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Abstract

A key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently

their use is justified a posteriori. In this work we extract nonlocal models from data, circumventing these challenges and

providing data-driven justification for the resulting model form. Extracting data-driven surrogates is a major challenge for

machine learning (ML) approaches, due to nonlinearities and lack of convexity — it is particularly challenging to extract

surrogates which are provably well-posed and numerically stable. Our scheme not only yields a convex optimization problem,

but also allows extraction of nonlocal models whose kernels may be partially negative while maintaining well-posedness even

in small-data regimes. To achieve this, based on established nonlocal theory, we embed in our algorithm sufficient conditions

on the non-positive part of the kernel that guarantee well-posedness of the learnt operator. These conditions are imposed as

inequality constraints to meet the requisite conditions of the nonlocal theory. We demonstrate this workflow for a range of

applications, including reproduction of manufactured nonlocal kernels; numerical homogenization of Darcy flow associated with

a heterogeneous periodic microstructure; nonlocal approximation to high-order local transport phenomena; and approximation

of globally supported fractional diffusion operators by truncated kernels.

c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Background

In contrast to partial differential equation (PDE) models which typically govern classical continuum mechanics

and standard diffusion, nonlocal models describe systems in terms of integro-differential equations (IDEs). IDEs

possess several modeling advantages over PDEs: reduced regularity requirements admit simpler descriptions of

fracture mechanics [1–3]; integral operators allow more natural description of long-range molecular interactions

such as electrokinetic and surface tension effects [4–8]; and compactly supported integral operators introduce a

modeling length scale δ which may be used to model subgrid microstructures [9–13]. We consider in this work

compactly supported nonlocal diffusion models, extensively analyzed in the literature [14–16]. While they have

been effectively used, it is in general unclear how to justify the use of a kernel for a given application. As an
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example, in the peridynamic theory of continuum mechanics, the choice of nonlocal kernel is often justified a

posteriori. Free parameters in constitutive models, including the length scale δ, are often tuned to obtain agreement

with experiment. In this manner, peridynamics has yielded enhanced descriptions of fracture mechanics, composite

mechanics, but it is an open question how to obtain predictive nonlocal models from first principles.

Recent work presents compelling justification of nonlocal kernels’ role bridging microstructure and homogenized

continuum response. Weckner and Silling characterize the multiscale response of elastic media by calibrating

nonlocal dispersion relations to neutron scattering data [17]. Delgoshaie argued that nonlocal diffusion kernels

naturally describe tortuous flow pathways in porous media [18], while Chung obtained a nonlocal description of

flow in fractured media via a multiscale finite element framework [19]. Several authors have established conditions

where nonlocal diffusion kernels admit interpretation as jump rates of stochastic processes [20–22]. Recently, Xu and

Foster derived kernels describing an elastic medium with heterogeneous microstructure via homogenization [23]. A

review on the natural connections between nonlocality, homogenization and model reduction is given by the recent

work of Du, Enquist and Tian, which indicates that multiscale model reduction and homogenization can help infer

the type of nonlocal interaction kernels, and conversely, nonlocal models can provide insights into the design and

analysis of numerical homogenization of PDEs [24].

Works which provide rigorous a priori justification of nonlocal kernels typically require mathematically complex

and lengthy derivations, often relying on restrictive assumptions of microstructure geometry. The goal of the current

work is to establish a data-driven extraction of nonlocal models from observations of high-fidelity simulations,

skirting the mathematical complexity of deriving nonlocal models. We pursue an inequality-constrained least

squares approach which guarantees that extracted models are well-posed. In addition to learning unknown physics

from systems, our method may be used to perform numerical homogenization, extracting efficient coarse-grained

nonlocal models from high-fidelity synthetic data, such as microstructure-resolved local simulations. Furthermore,

our algorithm may be applied to learn computationally cheap approximations of nonlocal operators of fractional-type

while preserving accuracy. The latter are characterized by an infinite length scale and, as such, are computationally

prohibitively expensive. Our technique delivers compactly supported nonlocal models that mimic the action of a

fractional Laplacian at a much cheaper cost.

An additional open question in nonlocal modeling is whether kernels should be strictly positive. In some cases,

nonlocal solutions can be interpreted as probability density functions of jump processes with jump rate given by

the kernel, which, in turn, must be positive [20–22]. On the other hand, in multiscale problems, several authors

have extracted sign-changing kernels [17]; see also the discussion in [25]. It is unclear however, whether multiscale

physics inherently leads to sign-changing kernels or if one could derive equally descriptive positive kernels. We

note also that the mathematical analysis of non-positive kernels is more involved, suggesting that strictly positive

kernels may be more desirable to work with [25]. Recently, Mengesha and Du provided necessary conditions

for diffusion processes governed by sign-changing kernels to be well-posed [25]. Their analysis requires that the

kernel may be decomposed into positive and non-positive parts, and that the negative part be sufficiently small

so as not to compromise the coercivity of the overall operator. Some other recent works have explored extraction

of nonlocal models from data, using either PDE-constrained optimization [26–29] or nonlocal generalizations of

physics-informed neural networks [30,31] to obtain strictly positive kernels, which are thus well-posed. A unique

feature of our approach is the extraction of an inequality constraint from Mengesha and Du’s theory [25] which

allows learning of sign-changing kernels. Approximation of the kernel by Bernstein polynomials allows for a simple

implementation of the constraint, guaranteeing extraction of well-posed sign-changing kernels. We will see that

in various settings, sign-changing kernels sometimes appear naturally and sometimes do not, and therefore this

data-driven derivation may suggest whether such kernels are appropriate for a given application. We also point out

that there exist less restrictive conditions for well-posedness; see, e.g., the theory presented in [32]. However, the

theory we adopt, as opposed to the one in [32], provides readily implementable conditions that can be added to the

optimization algorithm in the form of simple linear inequality constraints.

Outline of the paper. The paper is organized as follows: To begin, in Section 2 we define an abstract problem

characterizing the fitting of nonlocal problems to high-fidelity observations. In Section 3 we review the well-

posedness theory for sign-changing kernels that guides the discovery of well-posed nonlocal models and formulate

the learning problem as an inequality-constrained optimization problem. Then, in Section 4 we provide a two-

stage algorithm to solve the optimization problem efficiently. In Section 5 we illustrate properties of the proposed

technique by using manufactured kernels; these results highlight consistency of our method. In Sections 6, 7, and
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8 we consider specific applications such as Darcy’s flow, homogenization of a higher-order PDE and a fractional

diffusion model. For each application, we highlight the impact of the proposed regression technique. Concluding

remarks are reported in Section 9.

2. Abstract problem

We consider in this section a framework for extraction of nonlocal operators which match observations of a given

system in an optimal sense. We assume that a quantity of interest u satisfies the problem
{
LHF[u](x) = f (x) x ∈ Ω ,

Bu(x) = q(x) x ∈ ∂Ω , or u is periodic,
(2.1)

where LHF is a high-fidelity (HF) operator that faithfully represents the system; this can either be a partial differential

equation or a fractional-differential operator. The function f denotes a forcing term and operator B specifies a

boundary or exterior condition. For example, when LHF is a local operator, B = Id corresponds to a Dirichlet

boundary condition and B = ∂/∂n a Neumann boundary condition. We hypothesize that solutions to this HF

problem may be approximated by solutions to an equivalent nonlocal volume-constrained problem of the form
{
LK [u](x) = f (x) x ∈ Ω ,

BI u(x) = q(x) x ∈ ΩI , or u is periodic.
(2.2)

Here, LK is a nonlocal operator parametrized by K , defined below, ΩI an appropriate nonlocal interaction domain,

and BI the corresponding nonlocal interaction operator specifying a volume constraint. In (2.2), u and f may

coincide with the quantities of interest u and f in (2.1), or they may be appropriate “coarse-grained” representations

of the same, we postpone a discussion of this multiscale scenario until Section 6.

