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ABSTRACT

Many statistical learning methodologies exhibit loss of efficiency and accuracy when applied to large, high-
dimensional data-sets. Such loss is exacerbated by noisy data. In this paper, we focus on Gaussian Processes
(GPs), a family of non-parametric approaches used in machine learning and Bayesian Optimization. In
fact, GPs show difficulty scaling with the input data size and dimensionality. This paper presents, for the
first time, the Stochastic GP Model Averaging (SGPMA) algorithm, to tackle both challenges. SGPMA
uses a Bayesian approach to weight several predictors, each trained with an independent subset of the
initial data-set (solving the large data-sets issue), and defined in a low-dimensional embedding of the
original space (solving the high dimensionality). We conduct several experiments with different input size
and dimensionality. The results show that our methodology is superior to naive averaging and that the
embedding choice is critical to manage the computational cost / prediction accuracy trade-off.

1 INTRODUCTION & BACKGROUND

Large data sets with increasingly high dimension have become vastly common due to increased sensing,
storage capacity, as well as increased intelligence embedded within modern devices (e.g. robots, self
driven cars, power grids). In such a scenario, traditional statistical models are difficult to apply due to the
scalability challenges. In this paper, we focus on Gaussian Processes, a particularly common modeling
approach within the machine learning community (Williams and Rasmussen 2006). Gaussian Processes
(GPs) are known to have issues in scaling to data set size and dimensionality, mainly due to the prediction
complexity (scaling cubically with the data set size) and the model hyper-parameter optimization, with an
associated complexity that increases exponentially with the dimensionality of the data set (Santner et al.
2003). These challenges have recently received an important attention within the statistical learning theory
community.

In fact, scaling GP models is a very important and challenging problem. As highlighted in the literature,
while deriving a low-dimensional embedding allows to reduce the computational burden associated with
the model estimation (Xuereb et al. 2019), the use of a unique low-embedding leads to important losses
in prediction accuracy compared with the original model (i.e., the model defined in the original space).
Approaches with a single model Several approaches in the literature focus on a single model that is designed
to solve the dimensionality and/or large data size challenges. Examples of single model approaches aimed
at tackling the dimensionality issue can be found in (Bouhlel and Martins 2019; Reich et al. 2011).
In (Bouhlel and Martins 2019), the authors use Partial Least Squares, thus projecting the original space
into a lower dimensional “target” space where the model estimation is actually performed. The question
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of choosing a sufficient dimension reduction has been addressed in (Reich et al. 2011), where the authors
minimize the number of components in a linear predictor.

A number of contributions have focused on data size reduction (also referred to as sub-sampling), rather
than dimensionality reduction (Gardner et al. 2018; Lu et al. 2019; Hayashi et al. 2019). In (Gardner
et al. 2018), the authors approximate a matrix vector multiple of the covariance matrix by decomposing
each Kernel with a Lanczos decomposition (Lanczos 1950). Similarly, in (Lu et al. 2019) the authors
use a low-rank approximation of the covariance matrix based on sub-sample selection by means Nyström
centers (Rudi et al. 2015). A review on the use of sub-sampling for increasing the computational efficiency
of Gaussian Processes is provided in (Hayashi et al. 2019). Therein, experimental results show that
Nyström centers-based approaches are out-performed by random sub-sampling (where sub-samples are
selected at random), both in terms of accuracy as well as required computational effort. Moreover, random
sub-sampling can be easily generalized.

Some GP models are specifically developed to improve their scalability without losing too much
prediction quality: they are categorized by Liu et al. (2020) as scalable GPs. A comprehensive review on
GP models scalability was written by Liu et al. (2020). In a comparison between scalable and exact GP
models on large data sets, Wang et al. (2019) claim that exact GPs have better performance, in terms of
prediction accuracy, compared to approximate GPs. However, this comparison was done on a specific data
set and can hardly be generalized.
Approaches with Multiple Models A way to overcome the performance issues caused by the use of a
single model is to generate multiple predictors, each with an individual support (possibly with reduced
dimensionality), and training set. The output predictor can then be built as the average of the predictors
resulting from the individual models. A key question is how to weight the different predictors, since
arguably each will have a different relative accuracy across the different sub-regions of the original space.
Hence, one would like the ability to weight each predictor differently across regions. In the literature,
Bayesian and frequentist model averaging have both witnessed an important development.

