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We report the first evidence for isospin violation in B — K*y and the first measurement of the difference
of CP asymmetries between B* — K*Ty and B® — K*%y. This analysis is based on the data sample
containing 772 x 10°BB pairs that was collected with the Belle detector at the KEKB energy-asymmetric
ete~ collider. We find evidence for the isospin violation with a significance of 3.1c,
Ao, = [+6.2 £+ 1.5(stat) £ 0.6(syst) = 1.2(f,_/f00)]%, where the third uncertainty is due to the
uncertainty on the fraction of B¥B~ to B°B° production in Y(4S) decays. The measured value is
consistent with predictions of the standard model. The result for the difference of CP asymmetries is
AAcp = [+2.4 + 2.8(stat) £ 0.5(syst)] %, consistent with zero. The measured branching fractions and CP
asymmetries for charged and neutral B meson decays are the most precise to date. We also calculate the
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ratio of branching fractions of B® — K*% to BY — ¢y.

DOI: 10.1103/PhysRevLett.119.191802

Radiative b — sy decays proceed predominantly via
one-loop electromagnetic penguin diagrams. This process
is also possible via annihilation diagrams; however, the
amplitudes are highly suppressed by O(Aqcp/m;,) and
CKM matrix elements [1,2] in the standard model (SM)
[3.4]. Since new heavy particles could contribute to the
loops, the b — sy process is a sensitive probe for new
physics (NP). Furthermore, new particles could mediate the
annihilation diagrams or effective four-fermion contact
interactions with different magnitudes in charged and
neutral B meson decays, so that the penguin dominance
in b — sy might be violated. The B — K*y decay [5] is
experimentally the cleanest exclusive decay mode among
the B — X,y decays. The branching fractions give weak
constraints on NP since the SM predictions suffer from large
uncertainties in the form factors, while the isospin (A, ) and
direct CP asymmetries (Acp) are theoretically clean observ-
ables due to cancellation of these uncertainties [6]. The A,
Acp, and difference and average of A-p between charged
and neutral B mesons (AAcp and Aqp) are defined as

(B - K*%) —T(B* — K**y)

Ay, = , 1
0+ F(BO N K*Oy) +F(B+ N K*er) ( )
I'(B— K* I'B - K*
Acp = ( - y) ~ I - 7) . (2)
['(B— K*y) +T'(B = K*y)
AAcp = Acp(BT = K*Fy) = Acp(B® = K*%), (3)
= Acp(BT = K*y) + Acp(B® — K*)
ACP — 2 ’ (4)
(B —» K*%) T fy- N(BY - K*%)

NE ok O

T(B* = K**y) 70 foo
where I' denotes the partial width, N is the number of
produced signal events, 7+ /7o is the lifetime ratio of B* to
BY mesons, and f,_ and f, are the Y(4S) branching
fractions to BTB~ and B°B® decays, respectively.
Predictions of the isospin asymmetry range from 2% to

8% with a typical uncertainty of 2% in the SM [6—11], whilea

large deviation from the SM predictions is possible due to NP
[7,9,10]. Acp is predicted to be small in the SM [6,10,12,13];
hence, a measurement of CP violation is a good probe for NP
[14]. The isospin difference of direct CP violation is
theoretically discussed in the context of the inclusive B —
X,y process [ 15] but heretofore not in the exclusive B — K*y
channel; however, AAp here will be useful to identify NP
once Acp is observed.

The B — K*y decays were studied by CLEO [16], Belle
[17], BABAR [18], and LHCb [19]. The current world
averages of the isospin and direct CP asymmetries are
Ao, = (+5.2£2.6)%, Acp(B*— K%)= (-0.2+1.5)%,
Acp(BT > K*Ty)=(+1.84£2.9)%, and Acp(B — K*y) =
(-0.3 £ 1.7)% [20], respectively, which are consistent
with predictions in the SM and give strong constraints
on NP [10,13,21-23]. The world averages of branching
fractions are also consistent with predictions within the
SM [3,6,8,10,12,24-26] and are used for constraining
NP [10,13,27].

