorithms is f(x̂∗), i.e., the

best observed objective function value (corresponding to the

system throughput).

In order to analyze the performance of the proposed ap-

proach we generate random instances for 5-machine produc-

tion lines. For the given system M = 5, we randomly draw the

remaining static parameters for the system, Nk ∈ {3, . . . , 8},
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TABLE IV
EXPERIMENTAL PARAMETER SETTINGS

Case α N MTTR

1
[0.36,0.22,0.41,0.11; 0.46,0.02,0.40,0.22; 0.37,0.08,
0.26,0.41;0.49,0.17,0.40,0.45; 0.47,0.05,0.21,0.09]

[3,4,
5,5]

[2.83,3.44,2.00,
2.60,2.29]

2
[0.28,0.32,0.36,0.08; 0.35,0.10,0.44,0.44; 0.35,0.43,
0.22,0.26;0.22,0.22,0.23,0.07; 0.38,0.12,0.23,0.12]

[4,4,
6,4]

[2.87,2.05,3.10,
2.87,2.84]

3
[0.33,0.02,0.34,0.33; 0.28,0.35,0.38,0.02; 0.37,0.14,
0.32,0.15;0.41,0.23,0.25,0.28; 0.43,0.16,0.27,0.20]

[8,3,
4,3]

[3.10,3.41,2.58,
3.02,3.79]

4
[0.33,0.40,0.26,0.44; 0.50,0.09,0.38,0.01; 0.32,0.03,
0.49,0.23; 0.48,0.40,0.46,0.10; 0.22,0.31,0.25,0.38 ]

[4,8,
3,4]

[3.93,3.09,3.95,
3.43,3.40]

5
[0.27,0.05,0.42,0.23; 0.25,0.45,0.28,0.22; 0.29,0.32,
0.37,0.31;0.28,0.15,0.28,0.17; 0.24,0.09,0.49,0.49]

[6,7,
6,4]

[2.44,3.74,2.41,
3.84,2.98]

6
[0.39,0.23,0.42,0.27; 0.37,0.33,0.50,0.42; 0.32,0.45,
0.45,0.04;0.42,0.41,0.42,0.36; 0.36,0.07,0.49,0.21]

[6,6,
5,5]

[3.79,2.66,3.64,
2.08,2.22]

7
[0.35,0.35,0.44,0.20; 0.22,0.15,0.47,0.12; 0.34,0.48,
0.21,0.31;0.49,0.13,0.36,0.46; 0.24,0.27,0.43,0.34]

[6,6,
3,4]

[2.15,3.56,2.88,
3.45,3.96]

8
[0.34,0.29,0.36,0.39; 0.41,0.32,0.33,0.15; 0.49,0.17,
0.27,0.04;0.49,0.07,0.30,0.05; 0.27,0.21,0.47,0.18]

[3,5,
5,6]

[3.75,3.94,3.74,
3.06,2.47]

9
[0.30,0.09,0.46,0.49;0.21,0.36,0.37,0.46;0.40,0.28,
0.41,0.20;0.41,0.42,0.34,0.48;0.44,0.50,0.25,0.27]

[4,5,
4,3]

[2.02,3.00,2.99,
2.27,2.28]

10
[0.23,0.35,0.49,0.01; 0.35,0.42,0.38,0.37;0.29,0.47,
0.41,0.28;0.24,0.20,0.40,0.23; 0.33,0.32,0.35,0.34]

[4,4,
7,4]

[3.54,2.04,3.27,
3.050,3.00]

Rk ∈ (0.25, 0.5), α
(k)
j1 ∈ (0.2, 0.5), α

(k)
j2 ∈ (0, 0.5), j =

1, 2, k = 1, . . . , 5. The parameters are generated following the

cases discussed in [21], which considers the randomness in the

manufacturing systems, such as the failure rate, repairing rate

and the transitions among multiple failure modes. The selec-

tions of the parameters are also representative to widely cover

the application scenarios in the real systems. The resulting

testing conditions are reported in Table IV.

We analyze the impact of the total number of simulations in

high fidelity required to obtain a satisfactory solution; allowing

for a fair comparison of the performance between the proposed

cJEI algorithm and the state of the art competitors. In order to

do so, we performed experiments over Case 1 in Table IV. We

performed 50 macro-replications and the obtained results are

reported in Table V for all the algorithms with the statistical

significance. Figure 9 pictures the confidence intervals around

the optimal estimated function value f̂∗
b , where b represents the

number of allowed simulations in high-fidelity and it is set to

b = {10, 20, 30, 50, 75, 150}. First, we observe, from Figure 9,

that the incremental improvement in performance decreases for

increasing simulation budget. In particular, the improvement

for cJEI is minor if we go from b = 50 to b = 75 and even

more from 75 to 150. Since simulations are expensive, we

wish to use the lowest possible budget. Also, we can observe

that the proposed algorithm is never dominated by any of the

competitors independently from the budget used.