For the Bayesian Model Averaging (BMA), in (Raftery et al. 1997; Hoeting et al. 1999), the authors
show how the posterior distribution of a quantity of interest, given a set of data, can be expressed as the
weighted average of the posterior distributions under each considered model, where the weights are the
posterior model probabilities. The resulting Bayesian Model Averaging (BMA), while appealing, presents
several computational challenges due to the potentially extremely large number of elements in the summation
and the consequent intractability of the likelihood. In light of this, Madigan and Raftery (1994) propose to
scale graphical models by applying the Occam’s window approach. The same approach was then applied
by the authors to linear regression models in (Raftery et al. 1997). Wasserman (2000) noted that for the
case of nested models, Bayesian Selection implies the Occam’s principle. Occam’s principle was also
mentioned in the review by Fragoso et al. (2018) as a “popular criterion” when approximations can be
used to compute the posterior probabilities in a computationally efficient manner (Kass and Wasserman
1995; Eicher et al. 2011; Hu et al. 2018).

When the data structure is completely unknown, Frequentist Model Averaging (FMA) can be used
over BMA, as it does not require any prior to be defined by the user (Wang et al. 2009). Recently, Mitra
et al. (2019) developed a general framework for FMA, where the model averaging weights estimator
is determined without any knowledge of the data structure. Moreover, optimal weights for the model
averaging are suggested. FMA approaches have also been developed for specific forms of predictors, such
as the threshold models (Gao et al. 2019), the logit models (Wan et al. 2014), and the linear mixed-effects
models (Chen et al. 2013).
Contribution In this work, we propose a new Bayesian Model Averaging approach. In particular, we
propose a weighting structure and an efficient estimation mechanism. Non overlapping subsets form a
partition of the original set of points. A model is estimated in each subset, that is defined in a space that
has lower dimension with respect to the original points. Each of the models generates a predictor, and
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these predictors are weighted accounting for both the dimensionality of the associated embedding as well
as the size of the training set.

A preliminary version of this manuscript was presented in (Xuereb et al. 2019), where Principal
Component Analysis (PCA) was used to obtain a single lower-dimensional model and prediction. In
this paper, we present, for the first time, the new model averaging approach that can consider multiple
low-dimensional embeddings. The result is the Stochastic Gaussian Process Model Averaging (SGPMA)
developed for the efficient estimation of a Gaussian Process for noisy high-dimensional data, when the
training data set contains a large number of data points.

Section 2 describes the Bayesian Stochastic GP model. Section 3 develops the Stochastic GP Model
Averaging algorithm: the model averaging is expressed along with an estimation of the models priors.
Moreover, Section 3 presents low-embedding algorithms based on random and PCA embeddings. Section
4 conducts numerical experiments to show the effectiveness of our methodology. Final Section 5 shows
some future work possibilities.

2 STOCHASTIC GAUSSIAN PROCESS MODEL

Gaussian Process models have been successfully used for prediction of noisy responses, and several
implementations have been proposed in the literature (Ankenman et al. 2010; Chen et al. 2013). The model
presented by Yin et al. (2011) allows to explicitly handle heteroscedastic noise, and a follow up paper
proposed an efficient Bayesian scheme for the hyper-parameter estimation, which we use in this work (Ng
and Yin 2012). Let X ∈ Rk×d a matrix of input locations such that its ith row is a d-dimensional sample
xi, i = 1, ...,k, and X the feasible set. Let Y ∈ Rk the vector with elements ȳ(xi), the noisy evaluation
associated to location xi,∀i. Under a Gaussian Process modeling setup, the simulation response of any
x ∈ X is interpreted as a random process Y (x) defined as:

Y (x) = S(x)+ ε(x) = µ(x)+δ (x)+ ε(x), (1)

where the Gaussian Process S(x) is the sum of a deterministic mean function µ (x), and a Gaussian Process
δ (x). The process ε(x) models the noise in the function evaluations, assumed to be independent across
locations. The processes δ (x) and ε(x) describe the dependency among locations, which is fully represented
by the covariance function