We seek LK as a linear nonlocal operator of the form

LK [u](x) = −
∫

Ω∪ΩI

K (x, y) (u(y)− u(x)) dy, (2.3)

where K denotes a nonlocal kernel compactly supported on the ball of radius δ centered at x , i.e. Bδ(x). Desired

properties of the kernel and details on the analysis of problems associated with operator (2.3) are reported in

Section 3. The interaction domain is defined as

ΩI = {y ∈ R
d such that |y − x | ≤ δ for some x ∈ Ω}; (2.4)

a condition for u on ΩI is required to specify LK u(x) for x ∈ Ω , by (2.3). Thus, an appropriate exterior volume

condition on ΩI replaces the local boundary condition in (2.2). For simplicity we will assume BI to be given: in

the case of manufactured solutions one may apply the solution as a Dirichlet condition, while in the periodic case

it need not be specified.

To learn the operator LK , we assume that we are given a collection of pairs of forcing terms fi and corresponding

ui which arise from solutions to (2.1),

D = {(ui , fi )}Ni=1 .

These observations will be used to train (2.3). In the simplest setting, D consists of pairs of forcing terms and

corresponding solutions of (2.1). In specific coarse-graining applications, we can apply appropriate post-processing

– averaging, for example – to coarsen such “fine-scale” solutions to construct D. We then extract the nonlocal model

by finding a kernel such that the action of LK most closely maps ui to fi .

That is, we solve an optimization problem of the form

K ∗ = argmin
K

1

N

N∑

i=1

LK [ui ]− fi


X

, (2.5)

where
 ·


X

denotes an appropriate norm over Ω , which will be specified when describing the detailed algorithm

in Section 4.

In doing so, since fi represents LHF[ui ] either exactly or in a post-processed sense, LK ∗ best matches the action

of LHF on the training data D, in the sense of problem (2.5).
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In this manner, solution of the problem associated with LK ∗ provides a surrogate for the given high-fidelity

problem (2.1). We note, however, that there is no reason to expect the associated problem (2.2) to be solvable.

Previous works have imposed solvability via imposition of kernel positivity (either by positivity constraint [28,29,33]

or restricting parametrization to only admit positive kernels [30,31]), they do not generalize naturally to kernels with

negative part. In the next section, we consider a particular class of kernels allowing the addition of constraints to

the optimization problem (2.5) to guarantee extraction of well-posed models.

We use this abstract setting as a framework for extracting nonlocal surrogates in a variety of scenarios where

nonlocal models are expected to provide advantages. Before specializing to these application-specific settings, we

first gather relevant theory regarding the stability and well-posedness of sign-changing nonlocal operators.

3. Data-driven discovery of well-posed nonlocal models

The ultimate goal of the operator regression discussed above is to obtain a nonlocal model (2.2) that can be

solved for a class of forcing terms f of interest — for example, forcing functions at a suitable coarse scale and

with certain regularity properties. However, without a careful definition and parametrization of a feasible set of

such nonlocal operators LK of the form (2.3), there is no guarantee that regression will recover an operator LK

that enjoys this property, meaning that when (2.2) is discretized, the resulting linear system will be singular. Such

operators cannot be used to extrapolate and generate predictions from new forcing functions f . Thus, we must

avoid learning kernels K ∗ that solve (2.5), but lead to non-invertible operators LK ∗ .

Several articles investigate the well-posedness of nonlocal problems based on properties of the nonlocal kernel,

see, e.g., [15,25,32,34,35]. In this work we refer to [25], where the authors provide a set of sufficient conditions on

the kernel function that guarantee well-posedness. In this context, well-posedness refers to existence and uniqueness

of a solution to a nonlocal problem in an appropriate weak or variational sense, implying that suitable finite-

dimensional discretizations of the problem can be solved numerically in a consistent and stable way. We point

out that the analysis presented in [25] can be generalized and less restrictive conditions for well-posedness can be

established; however, those alternatives (such as the theory presented in [32]) are not readily implementable as they

do not provide explicit conditions on the kernel functions.

Below, we review the theory of [25] which we will use throughout the article to ensure the discovery of well-

posed nonlocal models. This reference discusses two sets of conditions for well-posedness. First, it reviews the

case of nonlocal operators with nonnegative kernels, reviewed in Section 3.1. Next, it weakens this condition and

establishes well-posedness for a class of sign-changing kernels satisfying conditions on the negative part of the

kernel function, reviewed in Section 3.2. We shall consider operator regression in the latter class of kernels. Our

purpose for this is two-fold: first, this more general class of kernels is, in principle, more expressive and able to

provide better fit to data. Second, we aim to study the utility of this sign-changing kernels for nonlocal modeling. In

other words, we study the question: is there an advantage to using sign-changing kernels, as opposed to nonnegative

kernels, in fitting nonlocal models to data?

The conditions for well-posedness lead to constraints for the operator regression optimization problem. We define

our parametrization of the unknown kernel in Bernstein polynomials and state the constrained optimization problem

that arises in Section 3.3.

3.1. Well-posedness with nonnegative kernels

In this section we introduce a standard nonlocal model with a nonnegative kernel and recall conditions for the

well-posedness of associated diffusion problems. Let Ω ⊂ R
d be a connected bounded domain with sufficiently

smooth boundary and let ΩI be its interaction domain defined as in (2.4). We denote their union by Ω̂ = Ω ∪ ΩI .

We consider the case of homogeneous nonlocal volume constraints1 on ΩI , i.e. BI u = 0. We define the action of

a nonlocal diffusion operator Lρ on a function u as

Lρu(x) = −2

∫

Ω̂

ρ(|y − x |) (u(y)− u(x)) dy, (3.1)

1 While the authors of [25] consider such volume constraints, their proofs suggest the analysis extends to the case of periodic conditions.

We consider both homogeneous Dirichlet and periodic conditions in our examples in Sections 5–8.
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where the nonnegative and compactly supported kernel ρ = ρ(|ξ |) is such that

|ξ |2ρ(|ξ |) ∈ L1
loc(Rd ), and

∃ σ > 0 such that supp(ρ) ⊂ (0, σ ).
(3.2)

To study existence and uniqueness of solutions to the equation

Lρu(x) = b(x), for x ∈ Ω , (3.3)

we define the space S(Ω̂ ) associated with Lρ as the typical energy space considered for nonlocal problems [15,25,

36,37], i.e.

S(Ω̂ ) =
{

u ∈ L2(Ω̂ ) :
∫

Ω̂

∫

Ω̂

ρ(|y − x |)|u(y)− u(x)|2dydx <∞
}

.

