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Abstract

Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture

of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from

converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk

mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper,

we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree

quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct

a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in

the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence

of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically

compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which

have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp

representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and

demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction

loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of

dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical

engineering problems.

c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Peridynamics provides a description of continuum mechanics in terms of integral operators rather than classical

differential operators [1–7]. These nonlocal models are defined in terms of a lengthscale δ, referred to as a horizon,

which denotes the extent of nonlocal interaction. The nonlocal viewpoint allows a natural description of processes

requiring reduced regularity in the relevant solution, such as fracture mechanics [8,9]. An important feature of such
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models is that when classical continuum models still apply, they revert back to classical continuum models as

δ → 0. Discretizations which preserve this limit under refinement h → 0 are termed asymptotically compatible

(AC) [10], and there has been significant work in recent years toward establishing such discretizations — for an

incomplete list see [10–20]. Broadly, strategies either involve adopting traditional finite element shape functions

and carefully performing geometric calculations to integrate over relevant horizon/element subdomains, or adopt

a strong-form meshfree discretization where particles are associated with abstract measure. The former is more

amenable to mathematical analysis due to a better variational setting, while the latter is simple to implement and

generally faster [21,22]. In this paper we pursue the meshfree viewpoint.

For fracture mechanics problems one often refines both δ and h at the same rate under so-called M-convergence,

δ = Mh, for M > 0 [23]. In this setting, one obtains banded stiffness matrices allowing scalable implementations.

Typically in the literature a scheme is termed AC if it recovers the solution in both the finite δ and M-convergence

limit — in this work we abuse the definition slightly and only require the M-convergence case for asymptotic

compatibility as the relevant limit for problems with a corresponding local limit. This AC property is only

one necessary ingredient in achieving a convergent simulation, and our recent work focused upon establishing

convergence in this setting for boundary value problems [18,19]. To achieve similar convergence for problems

involving fracture, one must also consider the interplay between consistency of quadrature for discrete operators

and the imposition of traction loads as fracture surfaces open up and evolve [24]. For peridynamic fracture

problems where the free surface evolves implicitly via the breaking of bonds [17,25], one lacks an explicit boundary

representation over the course of a simulation. In addition to providing challenges regarding accurate imposition of

traction loads, the breaking of bonds also renders higher-order numerical quadrature inaccurate, as consistent AC

quadrature weights are typically derived in the absence of damage.

Our goal is to provide a comprehensive treatment of fracture, nonlocal quadrature, and traction loading which

is able to perform more accurate state-based peridynamic fracture simulations free of spurious surface effects. In

particular, when no fracture occurs and therefore the classical continuum theory applies, the formulation should

preserve the AC limit under M-convergence. When fracture occurs, the formulation should be able to capture

the material damage and the evolving fracture surfaces via bond breaking. This practically means that one is

able to incorporate all of the necessary ingredients to perform non-trivial simulations of fracture mechanics while

maintaining a scalable implementation and guaranteeing convergence. Such a capability is elusive in the peridynamic

literature; while peridynamics has been shown to provide a powerful modeling platform for a broad range of

applications [26,27], the development of efficient discretizations with rigorous underpinnings has lagged behind

until the last few years.

The challenge in incorporating traction loading into a peridynamic framework stems from the fact that, in

contrast to local mechanics, peridynamic boundary conditions must be defined on a finite volume region outside the

surface [9,20,28]. Theoretical and numerical challenges arise in how to mathematically impose nonhomogeneous

Neumann boundary conditions properly in the nonlocal model. In peridynamic models, careless imposition of

traction loads leads to a smaller effective material stiffness close to the boundary, since the integral on those

material points is over a smaller region. Therefore, an unphysical strain energy concentration is induced, leading

in turn to an artificial softening of the material near the boundary. Such undesirable phenomena are referred to

in the literature as a “surface” or “skin” effects [29,30]. We propose a novel treatment of nonlocal traction-type

boundary conditions which avoid the surface effect by designing a loading aimed to recover the corresponding local

traction boundary condition as δ → 0. The approach requires no explicit representation of the boundary, imposing

the traction volumetrically using the same information that would be available during a traditional meshfree

bond-based peridynamics simulation. Although the Neumann-constrained nonlocal problem and its AC limit were

investigated in nonlocal diffusion models [18–20,28,31,32], to the authors’ best knowledge, the development of AC

peridynamic formulations with traction-type boundary conditions remains restricted to weak formulations, simple

traction loadings and/or simple geometries. Several modeling and numerical approaches have been proposed to

correct the surface effect [7,33–39] but mostly restricted to free surfaces. For nonzero loadings, the tractions are

often applied as prescribed body forces through a layer of finite thickness at the material boundary [27,33,40],

as a surface integral through a weak form [41], or by modifying the nonlocal operator through eigenvalues

analysis [42]. Therefore, developing an AC meshfree discretization method for peridynamics which is capable to

handle nonhomogeneous traction loadings on complex boundaries is critical for the general practice of peridynamics

in realistic engineering applications.
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We consider the linear peridynamic solid (LPS) model [43] as a prototypical state-based model appropriate

for brittle fracture. The LPS model may be interpreted as a nonlocal generalization of the mixed form of linear

elasticity, evolving both displacements and a dilatation. We will show that consistent treatment evolving traction

loading will require a modification to the definition of dilatation to guarantee consistency in the presence of

fractures; conceptually this corresponds to the fact that dilatation is a kinematic variable without associated boundary

conditions, and should be estimated consistently independently of whether a fracture is occurring in the vicinity

of a given point. Based on the modified nonlocal dilatation, we further propose a new nonlocal generalization of

classical traction loads in the LPS model. Particularly, we convert the local traction loads to a correction term in the

momentum balance equation, which provides an estimate for the nonlocal interactions of each material point with

points outside the domain. Based on this traction-type boundary condition, a meshfree formulation is developed

for the LPS model based on the optimization-based quadrature rule [17], which preserves the AC limit under

M-convergence and naturally represents the evolving free surfaces in dynamic fracture problems. We note that

asymptotic compatibility is not well-defined for dynamic fracture, as there is no known corresponding local theory

for peridynamics with bond breaking.1 However, our modified LPS formulation preserves the AC limit for the

linear elastic model with traction loading on the evolving fracture surfaces. This fact, together with the consistent

discretization introduced here, provides the opportunity for efficient and accurate peridynamic fracture simulations.

We remark that the paper is organized to first establish the rigorous mathematical underpinnings of the approach,

while the second half focuses on a more engineering-oriented exploration of its application. Readers with more

applied interests may skip many of the proofs in the work without issue. The work is organized as follows. We recall

first the linear peridynamic solid (LPS) model definition in Section 2. In Section 3.1, we introduce a novel approach

to apply classical traction loads on the LPS model. After establishing the continuous limits of the scheme, we

next pursue a consistent discretization. In Section 4 we introduce meshfree quadrature which preserves asymptotic

compatibility in the δ → 0 limit, and establish the discrete scheme for boundary value problems in the absence

of fracture. We proceed to investigate a number of two-dimensional statics problems with analytic solutions for

the local limit in Section 5. These test cases include: linear patch tests (Section 5.1); manufactured local limits to

illustrate asymptotic convergence rates (Section 5.2); homogeneous materials with free-surfaces or non-zero traction

loading on curvilinear surfaces (Section 5.3); composite materials with internal interfaces (Section 5.4). In Section 6,

we further extend the proposed formulation to handle dynamic brittle fracture, and provide preliminary validation

results by comparing our numerical results with available numerical simulations and experimental measurements

on three benchmark problems. Section 7 summarizes our findings and discusses future research.

2. A linear state-based peridynamic model

We consider the state-based linear peridynamic solid (LPS) model in a body occupying the domain Ω ⊂ Rd ,

d = 2 or 3. Let θ be the nonlocal dilatation, generalizing the local divergence of displacement, and K (r ) denote

a positive radial function with compactly supported on the δ-ball Bδ(x). The momentum balance and nonlocal

dilatation are then given by the following,

Lδu := −
Cα

m(δ)

∫

Bδ (x)

(λ − µ) K (|y − x|) (y − x) (θ (x) + θ (y)) dy (2.1)

−
Cβ

m(δ)

∫

Bδ (x)

µK (|y − x|)
(y − x) ⊗ (y − x)

|y − x|2
(u(y) − u(x)) dy = f(x),

θ (x) :=
d

m(δ)

∫

Bδ (x)

K (|y − x|)(y − x) · (u(y) − u(x)) dy, (2.2)

where u ∈ Rd denotes the displacement, f ∈ Rd denotes the body load, the weighted volume

m(δ) :=

∫

Bδ (x)

K (|y − x|) |y − x|2 dy,

and µ, λ denote the shear and Lame modulus, respectively. With appropriate choice of scaling parameters Cα > 0,

Cβ > 0 and the weighting function K (r ), it can be shown that the system converges to the Navier equations [47–49]:

L0u := −∇ · (λtr (E)I + 2µE) = −(λ − µ)∇[tr(E)] − µ∇ · (2E + tr(E)I) = f, (2.3)

1 There is an emerging theory of local fracture modeling that is approached by peridynamic models with bond softening, see [24,44–46].
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Fig. 1. Notations for the projection of point x ∈ IΩ , the corresponding unit tangential vector p(x) and the unit normal vector n(x).

where the strain tensor E :=
1

2
(∇u + (∇u)T ) and we note that tr(E) = ∇ · u. To recover parameters for 3D linear

elasticity, Cα = 3, Cβ = 30. For 2D problems, Cα = 2, Cβ = 16. In this paper we consider 2D problems (d = 2)

and the following popular scaled kernel:

K (r ) =

{

1

r
, for r ≤ δ;

0, for r > δ,

K (r )

m(δ)
=

{

3

2πδ3r
, for r ≤ δ;

0, for r > δ.
(2.4)

although the idea may be generalized to more general kernels and 3D cases. As shown in [49], we can define the

nonlocal strain energy density as

Wδ(u) =
Cαd (λ − µ)

(m(δ))2

∫

Ω

[∫

Bδ (x)

K (|y − x|)(y − x) · (u(y) − u(x)) dy

]2

dx

+
Cβµ

2m(δ)

∫

Ω

[∫

Bδ (x)

K (|y − x|)

|y − x|2
[(u(y) − u(x)) · (y − x)]2 dy

]

dx,

and the energy space Sδ(Ω ) as

Sδ(Ω ) :=

{

u ∈ L2(Ω ) : |u|Sδ (Ω) :=
1

m(δ)

∫

Ω

∫

Ω

K (|y − x|)

|y − x|2
[(u(y) − u(x)) · (y − x)]2 dydx < ∞

}

.

Note that |u|Sδ (Ω) = 0 if and only if u represents an infinitesimally rigid displacement, i.e.:

u(x) ∈ Π := {Qx + b,Q ∈ Rd×d ,QT = −Q, b ∈ Rd}.

3. Neumann and mixed-type constraint problems

We now consider a state-based peridynamic problem with general mixed boundary conditions: ∂Ω = ∂ΩD

⋃

∂ΩN

and (∂ΩD)o
⋂

(∂ΩN )o = ∅. Here ∂ΩD and ∂ΩN are both 1D curves. We denote the regions near the boundary ∂Ω

as

IΩ := {x ∈ Ω |dist(x, ∂Ω ) < δ}, BΩ := {x /∈ Ω |dist(x, ∂Ω ) < δ}, BBΩ := {x /∈ Ω |dist(x, ∂Ω ) < 2δ}.