In this Letter, we report the first evidence of isospin
violation in B — K*y. In addition, we present measure-
ments of the branching fractions, direct CP asymmetries,
and their isospin difference and average. We use the full
T(4S) resonance data sample collected by the Belle
detector at the KEKB energy-asymmetric collider [28];
this sample contains 772 x 10°BB pairs. The results super-
sede our previous measurements [17].

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter composed of CsI(TI) crystals (ECL) located
inside a superconducting solenoid coil that providesa 1.5 T
magnetic field. An iron flux return located outside of the coil
is instrumented to detect K mesons and to identify muons.
The z axis is aligned with the direction opposite the e beam.
The detector is described in detail elsewhere [29].

The selection is optimized with Monte Carlo (MC)
simulation samples. The MC events are generated with
EvTGEN [30] and the detector simulation is done by
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GEANT3 [31]. We reconstruct B — K*%y and Bt — K**y
decays, where K* is formed from K*z~, K%z°, K*z°, or
K97 combinations [32].

Prompt photon candidates are selected from isolated
clusters in the ECL that are not associated with any charged
tracks reconstructed by the SVD and the CDC. We require
the ratio of the energy deposited in a 3 x 3 array of ECL
crystals centered on the crystal having the maximum
energy to that in the enclosing 5 x 5 array to be above
0.95. The photon energy in the center-of-mass (c.m.) frame
is required to be in the range of 1.8 < Ej < 3.4 GeV. The
polar angle of the photon candidate is required to be in the
barrel region of the ECL (33° < 6, < 128°) to take advan-
tage of the better energy resolution in the barrel compared
with the end cap and to reduce continuum e*e™ — ¢g
(g = u, d, s, ¢) background with initial state radiation. The
dominant backgrounds to the prompt photons are from
asymmetric-energy decays of high momentum 7z° or 5
mesons, where one photon is hard and the other is soft.
These events can be suppressed by using two probability
density functions for z° and 5 constructed from the
following two variables: the invariant mass of the photon
candidate and another photon in an event, and the energy of
this additional photon in the laboratory frame. We require
that the 7z° and 5 probabilities are less than 0.3. These
requirements retain about 92% of the signal events while
removing about 61% of the continuum background.

To reject misreconstructed tracks and beam back-
grounds, charged tracks except for the K — 7z~ decay
daughters are required to have a momentum in the
laboratory frame greater than 0.1 GeV/c. In addition,
we require that the impact parameter with respect to the
nominal interaction point (IP) be less than 0.5 cm trans-
verse to, and 5.0 cm along, the z axis. To identify K+ and
zt, a likelihood ratio is calculated from the specific
ionization measurements in the CDC, time-of-flight infor-
mation from the time-of-flight scintillation counters, and
the response of the aerogel threshold Cherenkov counters.

K candidates are reconstructed from pairs of oppositely
charged tracks, treated as pions, and identified by a
multivariate analysis with a neural network [33] based on
two sets of input variables [34]. The first set of variables,
which separate K9 candidates from combinatorial back-
ground, are (1) the Kg momentum in the laboratory frame,
(2) the distance along the z axis between the two track
helices at their closest approach, (3) the flight length in the
x-y plane, (4) the angle between the K% momentum
and the vector joining the K 2 decay vertex and the nominal
IP, (5) the angle between the # momentum and the
laboratory-frame direction of the K% in the K rest frame,
(6) the distance of closest approach in the x-y plane between
the nominal IP and the pion helices, and (7) the pion hit
information in the SVD and CDC. The second set of
variables, which identify A — pz~ background, are

(1) particle identification information, and momentum
and polar angles of the two daughter tracks, and (2) invariant
mass with the proton- and pion-mass hypotheses. In
addition, the K‘; candidate is required to have an invariant
mass M ,,, calculated with the pion-mass hypothesis, that
satisfies |M, — mgo| < 10 MeV/c?, where myo is the
nominal K(S) mass; this requirement corresponds to a 3¢
interval in mass resolution.