Note that S(Ω̂ ) arises naturally from the symmetric bilinear form

(Lρu, w)L2(Ω) = −2

∫

Ω

w(x)

∫

Ω̂

ρ(|y − x |) (u(y)− u(x)) dydx

=
∫

Ω̂

∫

Ω̂

ρ(|y − x |) (u(y)− u(x)) (w(y)− w(x)) dydx,

where w is such that w = 0 in ΩI . We denote by S ′ the dual space of S . Let V be a closed subspace of

L2(Ω̂ ) that contains the constant function u ≡ 0 and no other constant functions, we define the solution space

as Vs = V ∩ S(Ω̂ ). According to Corollary 1 of [25], if ρ satisfies (3.2), there exists a coercivity constant

κ = κ(ρ, V, Ω̂ ) of Lρ : S → S ′ such that

∥u∥2

L2(Ω)
≤ κ

(
Lρu, u

)
L2(Ω)

, for all u ∈ V ∩ S(Ω̂ ), (3.4)

where (·, ·)L2(·) denotes the L2 inner product. By Lemma 3.1 of [25], this result guarantees that there exists a unique

u ∈ Vs such that, for b ∈ S ′ and for all w ∈ Vs

(Lρu, w)L2(Ω) = (b, w)L2(Ω), (3.5)

Eq. (3.5) is the weak form of (3.3).

3.2. Well-posedness for sign-changing kernels

In this section we consider the type of sign-changing kernels studied by [25]. These kernels define operators of

the form

LK = Lρ + λLg, (3.6)

where Lρ is the operator defined in (3.1) and the nonlocal operator Lg on the right-hand side is defined as

Lgu(x) = −2

∫

Ω̂

g(|y − x |) (u(y)− u(x)) dy.

Thus, we consider integral operators of the form

LK u(x) = −
∫

Ω̂

K (x, y) (u(y)− u(x)) dy,

with kernel

K (x, y) = 2ρ(|y − x |)+ 2λg(|y − x |). (3.7)

The function ρ is assumed to satisfy the conditions (3.2) for well-posedness of the problem (3.3), so that the

associated bilinear form is coercive as in (3.4) with coercivity constant κ . The idea of [25] is to think of LK as a

small perturbation of Lρ by λLg . Then, for well-posedness of equations of the form

LK u = b, (3.8)

we need the contribution of the perturbation Lg not to compromise the coercivity of the variational form associated

with Lρ , so that LK will also induce a coercive, hence well-posed, variational problem.
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We now summarize the conditions on g and λ that guarantee well-posedness of the perturbed system (3.6). From

Lemma 4.2, Theorem 4.3, and Corollary 2 of [25], have that if g is a compactly supported locally integrable radial

function, and if g and λ satisfy

|λ| <
1

2κ
(
∥g∥L1(Rd ) + ∥G∥L∞(Ω̂)

) , (3.9)

with G(x) =
∫
Ω̂

g(|y − x |)dy and κ defined as in (3.4), then, for b ∈ V ′s , the weak form of Eq. (3.8)

(LK u, w)L2(Ω) = (b, w)L2(Ω), ∀w ∈ Vs,

has a unique solution u ∈ Vs . This is the analogue of (3.5) for Eq. (3.8).

In the following section, we will parametrize ρ and λ in coefficients of a polynomial expansion, making λ in

(3.7) a redundant parameter that scales the coefficients. Writing h = λg, multiplying (3.9) through by the factor(
∥g∥L1(Rd ) + ∥G∥L∞(Ω̂)

)
and pulling λ inside the norms, the setup of (3.7) with condition (3.9) can be written as

⎧
⎪⎨
⎪⎩

K (x, y) = 2ρ(|y − x |)+ 2h(|y − x |),
H (x) =

∫
Ω̂

h(|y − x |)dy,

∥h∥L1(Rd ) + ∥H∥L∞(Ω̂) < 1
2κ

.

(3.10)

Accordingly, we also define Lh = λLg , so that the operator LK in (3.6) can be written as LK = Lρ + Lh .

3.3. Sign-changing kernel regression

With the purpose of applying the abstract formulation introduced in Section 2 to the discovery of kernels

described in Section 3, we introduce a representation of the kernel as a linear combination of Bernstein basis

polynomials. Notably, we assume that K is radial, i.e., that K (x, y) is a function of | x−y

δ
|, and supported on Bδ(0),

the ball centered at 0 of radius δ. On this support, we expand in polynomials in the radial variable. Specifically, we

parametrize (3.7) by defining

K (x, y) =
M∑

m=0

Cm

δd+2
Bm,M

(⏐⏐⏐⏐
x − y

δ

⏐⏐⏐⏐
)
+

M∑

m=0

Dm

δd+2
Bm,M

(⏐⏐⏐⏐
x − y

δ

⏐⏐⏐⏐
)

, (3.11)

where the Bernstein basis functions are defined as

Bm,M (x) =
(

M

m

)
xm(1− x)M−m, for 0 ≤ x ≤ 1.

This corresponds to setting

2ρ(|ξ |) =
M∑

m=0

Cm

δd+2
Bm,M

(⏐⏐⏐⏐
ξ

δ

⏐⏐⏐⏐
)

, and 2h(|ξ |) =
M∑

m=0

Dm

δd+2
Bm,M

(⏐⏐⏐⏐
ξ

δ

⏐⏐⏐⏐
)

(3.12)

in (3.10), where the coefficients of the linear combinations are unknown. The scaling of Cm’s and Dm’s is standard

and has been used in the literature (see, e.g. [38]) to guarantee convergence of nonlocal diffusion operators to ∆,

the classical Laplacian, as δ→ 0.

For C ∈ R
M+1, D ∈ R

M+1, the kernel discovery problem can be stated as
⎧
⎨
⎩

min
R2M+2

L

([
C

D

])

subject to: C ≥ 0, N (D) ≤ [2κ(C)]−1 ,

(3.13)

where⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

([
C

D

])
=

1

N

N∑

i=1

∥(LC + L
D)[ui ]− fi∥2

X

N (D) =
1

2



M∑

m=0

Dm

δd+2
Bm,M

(⏐⏐⏐⏐
x

δ

⏐⏐⏐⏐
)

L1(Bδ (0))

+
1

2



M∑

m=0

Dm

δd+2

∫

Bδ (x)

Bm,M

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

dy


L∞(Ω̂)

κ(C) is a constant satisfying (3.4).

(3.14)

6
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Above, LC denotes Lρ , LD denotes Lh , following the parametrization (3.12), and we delay specification of the

norm ∥ · ∥X until the following section. Numerical optimization of this problem is discussed in Section 4.

Remark 1. We have chosen to work with Bernstein polynomials as a particular means to enforce pointwise

non-negativity. In principle, one could work with any basis consisting of non-negative functions. While Bernstein

polynomials are well-understood to provide uniform convergence to positive functions with increasing order [39],

by enforcing the inequality constraint in (3.13) we work with an incomplete space, and thus do not expect to be

able to recover an arbitrary kernel. We expect that the sign-changing kernel correction may be able to compensate

for this. Below, we provide numerical evidence characterizing convergence of the kernel with respect to the order of

the Bernstein basis, and note that one could explore a different strategy or basis to enforce the positivity condition

in this framework, provided it could be implemented as an inequality constraint.