Cov(Y (x j) ,Y (xl)) =

{
c∗1 (x j)+ c1 if d jl = 0
c1 corr

(
d jl,θ

)
if d jl 6= 0

∀ j, l = 1, . . . ,k, (2)

where c∗1 (x j) is the variance associated to the noise ε at location x j, c∗1 the vector of c∗1 (x j)’s, c1 represents
the process variance, and d jl the distance between x j and xl . corr(·) is a correlation function.
Under the assumptions that the hierarchical priors are defined as β |c1 ∼ Np(w0,c1Q0), c1 ∼ IG(α,γ),
θ j ∼ G(a,b), j = 1,2, . . . ,d, and θ and c∗1/c1 are known, the optimal predictor results (Ng and Yin 2012):

Y (x0)∼T1 (αY,µ(Y (x0)|Y),V (Y (x0)|Y)) . (3)

µ(Y (x0)|Y) =B(x0)M−1
λ +CT

0 C−1 (Y−BM−1
λ
)
,αY = k+2α (4)

V (Y (x0)|Y) =
(
2γ +YTC−1Y+wT

0 Q−1
0 w0−λ

T M−1
λ
) 1−CT

0 C−1C0 +ΛM−1ΛT

2αY
.

where λ = BTC−1Y+Q−1
0 w0, M = BTCB+Q−1

0 , Λ = CT
0 C−1B−B(x0) (with B and B(x0) the known

regression matrices of X and x0 respectively, C and C0 the covariance matrices of X, and between x0 and X,
respectively, as defined by equation (2)). The sample variance is the common estimator for c∗1(x j), while
θ and c1 can be estimated by the MLE method.
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3 THE STOCHASTIC GAUSSIAN PROCESS WITH MODEL AVERAGING (SGPMA)

We develop a Bayesian Model Averaging approach that uses n predictors of the type in (2) generated by
training n models over a partition of the matrix X of the sampled points. The basic idea is to obtain a
predictor for the original noisy function defined in a high-dimensional space, by averaging the predictions
generated by n lower dimensional models.

Algorithm 1 shows an overview of the proposed approach. Let X ∈ Rk×d be such that the ith row
is a d-dimensional sample xi, i = 1, ...,k, and let Y ∈ Rk be the vector with elements ȳ(xi), the noisy
evaluation associated to location xi,∀i. We consider n predictors, each trained by an input formed by ki
elements from X such that ∑i ki = k and all locations from X are used for training. Such inputs are referred
to as X̃i, i = 1, . . . ,n, and the associated evaluations are the ki dimensional vectors Yi with i = 1, . . . ,n.
The elements of each X̃i are further projected onto a di-dimensional space with di < d, resulting into the
projected inputs Xi, i = 1, . . . ,n. Projections are obtained using a specified mechanism (random projections
and Principal Components Analysis in this paper). In SGPMA, both n and di are user defined.

The predictor for a point x0 ∈ Rd is obtained by performing model averaging of n predictors of the
type in equation (4), where the n models are defined in a lower dimensional space di, i = 1, . . . ,n. The
resulting predictor is

Ŷ (x0) =
n

∑
i=1

µi(Yi(πi (x0))|Yi)wi (Xi) , (5)

where πi (x0) is the projection of x0 in di dimensions. We will introduce two different projection operators
πrandom, and πPCA.

Algorithm 1: A Bayesian Approach for Modeling Responses with High Dimensional Input
1: Initialization: Initial sample matrix X ∈ Rk×d and the corresponding function values Y ∈ Rk; number of

embeddings to construct n;
2: Subset Generation;
3: Generate the subsets sizes ki < k, i = 1, . . . ,n, and the relative embedding dimension di < d, i = 1, . . . ,n;
4: for i = 1, . . . ,n do
5:

[
X̃i,Yi

]
← SELECT(X,Y,ki) returns a matrix of ki samples (rows) from the sample matrix X, and the related

values from the vector Y, to be assigned to the sub-matrix X̃i;
6: Derive a di-dimensional embedding for X̃i, Xi← DIM-EMBED

(
X̃i,Yi,di

)
;

7: Estimate the parameters of the Gaussian Process Mi using the training set Xi,Yi
8: end for
9: Weight the models using wi← BAYESWEIGHT({Mi}n

i=1) , i = 1, . . . ,n;
10: Return Ŷ (x) = ∑i wiŶi (x)

3.1 Generating Subsets and Low Dimensional Embeddings

The subset generation procedure is designed to return n sets of input locations and the associated outputs
starting from the original matrix X, and vector Y, respectively. While the number of subsets n, and the
related dimensions di are user-defined, the algorithm decides the number of points to assign to each subset,
i.e., ki, i = 1,2, . . .n. Once ki, ∀i are defined, the projections need to be executed for all locations onto
the related di, ∀i. Once the subsets are defined, the algorithm assigns the locations in matrix X to the n
subsets. Here we randomly assign the locations to the n subsets, with the procedure “SUBSAMPLES” in
Algorithm 3.