Note that to apply the nonlocal Dirichlet-type boundary condition, u(x) = uD(x) is required in a layer with non-
zero volume outside Ω , while the proposed traction load is applied as a Neumann boundary condition on the sharp
interface ∂ΩN . To define a Dirichlet-type constraint, we denote

IΩD := {x ∈ Ω |dist(x, ∂ΩD) < δ}, BΩD := {x /∈ Ω |dist(x, ∂ΩD) < δ}, BBΩD := {x /∈ Ω |dist(x, ∂ΩD) < 2δ},

and assume that the value of u is given on BBΩD . Similarly, to apply the Neumann constraint, we denote

IΩN := {x ∈ Ω |dist(x, ∂ΩN ) < δ}, BΩN := {x /∈ Ω |dist(x, ∂ΩN ) < δ}, BBΩN := {x /∈ Ω |dist(x, ∂ΩN ) < 2δ}.

Unless stated otherwise, in this paper we further assume sufficient regularity in the boundary that we may take δ

sufficiently small so that for any x ∈ IΩN (see Fig. 1 for illustration), there exists a unique orthogonal projection

of x onto ∂ΩN . We denote this projection as x. Therefore, one has x − x = sx n(x) for x ∈ IΩN , where 0 < sx < δ.

Here n denotes the normal direction pointing out of the domain for each x ∈ IΩN , and p denotes the tangential
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direction. Moreover, we employ the following notations for the directional components of the Hessian matrix of a

scalar function v:

[v(x)]pp := pT (x)∇2v(x)p(x), [v(x)]nn := nT (x)∇2v(x)n(x), [v(x)]pn := pT (x)∇2v(x)n(x).

3.1. Formulation for non-homogeneous traction loading

In this section, we consider an LPS model subject to local traction loads on the sharp interface ∂ΩN , by

developing nonlocal Neumann constraint formulation with proper correction terms for x ∈ IΩN .

Firstly, we propose a corrected formulation for the nonlocal dilatation θ in (2.2). When u ∈ C1(Ω ) and

Bδ(x)\Ω = ∅, the definition of θ (x) limits to a local divergence operator ∇·u(x) as δ → 0 by taking the Taylor series

expansion of u as u(y) = u(x)+∇u(x)·(y − x)+O(δ2) and employing a symmetry argument. However, for x ∈ IΩN

the domain of integration is non-spherical due to proximity to the boundary, and the loss of symmetry results in an

inconsistent θ . Thus, surface-effects manifest in the definition of dilatation before any modeling assumptions are

made regarding the material response. To address the surface-effect we modify the definition of nonlocal dilatation

in (2.2) to enforce consistency for linear displacement fields, independent of whether the horizon intersects the

boundary of the domain. In the spirit of correspondence models and corrected smoothed particle hydrodynamics

(SPH) schemes [50], we introduce a correction tensor M(x) to (2.2):

θ corr (x) =
d

m(δ)

∫

Bδ (x)∩Ω

K (|y − x|) (y − x) · M(x) · (u(y) − u(x)) dy, (3.1)

M(x) =

[

d

m(δ)

∫

Bδ (x)∩Ω

K (|y − x|) (y − x) ⊗ (y − x) dy

]−1

. (3.2)

Note that for x ∈ Ω\IΩN , M(x) reverts to the identity matrix and (3.1) reverts to (2.2). With a slight abuse of

notation, we denote θ corr (x) as θ in the remainder. In the next section, we will further show that for sufficiently

smooth domain Ω and u ∈ C1(Ω ), the modified dilatation is well-posed and consistent with the local dilatation.

We next introduce a Neumann constraint to impose a traction load T on ∂ΩN by modifying the state-peridynamic

peridynamic model (2.1) in IΩN . Denoting Tp and Tn as the tangential and normal components of T, respectively,

we propose the following formulation:

LNδu(x) := −
Cα

m(δ)

∫

Bδ (x)∩Ω

(λ − µ) K (|y − x|) (y − x) (θ (x) + θ (y)) dy

−
Cβ

m(δ)

∫

Bδ (x)∩Ω

µK (|y − x|)
(y − x) ⊗ (y − x)

|y − x|2
(u(y) − u(x)) dy

−
2Cαθ (x)

m(δ)

∫

Bδ (x)\Ω

(λ − µ) K (|y − x|) (y − x) dy

−
Cβθ (x)

2m(δ)

∫

Bδ (x)\Ω

(λ + 2µ)K (|y − x|)
[(y − x) · n][(y − x) · p]2

|y − x|2
ndy

+
Cβθ (x)

2m(δ)

∫

Bδ (x)\Ω

λK (|y − x|)
[(y − x) · n]3

|y − x|2
ndy

=f(x) +
Cβ

m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n]

|y − x|2
[(y − x) · p]2[Tp(x̄)p]dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n]

|y − x|2

(

[(y − x) · n]2 − [(y − x) · p]2
)

[Tn(x̄)n]dy

:=fNδ(x), (3.3)

where x̄ is the projection of x on the boundary. In the next section, we will show that this formulation provides

an approximation for the corresponding linear elastic model with local traction loadings in the case of linear

displacement fields.
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To summarize, we obtain a formulation for a static state-based peridynamic problem with general mixed boundary

conditions:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Lδu(x) = f(x), in Ω\IΩN

LNδu(x) = fNδ(x), in IΩN

θ (x) =
d

m(δ)

∫

Bδ (x)
K (|y − x|)(y − x)T (u(y) − u(x)) dy, in Ω ∪ BΩD\IΩN

θ (x) =
d

m(δ)

∫

Bδ (x)∩Ω
K (|y − x|)(y − x)T M(x) (u(y) − u(x)) dy, in IΩN

u(x) = uD(x), in BBΩD

(3.4)

where the correction tensor is defined as

M :=

[

d

m(δ)

∫

Bδ (x)∩Ω

K (|y − x|)(y − x) ⊗ (y − x)dy

]−1

,

and a body load fNδ is defined on x ∈ IΩN as

fNδ(x) :=f(x) +
Cβ

m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n]

|y − x|2
[(y − x) · p]2[Tp(x̄)p]dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n]

|y − x|2

(

[(y − x) · n]2 − [(y − x) · p]2
)

[Tn(x̄)n]dy.

3.2. Well-posedness and consistency analysis

In this section, we will show that the modified dilatation is well-posed and consistent with the local dilatation.

Specifically, we prove that for sufficiently smooth domain, the correction tensor M is invertible, and that for

u ∈ C1(Ω ), θ → ∇ · u as δ → 0. Moreover, we will demonstrate that for linear displacement u and under

certain geometric assumptions, the modified formulation (3.4) is consistent with the classical linear elastic problem

with traction loadings. For simplicity of notation, we indicate a generic constant independent of δ as C , and write

K (|y − x|) as K .

We first analyze existence and bounds of M:

Theorem 3.1. Given that Ω ∈ Rd (d = 2) is a C3 domain, then there exists a δ > 0 such that for 0 < δ ≤ δ the

correction tensor is a well-defined symmetric matrix, and

M =

⎡

⎢

⎣

d

m(δ)

∫

Bδ (x)∩Ω
K ((y − x) · p)2dy O(δ2)

O(δ2)
d

m(δ)

∫

Bδ (x)∩Ω
K ((y − x) · n)2dy

⎤

⎥

⎦

−1

=

⎡

⎢

⎢

⎣

(

d

m(δ)

∫

Bδ (x)∩Ω
K ((y − x) · p)2dy

)−1

+ O(δ4) O(δ2)

O(δ2)

(

d

m(δ)

∫

Bδ (x)∩Ω
((y − x) · n)2dy

)−1

+ O(δ4)

⎤

⎥

⎥

⎦

.

Proof. To show that the correction tensor M is well-defined, it suffices to show that |det(M−1)| > 0. We adopt

notation in Fig. 2, with a Cartesian coordinate system oriented so that x coincides with the origin, and the vectors

p(x) and n(x) are oriented along the positive x-axis and negative y-axis, respectively. We note that

M−1 =
d

m(δ)

[

∫

Bδ (x)∩Ω
K ((y − x) · p)2dy

∫

Bδ (x)∩Ω
K ((y − x) · p)((y − x) · n)dy

∫

Bδ (x)∩Ω
K ((y − x) · p)((y − x) · n)dy

∫

Bδ (x)∩Ω
K ((y − x) · n)2dy

]

=

[

1 0

0 1

]

−
d

m(δ)

[

∫

Dδ
K ((y − x) · p)2dy

∫

Dδ
K ((y − x) · p)((y − x) · n)dy

∫

Dδ
K ((y − x) · p)((y − x) · n)dy

∫

Dδ
K ((y − x) · n)2dy

]

−
d

m(δ)

[

∫

Gδ
K ((y − x) · p)2dy

∫

Gδ
K ((y − x) · p)((y − x) · n)dy

∫

Gδ
K ((y − x) · p)((y − x) · n)dy

∫

Gδ
K ((y − x) · n)2dy

]

.

6



Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

Fig. 2. Notation for geometric estimates: Left: illustration of regions Dδ and Gδ . Green represents Dδ , the region in Bδ(x) which lies

opposite the boundary tangent at x. Cyan represents Gδ , the region in Bδ(x) which lies between ∂Ω and the boundary tangent. Right: Local

Cartesian coordinate system in neighborhood of x. Here, the region Gδ lies below the red curve y = f (x) when x = x. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

We estimate first the Dδ part. Rewriting y ∈ Dδ as x + (r cos(θ ), r sin(θ )) with sx < r < δ and −π/2 ≤

− arccos(sx/r ) ≤ θ ≤ arccos(sx/r ) ≤ π/2, we obtain

∫

Dδ

K ((y − x) · p)2dy =

∫ δ

sx

∫ arccos(sx /r )

− arccos(sx /r )

K (r )r3 sin2 θdθdr ≤

∫ δ

0

∫ π/2

−π/2

K (r )r3 sin2 θdθdr = m(δ)/4,

∫

Dδ

K ((y − x) · n)2dy =

∫ δ

sx

∫ arccos(sx /r )

− arccos(sx /r )

K (r )r3 cos2 θdθdr ≤

∫ δ

0

∫ π/2

−π/2

K (r )r3 cos2 θdθdr = m(δ)/4,

∫

Dδ

K ((y − x) · p)((y − x) · n)dy = 0,

since the first two terms decrease monotonically with increasing sx . We then have

d

m(δ)

[

∫

Dδ
K ((y − x) · p)2dy

∫

Dδ
K ((y − x) · p)((y − x) · n)dy

∫

Dδ
K ((y − x) · p)((y − x) · n)dy

∫

Dδ
K ((y − x) · n)2dy

]

=

[

dp 0

0 dn

]

where 0 ≤ dp, dn ≤ 1/2. We now proceed to show that for a domain with C3 regularity, the magnitude of all

elements in the matrix

d

m(δ)

[

∫

Gδ
K ((y − x) · p)2dy

∫

Gδ
K ((y − x) · p)((y − x) · n)dy

∫

Gδ
K ((y − x) · p)((y − x) · n)dy

∫

Gδ
K ((y − x) · n)2dy

]

are bounded by O(δ2). Note that with the Cartesian coordinate system in Fig. 2, x = (0, 0) and τ (x) = {y = 0}.

Let: y = f (x) be the curve describing ∂Ω ; κ(x) denote the curvature of ∂ΩN at x; and (c1(l), c2(l)) be the

parameterization of the boundary ∂Ω by the arclength l. Note that the range of l depends upon the particular

geometry of ∂Ω . Then we have xl = (c1(l), c2(l))T , and

xl = x +

(

l

0

)

+

(

0
κ(x)l2

2

)

+

(

c′′′
1 (0) l3

6

c′′′
2 (0) l3

6

)

+ O(l4).

The area |Gδ| ≤ |κ(x)|
δ3

3
+ O(δ4). Therefore, when δ is sufficiently small, for the kernel K in (2.4) we have

d

m(δ)

⏐

⏐

⏐

⏐

∫

Gδ

K ((y − x) · p)2dy

⏐

⏐

⏐

⏐

≤
3

πδ3
|Gδ|δ ≤

1

π
|κ(x)|δ + O(δ2) ≤ O(δ).