Remark 2. The loss function in (3.13) is a composition of a norm with LC[u] and LD[u], and the latter two

are linear in the parameters Cm and Dm , respectively. Therefore, it follows from the sub-additivity and absolute

homogeneity of the norm that the loss function given by (3.14) is thus convex. For the constraint function

N (D)− [2κ(C)]−1, we note that N (D) and −[2κ(C)]−1 are convex with respect to D and C, respectively. In (3.14),

both terms of N (D) are the norm of a linear combination of Dm , and thus convex with respect to D. On the other

hand, we note that

[2κ(C)]−1 =
1

2
inf

{
(LC u, u)L2(Ω)

⏐⏐ u ∈ V and ∥u∥L2(Ω) = 1
}

is the pointwise infimum of a family of linear functions of Cm , and it is therefore concave (see, e.g.,

[40, section 3.2.3]). Hence −[2κ(C)]−1 is convex with respect to C.

Since both the loss function and the constraint in the optimization problem (3.13) are convex, (3.13) is a

convex constrained optimization problem. Moreover, the feasible set is obviously non-empty. Therefore, every local

minimum of problem (3.13) is a global minimum [40]. This important property makes our approach substantially

different from other learning techniques based on neural networks [30,31], for which the associated optimization

problem is not convex.

4. Algorithm

Although the problem (3.13) is expected to be convex, the numerical evaluation of κ(C) is time-consuming, and

the second constraint involving N (D) and κ(C) in (3.14) is highly nonlinear on both the left-hand and right-hand

sides, posing significant challenges. Thus, for numerical efficiency, we have followed a “two-stage” strategy for

numerical optimization.

We first find a set of C∗ representing an initial fit to the data using only the nonnegative kernel ρ as in (3.12),

ignoring the term h and avoiding the nonlinear constraint. We minimize the loss

L1(C) =
1

N

N∑

i=1



M∑

m=0

ReLU(Cm)

δ3

[∫

Bδ (x)

Bm,M

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

(ui (x)− ui (y))dy

]

∆

− fi (x)



2

X

, (4.1)

where ReLU denotes the rectified linear unit function:

ReLU(x) :=
{

0, for x ≤ 0;
x, for x > 0.

Here we use the notation
[∫
· dy

]
∆

to denote the discrete approximation of a nonlocal kernel by applying

quadrature. For the purposes of this work, we will use Silling’s one-point quadrature [41], popular in particle

discretizations of peridynamics. We note however that any choice of quadrature for discretization of the integral

in the strong form [42,43], or basis for the discretization of the weak form, may be applied here; see [44] and

references therein. For a given nonlocal operator LK and basis functions Φ =
[
φp

]P

p=1
and corresponding degrees

of freedom w =
[
wp

]P

p=1
the discretization provides mass and nonlocal stiffness matrices

Mi j =
[∫

Ω

φi (x)φ j (x) dx

]

∆

and Si j =
[∫

Ω

LK [φi ](x)φ j (x)dx

]

∆

. (4.2)

7
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Note the presence of the ReLU function in L1. We minimize L1 using the Adam optimizer [45], also mapping

C ↦→ ReLU(C)

after each step of gradient descent. This leaves L1 invariant but ensures that the sequence and local minimum

produced by gradient descent satisfies C ≥ 0. Thus, the simpler constraint C ≥ 0 is hard-coded into the loss

function and algorithm, allowing us to obtain C∗ by applying the Adam algorithm to the unconstrained optimization

problem.

We then compute the coercivity constant κ(C∗) corresponding to the operator LC∗ . For w, S, and M consistent

with the choice of discretization
[∫
· dy

]
∆

, we solve the following generalized eigenvalue problem

[
κ(C∗)

]−1 = min
w

wT Sw

wT Mw
. (4.3)

This computation happens only once in our algorithm, so that C∗ and κ(C∗) are fixed in the next stage.

In the second stage, we correct the initial fit given by LC∗ by finding LD∗ subject to the second constraint in

(3.13), in which the right-hand side [2κ(C∗)]−1 of the constraint is fixed. We apply the augmented Lagrangian

method [46,47] to solve for D under the constraint condition, using the function

H (D, θ) =
1

2κ(C∗)
− N (D)− θ2

=
1

2κ(C∗)
−

1

2

M∑

m=0

Dm

δd+2

[∫

Bδ (0)

Bm,M

(⏐⏐⏐⏐
x

δ

⏐⏐⏐⏐
)

dx

]

∆

−
1

2
sup
Ω̂

⏐⏐⏐⏐⏐

M∑

m=0

Dm

δd+2

[∫

Bδ (x)

Bm,M

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

dy

]

∆

⏐⏐⏐⏐⏐− θ2.

Here, θ is the slack variable arising from the inequality constraint. We then apply the Adam optimizer to the

penalized loss function

L2(D, θ) =
1

N

N∑

i=1

∥LC∗+D[ui ]− fi∥2
X
+ λH (D, θ)+

µ

2
H 2(D, θ) (4.4)

=
1

N

N∑

i=1



M∑

m=0

Ck + Dk

δ3

[∫

Ω̂∪Bδ (x)

Bm,M

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

(ui (x)− ui (y))dy

]

∆

− fi (x)



2

X

+ λH (D, θ)+
µ

2
H 2(D, θ),

adjusting the parameters λ and µ as described in Algorithm 1. We denote the minimum by D∗.
Although this two-stage optimization algorithm is numerically efficient, there is a degree of overconstraining

arising from a single computation of the coercivity constant κ . That is, although C∗ is a local minimum of L1 and

D∗ is a local minimum of L2, (C∗, D∗) is not necessarily a local minimum of L .

A more advanced algorithm could involve iterated computation of the coercivity constraint κ . In our examples

below, however, we found that the two-stage algorithm is sufficient and that there was no significant benefit to more

complex and expensive optimization algorithms. Therefore, we have used the two-stage algorithm throughout.

In applying Algorithm 1, we run the Adam optimizer (in PyTorch) using a batch size of 100 and learning rate

5e-3 throughout the article. We run until the loss stagnates, indicating that a stationary point has been reached.

This was typically between 200 and 500 epochs for the first stage of the algorithm (to find C∗) and 10 epochs for

the second stage (to find D∗) per iteration of the augmented Lagrangian method. In general we will take at least

O(1, 000) samples for the purposes of training, to ensure we are well into the regime of having sufficient data.

Throughout, we use the norm

∥ f ∥X =

√ 1

#X

∑

xk∈X

f (xk)2 (4.5)

in (4.1) and (4.4), for a discrete collection X of points in Ω . We specify the collection X in the sections below.

8
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Algorithm 1 Nonlocal kernel regression

1: Initialize C (0)
m ∼ U (0, 1).

2: Obtain C∗ as a local minimum of L1(C), using the Adam optimizer while updating C← ReLU(C) after each

step of gradient descent.

3: Select basis functions Φ and corresponding degrees of freedom w, and assemble the matrices M and S in (4.2).

4: Solve the generalized eigenvalue problem (4.3) for κ(C∗).

5: Initialize D(0)
m ∼ U

(
− 1√

M+1
, 1√

M+1

)
and θ (0) = 1, where U (a, b) denotes the uniform distribution on (a, b).

6: Set STEP MAX = 100, λ = 0, µ = 1, s = 1, ρ = 10, c = 1/4, ϵ = 10−8.