Finally, we propose two embedding procedures: Random Embedding of the samples and dimensions
(Algorithm 2 with Using-PCA = False); Random Embedding of the samples and Principal Component
Analysis of the dimensions (Algorithm 2 with Using-PCA = True).

Based on a randomly generated index set of size di (amongst the d original dimensions), the “RANDOM-
EMBED” procedure in Algorithm 4 selects the subdimensions of the original input that are still within
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the index set. The procedure “PCA-EMBED” in Algorithm 5 uses Principal Components Analysis (PCA)
to low-embed the dimension. It can be noted that for an out-of-sample location x0, the associated
predictor Y (πi (x0)) from the low-dimensional model (ki,di) is obtained by first projecting x0 onto the
lower-dimensional space of the model (applying πi (x0)), then predicting its answer with the model.

Algorithm 2: Low Size Low Dimension Subset Generation
1: Inputs: original data X,Y, number n of low embeddings to generate, number of points in each

embedding {ni}k
i=1 : ki < k ∀i, and dimension of the low embedding {di}n

i=1 : di < d ∀i;
boolean Using-PCA;

2: for i = 1, . . . ,n do
3: Samples Selection: Randomly choose an index set IS

i ⊆ {1, ...,k},
∣∣IS

i

∣∣= ki (ki < k);
4: X̃i,Yi← SUBSAMPLES

(
X,Y, IS

i
)
;

5: if Using-PCA then
6: Xi← PCA-EMBED

(
X̃i,di

)
;

7: else
8: Xi← RANDOM-EMBED

(
X̃i,di

)
;

9: end if
10: end for

Algorithm 3: Sub Procedure SUBSAMPLES
1: Inputs: original data X,Y, sample reduction index set IS

i ;

2: Create the sample reduction matrix MS,i =
[
mS

l j

]
l∈{1,...,ki}, j∈{1,...,k}

, mS
l j =

{
1 if IS

li = j
0 otherwise

;

3: Output: Return X̃i = MS,iX and Yi = MS,iY;

Algorithm 4: Sub Procedure RANDOM-EMBED
1: Inputs: sample-reduced data X̃i dimension to reduce the data into di;
2: Dimensions Selection: Randomly choose an index set ID

i ⊆ {1, ...,d},
∣∣ID

i

∣∣= di (di < d);

3: Create the dimension reduction matrix MD,i =
[
mD

l j

]
l∈{1,...,di}, j∈{1,...,d}

, mD
l j =

{
1 if ID

li = j
0 otherwise;

;

4: Output: Return Xi = X̃iMT
D,i

Algorithm 5: Sub Procedure PCA-EMBED
1: Inputs: sample-reduced data X̃i, dimension to reduce the data into di;
2: Compute the covariance matrix Ci of X̃i;
3: Compute the eigenvectors and eigenvalues of Ci;
4: Order the eigenvectors of Ci in a descending way according to their eigenvalues;
5: Create the matrix MD,i, whose columns are the di first eigenvectors;
6: Output: Return Xi = X̃iMT

D,i

3.2 Bayesian Approach to Low Dimensional Predictors and Estimation of the Weighting Structure

Given n such that ∀i= 1, ...,n,Xi ∈Rki×di ,Yi ∈Rki ,ki < k,di < d, n models Mi, i= 1, . . . ,n will be estimated.