We reconstruct 7° candidates from two photons each
with energy greater than 50 MeV. We require the invariant
mass to be within £10 MeV/c? of the nominal z° mass,
corresponding to about 2¢ in resolution. To reduce the large
combinatorial background, we require that the 7° momen-
tum in the c¢.m. frame, calculated with a z° mass-constraint
fit, be greater than 0.5 GeV/c and the cosine of the angle
between two photons be greater than 0.5.

K* candidates are selected with a loose invariant mass
selection of Mg, < 2.0 GeV/c>.

B meson candidates are reconstructed by combining a
K* candidate and a photon candidate. To identify the B
mesons, we introduce two Kinematic variables: the beam-

energy constrained mass My, = \/(Ejeun/ ) — (P3/c)?,
and the energy difference AE = Ej — E}_, ., where E_, is
the beam energy, and Ej and pj are the energy and
momentum, respectively, of the B meson candidate in the
c.m. frame. The energy difference is required to be
—0.2 < AE < 0.1 GeV; the M, distributions are used to
extract the signal yield.

The dominant background from continuum events is
suppressed using a multivariate analysis with a neural
network [33]. The neural network uses the following input
variables calculated in the c.m. frame: (1) the cosine of the
angle between the B meson candidate momentum and the z
axis, (2) the likelihood ratio of modified Fox-Wolfram
moments [35,36], (3) the angle between the thrust axes of
the daughter particles of the B candidate and all other
particles in the rest of the event (ROE), (4) the sphericity
and aplanarity [37] of particles in the ROE, (5) the angle
between the first sphericity axes of the B candidate and
particles in the ROE, (6) the absolute value of the cosine of
the angle between the first sphericity axes of the particles in
the ROE and the z axis, and (7) the flavor quality parameter
of the accompanying B meson that ranges from zero for no
flavor information to unity for unambiguous flavor assign-
ment [38]. The output variable Oy is required to maximize
the significance, defined as Ng/\/Ng+ Np, where Ng
and Np are the expected signal and background yields
for four decay modes in the signal region of 5.27 < M. <
5.29 GeV/ ¢, based on MC studies. The criterion
Ong > 0.13 suppresses about 89% of continuum events
while keeping about 83% of signal events for the weighted
average of the four decay modes. The average number
of B candidates in an event with at least one candidate is
1.16; we select a single candidate among multiple
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TABLE 1. Signal yields for B (N?) and B (Ng) mesons, efficiencies (¢), branching fractions, and direct CP asymmetries. The
uncertainties are statistical and systematic except efficiencies. The uncertainties for efficiencies are systematics including statistical

uncertainties of MC samples.

Mode N? NB e [%] B [1073] Acp [%]

BY > K(S)ﬂoy 349 +£23 + 15 1.16 £ 0.04 4.00 £0.27 £0.24 cee

B = Ktny 2295 + 56 £ 27 2339 £ 56 + 30 15.61 £0.49 3.95+0.07£0.14 -134+17+£04
Bt —>K+7t0y 572 £32+ 12 562 +31+11 3.66 +£0.12 391 £0.16 = 0.16 +1.0£3.6+£03
Bt —>Kgﬂ:+y 745 £32+8 721 £32+9 5.01 £0.14 3.69+£0.12+0.12 +1.3+294+04

candidates in an event randomly in order not to bias My,
and other variables. Then, we require the invariant mass of
the K7 system to be within 75 MeV/c? of the nominal K*
mass. The events with an invariant mass less than
2.0 GeV/c? are used to check the contamination from B —
X,y events that include a higher kaonic resonance decaying
to Kz. The reconstruction efficiencies determined with MC
calculations and calibrated by the difference between the
data and MC calculations with control samples are sum-
marized in Table I.