7
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A similar bound follows for
d

m(δ)

⏐

⏐

⏐

∫

Gδ
K ((y − x) · n)2dy

⏐

⏐

⏐
. For

d

m(δ)

⏐

⏐

⏐

∫

Gδ
K ((y − x) · n)((y − x) · p)dy

⏐

⏐

⏐
, following

from the symmetry of K ,

d

m(δ)

⏐

⏐

⏐

⏐

∫

Gδ

K ((y − x) · p)((y − x) · n)dy

⏐

⏐

⏐

⏐

=
d

m(δ)

⏐

⏐

⏐

⏐

∫

Eδ

K ((y − x) · p)((y − x) · n)dy

⏐

⏐

⏐

⏐

,

where Eδ denotes the region in Gδ which is asymmetric with respect to the y axis in the right plot of Fig. 2. As

shown in [18], the area of Eδ has |Eδ| ≤ O(δ4). Therefore

d

m(δ)

⏐

⏐

⏐

⏐

∫

Eδ

K ((y − x) · p)((y − x) · n)dy

⏐

⏐

⏐

⏐

≤ O(δ2).

For sufficiently small δ we have

|det(M−1)| ≥ (1 − dp)(1 − dn) − C(2 − dp − dn)δ − Cδ2 ≥
1

4
− Cδ > 0. □

Remark 1. From the proof of Theorem 3.1, we note that when |Eδ| = 0, i.e., when Bδ(x)\Ω is symmetric with

respect to n(x), then

M =

⎡

⎢

⎢

⎣

(

d

m(δ)

∫

Bδ (x)∩Ω
K ((y − x) · p)2dy

)−1

0

0

(

d

m(δ)

∫

Bδ (x)∩Ω
((y − x) · n)2dy

)−1

⎤

⎥

⎥

⎦

. (3.5)

We now show that the nonlocal dilatation θ corr is consistent with the local dilatation:

Theorem 3.2. Assume that u ∈ C1 and Ω is a C3 domain, then there exists δ > 0 such that for any 0 < δ ≤ δ,

|θ corr (x) − ∇ · u(x)| = O(δ)

for x ∈ IΩN . If u further satisfies u ∈ C2, then

|θ corr (x) − ∇ · u(x)| = O(δ2) + O(δ)|u|2,∞,

where |u|2,∞ is the Sobolev seminorm representing the maximum of the Hessian matrix elements for each component

of u.

Proof. We again adopt the coordinate system from Fig. 2. Denoting u p, un as the displacement components along

the directions of p(x) and n(x), respectively, for u ∈ C2 we have

θ corr − ∇ · u

=
d

m(δ)

(

M11

∫

Bδ (x)∩Ω

K ((y − x) · p)(u p(y) − u p(x))dy + M22

∫

Bδ (x)∩Ω

K ((y − x) · n)(un(y) − un(x))dy

+M12

∫

Bδ (x)∩Ω

K ((y − x) · p)(un(y) − un(x)) + K ((y − x) · n)(u p(y) − u p(x))dy

)

−
∂u p

∂p
(x) −

∂un

∂n
(x)

=
d

m(δ)

(

M11

∂u p

∂p
(x)

∫

Bδ (x)∩Ω

K |(y − x) · p|2dy + M22

∂un

∂n
(x)

∫

Bδ (x)∩Ω

K |(y − x) · n|2dy

+ M11[u p(x)]np

∫

Bδ (x)∩Ω

K [(y − x) · p]2[(y − x) · n]dy

+ M22

∫

Bδ (x)∩Ω

K [(y − x) · n]([un(x)]nn[(y − x) · n]2 + [un(x)]pp[(y − x) · p]2)dy

+M12

(

∂u p

∂n
+

∂un

∂p

)∫

Eδ

K ((y − x) · p)((y − x) · n)dy + O(δ5)

)

−
∂u p

∂p
(x) −

∂un

∂n
(x)

= O(δ2) + A1(x)[u p(x)]np + A2(x)[un(x)]nn + A3(x)[un(x)]pp = O(δ), (3.6)

8



Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

where

A1(x) :=

∫

Bδ (x)∩Ω
K (|y − x|)[(y − x) · p]2[(y − x) · n]dy
∫

Bδ (x)∩Ω
K [(y − x) · p]2dy

,

A2(x) :=

∫

Bδ (x)∩Ω
K (|y − x|)[(y − x) · n]3dy

2
∫

Bδ (x)∩Ω
K [(y − x) · n]2dy

,

A3(x) :=

∫

Bδ (x)∩Ω
K (|y − x|)[(y − x) · p]2[(y − x) · n]dy

2
∫

Bδ (x)∩Ω
K [(y − x) · n]2dy

.

For u ∈ C1, the conclusion can be shown with Taylor expansion following a similar procedure as above. □

Having proven well-posedness and accuracy of the nonlocal dilatation, we next show that the formulation in

(3.4) approximately passes the linear patch test in the local limit.

Theorem 3.3. Given that Ω ∈ Rd (d = 2) is a C3 domain, and a linear displacement field u which is a solution

of the classical linear elastic problem in the absence of forcing term f:
⎧

⎪

⎨

⎪

⎩

−∇ · (λtr (E)I + 2µE) = 0, where E =
1

2
(∇u + (∇u)T ), in Ω ,

λtr (E)n + 2µEn = T, on ∂ΩN ,

u = uD, on BBΩD.

When |Eδ| = 0, i.e., Bδ(x)\Ω is symmetric with respect to n(x) for all x ∈ IΩN , u is also the solution of the

state-based peridynamic problem (3.4) in the absence of forcing term f. When Bδ(x)\Ω is not symmetric, u passes

the linear patch test approximately in IΩN , i.e., Lδu(x) = f(x) for x ∈ Ω\IΩN , and LNδu(x) = fNδ(x) + O(δ)1

for x ∈ IΩN .

Proof. Taking a linear displacement field u = Dx + b where D ∈ Rd×d , b ∈ Rd , for x ∈ Ω\IΩN the proof can be

found in, e.g., [51]. We therefore focus on x ∈ IΩN , and again employ the notation in Fig. 2. Moreover, we denote

the elements of D as Di j , i, j ∈ {1, 2}.

We first consider the case when |Eδ| = 0 for all x ∈ IΩN . Substituting (3.5) into the definition of θ in (3.4), we

obtain θ (x) = D11 + D22 for all x ∈ Ω ∪ BΩD . Note that

Tp = µ

(

∂u p

∂n
+

∂un

∂p

)

= µ(D12 + D21), Tn = λ∇ · u + 2µ
∂un

∂n
= (λ + 2µ)D22 + λD11,

the proof of LNδu(x) = fNδ(x) is obtained via a straightforward substitution of u and θ into (3.3).

We now consider the general case. Combining u = Dx+b and (3.6) yields θ (x) = D11+D22+O(δ2). Substituting

the definitions of θ and u into (3.3), we then have:

LNδu(x) − fNδ(x)

=O(δ)1 −
2Cα(D11 + D22)

m(δ)

∫

Bδ (x)

(λ − µ) K (y − x) dy

−
Cβ

m(δ)

∫

Bδ (x)∩Ω

µK
(y − x) ⊗ (y − x)

|y − x|2
· D(y − x)dy

−
Cβ(D11 + D22)

2m(δ)

∫

Bδ (x)\Ω

(λ + 2µ)K
[(y − x) · n][(y − x) · p]2

|y − x|2
ndy

+
Cβ(D11 + D22)

2m(δ)

∫

Bδ (x)\Ω

λK
[(y − x) · n]3

|y − x|2
ndy

−
Cβµ(D12 + D21)

m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n]

|y − x|2
[(y − x) · p]2pdy

−
Cβ[(λ + 2µ)D22 + λD11]

2m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n]

|y − x|2

(

[(y − x) · n]2 − [(y − x) · p]2
)

ndy

9
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=
Cβ

m(δ)

∫

Eδ

µK
D11[(y − x) · p]3 + D22[(y − x) · p][(y − x) · n]2

|y − x|2
pdy

+
Cβ

m(δ)

∫

Eδ

µK
(D12 + D21)[(y − x) · p][(y − x) · n]2

|y − x|2
ndy + O(δ) = O(δ)1. □

Corollary 1. Given that Ω ∈ Rd (d = 2) is a C3 domain and |Eδ| = 0, then the set of rigid deformations Π is in

the solution set of (3.4) with f = 0 and T = 0.

We now investigate the consistency of the proposed mixed-type volume constraint formulation for general u, by

considering the truncation estimate of the local solution. We denote uδ as the solution of the nonlocal problem (3.4)

and u0 as the solution of the corresponding linear elasticity problem:
⎧

⎪

⎨

⎪

⎩

L0u = −∇ · (λtr (E)I + 2µE) = f, where E =
1

2
(∇u + (∇u)T ), in Ω ,

λtr (E)n + 2µEn = T, on ∂ΩN ,

u = uD, on BBΩD.

(3.7)

Denoting the truncation estimate eδ(x) := Lδuδ(x) −Lδu0(x) for x ∈ Ω\IΩN and eδ(x) := LNδuδ(x) −LNδu0(x)

for x ∈ IΩN , we may obtain the following bound for eδ:

Theorem 3.4. Assume that the local solution u0 ∈ C1, then |eδ| = O(δ2) for x ∈ Ω\IΩN and |eδ| = O(1) for

x ∈ IΩN .

Proof. For x ∈ Ω\IΩN , from eδ = f(x) − Lδu0(x) = L0u0(x) − Lδu0(x), the bound of eδ may be obtained

via Taylor expansion of u0 following a similar derivation as in [18]. Denoting u0p, u0n as the components of

u0 along the tangential and normal directions, respectively, for x ∈ IΩN , with the calculation in (3.6) we have

θ (u0) − ∇ · u0 = O(δ). Note that the tangential and normal components of the traction load satisfies

Tp = µ

(

∂u0p

∂n
+

∂u0n

∂p

)

, Tn = λ∇ · u0 + 2µ
∂u0n

∂n
,

and with the Taylor expansion of u0, for x ∈ IΩN we have

eδ =(L0u0 − L Nδu0) + (fNδ − f) = −
1

2
∇ · (λtr (∇u0 + (∇u0)T )I + 2µ(∇u0 + (∇u0)T ))

+
Cα (λ − µ)

m(δ)

∫

Bδ (x)∩Ω

K (y − x) (∇ · u0(x) + ∇ · u0(y)) dy

+
Cβ

m(δ)

∫

Bδ (x)∩Ω

µK
(y − x) ⊗ (y − x)

|y − x|2
(u0(y) − u0(x)) dy +

2Cα∇ · u0(x)

m(δ)

∫

Bδ (x)\Ω

(λ − µ) K (y − x) dy

+
Cβ∇ · u0(x)

2m(δ)

∫

Bδ (x)\Ω

(λ + 2µ)K
[(y − x) · n][(y − x) · p]2

|y − x|2
ndy

−
Cβ∇ · u0(x)

2m(δ)

∫

Bδ (x)\Ω

λK
[(y − x) · n]3

|y − x|2
ndy +

Cβ

m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n]

|y − x|2
[(y − x) · p]2[Tp(x̄)p]dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n]

|y − x|2

(

[(y − x) · n]2 − [(y − x) · p]2
)

[Tn(x̄)n]dy + O(1)1 = O(1)1. □

Remark 2. From Theorem 4.2 in the next section, we will see that given the possible numerical error from boundary

approximations in the meshfree formulation, the O(1) truncation estimate of eδ for x ∈ IΩN is of optimal in

M-convergence tests.

Remark 3. To theoretically show the L2 convergence of uδ to the local limit u0, a nonlocal Poincare–Korn’s

inequality would be required which will be addressed in the future work. In this work we demonstrate the

asymptotic convergence rate with numerical examples in Section 5, where a first order convergence O(δ) is observed

for ||uδ − u0||L2(Ω), which indicates that the O(1) truncation estimate in IΩN is sufficient to obtain asymptotic

10
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convergence when δ = O(h). A similar phenomenon was also observed on the Neumann constraint nonlocal

diffusion problem in [18].

