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Harmonic oscillators count among the most fundamental quantum systems with important applications
in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy
level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically
populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic
laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and
achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique
can transform the harmonic oscillator into a coherent two-level system or be used to build a large-
momentum-transfer beam splitter for matter waves. To illustrate the universality of the concept, we discuss
feasible experiments that cover many orders of magnitude in mass, from single electrons over large

molecules to dielectric nanoparticles.
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The harmonic oscillator is a paradigmatic textbook
example of fundamental quantum physics and it has
remained at the heart of modern research. Quantum
harmonic oscillators have been realized with single elec-
trons [1,2], single ions [3], ultracold quantum gases [4], and
dielectric nanoparticles [5,6]. For all these systems, cooling
to the oscillator ground state has been successfully demo-
nstrated. Our present proposal is motivated by the cha-
llenge to prepare highly nonclassical states, mesoscopic cat
states, and large-momentum-transfer beam splitters, inde-
pendent of detailed oscillator properties.

Throughout the last two decades, macroscopic quantum
superposition was realized in widely different systems [7].
Neutrons were delocalized over 10 cm [8]. Atoms were put
in superpositions on the half-meter scale [9] or in momen-
tum states separated by more than 100072k [10], and
molecules in excess of 25000 Da were delocalized over
a hundred times their size [11]. Lately, it has been proposed
to prepare dielectric nanoparticles in distinct position states
[7,12] to test the nature of quantum collapse [13], quantum
decoherence [14-16], or even the quantum nature of
gravity [17,18].

Here we propose to exploit the Kapitza-Dirac blockade
as a universal tool for preparing cat states or non-Gaussian
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states in general, with single electrons, molecules, and
nanoparticles, differing in mass by more than 9 orders of
magnitude.

The inelastic Kapitza-Dirac (KD) effect was first dis-
cussed in [19]. It differs from its elastic counterpart [20-29]
not only by the use of laser fields with different frequencies,
but also by the presence of a harmonic trap. The latter
modifies the conditions for energy and momentum con-
servation. The inelastic KD effect is similar to stimulated
Raman scattering [30-33] but operates without internal
states, so that absorption, spontaneous emission, and
decoherence in objects with broad resonance lines can
be avoided. It can thus be applied to particles that do not
exhibit any internal states at all.

In this Letter, we introduce the Kapitza-Dirac blockade
as a new feature emerging from the quantum mechanical
treatment of the inelastic KD effect. By using judiciously
chosen laser frequencies, the Kapitza-Dirac blockade can
drive a controlled parametric resonance while blocking
undesired transitions almost entirely.

We start for simplicity with a particle traveling through a
1D harmonic trap (see Fig. 1). The scheme preferably starts
from the harmonic oscillator ground state, which can be
populated with high probability by filling the trap with a
tightly collimated particle beam.

The two KD-laser pulses with frequencies
(w; > w,) and a 1/e pulse duration 7y are assumed to
propagate counter to each other along the x axis. Their
polarization should be chosen to avoid wave mixing with
the trapping lasers.
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FIG. 1. Proposed realization of the Kapitza-Dirac blockade and
quantum state control in a 1D harmonic oscillator. A collimated
particle populates the ground state of a 1D harmonic trap. A pair
of counterpropagating bichromatic KD-laser fields E , interacts
with the particle and changes its energy and momentum while it is
in the trap.

The oscillator can be parametrically driven through an
effective Hamiltonian [34]

Hiy = CE,(1)Es(t) cos [(ky + ky)x — (0 — 0)1], (1)

where C is the system specific coupling coefficient,
ki, = wi,/c,and E| (1) = E 5 exp (—*/tp) is the time
envelope of the KD-laser pulse. Resonance occurs when
{601 —wy = N, 2)

kl + k2 = (Nm + 5p)k0’

where € is the harmonic trap frequency, N,, is a positive
integer, and 6, > —N,,. The dimensionless momentum
detuning &, characterizes the distance of #(k; + k,) to

its maximal value N,, po = N,, ik, where kg = \/mQ/2h,
before the overlap integral between the momentum wave
functions decreases (see Fig. 2).