7: while s ≤ STEP MAX: do ▷ Perform Augmented Lagrangian Algorithm for D

8: Solve the unconstrained optimization problem

(D(s), θ (s)) = argmin
D,θ

L2(D, θ).

9: if H (D(s), θ (s)) ≤ ϵ then

10: Stop.

11: else

12: if H (D(s), θ (s)) ≥ cH (D(s−1), θ (s−1)) then

13: Update penalty µ← ρµ.

14: if µ ≥ 1020 then

15: Stop.

16: else

17: Update Lagrange multiplier λ← λ+ µH (D(s), θ (s)).

18: Update the iteration number s ← s + 1.

19: D∗ = D(s).

Remark 3. The choice of the ℓ2 norm, as a discrete counterpart of the L2 norm, is based on the fact that the space

of square integrable functions is the natural function space for solutions of nonlocal problems. Indeed, (4.5) is a

popular norm to work with in several optimization contexts (see, e.g., [28] for the use of the L2 norm and [30] for

the ℓ2 norm). In principle, it is possible to work with any norm for which it is computationally tractable to enforce

inequality constraints. For example, one may consider the L1 norm to enforce sparsity, provided that methods that

deal with its non-differentiability are considered.

5. Tests with manufactured kernels

In this section, we give the first illustration of the method described above by training on data Dtrain = {(ui , fi )}Ni=1

generated from a nonlocal equation of the form (2.2) with periodic boundary conditions, for a manufactured kernel

Kman that is given a priori. This allows us to validate the approach and quantify its ability to handle nonnegative

and sign-changing kernels, before moving to more realistic data in subsequent sections.

We generate 50,000 training pairs (ui , fi ) in the following way. First we randomly generate the coefficients of

a Fourier series for ui as

ûk ∼ exp(−αk2)ξ, ξ ∼ U [0, 1], (5.1)

where ξ is sampled i.i.d. for each pair of i and k, U [0, 1] denotes the uniform distribution on [0, 1], and α = 0.1.

Then, ui is given by

ui =
100∑

k=0

ûk cos(2πkx/L) (5.2)

and fi is obtained from (2.1) via a numerical Fourier transform. We train the kernel using X in (4.5) to be 101

equidistant points in [0, 1].

9
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Fig. 1. Comparison of the prediction LK ∗ [u] and target f when generating data from the manufactured kernel (5.3) and fitting a nonnegative

linear basis polynomial kernel K ∗. The left column illustrates u, whereas the right column f (target) and LK ∗ [u] (prediction), for a sample

of (u, f ) ∈ Dtest in each row.

The learned kernel K ∗ is validated on a test set consisting of a different set of samples Dtest = {(u j , f j )}Nj=1

generated as above, with N = 10,000. We test two types of basis expansions in (3.11) for learning K : a linear

kernel (M = 1) and a quadratic kernel (M = 2).

For the case of a linear manufactured kernel

Kman(x, y) =
4

δ3

⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐ 1[0,1]

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

, (5.3)

used to generate data, prediction using LK ∗ is shown for two test pairs (u, f ) in Fig. 1 for regression using a linear

kernel, and Fig. 2 for regression using a quadratic basis. In these first examples, we only learned the nonnegative

coefficients C, effectively setting D = 0 and not performing the second stage of the algorithm. This verifies that

given data from a nonnegative manufactured kernel, the algorithm can provide a good fit with a nonnegative learned

kernel.

In the next example, we fit data generated from the sign-changing kernel

Kman(x, y) =
21.4615

δ3
cos

(
3π |y − x |

5δ

)
1[0,1]

(⏐⏐⏐⏐
y − x

δ

⏐⏐⏐⏐
)

. (5.4)

Taking ρ and h as the positive and negative parts of this kernel, respectively, we verified numerically that the

sign-changing kernel in (5.4) satisfies the well-posedness condition in (3.10). Here, we apply the second stage of

Algorithm 1, learning both C and D. We use this example to explore whether learning a kernel K ∗ by fitting the

action of LK on the data Dtrain can be expected to reproduce the kernel Kman. Of course, for a general kernel

Kman, this can only be expected for increasing basis order M of the polynomial expansion in (3.11). We generate

two sets of training and test data. The first set, which we refer to as “low-frequency”, consists of 50,000 samples

of the form (5.2) with distribution (5.1), just as for the previous example. The second set, which we refer to as

“high-frequency”, consists of 25,000 of such low-frequency samples and 25,000 samples (ui , fi ) where

ui = ξ1 sin(2πk1x/L)+ ξ2 cos(2πk2x/L), (5.5)

for ξ1, ξ2 ∼ U [0, 1] and k1 and k2 being random integers sampled uniformly in [5, 15], and with fi computed using

a numerical Fourier transform. We learn kernels K of the form (3.11) with degrees M of the basis increasing 2 to

20, for both data sets.

The plots of training and validation losses for both sets of data are shown in Fig. 3. This figure shows no benefit

to increasing the basis order past 11 for the case of low-frequency data, in contrast to the high-frequency test data
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Fig. 2. Comparison of the prediction LK ∗ [u] and target f when generating data from the manufactured kernel (5.3) and fitting a nonnegative

quadratic basis polynomial kernel K ∗. The left column illustrates u, whereas the right column f (target) and LK ∗ [u] (prediction), for a

sample of (u, f ) ∈ Dtest in each row.

Fig. 3. Left: The training loss and validation loss versus basis order for low-frequency data generated using the manufactured kernel Kman

(5.4). Right: The training loss and validation loss versus basis order for high-frequency data generated using the manufactured kernel Kman

(5.4).

for which both losses improve through order 20. This test illustrates that the choice of basis order M should take

into account the frequency of the training and test data, an issue which will arise in Section 6. Next, to study the

question of reproducing the manufactured kernel Kman with the learned kernel K ∗, we compare Kman to K ∗ first

for the low-frequency data and varying basis order M in Fig. 4. We show both the nonnegative part 2ρ and the full

kernel 2ρ + 2h to illustrate the contribution of 2h.

While the kernel is approximated by 2ρ + 2h for larger |y − x |/δ and sufficiently high-order basis, Fig. 4

demonstrates that the manufactured kernel is not recovered for small |x − y|/δ, implying that the action of the

operator ρ is insensitive to the kernel shape for small |x − y|/δ for training data fi of the form (5.2) with (5.1). We

hypothesize this is due to lack of higher frequencies in fi and the resulting solution ui . By repeating this experiment

in Fig. 5 for the high-frequency data (5.5), we obtain evidence for this hypothesis, as a closer fit is obtained for

small |x − y|/δ than for the low-frequency training data in Fig. 4 as the basis increases.
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Fig. 4. Left: Comparison of the nonnegative part 2ρ(x, y) of the kernel K ∗ trained with low-frequency data and the manufactured kernel

Kman (5.4). Right: Comparison of the full kernel K ∗ = 2ρ(x, y) + 2h(x, y) trained with low-frequency data and the manufactured kernel

Kman (5.4). Note the improved fit of the negative tails of the kernel.

Fig. 5. Left: Comparison of the nonnegative part 2ρ(x, y) of the kernel K ∗ trained with high-frequency data and the manufactured kernel

Kman (5.4). Right: Comparison of the full kernel K ∗ = 2ρ(x, y) + 2h(x, y) trained with high-frequency data and the manufactured kernel

Kman (5.4). Note the improved fit of the negative tails of the kernel.