Mi =
{

pφi : φi = (θi,ci)
T ∈ Rdi+1

}
, (6)

where
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pφi (y) =
1

(2π)
ki
2
√

det (Ci)
exp
(
−1

2

(
y−Biβ̂i

)T
C−1

i

(
y−Biβ̂i

))
,

Ci =
[
c(i)jl

]
j,l∈{1,...,ki}

,∀ j, l ∈ {1, ...,ki},c(i)jl = Cov(Yi[ j],Yi[l]) =

 ĉ1 (Xi[l])
∗+ ci if d(i)

jl = 0

ci corr
(

d(i)
jl ,θi

)
if d(i)

jl 6= 0
,

d(i)
jl = dist(Xi [ j] ,Xi[l]),Yi(x0)∼ T1

(
αiYi

,µi(Y (x0)|Yi),Vi(Y (x0)|Yi)
)
, ĉi (Xi [ j])

∗ =
s2 (Xi [ j])

r
.

Each model Mi is trained over (Xi,Yi). Xi [ j] denotes the jth element (sample) of the low-embedded
matrix Xi, while Yi[ j] the jth element of Yi. φi is the vector of unknown parameters of the model Mi. Each
parameter θi is a vector of di elements and dist (·) a distance function. s2 (Xi [ j]) is the sample variance
and r the number of replications. The likelihood of a model Mi is expressed as Li (φi ) = pφi (Yi). Note
that the non-central t distribution is valid within the assumptions made in Section 2 (βi|ci ∼Np(w0i,ciQ0i),
ci ∼ IG(αi,γi), ∀ j ∈ [di],θi j ∼ G(ai,bi), and θi and c∗i /ci are known).

Our SGPMA approach uses n models of the type (6) and returns the following predictor for a point x0 ∈Rd :

Ŷ (π (x0)) =
n

∑
i=1

µi(Y (πi (x0))|Yi)P(Mi|Xi,Yi) =
n

∑
i=1

µi(Y (πi (x0))|Yi)
P(Yi|Mi) ·P(Mi)

∑
n
j=1 P(Yi|Mi) ·P(Mi)

=
n

∑
i=1

µi(Y (πi (x0))|Yi)
Li(φ̂i)exp

(
− |φi|

2 logki

)
P(Mi)

∑
n
j=1 L j(φ̂ j)exp

(
− |φ j|

2 logk j

)
P(M j)

. (7)

The assumptions on the prior density are embedded within the general assumption made by the
approximation given in (3). Then, the posterior for each model (given by the Bayes’ formula) and the
conditional probability of obtaining the true answer with the model Mi are expressed below:

P(Mi|Yi) =
P(Yi|Mi)P(Mi)

∑
n
j=1 P(Y j|M j)P(M j)

∀i = 1, . . . ,n,

P(Yi|Mi) =
∫

pφi(Yi)pi(φi)dφi =
∫

Li(φi )pi(φi)dφi ≈ Li(φ̂i)exp
(
−|φi|

2
logki

)
∀i = 1, . . . ,n,

where the approximation is given by Wasserman (2000). φ̂i is the MLE of φi (Ng and Yin 2012).
Based on Section 2, it is possible to calculate the predictive distributions means µi(Y (xi

0)|Yi) as well as
the marginal likelihoods Li(φ̂i). These means and likelihoods, each based on sample and dimension-reduced
input Xi, should be more computationally tractable than the prediction of a model based on the original
input X. The estimation of the model priors P(Mi) will be discussed in the next section.

Weights Estimation One possibility for the weights, P(Mi), is to use a noninformative uniform prior
(Wasserman 2000). Priors can also be tailored to specific classes of models. For linear regression models,
a binomial prior is often used to reflect the importance of the variables (Hoeting et al. 1999; Steel 2011).
The intuition behind the binomial prior is that if a model Mi contains more covariates than M j, then Mi
should have larger associated weight compared to M j, because the more the covariates, the higher the
prediction power of the model. However, for these models, dimensionality reduction is not discussed.

Here, we associate the idea of increased prediction power as a function of the dimensionality di and
sample size ki. For each Mi we use a different training set characterized by a different number of points ki,
and different dimensionality di, and both of them characterize the prediction power of the resulting model.
In other words, for each model Mi, a proxy of this quantity is the pair (ki,di). Our SGPMA considers a
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power function of the percentages of the sample size and dimension with respect to their original sizes,
where the relative importance of the di can be controlled through η . Given the model Mi as in equation (6),
we propose the following prior form:

P(Mi) =
pi

∑
n
j=1 p j

, pi =

(
ki

k

)2

×
(

di

d

)η

∀i = 1, ...,n. (8)

From equation (8), it is possible to develop a procedure for the prediction of the Stochastic GP model
averaging when the input is high-dimensional.