The resonant KD-laser frequencies can be found from
Eq. (2) to be w; , = wgp £ N,,/2, where the central KD
frequency is

WKD = (Nm + 5p)Ck0/2' (3)

To demonstrate the preparation of non-Gaussian harmonic
oscillator states, we choose N, =2 and evaluate the
dimensionless transition amplitude g,,(7) = (n+2|cos|(k;+
ky)x]|n) for the transition from an oscillator energy
eigenstate |n) to |n + 2) [34,38,39],

|
2L (p)e 2, 4)

gu(n) = — m

Here LS,Q) (v) is the generalized Laguerre polynomial. The
Lamb-Dicke parameter is defined as 5= (k; + k»)xo,

where x, = \/1/2m€.
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FIG. 2. Kapitza-Dirac blockade in the harmonic oscillator for
the transition between the energy eigenstates [n = 2) — |n = 4).
Energy and momentum conservation require an energy change of
h(w, — w,) = 2h; and a momentum recoil of A(k, + k,) =
246 p)hko (inset). When the overlap integral vanishes, i.e., for
9 (n) [ wi(k)ya(k — ki — ky)dk = 0, this transition is sup-
pressed, even in the presence of resonant laser light. The red-
shaded integrand y} (k)y, (k — ky — k,) represents the weight of
all vertical transition amplitudes starting from different k values.
Momentum needs to be tuned for destructive interference to
null the overlap integral. The potential is shown with vertical
compression for clearer illustration of the wave functions.

The transition amplitude g,(1) has zero crossings [see
Fig. 3(a)], which implies that the transition |n) — |n + 2)
can be suppressed at certain values of the momentum
detuning 5, because of destructive interference between
transition amplitudes starting from different k values (see
Fig. 2). This “Kapitza-Dirac blockade” is a powerful tool,
as it can stop the sequential excitation in the energy ladder
and allows us to prepare non-Gaussian harmonic oscillator
states. The energy-momentum conservation Eq. (2) implies
that the Lamb-Dicke parameter 7 = (N, + 8,)/2 is inde-
pendent of any oscillator details. In consequence, the
Kapitza-Dirac blockade is independent of the specific
oscillator realization.

As a first example, we propose to prepare a single energy
eigenstate |n = 2), starting from the ground state |n = 0).
Setting 6, = 0.83 suppresses the [n=2) — |n=4)
transition down to < 0.2% of its maximum value [see
Fig. 3(c)]. As a result, transitions starting in |n = 0) will
end deterministically in |n = 2) without populating |n = 4)
or other excited states in the energy ladder [see Fig. 4(a)].
For a Gaussian-shaped time envelope, complete population
inversion occurs when Qgrxp = v/27, where Q is the
system specific Rabi frequency (see Supplemental Material
[34]). Note, that 7, should be sufficiently long to keep the
pulse bandwidth below the trap frequency €2, in order to
avoid off-resonant excitation. When the pulse duration is
doubled, the Rabi cycle is completed to the ground state
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Transition map for the inelastic KD effect. (a) The norm of the transition amplitude |g, | in Eq. (4) is plotted as a function of the

quantum number 7 and the momentum detuning 6,,. The nodes along the &, axis (white circles) can be used to stop sequential excitations
(red curved arrows). The width along the n axis does not illustrate the oscillator linewidths but is chosen for clearer illustration of the
energy levels. (b) The zero crossing of g, (1) at 5, = —0.60 is used to stop transitions beyond |n = 12). (c) The zero crossing of g, (#7) at
5, = 0.83 is used to prepare an effective two-level system between |n = 0) and |n = 2).

[see Fig. 4(b)]. The Kapitza-Dirac blockade has thus
transformed the harmonic oscillator into an effective
two-level system—with promising applications in quantum
information processing.

The Kapitza-Dirac blockade can also prepare a cat state.
We show this with a heuristic example of 6, = —0.60,
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FIG. 4. Kapitza-Dirac blockade as a tool to prepare energy
eigenstates and cat states of a harmonic oscillator. (a) Determin-
istic population transfer to the [n = 2) eigenstate can be achieved
with a pair of KD-laser pulses. Note that the |[n = 4) eigenstate
(dashed line) is not populated as a result of the Kapitza-Dirac
blockade. The small ripples on the probability trace are due to
nonresonant excitation at 4. (b) When the pulse duration in
(a) is doubled, the population is coherently returned to the ground
state. (c) The population distribution of a cat state has a sub-
Poissonian width An < 20p, where 6p = /Ty, (d) The Wigner
function of the cat state indicates amplitude squeezing.

