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We report a study of the decay D0 → K0
SK

0
S using 921 fb−1 of data collected at or near the ϒð4SÞ and

ϒð5SÞ resonances with the Belle detector at the KEKB asymmetric energy eþe− collider. The measured
time-integrated CP asymmetry is ACPðD0 → K0

SK
0
SÞ ¼ ð−0.02� 1.53� 0.02� 0.17Þ%, and the branch-

ing fraction is BðD0 → K0
SK

0
SÞ ¼ ð1.321� 0.023� 0.036� 0.044Þ × 10−4, where the first uncertainty is

statistical, the second is systematic, and the third is due to the normalization mode (D0 → K0
Sπ

0). These
results are significantly more precise than previous measurements available for this mode. The ACP

measurement is consistent with the standard model expectation.

DOI: 10.1103/PhysRevLett.119.171801

Charge-parity violation (CPV) in charm meson decays
has not yet been observed and is predicted to be
small [Oð10−3Þ] in the standard model (SM) [1]. Hence,
an observation of larger CPV in charm decays could be
interpreted as a sign of new physics (NP) [1]. Singly
Cabibbo-suppressed (SCS) decays [2] are of special interest
as possible interference with NP amplitudes could lead to
large nonzero CPV. The D0 → K0

SK
0
S decay is the most

promising channel amongst the SCS decays, as the CP
asymmetry may be enhanced to an observable level
within the SM, thanks to the interference of the transitions
cū → s̄s and cū → d̄d, both of which involve the tree-level
exchange of a W boson [3].
Assuming the total decay width to be the same for

particles and antiparticles, the time-integrated CP asym-
metry is defined as

ACP ¼ ΓðD0 → K0
SK

0
SÞ − ΓðD̄0 → K0

SK
0
SÞ

ΓðD0 → K0
SK

0
SÞ þ ΓðD̄0 → K0

SK
0
SÞ
; ð1Þ

where Γ represents the partial decay width. This asymmetry
has three contributions:

ACP ¼ Ad
CP þ Am

CP þ Ai
CP; ð2Þ

where Ad
CP is due to direct CPV (which is decay-mode

dependent), Am
CP to CPV inD0–D̄0 mixing, and Ai

CP to CPV
in the interference between decays with and without
mixing. The last two terms are independent of the decay
final states and are related to the lifetime (τ) asymmetry [4],

AΓ ¼ τðD0Þ − τðD̄0Þ
τðD0Þ þ τðD̄0Þ ¼ −ðAm

CP þ Ai
CPÞ: ð3Þ

The world average for AΓ, ð−0.032� 0.026Þ%, is con-
sistent with zero [5]. In the SM, indirect CPV (Am

CP þ Ai
CP)

is expected to be very small, of the order of 10−3 [1]. Direct
CPV in SCS decays is further parametrically suppressed
[Oð10−4Þ], since it arises from the interference of the tree
and penguin amplitudes [6]. However, these decays, unlike

Cabibbo favored or doubly Cabibbo suppressed ones, are
sensitive to new SM contributions from strong penguin
operators, especially from chromomagnetic dipole opera-
tors [1]. A recent SM-based calculation obtains a 95% con-
fidence level upper limit of 1.1% for direct CP violation in
this decay [3].
The search for time-integrated CP asymmetry in D0 →

K0
SK

0
S was first performed by CLEO [7] using a data sample

of 13.7 fb−1 of eþe− collisions at theϒð4SÞ resonance with
a measured CP asymmetry of ð−23� 19Þ%. LHCb sub-
sequently measured the same quantity as ð−2.9�5.2�
2.2Þ% [8]. Both results are consistent with no CPV, in
agreement with the SM expectation. Recently, BESIII
reported a D0 → K0

SK
0
S branching fraction of ð1.67�

0.11� 0.11Þ × 10−4 [9] by analyzing data corresponding
to an integrated luminosity of2.93 fb−1 taken at theψð3770Þ
resonance. Belle can significantly improve these measure-
ments using the high-statistics data samples at or near the
ϒð4SÞ and ϒð5SÞ resonances.