Motivating Example In order to build the intuition behind the weights in equation (8) we show, with
an example, that there exists an exploitable relationship between the (ki,di)-pair and the prediction error
associated to a model estimated with ki samples, and a di-dimensional embedding. We use the Griewank
function (Locatelli 2003):

f (x) =
d

∑
i=1

(
x2

i

4000

)
−

d

∏
i=1

cos
(

xi√
i

)
+1,x ∈ [−600,600]d . (9)

We add a noise function δ = 0.8, constant across the input space (given a location x a normal noise
N (0,δ ) is added to the output of the function in (9)). We set k = 500, and d = 50 and test different
combinations of sub-sample size and dimensionality (ki,di). Since the evaluations are affected by noise,
15 replications are performed for each location. The idea is that, if error [Mi (ki,di)]< error [M j (k j,d j)],
then P(Mi)> P(M j).

For each combination (ki,di), we estimate the model 30 times. Table 1 summarizes the absolute errors
resulting from each model prediction, calculated with a B = 100d = 5000-samples validation dataset. The
error is calculated as

error =
1
B

B

∑
i=1

∣∣Ŷ (xtest,i)− f (xtest,i)
∣∣ , (10)

where Ŷ is the prediction and f the true function value.
Figure 1(a) shows the error against the dimension di, for the different values of ki = {500,300,100,20}.

It can be observed that, as hypothesized, the model error depends on the pair (ki,di). Hence, we argue
that a model prior should consider both ki and di. In fact, if our weight was only to consider the sample
size ki, models would be mistakenly ranked: in our example, the error of the model (ki = 300,di = 40) is
higher than the error of (ki = 500,di = 40), but lower than the error of (ki = 500,di = 30). Similar results
were obtained for different values of η .

Figure 1(b) supports the intuition that larger values of the proposed weights correspond to “better”
models, i.e., with lower associated errors. In the figure, the models are ordered according to the value of
the associated pi = (ki/k)2× (di/d)η , with different values of η (equation(6)). More experiments were
performed for different values of η , and we noticed that η = 8 was performing best (i.e. with the lowest
error) in our experimental setup.
Interestingly, we observed that the model performance started deteriorating for values of η > 8. This
observation highlights the importance of such parameter in determining the effectiveness of the weighting
approach. Also, considering Figure 1(a), and as we previously highlighted, ki and di interact in determining
the performance of the model. In this preliminary version, SGPMA assumes that η is supplied by the
user. Nevertheless, significant opportunities can be found in the understanding of the “optimal” relationship
between the ki and di exponent, leading to an automated derivation of the weight without requiring the
user to set it. In the numerical section, we will further explore the impact of η .
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Table 1: Effect of ki and di over the prediction accuracy of a single model of the type (6)

Exp ki 500
di 50 40 30 20 10 5

Error ×10−2 4.26 ± 0.01 4.32 ± 0.01 5.31 ± 0.02 8.77 ± 0.49 13.80± 0.01 14.15± 0.01

Exp ki 300
di 50 40 30 20 10 5

Error ×10−2 4.41 ± 0.01 4.58 ± 0.06 6.86 ± 0.31 11.35± 0.36 13.39± 0.01 14.06± 0.03

Exp ki 100
di 50 40 30 20 10 5

Error ×10−2 5.39 ± 0.15 5.48 ± 0.13 8.33 ± 0.42 12.58± 0.29 13.54± 0.03 13.97± 0.01

Exp ki 20
di 50 40 30 20 10 5

Error ×10−2 9.54 ± 1.20 9.50 ± 1.40 10.58± 1.10 13.32± 0.34 13.47± 0.17 12.57± 0.16

(a) Performance for different dimensions (b) Error as a function of the associated weight

Figure 1: Impact of ki,di over the test models in Table 1

4 PRELIMINARY RESULTS

To evaluate the performance of SGPMA, we ran several experiments considering different dimensionality
and sample sizes, and corresponding dimensionality and number of points for the subsets. The d-dimensional
Griewank function given in equation (9) was used across all the tests.

Hyperparameters Priors Following the guidelines of Qian and Wu (2008), a “vague prior” was adopted
for ci and a “location-flat prior” for βi|ci. Such setting translates into αi = 2, γi = 1, w0i = 0, and Q0i the
identity matrix. As for the parameter η defined in equation (8), and previously discussed, we used the set
of possible values {0.5,3,5,7,9}, with the idea of analyzing different scenarios in terms of the relative
weight (when η < 2 the dimensionality is less important than the number of samples, and vice versa).