4. Optimization-based meshfree quadrature rules

In this section, we introduce a strong-form particle discretization of the state-based peridynamics introduced

above. Discretizing the whole interaction region Ω∪BBΩ by a collection of points Xh = {xi }{i=1,2,...,Np} ⊂ Ω∪BBΩ ,

we aim to solve for the displacement ui ≈ u(xi ) and the nonlocal dilatation θi ≈ θ (xi ) on all xi ∈ Xh . We first

characterize the distribution of collocation points as follows. Recall the definitions [52] of fill distance

hχh ,Ω = sup
ui ∈Ω∪BΩ

min
xi ∈χh

∥xi − x j∥2,

and separation distance

qχh
=

1

2
min
i ̸= j

∥xi − x j∥2.

For simplicity we drop subscripts and simply write h and q. We assume that χh is quasi-uniform, namely that there

exists cqu > 0 such that

qχh
≤ hχh ,Ω ≤ cquqχh

.

To maintain an easily scalable implementation, in this paper we assume δ to be chosen such that the ratio h
δ

is

bound by a constant M as δ → 0, restricting ourselves to the “M-convergence” scenario [23].

As the first step, for the original LPS model (2.1), we pursue a discretization through the following one point

quadrature rule at a collection of collocation points Xh [53]:

(Lh
δ u)i := −

Cα

m(δ)

∑

x j ∈Bδ (xi )

(λ − µ) Ki j

(

x j − xi

) (

θi + θ j

)

ω j,i

−
Cβ

m(δ)

∑

x j ∈Bδ (xi )

µKi j

(

x j − xi

)

⊗
(

x j − xi

)

⏐

⏐x j − xi

⏐

⏐

2
·
(

u j − ui

)

ω j,i = fi , (4.1)

θ (x) =
d

m(δ)

∑

x j ∈Bδ (xi )

Ki j

(

x j − xi

)

·
(

u j − ui

)

ω j,i , (4.2)

where we adapt the notations f (xi ) = fi and f (xi , x j ) = fi j , and we specify
{

ω j,i

}

as a to-be-determined collection

of quadrature weights admitting interpretation as a measure associated with each collocation point xi . We define

in this section an optimization-based approach to defining these weights extending previous work [17], constructed

to ensure consistency guarantees. Specifically, we seek quadrature weights for integrals supported on balls of the

form

I [ f ] :=

∫

Bδ (xi )

f (x, y)dy ≈ Ih[ f ] :=
∑

x j ∈Bδ (xi )

f (xi , x j )ω j,i (4.3)

where we include the subscript i in
{

ω j,i

}

to denote that we seek a different family of quadrature weights for

different subdomains Bδ(xi ). We obtain these weights from the following optimization problem

argmin
{ω j,i}

∑

x j ∈Bδ (xi )

ω2
j,i such that, Ih[p] = I [p] ∀p ∈ Vh (4.4)

where Vh denotes a Banach space of functions which should be integrated exactly. We refer to previous work [17]

for further information, analysis, and implementation details.

Provided the quadrature points are unisolvent over the desired reproducing space, this problem may be proven to

have a solution by interpreting it as a generalized moving least squares (GMLS) problem [12]. For certain choices

of Vh , such as mth-order polynomials, unisolvency holds under the assumptions that: the domain Ω satisfies a cone

condition, the pointset Xh ∩ Bδ(xi ) is quasi-uniform, and δ is sufficiently large [52].

11
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In previous work we have provided truncation error estimates relating the quadrature error convergence rate to

the order of singularity in the kernel. As discussed in [17], the key to obtaining these quadrature weights is that

they may be evaluated analytically, either via analytic rules [54] or the aid of symbolic integration software. In this

work, we choose a reproducing space sufficient to integrate (4.1) and (4.2) exactly in the case where u and θ are

quadratic polynomials.

Theorem 4.1. Let Vh =
{

q = p(y)

|y−x|3
| p ∈ P5(Rd ) such that

∫

Bδ (x)
q(y)dy < ∞

}

where p ∈ P5(Rd ) is the space

of quintic polynomials, and assume Bδ(x) ⊂ Ω∪BBΩD and that the optimization problem (4.4) has a solution. Then

the meshfree optimization-based quadrature (OBQ) approximations to (2.1) and (2.2) are exact for u ∈ (P3(Rd ))d

and θ ∈ P2(Rd ). Further, for u ∈ C3 and θ ∈ C2 the truncation error for all nonlocal operators in (2.1) converge

to its local limit with an O(δ2) rate in the limit δ → 0.

Proof. We prove only for the nonlocal gradient; the other operators follow similarly. Rewriting the gradient as
∫

Bδ (x)

|x−y|2

|x−y|3
(y − x) (θ (x) + θ (y)) dy and assuming θ ∈ P2, we obtain a component-wise form

∫

Bδ (x)

p(y)

|x−y|3
dy where

p ∈ P5, and thus the quadrature is exact via the equality constraint of (4.4). To prove convergence, note that we may

rewrite
∫

Bδ (x)

|x−y|2

|x−y|3
(y − x) (θ (y) − θ (x)) dy because constants are in the null-space of the nonlocal gradient. The

proof then follows from Thm. 2.1 of [17], by approximating θ (y) − θ (x) via a third order Taylor series, converting

to polar coordinates, and bounding terms. □

Remark 4. We have selected this particular choice of reproducing space so that the same quadrature weights may be

used for all nonlocal operators. The cost of constructing the quadrature scales as dim(Vh)3, and significant savings

may result by instead generating quadrature rules for each operator specifically. For example, one may obtain the

same convergence by selecting Vh =
{

y−x

|y−x|
(p(y) + p(x)) | p ∈ P2(Rd )

}

in the nonlocal gradient. As solving (4.4)

amounts to inverting a small dense matrix, we may expect a substantial (dim(P2)/dim(P5))3 speed-up in this case

(73×speedup in 2D and (56/10)3×speedup in 3D). Because the requisite optimization problems are amenable to

fine-grained parallelism on GPUs using libraries such as the Compadre toolkit [55], we prefer in this work to use

a single quadrature rule for all operators; in our implementation the cost of constructing the quadrature weights is

negligible compared to solving the resultant stiffness matrix after discretization.

Remark 5. In many quadrature schemes it is desirable to enforce the positivity of quadrature weights (i.e. ω j,i > 0).

While we do not pursue this property in the current work, (4.4) may be modified to enforce this property via

an inequality constraint. In the context of maximum principle preserving meshfree discretizations this has been

considered [56]. We note that for quasi-uniform particle distributions, we have seen only a small number of negative

quadrature weights, and that these are generally very small compared to the other positive weights.

We now apply the above quadrature rule to the LPS model with traction loads applied on a sharp boundary

∂ΩN . For xi ∈ IΩN , we note that Bδ(xi )\Ω ̸= ∅. In the meshfree formulation, the boundary ∂ΩN is represented

by breaking bonds between xi and x j ∈ Bδ(xi )\Ω , as demonstrated in Fig. 3. For x j ∈ Ω , we denote the bond

between xi and x j as “intact” and the change of displacement on material point x j may have an impact on the

displacement at xi . On the other hand, when x j /∈ Ω , we consider the bonds between xi and x j as “broken”. To

discretize (3.1) and (3.3), the quadrature weights associated with intact bonds will be employed in the calculation

of integrals inside Bδ(xi ) ∩ Ω and the weights associated with broken bonds will be employed for integrals inside

Bδ(xi )\Ω . Particularly, we express the quadrature weights associated with intact bonds ω̃ j,i and the quadrature

weights associated with broken bonds ω̂ j,i in terms of the scalar mask γ j,i :

γ j,i =

{

1, if x j ∈ Bδ(xi ) ∩ Ω ,

0, otherwise,
ω̃ j,i = ω j,iγ j,i , ω̂ j,i = ω j,i (1 − γ j,i ). (4.5)

Numerical quadrature of a given function a(x) over Bδ(xi ) ∩ Ω and Bδ(xi )\Ω may thus be calculated via
∫

Bδ (xi )∩Ω

a(y)dy ≈
∑

x j ∈Bδ (xi )

ω̃ j,i a(x j ),

∫

Bδ (xi )\Ω

a(y)dy ≈
∑

x j ∈Bδ (xi )

ω̂ j,i a(x j ).

12
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Fig. 3. Illustration of neighbor points and bonds for xi ∈ IΩN , where the yellow points represent x j /∈ Ω and blue points represent x j ∈ Ω .

Left: An illustration of broken/intact bonds in the meshfree formulation. Right: An approximate boundary provided by breaking bonds in

the meshfree formulation. The black and red curves indicate two possible boundaries represented by the same formulation in (4.6) and (4.7).

With a purely volumetric particle representation of the boundary, it is not possible to avoid first order truncation estimates from errors in the

representation of the geometry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

This process is consistent with how damage is typically induced in bond-based peridynamics, such as the prototype
microelastic brittle model [57]. Applying the above formulation in (3.1) and (3.3) we propose the following meshfree
scheme:

(Lh
Nδu)i :=

∑

x j ∈Bδ (xi )

Ki j

m(δ)

[(

−Cα (λ − µ)
(

x j − xi

) (

θi + θ j

)

− Cβµ

(

x j − xi

)

⊗
(

x j − xi

)

⏐

⏐x j − xi

⏐

⏐

2
·
(

u j − ui

)

)

ω̃ j,i

+

(

−2Cα (λ − µ)
(

x j − xi

)

−
Cβ (λ + 2µ)ni

2

[
(

x j − xi

)

· ni ][
(

x j − xi

)

· pi ]
2

⏐

⏐x j − xi

⏐

⏐

2
+

Cβλni

2

[
(

x j − xi

)

· ni ]
3

⏐

⏐x j − xi

⏐

⏐

2

)

θi ω̂ j,i

]

= f(xi ) +
∑

x j ∈Bδ (xi )

Ki j ω̂ j,i

m(δ)

(

Cβ Tp(x̄i )pi

[
(

x j − xi

)

· ni ]
⏐

⏐x j − xi

⏐

⏐

2
[
(

x j − xi

)

· pi ]
2

+
Cβ Tn(x̄i )ni

2

[
(

x j − xi

)

· ni ]
⏐

⏐x j − xi

⏐

⏐

2

(

[
(

x j − xi

)

· ni ]
2 − [

(

x j − xi

)

· pi ]
2
)

)

:= (fNδ)i , (4.6)

θi =
d

m(δ)

∑

x j ∈Bδ (xi )

Ki j

(

x j − xi

)

· Mi ·
(

u j − ui

)

ω̃ j,i , (4.7)

where

Mi :=

⎡

⎣

d

m(δ)

∑

x j ∈Bδ (xi )

Ki j (x j − xi ) ⊗ (x j − xi )ω̃ j,i

⎤

⎦

−1

. (4.8)

Note that although we have shown in Theorem 3.1 that M(xi ) exists when ∂Ω is sufficiently smooth, the numerical

evaluation of the correction tensor further requires that
∑

x j ∈Bδ (xi ) Ki j (x j − xi ) ⊗ (x j − xi )ω̃ j,i be invertible. This is

true as long as there are at least d non-collinear bonds within the horizon. In some settings, such as violent dynamic

fracture, for a given particle all bonds may break, leaving an isolated particle. In this case the matrix inverse M−1
i

may be replaced with a pseudo-inverse M+
i to improve robustness of the scheme.