These experiments suggest that our algorithm cannot be expected to recover exactly the kernel Kman from the

data Dtrain. Moreover, resolution of the kernel in the vicinity of |x − y|/δ = 0 is aided by the incorporation of

higher frequency training data. Perhaps unsurprisingly, for such a sign-changing kernel, incorporation of D improves

reproduction of Kman.

6. Nonlocal coarse-graining of Darcy flow

We next consider extraction of a nonlocal diffusion model by coarse-graining local solutions of Darcy’s equation,

a problem arising in subsurface flows through porous media [48,49]. In traditional inverse modeling and subsurface

applications, the inference of an effective permissivity from data is a canonical problem motivating the development

of multiscale and homogenization methods [50–53]. Some works have argued that nonlocal models converging to

Darcy’s equations in the limit δ→ 0 provide an improved description of multiscale transport [18,54]. We consider

a simple 1D problem to demonstrate how nonlocal kernels may be derived from data, illustrating viability of data-

driven multiscale nonlocal models for such processes. We numerically homogenize a repeated microstructure of

length scale 2L using a nonlocal model with support length scale δ. We will see that in this nonlocal context, the
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Fig. 6. Problem setup and relevant lengthscales for the Darcy coarse-graining problem. Periodic microstructure length is denoted 2L , while

forcing used during testing/training corresponds to sin(λ 2πx), and entire domain has measure |Ω |. We will observe that choice of λ used

during test and training must be sufficiently large relative to 2L to obtain good fit for data-driven nonlocal model.

choice of coarse-graining length scale relative to 2L is tied to the effectiveness of the homogenization, similar to

the local homogenization setting [55].

We assume a periodic domain Ω = [0, 10], constituted of alternating subdomains of width L and piecewise

constant diffusivity κ1 = 1, κ2 = 4 (Fig. 6). Further, we use a P1 nodal finite element solver to generate a collection

of solutions U = {ui }Ni=1 to the following high-fidelity problem

∇ · Fi = sin(2πxλi ) := fi

Fi = −κ(x)∇ui .

Here, λi denotes a wavelength sampled from the uniform distribution λi ∼ U ([λmin, |Ω |]). We omit details regarding

the finite element solution, noting that we use 16 elements per subdomain, which was chosen to ensure sufficient

resolution of training data, and take N = 1000, L = 0.1 and M = 20.

We first coarse-grain U into a collection of averaged solutions U = {ui }Ni=1, where we define ui (and likewise

f i ) as piecewise constant over a given interval x ∈ [2Ln, 2L(n + 1)],

ui (x) =
1

2L

∫ 2L(n+1)

2Ln

ui (y) dy,

for a given domain n. In this manner, we obtain a representation of the local solution homogenized over the periodic

microstructure. Finally, we apply Algorithm 1 to find a nonlocal kernel consistent with U . That is, we apply the

algorithm with

Dtrain = {(ui , f i )}Ni=1

to learn a nonlocal model (2.2) with periodic boundary conditions. The set X of test points in (4.5) is 500 uniformly

distributed points from 0 to 10.

A key feature of this data is the relative magnitude of the wavelength λi and the microstructure L; similar to

traditional homogenization we require L/λi sufficiently small to treat the material as a homogeneous continuum.

In Fig. 7 we present solutions to a pair of models with λmin = 1/16 and 1, both for δ = 8L . When considering

a low-frequency solution (L[u] = sin πx), the model trained on low-frequency data matches its local counterpart

well, while for a high-frequency problem (L[u] = sin 8πx) neither model performs well. This suggests that L/λmin

must be sufficiently small in the training data to prevent the model from overfitting to high-frequency data. When

applying the model, it will only agree with the local solution over sufficiently large lengthscales.

Motivated by this observation, we perform a study sweeping over the choice of λmin, both during training and

testing, for δ ∈ {4L , 8L , 16L}. The results of the study are presented in Fig. 8, with the trend that smaller choice

of δ provides generally better results. The extracted kernels associated with this study are presented in Fig. 9. We

observe that for different δ, the resulting kernel may have qualitatively different shape, and that for high-frequency

training (which tests poorly) the kernel shifts to a different shape. Most notably, for this problem we observe no

discernible negative part in the kernel, despite the fact that the algorithm allows for it. This suggests that, at least
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Fig. 7. Representative solutions to the extracted kernels, for δ = 8L , testing against low-frequency (left) and high-frequency (right) forcing.

We note that for low-frequency forcing, the solution is primarily smooth, and captured well by models extracted from low-frequency data.

For high-frequency forcing, the local solution has artifacts from the microstructure, preventing extraction of an effective model using either

high- or low-frequency training data.

Fig. 8. Relative solution error versus frequency of the forcing term in test data. The different curves in each subfigure signify a different

range of frequency used in training data [1/|Ω |, 1/λmin]. Increasing the ratio of λmin/L provides improved fit. Clockwise from top-left:

δ = 4L , δ = 8L , and δ = 16L .

for this diffusion process, it is not necessary to introduce negativity into the kernel to obtain good fit; similar

nonnegative kernels were obtained in [18] as an upscaling of a pore network.
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Fig. 9. Trained kernels from different training data. Legend denotes range of frequency used in training data [1/|Ω |, 1/λmin]. Clockwise

from top-left: δ = 4L , δ = 8L , and δ = 16L .

7. Extraction of nonlocal sign-changing kernels from high-order PDEs

We now seek an application where we expect to extract a sign-changing kernel. Weckner and Silling summarized

several works where authors augment second-order elliptic problems with high-order derivatives to accommodate

the high-frequency response of a given material [17,56–60]. As an example, one may augment the description of

a diffusion process by a Laplacian with higher-order operators such as biharmonics. Oftentimes these corrections

provide a means to introduce lengthscales originating in microscales, e.g. Bazant introduces a correction of the form

cδ2∇4 to the Poisson–Boltzmann equation to correct for the effect of finite ion size [61,62]. Such local corrections

may be related to nonlocal models by assuming a large degree of regularity, expanding the solution in a Taylor

series, and matching the moments of the kernel to corresponding local terms. However, nonlocal models possess

the desirable feature of only requiring L2-regularity. Weckner and Silling derived in this manner a sign-changing

kernel, where the high-frequency response manifests as a negative part. We will consider a simplified problem, and

illustrate that the introduction of a very small negative component allows for a substantial improvement in model

accuracy.

We seek a nonlocal surrogate for the biharmonic equation

uxx − cδ2uxxxx = f, (7.1)

u is periodic on [0, L].