Experiments settings k = 10× d input design points were generated using a Latin Hypercube over a
support [0,10]d . Function value at each location is a normal distribution with mean equal to the true
function value at that point, and constant (homogeneous) variance δ = 0.8 across the entire solution space.
A single experimental condition is defined by the tuple {d,n = nrandom +nPCA,Sk,Sd}, where nrandom subsets
were processed using Algorithm 2 with Using-PCA = False , whereas nPCA subsets use it with Using-PCA
= True. The set Sk contains the possible sample sizes that can be assigned to each model Mi, i = 1, . . . ,n.
As an example, if d = 5 and Sk = {10,20}, each model Mi, i = 1, . . . ,n can be trained with 10 or 20 points
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(as long as ∑i ki = 50). Similarly, Sd is the set of possible, reduced, dimensions that can be assigned to
each model Mi, i = 1, . . . ,n.

In order to generate the experimental conditions, we solved a mixed integer-linear program having as
decision variables the number of models n, and the sample sizes ki, i = 1, . . . ,n. The objective function is
to minimize the differences |Ski[ j]− Ski[l]|∀i, j, l and |nrandom− nPCA|, satisfying the partition constraint on
the possible sample size assignments defined by the set Sk.

The resulting experimental conditions are listed in Table 2.

Table 2: Description of the experiments

E d k n Sd Sk
nrandom nPCA

E1 50 500 5 6
E2 100 1000 8 8
E3 150 1500 14 14 {2,4}
E4 200 2000 15 15 {5,35,70,100}
E5 11 0
E6 50 500 0 11
E7 5 6 {10,15}

Validation Each element of the vector Y represents the average of 15 independent replications. SGPMA
was macro-replicated 30 times for each experiment. At each macro-replication, the SGPMA performance
was estimated over 100× d out-of sample locations. The following benchmark models were considered
for sake of comparison:

• OR: this refers to the original Stochastic GP model without embedding and without sample reduction;
• UMA: model averaging using the same models as SGPMA, but weighting them uniformly;
• LM: the model, amongst those estimated by SGPMA, with the lowest associated MSE;
• HM: the model, amongst those estimated by SGPMA, with the largest associated MSE;
• AM: the model, amongst those estimated by SGPMA, with the mode associated MSE.

Performance We considered the error metric defined in equation (10), and the computational time.

Results Tables 3-5 show the obtained errors and fitting times for the performed experiments. η∗ in Table 3 is
the value of η for which the model averaging error is the lowest, taken over the search space {0.5,3,5,7,9}.
In Table 4, this search space is modified for each experiment.

Table 3: Model Averaging (MA) vs. MA with uniform prior (UMA) vs. original model (OR)

E d k η∗ Error ×10−2 Time [s]
MA with η∗ UMA OR MAs OR

E1 50 500 5 6.70 ± 0.03 8.74 ± 0.11 4.29 ± 0.01 1 13
E2 100 1000 5 9.33 ± 0.10 11.05 ± 0.72 5.98 ± 0.01 2 311
E3 150 1500 9 11.97 ± 4.08 11.84 ± 2.97 7.31 ± 0.01 2 2731
E4 200 2000 5 12.38 ± 0.19 12.67 ± 0.88 NA∗ 4 >24h
E5 50 500 5 6.03 ± 0.02 8.90 ± 0.34 4.29 ± 0.01 2 13
E6 5 7.16 ± 0.07 8.98 ± 0.34 2

Discussion A first observation from Table 3 is that applying Algorithm 1 on high dimensional problems
(d ≥ 50 in these numerical experiments) decreases the computational fitting time. Experiments E1−E4
show how the higher the original dimension, the faster the novel algorithm compared to the OR model.
Comparing the results from experiments E7 (in Table 4) and E1 (in Table 3), focusing only on the fitting
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Table 4: Effect of the dimension weight η for the case E7 := {d = 50,k = 500}