D. Randomized Testing

In practice, the budget should be set such that it is as small

as possible while still providing a high quality solution. Based

on the preliminary results in Table V and Figure 9, we chose to

further investigate two budget values b = 30 and b = 50; b =
30 is the smallest value that shows good performance, while

b = 50 is the smallest value that shows solution convergence.

In order to explore the performance of the proposed approach

over random system configurations, we proceed testing the

same algorithms over all the cases in Table IV with the two

alternative budget values.

Fig. 9. Mean performance of cJEI against competitors across alternative
allotted sampling budget scenarios.

Fig. 10. Mean performance of cJEI against competitors across randomized
cases with 30 sampling budget, b = 30.

Fig. 11. Mean performance of cJEI against competitors across randomized
cases with 50 sampling budget, b = 50.



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3025143, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL . XXX, NO. XXX, XXXX 13

TABLE V
CJEI PERFORMANCE WITH VARYING BUDGET

Algorithm b
f̂∗

average std err

cJEI

10 1.029 0.0275
20 1.1699 0.0208
30 1.3495† 0.0121
50 1.3915† 0.0051
75 1.4095† 0.0006

150 1.4097† 0.0006

PSO

10 1.0023 0.0258
20 1.1426 0.0229
30 1.2064 0.0206
50 1.3472 0.0142
75 1.3793 0.0069

150 1.3909 0.0071

GA

10 0.8726 0.0217
20 0.8807 0.0219
30 0.9537 0.0205
50 1.0165 0.0164
75 1.1091 0.0156

150 1.1654 0.0116

SA

10 0.8765 0.0249
20 1.0012 0.029
30 1.0566 0.0272
50 1.1601 0.0228
75 1.1893 0.0215

150 1.2468 0.0191

PS

10 1.1122 0.0181
20 1.2099 0.0123
30 1.285 0.0082
50 1.3518 0.005
75 1.3858 0.0024

150 1.4024 0.0015

† statistically better mean than all State of the Art at αsig = 0.05

The obtained results for b = 30 are displayed in Table VI

and Figure 10, while the results for b = 50 are displayed in

Table VII and Figure 11. While the optimal solution location

is unknown, we notice that, under all the tested cases with

both b = 30 and b = 50, the proposed approach outperforms

state of the art algorithms, thus establishing the empirical

relevance of the proposed algorithm. The differences between

Figure 10 and Figure 11 echo the results seen in Figure 9, with

cJEI’s confidence intervals collapsing to indicate convergence

of the method. While the advantage of cJEI compared to

the alternative algorithms (i.e., the performance improvement

with respect to the benchmark algorithms) appears to be

varying in both budget scenarios across the randomized system

conditions, the performance appears to be consistent across the

random case selected.

VI. CONCLUSION

In this work, a multi-fidelity optimization approach is de-

signed to estimate and optimize the production performance

of a serial production system with asynchronous machines in

multi-failure modes. In particular, analytical models and sim-

ulation models are used. High fidelity simulation experiments

are run with both a large number of replications and large

run length. For low fidelity simulation models, the simulation

length is shortened, combined with an aggregation approach

to further reduce the computational cost. This enables running

a large number of evaluations with the low fidelity models,

which can be used to predict the high fidelity result with very

few high fidelity expensive simulations. Experiment results

show that the multi-fidelity model could provide higher ac-

curacy than individual models, and is computationally quicker

than the high fidelity simulation model. Moreover, we pro-

pose novel methods for utilizing multiple fidelity models to

optimize over a high fidelity model and show applications in

determining the capacity combination to maximize a system

production rate in limited computation time scenarios. Our

proposed consensus joint expected improvement method has

demonstrated the ability to search a large number of solutions

with tight time budget and the results outperform existing

solution methods.

Future work can be extended to more complicated systems,

such as assembly lines and production networks. For the

decision variables, more factors can be included, such as pro-

duction quantities, which can provide additional information

to improve the modeling accuracy for machine’s up time.

Furthermore, different types of low fidelity models, such as

empirical and statistical models, can be further investigated

and incorporated in the proposed decision framework.
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