In this Letter, we measure the branching fraction and the
time-integrated CP asymmetry (ACP) of the neutral
charmed meson decay D0 → K0

SK
0
S. The analysis is based

on a data sample that corresponds to an integrated lumi-
nosity of 921 fb−1 collected with the Belle detector [10] at
the KEKB asymmetric-energy eþe− collider [11] operating
at or slightly below the ϒð4SÞ resonance and at the ϒð5SÞ
resonance with integrated luminosities of 710.5, 89.2, and
121.4 fb−1, respectively. The Belle detector is a large-
solid-angle spectrometer, which includes a silicon vertex
detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC),
time-of-flight (TOF) scintillation counters, and an electro-
magnetic calorimeter (ECL) comprised of CsI(Tl) crystals
located inside a superconducting solenoid coil that provides
a 1.5 T magnetic field. An iron flux return located outside
the coil is instrumented to detect K0

L mesons and identify
muons.
For this analysis, the D0 meson is required to originate

from the decay D�þ → D0πþs , where πþs is a slow pion, in
order to identify the D0 flavor and suppress the combina-
torial background.
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The measured raw asymmetry is

Araw ¼ NðD0Þ − NðD̄0Þ
NðD0Þ þ NðD̄0Þ ¼ ACP þ AFB þ A�

ϵ þ AK
ϵ ; ð4Þ

where all terms are small (< 1%): AFB is the forward-
backward production asymmetry of D0 mesons, A�

ϵ is the
asymmetry due to different detection efficiencies for
positively and negatively charged pions, and AK

ϵ is the
asymmetry originating from the distinct strong interaction
of K0 and K̄0 mesons with nucleons in the detector
material. AFB and A�

ϵ can be eliminated through a relative
measurement of ACP with respect to the well-measured
mode D0 → K0

Sπ
0. The value of AK

ϵ is estimated to be
−0.11% due to a nonvanishing asymmetry originating from
the different nuclear interaction of K0 and K̄0 mesons with
the detector material estimated in Ref. [12]. The CP
asymmetry of the signal mode is then expressed as

ACPðD0→K0
SK

0
SÞ¼ArawðD0→K0

SK
0
SÞ−ArawðD0 →K0

Sπ
0Þ

þACPðD0→K0
Sπ

0ÞþAK
ϵ ; ð5Þ

where ACPðD0 → K0
Sπ

0Þ ¼ ð−0.20� 0.17Þ% [13] is the
world-average CP asymmetry of the normalization mode.
The D�þ mesons originate mostly from the eþe− → cc̄

process via hadronization, where the inclusive yield has a
large uncertainty of 12.5% [13]. To avoid this uncertainty,
we measure the D0 → K0

SK
0
S branching fraction with

respect to that of the D0 → K0
Sπ

0 mode using the following
relation:

BðD0 → K0
SK

0
SÞ

BðD0 → K0
Sπ

0Þ ¼
ðN=ϵÞD0→K0

SK
0
S

ðN=ϵÞD0→K0
Sπ

0

: ð6Þ

Here, B is the branching fraction, N is the extracted signal
yield, and ϵ is the reconstruction efficiency. The world-
average value of BðD0 → K0

Sπ
0Þ ¼ ð1.20� 0.04Þ% is used

[13]. In this ratio, the systematic uncertainties common to
the signal and normalization channels cancel.
The analysis procedure is developed using Monte Carlo

(MC) simulation based on events generated using EVTGEN

[14], which includes final-state radiation effects via PHOTOS
[15]; the detector response is simulated byGEANT3 [16]. The
selection criteria are optimized using a figure of merit
defined as Nsig=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsig þ Nbkg

p
, where Nsig (Nbkg) is the

number of signal (background) events in the signal
region defined as 0.144 GeV=c2 < ΔM < 0.147 GeV=c2

and 1.847 GeV=c2 < MðD0Þ < 1.882 GeV=c2, where
ΔM ¼ MðD�Þ −MðD0Þ, andM is the reconstructed invari-
ant mass of the corresponding meson candidate. We use a
signal MC sample with about 400 times more events
than expected in the data and estimate Nsig assuming
BðD0 → K0