E Search space η∗ Error ×10−2 Time [s]
for η MA with η∗ UMA OR MAs OR

E7,1 {1, ...9} 9 9.87 ±0.48
E7,2 {10, ...,100} 12 9.41 ± 0.45 17.12 ± 6.91 4.29 ± 0.01 6 13
E7,3 0.01×{0, ...,100} 1 16.23 ± 5.98

Figure 2: Model Averaging (MA) vs. Original model (OR)

Table 5: Comparison of SGPMA against the benchmarks

E d k Error ×10−2

MA LM AM HM
E1 50 500 6.70 ± 0.03 12.19 ± 0.76 16.11 ± 1.68 22.34 ± 5.51
E2 100 1000 9.33 ± 0.10 14.59 ± 0.08 20.36 ± 4.43 31.83 ± 4.16
E3 150 1500 11.97 ± 4.08 15.25 ± 0.49 28.93 ± 13.60 57.29 ± 18.42
E4 200 2000 12.38 ± 0.19 15.32 ± 0.35 24.99 ± 10.91 54.04 ± 18.05

times, we observe that, if the computational cost is of concern, it is better to use lower dimensional
embeddings for SGPMA. This observation is particularly relevant in sequential optimization settings where
the SGPMA model is estimated several times. Nonetheless, as the results show, the higher computational
efficiency comes at the cost of lower prediction accuracy. This trade-off between efficiency gain and loss of
accuracy can be beneficial in many time sensitive situations. However, it is problem specific and dependent
on the risks associated with time delay and accuracy loss. In their book, Taylor and Vanmarcke (2002)
illustrate this consideration with an earthquake estimation. When estimating the possible seriousness of an
incoming earthquake, a 50 % accuracy loss is acceptable, however this same accuracy loss will lead to a
wrong estimation of resource allocation.

Figure 2 plots the results from experiments E1−E4 (x-axis) providing a visual comparison between
SGPMA, UMA and the original model, and, for SGPMA, the prediction error is plotted for different values
of the factor η . The results show how the dimension of a model, compared to its sample size, influences
the prediction stronger (η > 2 leads to lower errors than η ≤ 2).

Also, it appears that the value of η∗, i.e., the value of η with the associated best performance, varies
substantially across conditions, implying that the starting values of (d,k) exert an influence on the value
of the factor. Moreover, if we compare the results from experiments E7,1 and E1 (Table 3), we observe
how the value of η∗ appears to be influenced by the possible subdimensions Sdi. While future work will
be necessary on the search for better values of η , these insights are important, because choosing a good
value of η appears to discriminate SGPMA from model averaging with uniform priors (Table 3).
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E5 and E6 of Table 3 highlight the importance of choosing a right low-dimensional embedding. Here,
PCA seems to be less efficient than random embedding for the case {d = 50,k = 500}. When compared
to E1, it seems better to use a unique random embedding than a mixture of PCA and random embeddings.
However, it also seems better to use the mixture than PCA only. The type of embedding can be important.

Finally, Table 5 shows that model averaging always outperforms the best performing model within the
set {Mi}n

i=1, independently from the embedding approach (random, PCA, or mixed). In our numerical
experiments, SGPMA outperforms LM in all the cases. This tends to confirm that model averaging
empirically outperforms single model strategies in terms of prediction accuracy.

5 CONCLUSION

This paper presents for the first time the Stochastic Gaussian Process with Model Averaging (SGPMA)
algorithm for the prediction of noisy black box functions. SGPMA relies on a novel Bayesian model
averaging approach that is used to mix several SGP’s. Specifically, several stochastic GPs are estimated,
each using a subset of the initial, large, input data, and each projecting the input location onto a lower
dimensional space. SGPMA is scalable since any input data set can be separated into smaller, size-controlled,
training sets, and each model has reduced dimensionality. The produced predictions are averaged using a
weighting scheme based on their marginal likelihood and a “model prior”, which we design to be dependent
on the size of model training set and the dimensionality being used for the projection.

Our preliminary results show how SGPMA drastically decreases the computing time for model fitting
while keeping the prediction accuracy reasonably close to the original model, and our proposed model
weighting appears to outperform uniform weighting and shows more consistent performance. Nonetheless,
more studies are necessary on the factor η , which appears to have a key role in the performance of SGPMA.
The future direction of this work will be to attempt to derive η “optimally”, and test alternative projection
methods. Finally, SGPMA will be used within a Bayesian Optimization context for large scale optimization.
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