which suppresses the transition [n = 12) — |n = 14) to <
0.1% of its maximum value [see Fig. 3(b)]. The oscillator
then undergoes sequential excitation from |n = 0) up to
|[n = 12) in steps of An =2, but [n = 14) is not excited.
The pulse intensity Ixp and duration zgp are adjusted
together to maximize the population distribution at
N = 8 while avoiding off-resonant excitation. The width
of the final population distribution is sub-Poissonian [see
Fig. 4(c)], due to the Kapitza-Dirac blockade. This leads to
an amplitude-squeezed cat state, which is identified by
inspecting the Wigner function in Fig. 4(d). The maximum
spatial and momentum separation of the cat state, Ax,, and
Apey, are

Axey _ Apea "

~ 4 .

Substituting Eq. (2) to Eq. (5) with N,, = 2, the number of
photon recoils is

Apcat ~ 4 V nmax
nky +ky) 246,

Nph == (6)

which is again independent of the oscillator properties.
If we take np,, =650 and 6, = —1.8, the maximum
momentum separation is Apg, & 1000Aks;,, where
ks3» =27/532 nm.

The Kapitza-Dirac blockade is therefore a promising
tool for realizing an all-optical large-momentum-transfer
(LMT) beam splitter [9,10,40,41]. Moreover, the ampli-
tude-squeezed cat state leaves the divided beam rather well
collimated. A Kapitza-Dirac-LMT beam splitter used in
conjunction with an optical Bragg grating [22,27,42] could
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FIG. 5. A three-component cat state. (a) A popu-

lation distribution for a three-component cat state can be prepared
by taking N,, =3 and 6, = —1.57 in Eq. (2). (b) The Wigner
function of the three-component cat state shows interference
fringes between each pair and among all three components.

facilitate large-area matter-wave interferometry, in the
future.

Also, multicomponent cat states [43—45] can be prepared
by properly choosing N,, and 6, [34]. An example is given
in Fig. 5 where a three-component cat state is prepared.
The KD-laser frequencies w , in this case are determined
by taking N,, = 3 and 6, = —1.57, which suppresses the
transition |n = 18) — |n = 21).

Similarly, Gaussian states such as a vacuum-squeezed
state (N,, = 2) or coherent state (N,, = 1) can be prepared
with appropriate /xp and 6,,.

The Kapitza-Dirac blockade holds universally. Here we
start the experimental discussion with the example of an
electron beam 1D trapped by the ponderomotive potential
of a standing light wave [46]. Close to the potential
minimum, the potential can be approximated as a harmonic
trap U, (x) = (g215/2eoc’m,)x*, where m, and g, are the
electron mass and charge, and Ig is the standing wave
intensity. The ponderomotive trap frequency is

2
g;1
QO = 63 S2' (7)
epcim?

The intensity of each trapping laser that makes the standing
wave is It = I¢/4. The trap ground state can be populated
by a well-collimated electron beam with transverse kinetic
energy mv?/2 < hQ,/2.

If we consider the LMT beam splitter example above,
using parameters as in Table I, and if we tune the dynamics
such that the electron reaches maximum momentum
separation when it leaves the trap (see Fig. 1), it will leave
in two distinct wave packets separated by 171 ym in real
space, already 1 mm behind the trap [47-49].

All aspects discussed above can equally be realized with
neutral massive particles with the experimental schemes
similar to that of Fig. 1: in Table I we discuss as the second
example a porphyrin derivative (TPPF84) with high mass
and high vapor pressure [50]. The third example is a silicon

TABLE I. Proposed parameters for preparing large-amplitude-
squeezed cat states. The trapping laser for electrons has a 1/e
pulse duration of 711, = 0.75 ns and a repetition rate of 10 Hz.
The trapping lasers for molecules and nanoparticles are continu-
ous waves. The momentum detunings for electron, molecule
(TPPF84), and nanoparticle (SiO,) are 6, = —1.8,—1.93, and
—1.93, respectively. (P) is the average laser power.