SK
0
SÞ ¼ 1.8 × 10−4 [13]. The MC sample used

to estimate the background comprises BB̄ and qq̄ events,
where q ¼ u, d, s, c and corresponds to an integrated
luminosity of 6 times that of data. The background con-
tribution is scaled by the ratio of the number of events in the
data and MC estimations in the ΔM sideband defined
as 0.148 GeV=c2 < ΔM < 0.160 GeV=c2.
We require a slow pion (πs) candidate to originate from

near the interaction point (IP) by restricting its impact
parameters along and perpendicular to the z axis to be less
than 3 and 1 cm, respectively. The z axis is defined as the
direction opposite the eþ beam. We require that the ratio of
the particle identification (PID) likelihoods Lπ=ðLπ þ LKÞ
be greater than 0.4. Here, Lπ (LK) is the likelihood of a
track being a pion (kaon) and is calculated using specific
ionization from the CDC, time-of-flight information from
the TOF scintillation counters, and the number of photo-
electrons in the ACC. With the above PID requirement, the
pion identification efficiency is above 95% with a kaon
misidentification probability below 5%.
The K0

S candidates are reconstructed from pairs of
oppositely charged tracks, both treated as pions, and are
identified with a neural network (NN) [17]. The NN uses
the following seven variables: the K0

S momentum in the
laboratory frame, the distance along the z axis between the
two track helices at their closest approach, the flight length
in the x-y plane, the angle between the K0

S momentum and
the vector joining the IP to the K0

S decay vertex, the angle
between the pion momentum and the laboratory-frame
direction in the K0

S rest frame, the distances of closest
approach in the x-y plane between the IP and the two pion
helices, and the total number of hits (in the CDC and SVD)
for each pion track. We also require that the reconstructed
invariant mass be within �15 MeV=c2 (about 4 times
the resolution) of the nominal K0

S mass [13]. The K0
S

reconstruction efficiency is 81.9%. We reconstruct neutral
pion candidates from pairs of electromagnetic showers in
the ECL that are not matched to any charged track. Showers
in the barrel (end-cap) region of the ECL must exceed
60 (100) MeV to be considered as a π0 daughter candidate
[18]. The invariant mass of the π0 candidate must lie within
�25 MeV=c2 (about 4 times the resolution) of the known
π0 mass [13]. The π0 momentum is required to be greater
than 640 MeV=c.
To reconstruct D0 candidates, we combine two recon-

structedK0
S candidates for the signal mode (oneK0

S and one
π0 for the normalization mode) and retain those having an
invariant mass in the range 1.847GeV=c2<MðD0Þ<
1.882GeV=c2 [1.758GeV=c2<MðD0Þ< 1.930GeV=c2],
within �3σ of the nominal D0 mass [13]. Finally, πs
candidates are combined with theD0 candidates to formD�
candidates, with the requirement that ΔM lies in the range
½0.140; 0.160� GeV=c2. The slow pion is constrained to
originate from the IP in order to improve the ΔM
resolution. We requireD�þ candidates to have a momentum
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greater than 2.2 GeV=c in the center-of-mass frame. This
requirement significantly reduces background from random
D0πþs combinations.

After all selection criteria, the fraction of signal events
with multiple D� candidates is 8.6%. If this is due to
multiple D0 candidates, we retain the one having the
smallest

P
χ2K0

S
, where χ2K0

S
is the test statistic of the K0

S

vertex-constraint fit. In case several D� candidates remain,
the one having the charged pion with the smallest trans-
verse impact parameter is retained. This choice correctly
identifies the true D� → D0½K0

SK
0
S�πs decay with an effi-

ciency of 98%. The best-candidate selection efficiency is
the same for D�þ and D�− candidates. For the normaliza-
tion mode, the fraction of signal events with multiple D�

candidates is 27.3%. If this is due to multiple D0 candi-
dates, we retain the one having the smallest value for the
sum of χ2K0