Note that in the traction-type boundary condition formulation (3.3), the unit normal vector n(x̄) is required, and

the unit tangential vector p(x̄) can then be calculated as the orthogonal unit vector of n(x̄). However, in realistic

settings the analytical form of n(x̄) is often unavailable. To approximate the normal vector at x̄i for each xi , we

note that

n(x̄) ≈ −

∫

Bδ (x)∩Ω
(y − x)dy

⏐

⏐

⏐

⏐

⏐

⏐

∫

Bδ (x)∩Ω
(y − x)dy

⏐

⏐

⏐

⏐

⏐

⏐

.
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Therefore numerically we calculate the normal direction as ni as

ni = −

∑

x j ∈Bδ (xi )

(x j − xi )ω̃ j,i

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

∑

x j ∈Bδ (xi )

(x j − xi )ω̃ j,i

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

, (4.9)

and the tangential vector pi is calculated as the orthogonal direction to ni .

Note that the formulation (4.9) provides a practical approximation of the unit normal vector for each x ∈ IΩN

instead of each x̄ ∈ ∂ΩN , which therefore induces possible numerical errors in (4.6). Moreover, in (4.6) and (4.7)

we only solve for u and θ in Ω , which is equivalent to breaking any bond intersecting the Neumann boundary ∂ΩN .

We highlight that quadrature weights ω j,i are computed in the reference configuration before bonds are broken, and

therefore no remeshing or calculation of quadrature weights will be required as fracture progresses. This property

offers an efficient and sharp treatment of boundary geometry which may be easily implemented in popular particle

mechanics codes. However, as illustrated in Fig. 3, such a numerical approximation for the boundary shape ∂ΩN

introduces an O(h) error to the boundary shape and correspondingly to the provided traction load T on ∂ΩN , and

therefore errors in (4.6) and (4.7).

To characterize the resulting numerical error, in the following we consider an equivalent problem: a perturbed

traction load T̂(x) is provided on ∂ΩN , i.e., there exists a constant C which is independent of h and δ, such that

|T̂(x) − T(x)| ≤ Ch, ∀x ∈ ∂ΩN .

Moreover, due to the presumed perturbation of the geometry and the numerical error in (4.9), for x ∈ IΩN we

assume that the normal and tangential directions are also perturbed such that n̂ − n = O(h) and p̂ − p = O(h).

With the perturbed traction loads and perturbed unit vectors specified above, we denote the (perturbed) nonlocal

operator defined in (3.3) as L̂Nδ , the (perturbed) nonlocal dilatation defined in (3.1) as θ̂ , and

f̂Nδ(x) :=f(x) +
Cβ

m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n̂]

|y − x|2
[(y − x) · p̂]2[T̂p(x̄)p̂]dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K (|y − x|)
[(y − x) · n̂]

|y − x|2

(

[(y − x) · n̂]2 − [(y − x) · p̂]2
)

[T̂n(x̄)n̂]dy. (4.10)

We then provide the truncation estimate corresponding to the above perturbations as follows.

Theorem 4.2. Assume that u ∈ C1, Ω is C3 smooth, T̂ is a perturbed approximation of the local traction load

as defined in (3.7):

T̂p(x̄) = µ

(

∂u p

∂n
(x) +

∂un

∂p
(x)

)

+ O(h), T̂n(x̄) = λ∇ · u(x) + 2µ
∂un

∂n
(x) + O(h), ∀x ∈ ∂ΩN ,

where u p, un are the components of u along the non-perturbed tangential and normal directions respectively. The

truncation estimates from perturbed T, n and p for nonlocal operator in (3.3) is bounded by O(1) under the

M-convergence condition. Specifically,

|L̂Nδu − f̂Nδ − LNδu + fNδ| = O(1).

Proof. From the definition of nonlocal dilatation in (3.1), we note that θ is not influenced by the perturbations on

traction loads and normal/tangential directions, i.e., θ̂ = θ . To obtain the bound for the nonlocal operator in (3.3)

we separate the truncation estimate into two parts, the part from perturbation on T and the part induced by the

perturbation of n and p:

L̂Nδu − f̂Nδ − LNδu + fNδ = H1 + H2.

H1 :=
Cβ

m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n̂]

|y − x|2
[(y − x) · p̂]2(Tp(x̄) − T̂p(x̄))p̂dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K
[(y − x) · n̂]

|y − x|2

(

[(y − x) · n̂]2 − [(y − x) · p̂]2
)

(Tn(x̄) − T̂n(x̄))n̂dy
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H2 :=
Cβ(λ + 2µ)θ (x)

2m(δ)

∫

Bδ (x)\Ω

K

|y − x|2

(

[(y − x) · n][(y − x) · p]2n − [(y − x) · n̂][(y − x) · p̂]2n̂
)

dy

+
Cβλθ (x)

2m(δ)

∫

Bδ (x)\Ω

K

|y − x|2

(

[(y − x) · n̂]3n̂ − [(y − x) · n]3n
)

dy

+
Cβ

m(δ)

∫

Bδ (x)\Ω

K

|y − x|2

(

[(y − x) · n][(y − x) · p]2[Tp(x̄)p] − [(y − x) · n̂][(y − x) · p̂]2[Tp(x̄)p̂]
)

dy

+
Cβ

2m(δ)

∫

Bδ (x)\Ω

K

|y − x|2

(

[(y − x) · n]
(

[(y − x) · n]2 − [(y − x) · p]2
)

[Tn(x̄)n]

−[(y − x) · n̂]
(

[(y − x) · n̂]2 − [(y − x) · p̂]2
)

[Tn(x̄)n̂]
)

dy.

With a similar technique as in Theorem 3.4 and with the δ/h = M assumption in M-convergence tests, we can

show that each term in H1 and H2 is bounded by O(1). □

Remark 6. From the proof of Theorem 4.2, we can see that in M-convergence tests either an O(h) error on the

provided traction load or an O(h) error on the approximated unit normal and tangential vectors will induce an

O(1) truncation estimate in (3.3) for x ∈ IΩN , which is of the same order generated by the proposed traction-type

boundary condition formulation as discussed in Theorem 3.4. Therefore, when using meshfree formulations and

the broken bond techniques to induce damage as in [57], the proposed nonlocal traction loading formulation is of

optimal asymptotic M-convergence rate to its local limit.

To sum up, with the meshfree discretization described above and the optimization-based quadrature weights ω j,i ,

i = 1, . . . , Np, we solve for the displacement u(xi ) and nonlocal dilatation θi from:

Kη = F. (4.11)

Here η is the vector of unknowns organized as follows:

η = [u1, . . . , uDO F , v1, . . . , vDO F , θ1, . . . , θDO F ]T .

DO F = #i : xi ∈ Ω is the total number of material points to be solved, and u, v are the components of displacement

such that ui = [ui , vi ]. K is a 3DO F × 3DO F stiffness matrix. The right hand side F is organized following a

similar way as for η.

5. Numerical verification and asymptotic compatibility

In this section we numerically verify the approach by investigating accuracy when recovering analytic solutions

in the M-convergence limit with mixed boundary conditions. We consider: linear patch tests, smooth manufactured

solutions, analytical solutions to curvilinear surface loading problems, and analytical solutions to linearly elastic

composites. For each case, we consider various combinations of Dirichlet and traction-type boundary conditions,

exploring also the effect of reduced regularity on the traction problem by considering both Lipschitz and smooth

boundaries. For each case we consider refinements of both Cartesian grids with mesh spacing h, and nonuniform

grids generated by perturbing the Cartesian grids with a uniformly distributed random vector field (∆x,∆y),

∆x,∆y ∼ U [−0.2h, 0.2h]. For the sake of brevity we report the formal convergence study in the Appendix,

but summarize the setup and main conclusions for each case below, particularly focusing on whether optimal first

order convergence in δ is realized as δ → 0, or if a lack of boundary regularity leads to suboptimal convergence.

In all cases considered, the scheme does provide AC convergence as δ, h → 0.

5.1. Linear patch test

We consider as linear patch test the displacement

u(x, y) = (3x + 2y, −x + 2y)

15



Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

on a square domain Ω = [−π/2, π/2] × [−π/2, π/2], with three different boundary conditions:

1. Full Dirichlet-type boundary conditions: ∂ΩD = ∂Ω ;

2. Mixed boundary conditions with traction loads applied on a straight line: ∂ΩN = {(x, π/2)|x ∈ [−π/2, π/2]}

and ∂ΩD = ∂Ω\∂ΩN ;

3. Mixed boundary conditions with traction loads applied on corner:

∂ΩN = {(x, π/2)|x ∈ [−π/2, π/2]} ∪ {(π/2, y)|y ∈ [−π/2, π/2]} and ∂ΩD = ∂Ω\∂ΩN .

Note that in linear patch tests, the local and nonlocal solutions coincide. On settings 2 and 3, a traction-type boundary

condition

T =

[

5λ + 6µ µ

µ 5λ + 4µ

]

n (5.1)

is applied on the interface ∂ΩN , with material parameters following the plane strain assumption:

λ = Kν/((1 + ν)(1 − 2ν)), µ = K/(2(1 + ν)),

for Young’s modulus K = 1. Two values of Poisson ratio ν = 0.3 and 0.49 are investigated which correspond

to compressible and nearly-incompressible materials, respectively. To demonstrate independence of M-convergence

rate to choice of M , we consider both δ = 3.5h and δ = 3.9h. Note that in problems with the boundary condition

setting 3, when x is close to the corner the projection point x is possibly ill-defined and therefore induces ambiguity

of definition on T(x). To resolve this possible issue, in setting 3 we define T(x) following (5.1) where n is the

numerical approximation of normal direction following (4.9).

Uniform discretization: With settings 1 and 2, we observe that the numerical solution passes the patch test to

within machine precision. Note that in setting 2, ∂ΩN consists of a straight line and therefore Bδ(x)\Ω is symmetric

with respect to n, and the numerical result is consistent with Theorem 3.3. In setting 3, Bδ(x)\Ω is not symmetric

when x is close to the corner, and the numerical solution only passes the linear patch test approximately. In Fig. A.16,

we compare L2(Ω ) error vs. h for displacement and dilatation to demonstrate first order AC convergence for both

u and θ , independent of δ/h and ν.

Non-uniform discretization: For a randomly perturbed grid, machine precision accuracy is again observed for

setting 1 imposing full Dirichlet-type boundary conditions. With setting 2, the patch test is no longer satisfied as

Bδ(x)\Ω is generally asymmetric with respect to the background grid. We plot the L2(Ω ) errors of u and θ vs. h

in Fig. A.17. To investigate the impact of error in calculation of boundary normals, we present L2(Ω ) errors either

approximately using the estimate from (4.9), or using the exact normals. From Fig. A.17, we observe an O(h)

convergence for the L2(Ω ) error of u, and a deteriorated convergence rate for θ . When comparing the numerical

results from approximated n and exact n, we surprisingly observed smaller numerical errors from the cases with

approximate normal direction n.

In Fig. A.18 we consider boundary condition setting 3. Since there is no analytical normal direction defined on

the corner point, we only investigate the results from approximated normal unit vector through formulation (4.9).

Comparing with the O(h) convergence rate in the uniform discretization cases, setting 3 converges with suboptimal

0.75th order convergence for u and 0.5th order for θ on non-uniform grids.

5.2. Manufactured solution test

To study the rate of convergence to the AC limit, we manufacture the local solution

u0(x, y) = [sin(Ax) sin(Ay), − cos(Ax) cos(Ay)]

by imposing forcing consistent with the local operator

f(x, y) = [2(λ + 2µ)A2 sin(Ax) sin(Ay), −2(λ + 2µ)A2 cos(Ax) cos(Ay)].

A square domain Ω = [−π/2, π/2] × [−π/2, π/2] and the three boundary condition settings described in the

previous Section 5.1 are applied, to again consider the effect of boundary regularity. On BBΩD , the Dirichlet

boundary condition uD(x, y) = u0(x, y) is applied, while on the Neumann boundary we apply the traction condition

T(x, y) =

[

2A(λ + µ) cos(Aπ/2) sin(Ay) 2Aµ sin(Aπ/2) cos(Ay)

2Aµ sin(Ax) cos(Aπ/2) 2A(λ + µ) cos(Ax) sin(Aπ/2)

]

n.
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Fig. 4. Left: Problem settings for circular hole in an infinite solid under remote loading with spheres representing a non-uniformed

discretization. Right: Final deformed object when taking the far-field tensile stress σ0 = 0.3. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

We adopt material parameters under plane strain assumptions:

K = 1, λ = Kν/((1 + ν)(1 − 2ν)), µ = K/(2(1 + ν)),

and compare Poisson ratios ν = 0.3 or 0.49 again corresponding to compressible/near-incompressible limits. The

parameter A is taken as 0.4. For the possible ambiguity of projection point in setting 3, we set T following a similar

convention as in the linear patch test: for x ∈ IΩN close to the corner point (π/2, π/2), we set T(x) ≈ T(x) where

n is numerically approximated with (4.9).