We generate data Dtest = {(ui , fi )}Ni=1 for this equation for various c and δ by randomly generating

fi =
99∑

k=1

f̂k cos(2πkx/L) (7.2)

for coefficients are sampled as

f̂k ∼ exp(−αk2)ξ, ξ ∼ U [0, 1], (7.3)
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Table 1

Training loss when using {Cm} only and {Cm + Dm} under different settings. The loss averaged over all c

decreased by 19%, 44%, 42%, and 12% for δ = 0.125, 0.25, 0.5 and 0.99, respectively, when allowing for

sign-changing kernels.

c δ = 0.125 δ = 0.25 δ = 0.5 δ = 0.99

{Cm} {Cm + Dm} {Cm} {Cm + Dm} {Cm} {Cm + Dm} {Cm} {Cm + Dm}

0.0001 7.89e−5 6.49e−5 5.94e−4 1.48e−4 4.50e−3 1.50e−3 1.99e−2 1.78e−2

0.0003 8.47e−5 8.45e−5 6.08e−4 1.46e−4 4.87e−3 1.88e−3 2.27e−2 1.71e−2

0.0005 9.46e−5 8.30e−5 6.79e−4 1.99e−4 5.58e−3 2.44e−3 2.46e−2 1.81e−2

0.001 9.97e−5 7.77e−5 7.17e−4 3.11e−4 6.12e−3 2.07e−3 2.88e−2 2.45-02

0.003 1.46e−4 1.32e−4 1.10e−3 5.14e−4 1.11e−2 4.76e−3 4.84e−2 3.90e−2

0.005 1.95e−4 1.74e−5 1.73e−3 1.32e−3 1.52e−2 9.16e−3 6.11e−2 5.46e−2

0.01 3.52e−4 3.14e−4 3.18e−3 1.94e−3 2.20e−2 1.64e−2 8.16e−2 7.20e−2

0.03 1.30e−3 1.25e−3 1.04e−2 8.09e−3 5.09e−2 4.32e−2 1.04e−1 1.08e−1

0.05 2.61e−3 2.38e−3 1.91e−2 1.51e−2 6.77e−2 5.48e−2 1.10e−1 1.18e−1

0.1 6.35e−3 6.18e−3 3.37e−2 3.47e−2 8.81e−2 7.83e−2 1.34e−1 1.23e−1

Fig. 10. The comparison of the positive part of K ∗ determined by {Cm} and the full kernel K ∗ given by both {Cm} and {Dm}, when

c = 0.003, δ = 0.5. Note that allowing non-positive kernels provides only a very small negative part near |y − x | = δ, yet provides a

substantial increase in accuracy (Tables 1 and 2).

where U [0, 1] denotes the uniform distribution on [0, 1], and α = 0.1. For each sampled fi , the corresponding ui is

solved from (7.1) using the discrete Fourier transformation. We generate N = 50,000 pairs of (ui , fi ) for training,

and train the kernel using an expansion (3.11) of order M = 20 for a range of δ from δ = 0.125 to δ = 0.99 and

c from c = 0.0001 to c = 0.1. We train the kernel using X in (4.5) to be 101 equidistant points in [0, 1].

In Table 1, we report the losses after the first stage of the algorithm, when C has been trained and D = 0, and

the loss after the second stage of the algorithm when both C and D have been trained. Fig. 10 compares these two

kernels, for c = 0.0003 and δ = 0.5, to illustrate that the two kernels are similar except for a small negative tail in

the sign-changing kernel for large |y − x |/δ. Nevertheless, Table 1 illustrates that by fitting a sign-changing kernel

as opposed to a nonnegative kernel, an average loss decreases by 19% for δ = 0.125, 44% for δ = 0.25, 42% for

δ = 0.5, and 12% for δ = 0.99.

Table 2 compares the relative error in solving (7.1) for the test forcing

f = −4π2 sin(2πx)− 16cδ2π4 sin(2πx) (7.4)

using the nonlocal model (3.11) with trained kernel K ∗. We solve the nonlocal equation LK ∗u = f with periodic

boundary condition. We compare the numerical solutions to the exact solution u = sin(2πx). This table corroborates
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Table 2

Relative solution error for the test case (7.4) when using {Cm} only and {Cm + Dm} under different settings.

The test error averaged over all c decreased by 9%, 63%, 94%, and 80% for δ = 0.125, 0.25, 0.5 and 0.99,

respectively, when allowing for sign-changing kernels. Note that while introduction of Dm provides notable

increase in accuracy, the resulting kernels differ by only a small negative tail (see Fig. 10).

c δ = 0.125 δ = 0.25 δ = 0.5 δ = 0.99

{Cm} {Cm + Dm} {Cm} {Cm + Dm} {Cm} {Cm + Dm} {Cm} {Cm + Dm}

0.0001 0.49% 0.39% 1.31% 0.19% 3.15% 0.09% 5.74% 1.37%

0.0003 0.48% 0.48% 1.27% 0.20% 3.39% 0.13% 5.66% 0.98%

0.0005 0.51% 0.54% 1.37% 0.25% 3.39% 0.13% 6.15% 1.42%

0.001 0.55% 0.44% 1.48% 0.46% 3.67% 0.12% 6.31% 0.87%

0.003 0.67% 0.61% 1.82% 0.52% 4.54% 0.15% 6.26% 0.86%

0.005 0.73% 0.71% 2.16% 1.11% 5.17% 0.24% 6.36% 0.94%

0.01 0.97% 1.04% 2.96% 1.05% 6.13% 0.42% 6.25% 1.27%

0.03 1.91% 1.67% 4.85% 2.59% 6.88% 0.20% 4.00% 0.97%

0.05 2.74% 2.33% 5.86% 2.97% 6.81% 0.19% 3.68% 0.71%

0.1 4.03% 3.69% 6.84% 5.17% 5.97% 1.29% 2.87% 0.95%

Table 1, showing a significant in decrease testing error for δ = 0.25 and δ = 0.5 when using the sign-changing

kernel rather than a strictly nonnegative kernel.

8. Fractional Laplacian

In this section we consider a high-fidelity model substantially different from the ones considered in Sections 6

and 7: the Poisson problem for the fractional Laplacian [16]. Fractional order equations are nonlocal equations

often used in subsurface modeling; they accurately represent complex multi-scale phenomena by incorporating

long-range interactions into the model itself in the form of a fractional-exponent derivative, as opposed to the

classical integer-exponent derivative. This allows to capture the complete spectrum of diffusion through a few scalar

model parameters. Despite being known to be the model of choice for scientific and engineering applications such

as subsurface flow and transport [16], their adoption is limited due to several technical challenges, computational

cost being the most important. This is understood by noting that the support of the nonlocal kernel is infinite, as

opposed to the kernels considered in this paper whose support is limited to a ball of radius δ. Formally, the fractional

Laplacian operator is defined as

(−∆)su = Cd,s

∫

Rd

u(x)− u(y)

|x − y|d+2s
dy, (8.1)

where s ∈ (0, 1) and Cd,s is a constant that depends on the dimension d and the fractional order s. Here, the positive

nonlocal kernel, with support on R
d is given by

K (x, y) =
Cd,s

|x − y|d+2s
. (8.2)

We point out that, the interaction domain associated with the fractional Laplacian equation corresponds to the case

of infinite horizon δ = ∞. Thus, the high-fidelity problem we consider is (2.1) with LHF = (−∆)s and an exterior

condition u = q on ΩI = R
d \ Ω . In other words, exterior conditions must be prescribed on an infinite domain.

Our goal in this section is to answer the following question: can we learn a nonlocal compactly supported

kernel (with a relatively small horizon) from high-fidelity data from a fractional model such that the action of the

corresponding nonlocal operator is equivalent to the fractional Laplacian in (8.1)? A positive answer would enable

accurate computation of fractional solutions at a much cheaper cost and increase the usability of fractional models

now hindered by computational challenges.