S
and χ2

π0
, where χ2

π0
is the test statistic of the π0

mass-constraint fit. This procedure for D0 → K0
Sπ

0 selects
the correct candidate with an efficiency of 89%.
We describe the ΔM distributions for D0 → K0

SK
0
S and

D0 → K0
Sπ

0 using the sum of two symmetric and one
asymmetric Gaussian functions with a common most
probable value. All the mode-dependent shape parameters
are fixed from MC estimations, except for the mean and a
common calibration factor for the symmetric Gaussians that
accounts for a data-MC difference in the ΔM resolution.
The backgrounds caused by processes with the same final

state as the reconstructedmodes, mainly,D0 → K0
Sπ

þπ− for
the signal mode and D0 → πþπ−π0 for the normalization
mode, peak in the ΔM distribution. These peaking back-
grounds are estimated directly from the data using the
K0

S mass sidebands defined as 0.470GeV=c2<Mππ<
0.478GeV=c2 and 0.516GeV=c2<Mππ<0.526GeV=c2.
The peaking background has the same ΔM shape as the
signal, and its yield is fixed based on the estimation
described above to 267 events for D → K0

Sπ
þπ− and

1923 events for D0 → πþπ−π0. The combinatorial back-
ground shapes are modeled with an empirical threshold
function fðxÞ ¼ ðx −mπÞa exp½−bðx −mπÞ�, where mπ is
the nominal charged pion mass, and a and b are shape
parameters.
An extended unbinned maximum likelihood fit to

the two combined-charge D� ΔM distributions yields
5399� 87 D0→K0

SK
0
S events and 537360�833 D0→

K0
Sπ

0 events. A simultaneous fit of the ΔM distributions
for D�þ and D�− (see Fig. 1) is used to calculate the raw
asymmetry inD0 → K0

SK
0
S. A similar procedure is followed

for the D0 → K0
Sπ

0 sample. The signal and background
shape parameters are common for both the particle and
antiparticle. Both asymmetries in signal and background
are allowed to vary in the fit. The value of Araw for the
peaking background in D0 → K0

Sπ
0 is fixed to zero,

whereas its value in D0 → K0
SK

0
S is fixed to the value

obtained in the data for the D0 → K0
Sπ

0 signal. Here we
assume that the peaking background in D0 → K0

Sπ
0 has

zero net ACP. The fitted values of Araw for the D0 → K0
SK

0
S

and D0 → K0
Sπ

0 decay modes are ðþ0.45� 1.53Þ% and
ðþ0.16� 0.14Þ%, respectively. The resulting time-inte-
grated CP-violating asymmetry in the D0 → K0

SK
0
S decay

is ACP ¼ ð−0.02� 1.53Þ%.
For the branching fraction measurement, we use only the

D�þ candidates that have a momentum greater than
2.5 GeV=c in the center-of-mass frame. This suppresses
the component arising from bb̄ events and, hence, sim-
plifies the efficiency estimation and controls the systematic
uncertainty, which is the dominant uncertainty in this
measurement. The ΔM fit yields 4755� 79 D0 → K0

SK
0
S

decays and 475439� 767 D0 → K0
Sπ

0 decays. The selec-
tion efficiencies are ð9.74� 0.02Þ% and ð11.11� 0.02Þ%,
respectively. Using Eq. (6), we then obtain BðD0→K0

SK
0
SÞ=

BðD0→K0
Sπ

0Þ¼ð1.101�0.023Þ%. All quoted uncertain-
ties are statistical.
Table I lists various sources of systematic uncertainties in

ACP and B of D0 → K0
SK

0
S. As the branching fraction
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FIG. 1. Distributions of the mass difference ΔM for selected
D�þ (left) and D�− (right) candidates reconstructed as
D0½K0

Sπ
0�πs (top) and D0½K0

SK
0
S�πs (bottom) decays. The points

with error bars show the data, and the curves show the result of
the fits with the following components: signal (long-dashed red),
peaking background (dotted cyan), combinatorial background
(dashed blue), and their sum (plain blue). The normalized
residuals (pulls) and χ2=DOF, where DOF is the number of
degrees of freedom, are also shown for each plot.