Uniform discretization: For Dirichlet boundary condition second-order convergence is achieved, consistent with

the analysis in Theorem 4.1 and the L2(Ω ) convergence results are presented in Fig. A.19. For traction loadings on

straight and corner boundaries (Settings 2 and 3), we present L2(Ω ) convergence results in Fig. A.20 and Fig. A.21,

respectively. In these settings first-order convergence is observed for both u and θ .

Non-uniform discretization: With non-uniform particle distribution, Fig. A.22 demonstrates second-order L2(Ω )

convergence for both u and θ under Setting 1. Under Setting 2, Fig. A.23 demonstrates again first-order convergence.

Again, somewhat surprisingly, when using the estimated normals one obtains improved accuracy, albeit with the

same convergence rates. In Fig. A.24, we further consider Setting 3 where ∂ΩN includes a corner. Comparing with

the results from uniform discretizations as shown in Fig. A.21, a similar convergence rate (O(h)) is obtained for

both u and θ on non-uniform discretizations with setting 3.

5.3. Traction loading on curvilinear surfaces

We next consider more physical settings corresponding to homogeneous and inhomogeneous traction loadings

on a curvilinear surface. Two different problems are considered:

1. We consider a free-surface circular hole of radius a in an infinite solid under remote loading σ0, as illustrated

in Fig. 4. Under a plane strain assumption the classical linear elasticity model yields the displacement field

u0(r, θ) =

⎛

⎝

σ0a

8µ

[

r
a

(κ + 1) cos θ + 2a
r

((1 + κ) cos θ + cos 3θ) − 2a3

r3 cos 3θ

]

σ0a

8µ

[

r
a

(κ − 3) sin θ + 2a
r

((1 − κ) sin θ + sin 3θ) − 2a3

r3 sin 3θ

]

⎞

⎠ . (5.2)

where κ = 3 − 4ν and (r, θ) are the radial distance and azimuthal angle in cylindrical coordinates. To set

the problem up, we impose the analytic local solution u0 as a Dirichlet-type condition on the nonlocal collar

around the perimeter of a unit square. We then break all bonds crossing the circle of radius a = 0.2, and

apply T = 0 on the sharp interface ∂ΩN = {(x, y)|x2 + y2 = a2}, fixing σ0 = 1.

2. As an example of imposing non-zero traction loads, we consider the deformation of a hollow cylinder under

an internal pressure p0, as illustrated in Fig. 5. Under a plane strain assumption the classical linear elasticity
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Fig. 5. Left: Problem settings for a hollow disk under internal pressure with spheres representing a non-uniformed discretization. Right:

Final deformed disk when taking the internal pressure p0 = 0.1. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

model predicts displacements given by

u0(x, y) =

[

Ax +
Bx

x2 + y2
, Ay +

By

x2 + y2

]

where

A =
(1 + ν)(1 − 2ν)p0 R2

0

K (R2
1 − R2

0)
, B =

(1 + ν)p0 R2
0 R2

1

K (R2
1 − R2

0)
,

R0 and R1 are the interior and exterior radius of the hollow disk. Here we take R0 = 1 and R1 = 1.5. We

impose the analytic local solution u0 as a Dirichlet-type condition on the nonlocal collar around the exterior

boundary ∂ΩD = {(x, y)|x2 + y2 = R2
1} and break all bonds crossing the inner circle of radius R0 = 1, and

apply T = p0n on the interface ∂ΩN = {(x, y)|x2 + y2 = R2
0}. In all M-convergence tests we take p0 = 0.1.

In the following tests we take the Young’s modulus K = 1 and test with different Poisson ratios ν = 0.3 and 0.49.

To investigate the asymptotic compatibility when δ/h = C , we employ uniform and non-uniform discretizations and

refine δ and h simultaneously while keeping the ratio δ/h a constant. In uniform discretizations, we take collocation

points Xh = {(ah, bh), a, b ∈ N}, and in non-uniform discretizations the uniform grid points are perturbed with

(∆x,∆y), ∆x,∆y ∼ U [−0.2h, 0.2h]. Note here even with uniform discretizations, the collocation points do not

align with ∂ΩN since the later is a circular curve, which introduces numerical errors as discussed in Theorem 4.2.

In both settings we also investigate performances of the proposed formulation with the approximated normal unit

vector formulation (4.9) and the analytical normal direction.

Setting 1, Free circular surface: In Fig. A.25 and Fig. A.26, we demonstrate AC convergence for uniform

and non-uniform particle distributions, respectively, for both compressible (ν = 0.3) and incompressible (ν = 0.49)

materials. From the results, we observe first order convergence in the L2(Ω ) norm for the displacements in all cases.

A deteriorated order of convergence is observed for θ , where a roughly 0.7th order is achieved for both uniform

and non-uniform discretizations. When comparing the results with approximated n and the results with analytical

n, the formulation with analytical n performs similar or sometime slightly better than the results with approximated

n. Therefore, the formulation (4.9) still provides a reasonable numerical approximation for the normal unit vector

n.

Setting 2, Hollow disk under pressure: In Figs. A.27 and A.28, we present AC convergence for uniform

and non-uniform particle configurations. We observe nearly first-order L2(Ω )-norm convergence for displacements

in both compressible and nearly-incompressible materials. Surprisingly, for nearly-incompressible materials, O(h)

order convergence is achieved for θ , but for compressible material a reduced order (around 0.65) convergence is
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observed. Again, the convergence rates are nearly identical for analytical n and approximated n. Therefore, the

approximation formulation (4.9) again provides a good practical estimate of n.

5.4. Composite materials with discontinuous material properties

We now further consider an extension of the state-based peridynamics formulation (2.1) to composite materials

constituted of n phases, so that the domain may be partitioned into disjoint subdomains with piecewise constant

material properties, i.e. Ω = ∪kΩk , Ωk ∩ Ωl = ∅, and λ(x) = λk , µ(x) = µk for x ∈ Ωk . Discussions on the

mathematical properties of this heterogeneous system can be found in, e.g., [58]. Specifically, when λ(x) and µ(x)

may vary for each material point x, we propose the following formulation:

Lδu := −
Cα

m(δ)

∫

Bδ (x)

(λ(x, y) − µ(x, y)) K (|y − x|) (y − x) (θ (x) + θ (y)) dy (5.3)

−
Cβ

m(δ)

∫

Bδ (x)

µ(x, y)K (|y − x|)
(y − x) ⊗ (y − x)

|y − x|2
(u(y) − u(x)) dy = f(x),

where the two-point functions µ(·, ·), λ(·, ·) denote averaged material properties satisfying µ(z, z) = µ(z) and

λ(z, z) = λ(z). We will consider for the purposes of this work the harmonic mean

2

µ(x, y)
=

1

µ(x)
+

1

µ(y)
,

2

λ(x, y)
=

1

λ(x)
+

1

λ(y)
. (5.4)

Correspondingly, to evaluate the above formulation, we modify the meshfree formulation with optimization-based

quadrature weights in (4.1) as follows:

−
Cα

m(δ)

∑

x j ∈Bδ (xi )

(

λi j − µi j

)

Ki j

(

x j − xi

) (

θi + θ j

)

ω j,i

−
Cβ

m(δ)

∑

x j ∈Bδ (xi )

µi j Ki j

(

x j − xi

)

⊗
(

x j − xi

)

⏐

⏐x j − xi

⏐

⏐

2
·
(

u j − ui

)

ω j,i = fi , (5.5)

where λi j := λ(xi , x j ) and µi j := µ(xi , x j ).

We numerically investigate the AC convergence of the nonlocal solution for a hydrostatically loaded cylindrical

inclusion of radius a in an infinite plate. We denote the interior of the inclusion as Ω1 and the exterior as Ω2, with

corresponding constant material properties (µ1, λ1) and (µ2, λ2). Assuming a far-field hydrostatic stress P∞ and

plane strain conditions, we define the coefficients

CA =
P∞

2(λ1 + µ1)
,

CB =
P∞ (λ1 + µ1 + µ2)

2(λ1 + µ1)(λ2 + 2µ2)
,

CC = −
P∞a2 (λ1 − λ2 + µ1 − µ2)

2(λ1 + µ1)(λ2 + 2µ2)
,

and the analytic local solution for the displacement field in cylindrical coordinates is given by

ur =

{

CAr x ∈ Ω1,

CBr + CC/r x ∈ Ω2,
uθ = 0.

We use this solution to assess the stability of the method in the vicinity of large jumps in material properties — for

such scenarios high-order meshfree reconstructions have been shown to demonstrate unphysical oscillations near

material interfaces [59]. Note that the consistency conditions derived only guarantee asymptotic compatibility under

the assumption of an isotropic material; this benchmark thus explores the applicability of the approach beyond the

guarantees of the approximation theory in Theorem 4.1.

We first investigate whether the discretization is AC. We take a = 0.2, impose a jump in the bulk modulus

(K1 = 2, K2 = 1), and apply the analytic local solution u0 as a Dirichlet-type condition on the nonlocal collar around

the perimeter of a unit square. We consider three scenarios corresponding to different material compressibilities: (1)
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ν1 = ν2 = 0.25, (2) ν1 = ν2 = 0.49 and (3) ν1 = 0.49, ν2 = 0.25. We present L2(Ω ) convergence for both uniform

and randomly perturbed particle distributions in Fig. A.29 and Fig. A.30 respectively. For both scenarios, for all

three Poisson ratio combinations we obtain first- and half-order convergence for the displacement and dilatation,

respectively.

We next investigate the stability of the approach over a large range of material parameters. To do this, we set

µ1 = 1 and fix the Poisson ratio in both phases to ν1 = ν2 = 1
4

and impose a jump in the Young’s modulus of

K2/K1 = Q, for Q ∈
{

2−8, 28
}

. In these tests we employ a square domain Ω := [−π/2, π/2] × [−π/2, π/2] and

apply the analytic local solution u0 as a Dirichlet-type condition on the nonlocal collar around the perimeter of

Ω . In Fig. 6, we plot a profile of the x-component of displacement along the y = 0 line to provide a qualitative

assessment of the solution. We demonstrate convergence for both a stiff inclusion (K1 = 64K2), a soft inclusion

(K2 = 64K1), and then illustrate that we reproduce well the displacement for a wide range of parameters.