To determine the signal yields, branching fractions,
and direct CP asymmetries in each of the four final
states, we perform extended unbinned maximum likelihood
fits to the M, distributions within the range 5.20 < M. <
5.29 GeV/c?. The probability density function for the
signal is modeled by a Gaussian for modes without a z°
and a Crystal Ball (CB) function [39] for modes with a 7°.
The means of the Gaussian and CB functions are calibrated
by B — Dz~ events in data while the normalizations and
widths are floated. The tail parameters of the CB function
are determined from signal MC samples. From MC studies,
it is expected that signal cross feeds are 0.5% of the signal
yield. We model this cross-feed distribution with a
Gaussian and an ARGUS function [40]. The cross-feed
shape and amount of cross feed relative to the correctly
reconstructed signal is fixed to that of the signal MC
calculations, such that the cross-feed normalization scales
with the signal yield found in the data. The continuum
background is described with an ARGUS function. The
endpoint of the ARGUS function is calibrated using the
combinatorial background in B — Dx reconstruction in
the data with the Oyng < 0.13 selection to enhance the
background statistics; the normalization and the shape
parameter are floated. The width of the signal and the
shape of the ARGUS functions are constrained to be equal
between CP-conjugate modes but are determined sepa-
rately across the four subdecay modes.

Backgrounds from BB events are small compared with
continuum background. However, there are peaking back-
grounds mainly from B — Kzzy, B — K*5, and BT —
K** 7" events. The BB backgrounds are modeled with a
bifurcated Gaussian for the peaking component and an
ARGUS function for the combinatorial component. The
shape and normalization are fixed with large-statistics

background MC samples. We take into account the mea-
sured CP and isospin violations in the BB background [20]
to fix the normalizations for B, B~, BY, and B® mesons.

The likelihood for a simultaneous fit over all modes to
extract the charged and neutral branching fractions and
direct CP asymmetries is defined as

L(My|BY . BC, AV, AS,)
=Tk (M| BY)
XTLLE™ (M| BN, ARp) x TILK ™ (M | BN, AY)
x LK™= (Mbc|BC,AgP) x ek (Mbc|BC’AgP)
X TILKS™ (M| BC. AS,) x TICKS (M| BE.AS,).  (6)

where £X7 is the likelihood for each final state, and B and
AY, are the branching fraction and direct CP asymmetry,
respectively, in each of the neutral (V) and charged (C) B
mesons. Input parameters are the efficiencies for BY, B,
BY, and B° decays, the number of BB pairs, 75+ /75 =
1.076 £0.004, f,_ = 0.514 £0.006, and f, = 0.486 =
0.006 [20]. Here, we assume the uncertainties in f_ and
foo are perfectly anticorrelated. In the likelihood fit, we can
also determine AAcp, Acp, and Ag,. The combined
Acp(B = K*y) is then obtained by repeating the fit with
the constraint AY, = AS,.

The main sources of the systematic uncertainty for the
branching fraction measurements are the photon detection
efficiency (2.0%), the number of BB pairs (1.4%), the z°
detection efficiency (1.3%), f,._/foo (1.2%), and the
peaking background yield (1.1% to 1.6%). For the modes
with a z° in the final state, fitter bias (1.3% to 2.4%) and
fixed parameters in the fit (1.5% to 3.9%) are also
significant sources of uncertainty. The contamination from
B — X,y events that include a higher-mass kaonic reso-
nance decaying to K is checked by looking at B — Kny
events with M, less than 2.0 GeV/c?. The M, distri-
bution is fit with a P-wave relativistic Breit-Wigner
function for K*(892) and a D-wave relativistic Breit-
Wigner function for K3(1430) and the resulting uncertainty
is 0.31%. We also check the helicity distribution of the Kz
system for K*y candidates and find that the distribution is
consistent with a P wave. For the Ay, measurement, the
dominant systematic uncertainty is that due to f,_/fqo
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(1.16%), the second largest is related to particle identi-
fication (0.38%). The largest systematic uncertainty for
the Acp and AAqp measurements is from the charge
asymmetries in charged hadron detection. The charged-
pion detection asymmetry is measured using reconstructed
B - K**y, K** — K9z* candidates in the Oyg sideband.
The charged kaon detection asymmetry is measured
using a clean large kaon sample from D° — K* 7z~ decay,
where the pion detection asymmetry in the decay is
subtracted with pions from D — ¢zt decays [41]. The
raw asymmetries in B — K*y are corrected with the
measured charged kaon and pion detection asymmetries:
—0.36% £0.40%, —0.01% =+ 0.04% and +0.34% =+ 0.41%
for K*z=, K*2° and K$z* modes, respectively. The
second largest is from fitter bias (0.07% to 0.16%) and
the third largest is that due to the direct CP asymmetry in
rare B meson decays, dominated by B — Xy, B — K*,
and B* — K** 7% (0.05% to 0.13%) [42].