PRL 119, 171801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 OCTOBER 2017

171801-5



measurement is a relative measurement, most of the sys-
tematic uncertainties common between the signal and
normalization channel cancel. The uncertainties on the
probability distribution function (PDF) parametrization
are estimated by varying each fixed shape parameter by
its uncertainty and repeating the fit. We independently vary
the calibration factor for each Gaussian to account for
different data-MC difference in the broad and narrow parts
of the signal PDF. The systematic uncertainty is taken as the
quadratic sum of the changes in the fitted results.
The peaking background is estimated from the K0

S mass
sidebands, and we fix the yield in the final fit using the
scale factor between the signal region and sideband in the
MC estimations after removing the signal contamination.
We repeat the fit procedure by varying the fixed yield by its
statistical error, and we take the difference between the
resulting signal yield and the nominal value as the systematic
uncertainty due to the fixed peaking background.We refit by
varying the fixed Araw by its statistical error and take the
difference of the refitted and nominal results as the system-
atic uncertainty. The uncertainty due to fixing Araw for the
peaking component in bothD0 → K0

SK
0
S andD

0 → K0
Sπ

0 is
negligible. The dominant systematic uncertainty on ACP is
from the uncertainty on the ACP measurement of the
normalization channel, D0 → K0

Sπ
0.

The systematic uncertainties on the reconstruction effi-
ciency that do not cancel in the ratio to the normalization
mode are those related to the reconstruction of the K0

S and
the π0. For both the MC calculation and data, the K0

S
reconstruction efficiencies are estimated by calculating the
ratio R of the D0 → K0

Sπ
0 signal yield extracted with and

without the nominal K0
S requirements. Then, the double

ratio Rdata=RMC ¼ ð98.57� 0.40Þ% quantifies the possible
difference between the data and simulations. We correct for
the efficiency and assign a systematic uncertainty of 1.40%.
The tracking efficiency per track of 0.35% is obtained from
a large sample of D�� → D0π�, where the D0 decays to
K0

Sπ
þπ− [19]. It is added linearly for the two daughters of

the K0
S and combined with the above uncertainty, yielding

1.57% for the systematic uncertainty due to K0
S

reconstruction. There is a systematic uncertainty on the
π0 reconstruction efficiency. We obtain the corresponding
data-MC correction factor ð95.14� 2.16Þ% from a sample
of τ− → π−π0ντ decay [19]. We apply this correction and
assign 2.16% as a systematic uncertainty. Lastly, we take
the uncertainty on the world-average branching fraction of
the normalization mode D0 → K0

Sπ
0. These individual

contributions are added in quadrature to obtain the total
systematic uncertainty.
Using a data sample that corresponds to an integrated

luminosity of 921 fb−1, we have measured the time-
integrated CP-violating asymmetry in the D0 → K0

SK
0
S

decay to be

ACP ¼ ð−0.02� 1.53� 0.02� 0.17Þ%;

where the first uncertainty is statistical, the second is
systematic, and the third is due to the uncertainty on ACP

of D0 → K0
Sπ

0. From our measurement of the branching
fraction ratio,

BðD0 → K0
SK

0
SÞ

BðD0 → K0
Sπ

0Þ ¼ ð1.101� 0.023� 0.030Þ%;

we obtain the D0 → K0
SK

0
S branching fraction as

BðD0 → K0
SK

0
SÞ

¼ ð1.321� 0.023� 0.036� 0.044Þ × 10−4;

where the first uncertainty is statistical, the second is
systematic, and the third is due to the uncertainty on B
of D0 → K0

Sπ
0.

The ACP result is consistent with the SM expectation and
improves the uncertainty with respect to the recent meas-
urement of this quantity by LHCb [8] by about a factor of 4.
Furthermore, the precision is already comparable to the
theory prediction [3]. While the B result is consistent with
the world average [13], it is 2.3σ away from a recent BESIII
measurement [9]. Both the ACP and B measurements are
the most precise ones available for the D0 → K0

SK
0
S mode.
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