6. Fracture dynamics for brittle fracture experiments

The previous sections have established the ability of the scheme to recover local solutions of boundary value

problems in elasticity governed by traction loadings and ensured that the breaking bonds treatment does not impair

the AC convergence of the quadrature treatment. Of course, the main appeal of peridynamic discretizations is to

handle fracture problems, and we devote the remainder of the paper to demonstrating how the scheme prescribed

previously adapts to practical engineering settings, where now free surfaces are associated with the time evolution

of a fracture surface. We specifically consider brittle fracture mechanics in linearly elastic materials and provide

validation against experiment and existing numerical results. The main objective of this section is to provide a

proof-of-principle demonstration that the framework introduced thus far applies to realistic settings, however overall

the provided preliminary validation provides good agreement.
In this section we introduce an inertial term to handle dynamics
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ρ
∂2u(x,t)

∂t2 + Lδu(x, t) = f(x, t), for (x, t) ∈ Ω\IΩN × [0, T ],

ρ
∂2u(x,t)

∂t2 + LNδu(x, t) = fNδ(x, t), for (x, t) ∈ IΩN × [0, T ],

θ (x, t) =
d

m(δ)

∫

Bδ (x) K (|y − x|)(y − x)T (u(y, t) − u(x, t)) dy, for (x, t) ∈ (Ω ∪ BΩD\IΩN ) × [0, T ],

θ (x, t) =
d

m(δ)

∫

Bδ (x)∩Ω K (|y − x|)(y − x)T M(x) (u(y, t) − u(x, t)) dy, for (x, t) ∈ IΩN × [0, T ],

u(x, t) = uD(x, t), for (x, t) ∈ BBΩD × [0, T ],

u(x, 0) = uI C (x),
∂u(x,0)

∂t
= vI C (x),

∂2u(x,0)

∂t2 = wI C (x), for x ∈ Ω ∪ BBΩD,

(6.1)

where ρ is the material density and uI C , vI C , wI C are the initial displacement, velocity and acceleration fields,

respectively. To model brittle fracture, for x j ∈ Bδ(xi ) we break the bond between xi and x j when the associated

strain exceeds a critical strain criteria s0:

si j :=
∥u j − ui + x j − xi∥ − ∥x j − xi∥

∥x j − xi∥
> s0. (6.2)

We employ the criteria derived in [60] relating s0 to material parameters:

s0 =

√

G0

4(λ − µ)β ′ + 8µβ
, (6.3)

where β = 3δ
4π

, β ′ = 0.23873δ, and G0 is the critical energy release rate or fracture energy. For x j ∈ Bδ(xi ), this

damage criterion can be implemented by replacing the static state weight γ j,i in (4.5) with a history-dependent

scalar boolean state function γ j,i (t):

γ j,i (t) =

{

1, if si j (τ ) ≤ s0, ∀τ ≤ t, and x j ∈ Bδ(xi )Ω ,

0, otherwise,
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Fig. 6. Displacements across the y = 0 line, comparing prediction to analytic solution for composite problem. Upper left: Convergence to

analytic solution for a soft inclusion (K2/K1 = 1/64). Upper right: Convergence to analytic solution for a stiff inclusion (K2/K1 = 64).

Bottom: For a fixed resolution of 642 points, reproduction of analytic solution for a wide range of K2/K1 ∈
(

2−8, 28
)

. Solid line corresponds

to analytic solution, while dots correspond to numerical result. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

such that ω̃ j,i = ω j,iγ j,i (t), ω̂ j,i = ω j,i (1 −γ j,i (t)). To postprocess fracture evolution and identify cracks, we define

the damage as

φi (t) =

∑

x j ∈B(xi )(1 − γ j,i (t))
∑

x j ∈B(xi ) 1
. (6.4)

For the purposes of fracture identification, we say that a crack occurs at xi if φi exceeds 0.35. This threshold is

somewhat arbitrary, but necessary to, e.g., postprocess the crack propagation velocity at which a crack grows.

To discretize we apply the Newmark scheme together with the meshfree quadrature established previously
⎧
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i ), for xi in Ω\IΩn+1
N ,

4ρ

∆t2 ün+1
i + (Lh

Nδu)n+1
i = (fh

Nδ)n+1
i + 4ρ
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i + ∆t2

4
ün

i ), for xi in IΩ
n+1
N ,

θn+1
i =

d

m(δ)

∑

x j ∈Bδ (xi )

Ki j (x j − xi )
T
(

un+1
j − un+1

i

)

ω j,i , for xi in Ω ∪ BΩD\IΩn+1
N ,

θn+1
i =

d

m(δ)

∑

x j ∈Bδ (xi )

Ki j (x j − xi )
T Mi

(

un+1
j − un+1

i

)

ω̃ j,i , for xi in IΩ
n+1
N ,

un+1
i = uD(xi ), for xi in BBΩD,

(6.5)

where ∆t is the time step size, fn+1
i := f(xi , tn+1), Lh

δ and L
h
Nδ are the discretized nonlocal operators as defined in

(4.1) and (4.6), respectively, and fh
Nδ is also as defined in (4.6). The acceleration and velocity at the n + 1th time

step are then calculated as follows:

ün+1
i :=

4

∆t2
(un+1

i − un
i − ∆tun

i ) − ün
i , u̇n+1

i := u̇n
i +

∆t

2
(ün

i + ün+1
i ).

Note that because the evolving fracture creates new free surfaces, ∂ΩN and IΩN alter with time. To capture the

implicit coupling between the material response and the evolving geometry due to fracture evolution, we employ
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Table 1

Material properties used in pre-cracked soda-lime glass experiment.

Young’s modulus E Poisson ratio ν Density ρ Fracture energy G0

72 GPa 0.23 2440 kg/m3 3.8 J/m2

Fig. 7. Problem setup for pre-cracked soda-lime glass experiment under tensile loading, following [63].

subiterations at each time step as follows. We first assume no new bonds have been broken at the current time step

and solve for the displacement field. Based on the displacement field, we evaluate the damage criteria (6.2) for each

bond. If any bond meets the criteria of breaking, we break all these bonds, update the corresponding state functions

γ j,i and quadrature weights ω̂ j,i and ω̃ j,i , then solve for the displacement field again with new free surfaces. We

repeat this procedure until no new broken bonds are detected, and finally proceed to the next time step.

We consider three benchmark problems involving material damage. In Sections 6.1–6.2 we study dynamic crack

propagation and branching in glass. In Section 6.1, we adopt the benchmark problem from [61] and simulate a

pre-cracked glass plate under sudden tensile loading. In Section 6.2, we reproduce a recent experiment considering

V-notched glass samples impacted by a striker [62]. In Section 6.3, we simulate the material fragmentation of a

cylinder under internal pressure and identify the number of fragments.

6.1. Dynamic brittle fracture I: Pre-cracked glass under tensile loading

We first investigate the crack propagation and branching of soda-lime glass as a prototypical brittle fracture

exemplar, whereby a pre-notched thin rectangular plate is subject to tensile loads on its top and bottom (Fig. 7).

Following the setup in [63], we consider plate dimensions of 0.1 m by 0.04 m with an initial crack of length 0.05 m,

and a constant tensile load σ = 2 MPa applied on the top and bottom of the sample starting at T = 0. All other

boundaries, including the new boundaries created by cracks, are treated as free surfaces. The mechanical properties

of soda-lime glass are listed in Table 1. This problem was studied in several numerical studies on bond-based

peridynamics [37,63,64] and non-ordinary state-based peridynamics [65] (see [26] for a review). Experimentally

the crack propagation speed is fairly reproducible and was reported as 1580 m/s in [66]. To validate our scheme’s

ability to reproduce crack propagation speed and branching location we compare against available numerical and

experimental results from [61,63,66].

We first plot in Fig. 8 the fracture evolution based on a uniform grid spacing with h = 5 × 10−4 m, δ = 4h

and ∆t = 6.25 × 10−2
µs. A qualitative comparison to the results from [61, Figure 5] shows that we qualitatively

recover the same dynamics as existing simulations, independent of particle distribution.

For engineering applications, non-uniform discretizations are desirable to handle complex geometries and

establish grid independence. For many discretizations, so-called grid-imprinting may qualitatively numerically skew

fracture patterns so that they correlate with mesh orientation and special care is often required in numerical

methods [30,61]. To this end, we compare the effect of particle anisotropy on the resulting fracture, comparing

our approach to a popular meshfree quadrature rule from designed for Cartesian particle distributions [25,68]. We

also compare against a mesh-based approach, building a Delaunay mesh on a Cartesian grid with nodal spacing

h and assigning particles at cell centroids with quadrature weight equal to the cell measure [64,67]. We generate

non-uniform discretizations by perturbing either the particle locations or Delaunay nodes by 0.2h , and consider
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Fig. 8. Simulated damage evolution of pre-cracked soda-lime glass crack branching study, using resolution h = 0.0005 m and δ = 0.002 m.

Left: uniform discretization, Right: non-uniform discretization. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 9. Simulated fracture pattern at T = 42 µs for pre-cracked soda-lime glass crack branching study, using various quadrature strategies and

resolution h = 0.0005 m, δ = 0.002 m. Left: uniform discretization, Right: non-uniform discretization. For non-uniform grids, the proposed

meshfree approach predicts branching in line with a Delaunay mesh-based discretization [64,67]. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

h = 5×10−4 m. Ideally, we would hope to recover results comparable to the mesh-based approach on non-uniform

discretizations, without the need to introduce a mesh into the problem. By comparing the corresponding fracture

patterns in Figs. 8 and 9, we can see that with our proposed meshfree scheme is more robust to particle anisotropy

than traditional meshfree quadrature, providing nearly identical results on uniform or nonuniform grids.
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Table 2

Quantitative comparison of crack dynamics to existing experimental and numerical works. Here “Exp” stands for experimental results from

[66], “BB” is the estimated result with the bond-based peridynamics measured from [63], and “SB” corresponds to the current approach

with the state-based peridynamics.

Quantity Exp BB (δ =2e-3m) BB (δ =5e-4m) SB (δ =2e-3m) SB (δ =1e-3m)

Branching Location (m) – 0.065 0.068 0.070 0.068

Branching Time (µs) – 23.0 21.5 21.8 22.5

Max Prop Speed (m/s) 1580 2000 1679 2250 2000

Fig. 10. Comparison of the soda-lime glass (normalized) crack propagation speed: proposed formulation versus numerical results reported

in [61]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To quantitatively validate our simulation results, we validate the time and location of crack branching and the

crack propagation speed and compare against [61,63,66]. In all experiments, we kept a fixed time step size ∆t =

6.25×10−2
µs and a fixed ratio δ/h = 4. Theoretically, the nonlocal length scale in state-based peridynamics should

be smaller than geometrical features to prevent unrealistic nonlocal interactions. Therefore, we also investigate the

M-convergence test by decreasing h and δ simultaneous to see if crack propagation features converge, considering

h = 5 × 10−4 m and h = 2.5 × 10−4 m. In Table 2, we compare these quantities of interest against numerical and

experimental data. We obtain good agreement for the branching time and location, but overestimate the maximum

speed. This may be a result of under-resolution, as the overestimation is reduced under refinement. However, we

note that several other methods [26,64,65] achieve similar results. To conclusively establish an improvement in the

current formulation regarding this quantity of interest, we defer a deeper investigation of this discrepancy to an

upcoming work involving a parallel implementation of the current scheme allowing a more involved refinement

study.

In Fig. 10 we plot the predicted crack propagation speeds under different δ as functions of time, and compare

them with the numerical results from [63]. All results are normalized by the Rayleigh wave speed cR = 3102 m/s.

We can observe that the numerical simulation shows a similar trend: prior to the crack entering the branching

phase, the speed gradually decreases, and then rapidly increases after branching. These trends are also observed in

experiments [62,69].

6.2. Dynamic brittle fracture II: V-notched glass under impact

Recently, Dondeti and Tippur have studied impact-induced crack branching experiments on soda-lime glass by

applying three prevalent optical techniques: transmission photoelasticity, 2D Digital Image Correlation (DIC) and

transmission Digital Gradient Sensing (DGS) [62]. Following the setup sketched in Fig. 11, a Hopkinson pressure

bar was used to impart a impulse upon a V-notch and study the resulting fracture — we defer to [62] for further
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Fig. 11. Problem setup for V-notched soda-lime glass specimen under impact, following [62].

Fig. 12. Experimental fracture patterns and comparison to numerical prediction for V-notch case. From left to right: experimental results

from photoelasticity in [62]; experimental results from Digital Image Correlation (DIC) in [62]; experimental results from Digital Gradient

Sensing (DGS) in [62]; numerical simulation results from the proposed approach. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 3

Mechanical properties for V-notched soda-lime glass specimens taken from [62].