Parameters Electron TPPF84 SiO, nanoparticle
m (u) 549 x107%  2.81 x 103 10°

a (Cm?/V) e 222 x 10738 8.18 x 1073¢
Q, (rad/s) 322x102  3.13 x 10* 1.75 x 103
A (um) 1.064 10.5 5
W, (um) 100 20 20
WL (mm) 1.6 5 9
(P) (W) 37.6 30 0.037

Iy (W/m?) 8 x 10'° 15 x 103 10.4 x 10°
v, (m/s) 6% 10° 0.1 0.02
Jxp (nm) 533 6819 1530
W, xp (um) 100 10 100

W, xp (mm) 1.2 3 8
(Pxp) (mW) 400 280 1.5

Ixp W/m?) 2.6 x 107 1.2 x 107 2.3 x 10°
7xp (5) 8 x 10711 1x 1072 1.4 x 107!
Mg 39x 1073 88x107 7.3 x 107!

dioxide (Si0,) nanoparticle with low absorption of infrared
trapping light. For molecules and nanoparticles, a harmonic
trap can be realized by the dipole potential of a standing
wave. With Aqp as the trapping laser wavelength, the dipole

trap frequency is
4n’al
Q= (8)
€oCmAyy

where a and m are the particle’s polarizability and mass.

There are three criteria for choosing experimental
parameters. First, the laser conditions should satisfy
T, > Wz—TL/Q'Uz > Wz—KD/zvz > Txp > 271'/90 [34],
where 7 is the 1/e pulse duration, W, is the 1/e beam
diameter along the z axis, and v, is the particle speed in
the z direction. Second, the number of Rayleigh scattered
photons should be small, n,, < 1, to avoid decoherence
and dephasing. Third, the central KD frequency wgp
should be in the visible or the infrared regime because
ultraviolet light would be absorbed in most materials. This
implies that lower trap frequencies are preferred for more
massive particles. The proposed experimental parameters
for large-amplitude-squeezed cat states are listed in Table I,
designed according to the empirical formulas

2/ 2m \?
~— 9
Mpk 3<2+5p), ()
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FIG. 6. Simulated maximum momentum separation of ampli-
tude-squeezed cat states, for parameters as in Table I. (a) Electron,
Ap.~10007ks3,. (b) Molecule, Ap, ~ 650hks3,. (¢) Nano-
particle, Ap., ~2900%ks;,. The population distributions for
electron, molecule, and nanoparticle peak at n,,, = 648,
5348, and 5368, respectively.

D /32n, AmQ
IxpTkD ~ — | /M’ (10)
Ho 7

where |ny, ) is the blockade state and the transition |y ) —
|y + 2) is suppressed. The system specific coefficient D
is m,wgp/q> for electrons or 1/awgp for molecules and
nanoparticles. The momentum transfer Ap., is well
comparable with the state of the art in matter-wave beam
splitting [9,10,27,40,41], but goes beyond it, as the concept
can be applied universally to any 1D trapped particle that
scatters light coherently. Additionally, the use of the
Kapitza-Dirac blockade yields narrow momentum distri-
butions and avoids overlap between the supposedly distinct
wave packets.

The simulations were performed on a supercomputer
using time-dependent Schrodinger equations [34,51]. The
results are shown in Fig. 6. The momentum transfer Ap,, is
1000%ks3, for electrons, 650%ks3, for molecules, and
2900n1ks3, for nanoparticles. The highest eigenstate avail-
able for excitation is determined by the onset of trap
anharmonicity (see Supplemental Material [34]). In the
nanoparticle simulation, the maximal spatial separation in
the trap is Ax,, ~ 1.2 um. The required beam velocities for
molecules and nanoparticles are 2 orders of magnitude
lower than the state of the art of free beams. However,
cooling of molecules and nanoparticles is a rapidly

advancing field and the proposed parameters are within
reach [52-56].

In conclusion, we propose to use the Kapitza-Dirac
blockade for manipulating the motional quantum states of
single electrons, large molecules, and dielectric nanopar-
ticles. The state preparation scheme is universal, applicable
for different particles, and independent of trap details and
dimensions.

Our simulations demonstrate the experimental feasibility
of preparing various non-Gaussian states and large-
amplitude-squeezed cat states. The latter has applications
for all-optical LMT beam splitters in matter-wave inter-
ferometry. All these results explicitly rely on the coherent
but destructive interference in the harmonic oscillator
transition amplitudes in the presence of bichromatic light
fields: the Kapitza-Dirac blockade.

The proposed control scheme can also be employed for
trapped ions and neutral atoms without invoking their
internal states. In 2D or 3D harmonic traps one also finds
entanglement among different motional degrees of freedom
[34]. This can complement existing methods in quantum
computing and quantum simulation.
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