First, we extract the branching fraction and direct
CP asymmetry in each of the four final states by fitting
the M, distributions separated for B and B mesons except for
the K972 final state. The results are summarized in Table L.
Then, we perform a simultaneous fit to seven M, distribu-
tions (Fig. 1) with the likelihood described above to extract
the combined branching fractions and direct CP asymmetries
as well as Ag,, AAcp, and Acp. The results are

B(B" — K*
B(B* — K**

y) = (3.96 £0.07 - 0.14) x 1073,

v) =
Acp(B® — K*) =

v) =

) =

(3.76 £0.10 £ 0.12) x 1075,
(=13 + 1.7 £ 0.4)%,
Acp(B* = K*ty) = (+1.1 £2.3 +0.3)%,
Acp(B > K'y) = (=04 + 1.4 £ 0.3)%,
Mgy = (+62+£1540.6 +1.2)%,
AAcp = (424 +£2.8+0.5)%,
Acp = (0.1 + 1.4+ 0.3)%,

where the first uncertainty is statistical, the second is
systematic, and the third for A, is due to the uncertainty
in f,_/foo [42]. The y* value and number of degrees of
freedom in the simultaneous fit calculated from data points
and fit curves in Fig. 1 are 256 and 296, respectively. We find
evidence for isospin violation in B — K*y decays with a
significance of 3.1c, and this result is consistent with the
predictions in the SM [6-12]. The Acp and AAp values are
consistent with zero. All the measurements are the most
precise to date.

We also calculate the ratio of branching fractions of
BY = K*% to B — ¢y, which is sensitive to annihilation
diagrams [7], based on the branching fraction measurement
reported here and the Belle result for the B(B? — ¢y) [43].
To cancel some systematic uncertainties, we take only the
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FIG. 1. M, distributions for (a) K%z°, (b) K=#", (c) K7™,

(d) K=7°% (e) K*2° (f) K3z~ and (g) K3x". The points with
error bars show the data, the dashed (red) curves represent the
signal, the dotted-dashed (green) curves are the BB background,
the dotted (magenta) curves show the total background, and the
solid (blue) curves are the total.

K* 7~ mode for the branching fractions for B® — K*%. The
result is

0 +0
BB = K7) 104016+ 009+0.18,
B(BY - ¢y)
where the first uncertainty is statistical, the second is
systematic, and the third is due to the fraction of
B0 pl0 production in Y(5S) decays. This result is
consistent with predictions in the SM [7,25] and with
LHCb [19].

In summary, we have measured branching fractions,
direct CP asymmetries, the isospin asymmetry, and the
difference and average of direct CP asymmetries between
charged and neutral B mesons in B — K*y decays using
772 x 10% BB pairs. We find the first evidence for isospin
violation in B — K*y with a significance of 3.16. We have
made the first measurement of AAcp and Acp in B — K*y
and the result is consistent with zero. The measured
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branching fractions, direct CP, and isospin asymmetries are
the most precise to date, and are consistent with SM
predictions [3,6—10,13] and also previous measurements
[16-19]. These results will be useful for constraining the
parameter space in NP models. We also calculate the ratio
of B® - K*% to BY — ¢y branching fractions. Current Ap
measurements are dominated by the statistical uncertainty;
thus, the upcoming Belle II experiment will further reduce
the uncertainty. To observe the isospin violation with 5¢
significance at Belle II, reduction of the dominant uncer-
tainty due to f,_/fq is essential, and can be performed at
both Belle and Belle 1L
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