Young’s modulus E Poisson ratio ν Density ρ Fracture energy G0

70 GPa 0.22 2500 kg/m3 8 J/m2

details of the experimental setup. Three nominally identical but separate experiments were carried out to compare

three different optical techniques in [62], and the experimental results are reproduced here in the first three plots

of Fig. 12. Although the branching location and the branching angles were not reported in [62], we used the

photographs shown in Fig. 12 to measure branch locations and angles to serve as validation data. For the three

specimens, crack branching was observed at 53%, 56%, and 53% of the width, with branching angles as 57◦, 69◦,

and 55◦, respectively. Moreover, one can observe that in all specimens the crack path presents small oscillations

near the far end of the sample due to wave reflections/spalling, which we aim to reproduce.

In this experiment, detailed information regarding contact force history, crack propagation speed, branching angle

and point of branching are provided, allowing validation of numerical simulations against experiment using identical

experimental loading conditions. In Table 3 we list the material properties of soda-lime glass as provided in [62],

where the fracture energy G0 = 8 J/m2 is measured during the experiment using the DGS technique when crack

initiates. The force histories on the V-notch faces of the specimen by the long-bar were evaluated with DGS, as
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Fig. 13. Left: Normal force loads applied to V-notch, demonstrating forces measured from experiment (DGS) (reproduced from [62]) and

approximate piecewise linear load applied in simulations. Right: Crack speed profiles, comparing experimental results (DGS) (reproduced

from [62]) to numerical prediction. Time is denoted after the onset of branching. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

reproduced in blue in the left plot of Fig. 13. In our numerical simulations, a piecewise linear approximation of

the applied normal force is applied uniformly over the V-notch surface as a time-varying traction load. Following

the settings in [62], the frictional effect is neglected. Moreover, since the actual measurement of the bar tip shape

was not provided in experiments, we assume that the full length of the V-notch is loaded, although we note that

the predicted failure patterns might differ from the ones produced by the partial loading of the notch surfaces [70].

Crack velocities were also estimated in [62], and the results indicate that both the photoelastic recording and the

DGS method provided reliable velocity history profiles.

To simulate the experiment, plane stress assumptions are adopted and traction loads are applied consistent with

the experimentally measured normal force at the V-notch and free surfaces over the remainder of the boundary.

A uniform discretization is employed with grid size h = 0.5 mm, and we select horizon δ = 4h , and time step

∆t = 0.125 µs. The predicted fracture pattern and crack velocity profile is given in Fig. 12 and Fig. 13, respectively.

In Fig. 12, results show that branching happens at location 60% away from the left edge of the sample, with

a branching angle of around 58◦. While the branching angle matches very well within the range of angles from

experimental measurements (55◦–69◦), the branching location is a little further than the measurements in experiment

(53% − 56%), in what follows we explore possible explanations. Oscillations in the fracture surface are reproduced

near the back of the specimen. In Fig. 13 we provide comparisons of the crack speed as a function of time.

For the results provided, the results provide qualitative agreement sufficient for the purposes of this work. We

do offer speculation regarding possible explanation and areas which may lead to improved quantitative agreement.

Regarding the discrepancy in branching location, Mehrmashhadi et al. was able to achieve better agreement with

experiment by applying the normal force loading over a subset of the full V-notch, to model the effect of reduced

area under contact [70]. We remark that we were able to achieve improved agreement in crack branching location

with similar techniques. We omit any results along these lines however, as our focus is only to demonstrate our

boundary treatment for a realistic problem and a careful analysis of physical modeling assumptions is beyond the

scope of this work. We also note that Mehrmashhadi et al. was able to employ a finer mesh; again we defer a

careful analysis of such effects to a future work where we introduce a scalable implementation.

Next we characterize the reproducibility of the predicted crack paths, considering in particular the effect

of anisotropy in the underlying discretization. For an increasing magnitude of perturbation ratio r ∈ (0, 1), a

quasi-uniform pointset is generated by perturbing every point in the uniform grid by a uniformly distributed

random variable of magnitude rh. In this study we take h = 0.5 mm, ∆t = 0.125 µs, δ = 2 mm and

r ∈ {0.01, 0.03, 0.05, 0.1, 0.15, 0.2}. For each r , we calculate solutions corresponding to 20 non-uniform particle

distributions. To investigate the impact of non-uniform grids on crack features, we record the branching location

and branching angle, and report their means and standard errors versus the grid perturbation ratio r in Fig. 14.

For the branching location, all simulations predict fairly consistent results: the crack starts to branch at around

60%–62% of the specimen width. Larger variations are observed on the branching angle when r ≥ 0.03, which is
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Fig. 14. Reproducibility and effect of anisotropy in spatial location of crack branching point. Non-uniform discretizations are employed by

perturbing the uniform particle locations by rh, r ∈ [0, 0.2]. Left: Mean and standard error of predicted branching location. Right: Mean

and standard error of branching angles.

Table 4

Mechanical properties for the cylinder fragmentation under internal pressure example, following [71,72].

Material properties Young’s modulus E Poisson ratio ν Density ρ Fracture energy G0

Value 200 GPa 0.3 7800 kg/m3 1.125 × 105 J/m2

Table 5

Predicted number of large and small fragments in the cylinder under

internal pressure simulation.

Number of

particles

Number of large

fragments

Number of small

fragments

3124 12 2

12 587 15 3

22 413 15 9

35 035 14 4

possibly due to the fact that these estimates are sensitive to the placement of the branching points. Across all r , a

mean angle with 57◦–60◦ is predicted, which lies in the range observed from experiments (55◦–69◦). The numerical

results indicate that these crack features are not overly sensitive to small perturbations in the discretization grids,

demonstrating the suitability of the scheme to handle nontrivial problems without imparting grid anisotropy effects

on the resulting fracture prediction.

6.3. Fragmentation of cylinder expansion

In the last example simulation, we consider the fragmentation of a cylinder under internal pressure, so as to

evaluate the proposed algorithm on handling multiple cracks and fragments. Following a similar setting as in [71],

a cylinder with inner radius 80 mm and outer radius 150 mm is employed, with material properties listed in Table 4.

The cylinder is subject to an internal p = p0e−t/t0 , where p0 = 2.5 GPa, and t0 = 0.01 ms. We run the simulation

with δ = 4h, ∆t = 0.05 µs, and four different levels of spatial resolution: 3124, 12 587, 22 413, and 35 035

discretization points (particles). For each set of discretization points, we generate non-uniform grids by perturbing

particle positions by a uniformly distributed perturbation of magnitude 0.2h . In Fig. 15, we show simulation results

at T = 0.2 ms, when the cylinder breaks into fragments. The number of large and small fragments are listed in

Table 5, where we can observe that the number of large fragments is generally consistent except for the case with

the coarsest resolution. The number of small fragments generally increases when using finer discretizations but it

is not monotonic. These observations as well as the number of large fragments are consistent with the simulation

results in [71], where a particle model was employed and 15–16 numbers of large fragments were predicted in
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Fig. 15. Predicted fragmentation of a cylinder under internal pressure at T = 0.2 ms, with different discretization resolutions. Left top: 3124

particles. Right top: 12 587 particles. Left bottom: 22 413 particles. Right bottom: 35 035 particles. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

numerical simulations with 12 500–39 000 particles. This suggests the current scheme is appropriate for handling

blast loading predictions, and provides consistent predictions as resolution is refined.

7. Conclusion and future work

Peridynamics presents a flexible framework for modeling fracture mechanics. In particular, bond-based fracture

models admit a sharp representation of fracture surfaces while avoiding the loss of mass associated with damage

models and element death [73]. This flexibility comes with a cost however, as the free-surface introduced during

fracture compounds traditional challenges in peridynamic models related to nonlocal boundary conditions. This

work has presented a complete workflow demonstrating for linearly elastic material how quadrature, boundary

and traction loading may be handled in such a way that one preserves a limit to the relevant local problem

as resolution is increased. This is a major contribution to the field of peridynamics — while numerous works

have demonstrated the flexibility of peridynamics in modeling a diverse set of physical phenomena, comparatively

few have demonstrated rigorous notions of convergence and grid independence. Rigorous accuracy guarantees are

fundamental to trusting predictions made by numerical models, and this work aims to provide an important first

step toward putting peridynamics on the same footing as e.g. finite element methods for local mechanics.

The primary focus of this work has been to establish schemes, quadrature rules, and boundary treatment and

provide rigorous mathematical analysis. While numerical examples have been provided at a level appropriate

for establishing the scheme’s feasibility for practical problems, an important next step is to generate a perfor-

mant parallel implementation allowing one to consider high-resolution predictions in two and three dimensions.

For several of the validation studies provided here we were unable to reach the resolution used by other

state-of-the-art peridynamic discretizations due to memory limitations of our serial implementation. The method

itself is embarrassingly parallelizable, as the generation of quadrature weights and dilatation corrections involves
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Fig. A.16. Linear patch test with uniform discretizations: traction loads applied on boundary including a corner. Left: L2(Ω ) errors of

displacement u. Right: L2(Ω ) errors of dilatation θ . (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. A.17. Linear patch test with non-uniform discretizations: traction loads applied on a straight line. Left: L2(Ω ) errors of displacement

u. Right: L2(Ω ) errors of dilatation θ . (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. A.18. Linear patch test with non-uniform discretizations: traction loads applied on boundary including a corner. Left: L2(Ω ) errors of

displacement u. Right: L2(Ω ) errors of dilatation θ . (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

only the local construction and inversion of small linear matrices. In an upcoming work we will provide a clear

demonstration of how the convergence guarantees provided by our approach translates to improved prediction

accuracy for realistic problems. We will additionally consider the generalization of this approach to nonlinear

elastoplasticity governing ductile failure.
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Fig. A.19. M-convergence tests on a square domain with uniform discretizations and full Dirichlet-type boundary conditions. Left: the L2(Ω )

difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit

θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.20. M-convergence tests on a square domain with uniform discretizations and traction loads applied on a straight line. Left: the

L2(Ω ) difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local

limit θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.21. M-convergence tests on a square domain with uniform discretizations and traction loads applied on boundary including a corner.

Left: the L2(Ω ) difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ

and its local limit θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Fig. A.22. M-convergence tests on a square domain with non-uniform discretizations and full Dirichlet-type boundary conditions. Left: the

L2(Ω ) difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local

limit θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.23. M-convergence tests on a square domain with non-uniform discretizations and traction loads applied on a straight line. Left: the

L2(Ω ) difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local

limit θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.24. M-convergence tests on a square domain with non-uniform discretizations and traction loads applied on boundary including a

corner. Left: the L2(Ω ) difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation

θ and its local limit θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Fig. A.25. M-convergence tests for a free-surface circular hole under remote loading with uniform discretizations. Left: the L2(Ω ) difference

between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit θ0 = ∇ · u0.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.26. M-convergence tests for a free-surface circular hole under remote loading with non-uniform discretizations. Left: the L2(Ω )

difference between displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit

θ0 = ∇ · u0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.27. M-convergence tests for a hollow disk under internal pressure with uniform discretizations. Left: the L2(Ω ) difference between

displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit θ0 = ∇ · u0. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.28. M-convergence tests for a hollow disk under internal pressure with non-uniform discretizations. Left: the L2(Ω ) difference between

displacement u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit θ0 = ∇ · u0. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.29. M-convergence tests for composite materials with uniform discretizations. Left: the L2(Ω ) difference between displacement u

and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit θ0 = ∇ · u0. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.30. M-convergence tests for composite materials with non-uniform discretizations. Left: the L2(Ω ) difference between displacement

u and its local limit u0. Right: the L2(Ω ) difference between the nonlocal dilatation θ and its local limit θ0 = ∇ · u0. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Convergence studies

A.1. Linear patch tests

See Figs. A.16–A.18.

A.2. Manufactured solution test

See Figs. A.19–A.24.

A.3. Traction loads on curvilinear free surfaces

See Figs. A.25–A.28.

A.4. Composite materials with discontinuous material properties

See Figs. A.29 and A.30.
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