To answer the question above, we first note that solutions to the Poisson problem for the truncated fractional

Laplacian (obtained by simply truncating the domain of integration in (8.1)) approach solutions of the non-truncated

counterpart asymptotically with order O(δ−2s) [63]; this type of convergence holds in general for other instances

of fractional operators such as the fractional gradient and divergence [64]. Thus, for very small horizons, e.g., for
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Table 3

Relative difference between the analytical solution with forcing f = 1 and fractional

order s = 0.75 and the solution corresponding to the reconstructed kernel for several

values of δ and different basis orders.

δ Relative difference

Order = 0 Order = 5 Order = 10 Order = 20 Truncated kernel

2−3 9.46% 7.93% 16.8% 19.8% 319%

2−2 15.4% 22.89% 23.5% 26.0% 182%

2−1 13.2% 8.57% 10.0% 7.2% 98%

20 3.97% 1.76% 2.37% 2.88% 48%

21 0.84% 2.18% 1.84% 3.43% 23%

22 1.59% 4.25% 3.66% 1.95% 15%

δ ≈ |Ω |, we cannot expect solutions to the truncated equation to be accurate approximations of solutions to the non-

truncated one. This fact can be observed in the last column of Tables 3–5 where we report the relative difference, for

different values of δ between the non-truncated and truncated solutions; as expected, for very small δ, the truncated

solution is significantly different than the non-truncated one. These results are reported as a reference and their

importance will be clear after we describe the impact of our algorithm.

In order to reproduce the singularity in (8.2) we slightly modify the kernel expansion (3.11) by dividing each

basis function Bm,M by |x − y|α instead of δd+2, where α is an additional tunable parameter. This means that we

augment the set of parameters to be optimized within our algorithm by adding α. Furthermore, due to the positivity

of the fractional kernel (8.2), we only perform the first stage of Algorithm 1 to learn the coefficients C and the

parameter α. Recall that, as mentioned in the introduction, fractional equations are master equations of stochastic

processes and, as such, their kernels represent (positive) jump rates.

We generate the training set Dtrain = {(ui , fi )}Ni=1 by computing solutions of the fractional Laplacian equation

with s = 0.75 in Ω = B1(0), a ball of radius 1 and centered at 0, and exterior condition q ≡ 0 in R\Ω . We sample

50,000 forcing terms fi as in (7.2) and (7.3), and obtain the corresponding solutions ui by evaluating the integral

ui (x) =
∫

B1(0)

G(x, y) fi (y)dy,

using the trapezoidal quadrature rule, where G is the Green’s function [63]. We train with X in (4.5) consisting

of 161 equidistant points in [−0.8, 0.8] to avoid singularities of the solutions ui near the boundary points −1 and

1 [65]. We test our algorithm for several values of δ and various order M of the basis, initializing α to be 0. In

Tables 3–5 we report the relative difference between the test solution for forcing f = {1, x, x2} and fractional

order s = 0.75 and the solution obtained by solving the nonlocal problem (2.2) with kernel K ∗. While a higher

basis order does not necessarily yield a better prediction, for higher values of δ, as expected, we obtain a much

better approximation. As a reference we also report the difference that one would obtain by simply truncating the

kernel (8.2). These results show that it is possible to obtain relatively accurate solutions to fractional equations at

a much cheaper cost by using compactly supported fractional-type kernels learned from fractional data. We also

note that for a constant right-hand side the learnt kernel produces more accurate results than for higher degrees;

however, our results show that the accuracy does not deteriorate as the degree increases further.

9. Conclusion

In this work we have presented an optimization framework for discovering sign-changing nonlocal models from

high-fidelity synthetic data. In the nonlocal community there are several open questions about the derivation of

such models from first-principles, and the data-driven approach presented here can provide guidance regarding what

models emerge naturally from data. The fundamental property we have pursued is a guarantee that learned models

be solvable — this ensures well-posedness without requiring access to complicated PDE-constrained optimization

codes, and may be implemented in popular optimization packages such as Tensorflow [66] and PyTorch [67]. While

we worked with Bernstein polynomials for ease of implementing the resulting inequality constraints, an interesting

area of future research would be to consider whether incorporating deep learning architectures into this framework

provides benefit. Working with polynomials assumes regularity in the underlying kernels, while e.g. shallow ReLU
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Table 4

Relative difference between the analytical solution with forcing f = x and fractional

order s = 0.75 and the solution corresponding to the reconstructed kernel for several

values of δ and different basis orders.

δ Relative difference

Order = 0 Order = 5 Order = 10 Order = 20 Truncated kernel

2−3 30.9% 20.7% 19.6% 18.2% 215%

2−2 20.1% 14.1% 23.7% 29.2% 116%

2−1 18.0% 11.3% 10.5% 11.3% 57%

20 10.2% 11.5% 12.2% 12.8% 28%

21 8.5% 13.2% 13.7% 11.3% 18%

22 7.8% 7.7% 8.2% 9.2% 15%

Table 5

Relative difference between the analytical solution with forcing f = x2 and fractional

order s = 0.75 and the solution corresponding to the reconstructed kernel for several

values of δ and different basis orders.

δ Relative difference

Order = 0 Order = 5 Order = 10 Order = 20 Truncated kernel

2−3 26.8% 17.8% 16.5% 15.1% 290%

2−2 17.1% 25.5% 28.0% 30.7% 168%

2−1 21.2% 13.0% 13.2% 11.2% 94.9%

20 7.0% 6.9% 8.1% 9.0% 48.8%

21 5.9% 11.5% 12.1% 9.2% 23.1%

22 5.7% 7.4% 8.6% 7.1% 15.7%

networks would allow parametrization of discontinuous kernels [68,69]. Other areas of potential improvement for our

approach include finding less restrictive bounds that guarantee well-posedness, while still admitting computationally

tractable enforcement during training; and improving the optimization scheme by exploiting the fact that the

optimization problem is convex. The latter property, in fact, guarantees every local minimum is a global minimum,

which distinguishes our approach from other learning tools available in the literature, such as physics-informed

neural networks (PINNs) [30,31].

While we have focused on simple one-dimensional experiments for ease of presentation and to ensure examples

are easily reproducible, the results demonstrate the potential impact this framework may have for range of important

problems. We have demonstrated in Section 6 how one may use this approach to perform coarse-graining without

incorporating restrictive and mathematically complex derivations. In Section 7, we illustrated the instrumental

role sign-changing kernels have deriving reduced-regularity nonlocal versions of high-order PDEs, which have

been shown previously to be fundamental in resolving high-frequency response of certain solid materials [17]. In

Section 8, we see that one may extract computationally efficient compactly supported models providing sparse

discrete operators that accurately approximate fractional operators with infinite horizons. This is particularly

promising as a means of deriving preconditioners and O(n) solvers for fractional systems, as naive discretizations

provide dense matrices which require complex hierarchical preconditioners to solve efficiently [70–72].

However, these examples provide only a first sample of possible directions to learn data-driven nonlocal models,

and we pursue in future work application of this framework toward large-scale datasets more representative of

open problems in science and engineering. To gauge the future impact of this framework, it will be necessary

to carefully explore application-specific questions about the resulting models. For example, in a subsurface flow

context, in what limits do the learned nonlocal operators recover homogenized local ones? Will the nonlocal model

provide enhanced predictions of engineering quantities of interest over traditional local models? Such questions

require consideration of technical details in specific applications, going beyond the scope of this paper, but their

answers will be fundamental to understanding the advantages of models yielded by the current framework.
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