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Abstract

Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture
of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from
converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk
mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper,
we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree
quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct
a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in
the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence
of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically
compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which
have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp
representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and
demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction
loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of
dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical
engineering problems.

(© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Peridynamics provides a description of continuum mechanics in terms of integral operators rather than classical
differential operators [1-7]. These nonlocal models are defined in terms of a lengthscale §, referred to as a horizon,
which denotes the extent of nonlocal interaction. The nonlocal viewpoint allows a natural description of processes
requiring reduced regularity in the relevant solution, such as fracture mechanics [8,9]. An important feature of such
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models is that when classical continuum models still apply, they revert back to classical continuum models as
8 — 0. Discretizations which preserve this limit under refinement 7 — 0 are termed asymptotically compatible
(AC) [10], and there has been significant work in recent years toward establishing such discretizations — for an
incomplete list see [10-20]. Broadly, strategies either involve adopting traditional finite element shape functions
and carefully performing geometric calculations to integrate over relevant horizon/element subdomains, or adopt
a strong-form meshfree discretization where particles are associated with abstract measure. The former is more
amenable to mathematical analysis due to a better variational setting, while the latter is simple to implement and
generally faster [21,22]. In this paper we pursue the meshfree viewpoint.

For fracture mechanics problems one often refines both § and % at the same rate under so-called M-convergence,
8 = Mh, for M > 0 [23]. In this setting, one obtains banded stiffness matrices allowing scalable implementations.
Typically in the literature a scheme is termed AC if it recovers the solution in both the finite § and M-convergence
limit — in this work we abuse the definition slightly and only require the M-convergence case for asymptotic
compatibility as the relevant limit for problems with a corresponding local limit. This AC property is only
one necessary ingredient in achieving a convergent simulation, and our recent work focused upon establishing
convergence in this setting for boundary value problems [18,19]. To achieve similar convergence for problems
involving fracture, one must also consider the interplay between consistency of quadrature for discrete operators
and the imposition of traction loads as fracture surfaces open up and evolve [24]. For peridynamic fracture
problems where the free surface evolves implicitly via the breaking of bonds [17,25], one lacks an explicit boundary
representation over the course of a simulation. In addition to providing challenges regarding accurate imposition of
traction loads, the breaking of bonds also renders higher-order numerical quadrature inaccurate, as consistent AC
quadrature weights are typically derived in the absence of damage.

Our goal is to provide a comprehensive treatment of fracture, nonlocal quadrature, and traction loading which
is able to perform more accurate state-based peridynamic fracture simulations free of spurious surface effects. In
particular, when no fracture occurs and therefore the classical continuum theory applies, the formulation should
preserve the AC limit under M-convergence. When fracture occurs, the formulation should be able to capture
the material damage and the evolving fracture surfaces via bond breaking. This practically means that one is
able to incorporate all of the necessary ingredients to perform non-trivial simulations of fracture mechanics while
maintaining a scalable implementation and guaranteeing convergence. Such a capability is elusive in the peridynamic
literature; while peridynamics has been shown to provide a powerful modeling platform for a broad range of
applications [26,27], the development of efficient discretizations with rigorous underpinnings has lagged behind
until the last few years.

The challenge in incorporating traction loading into a peridynamic framework stems from the fact that, in
contrast to local mechanics, peridynamic boundary conditions must be defined on a finite volume region outside the
surface [9,20,28]. Theoretical and numerical challenges arise in how to mathematically impose nonhomogeneous
Neumann boundary conditions properly in the nonlocal model. In peridynamic models, careless imposition of
traction loads leads to a smaller effective material stiffness close to the boundary, since the integral on those
material points is over a smaller region. Therefore, an unphysical strain energy concentration is induced, leading
in turn to an artificial softening of the material near the boundary. Such undesirable phenomena are referred to
in the literature as a “surface” or “skin” effects [29,30]. We propose a novel treatment of nonlocal traction-type
boundary conditions which avoid the surface effect by designing a loading aimed to recover the corresponding local
traction boundary condition as § — 0. The approach requires no explicit representation of the boundary, imposing
the traction volumetrically using the same information that would be available during a traditional meshfree
bond-based peridynamics simulation. Although the Neumann-constrained nonlocal problem and its AC limit were
investigated in nonlocal diffusion models [18-20,28,31,32], to the authors’ best knowledge, the development of AC
peridynamic formulations with traction-type boundary conditions remains restricted to weak formulations, simple
traction loadings and/or simple geometries. Several modeling and numerical approaches have been proposed to
correct the surface effect [7,33-39] but mostly restricted to free surfaces. For nonzero loadings, the tractions are
often applied as prescribed body forces through a layer of finite thickness at the material boundary [27,33,40],
as a surface integral through a weak form [41], or by modifying the nonlocal operator through eigenvalues
analysis [42]. Therefore, developing an AC meshfree discretization method for peridynamics which is capable to
handle nonhomogeneous traction loadings on complex boundaries is critical for the general practice of peridynamics
in realistic engineering applications.
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We consider the linear peridynamic solid (LPS) model [43] as a prototypical state-based model appropriate
for brittle fracture. The LPS model may be interpreted as a nonlocal generalization of the mixed form of linear
elasticity, evolving both displacements and a dilatation. We will show that consistent treatment evolving traction
loading will require a modification to the definition of dilatation to guarantee consistency in the presence of
fractures; conceptually this corresponds to the fact that dilatation is a kinematic variable without associated boundary
conditions, and should be estimated consistently independently of whether a fracture is occurring in the vicinity
of a given point. Based on the modified nonlocal dilatation, we further propose a new nonlocal generalization of
classical traction loads in the LPS model. Particularly, we convert the local traction loads to a correction term in the
momentum balance equation, which provides an estimate for the nonlocal interactions of each material point with
points outside the domain. Based on this traction-type boundary condition, a meshfree formulation is developed
for the LPS model based on the optimization-based quadrature rule [17], which preserves the AC limit under
M-convergence and naturally represents the evolving free surfaces in dynamic fracture problems. We note that
asymptotic compatibility is not well-defined for dynamic fracture, as there is no known corresponding local theory
for peridynamics with bond breaking.! However, our modified LPS formulation preserves the AC limit for the
linear elastic model with traction loading on the evolving fracture surfaces. This fact, together with the consistent
discretization introduced here, provides the opportunity for efficient and accurate peridynamic fracture simulations.

We remark that the paper is organized to first establish the rigorous mathematical underpinnings of the approach,
while the second half focuses on a more engineering-oriented exploration of its application. Readers with more
applied interests may skip many of the proofs in the work without issue. The work is organized as follows. We recall
first the linear peridynamic solid (LPS) model definition in Section 2. In Section 3.1, we introduce a novel approach
to apply classical traction loads on the LPS model. After establishing the continuous limits of the scheme, we
next pursue a consistent discretization. In Section 4 we introduce meshfree quadrature which preserves asymptotic
compatibility in the 6 — 0 limit, and establish the discrete scheme for boundary value problems in the absence
of fracture. We proceed to investigate a number of two-dimensional statics problems with analytic solutions for
the local limit in Section 5. These test cases include: linear patch tests (Section 5.1); manufactured local limits to
illustrate asymptotic convergence rates (Section 5.2); homogeneous materials with free-surfaces or non-zero traction
loading on curvilinear surfaces (Section 5.3); composite materials with internal interfaces (Section 5.4). In Section 6,
we further extend the proposed formulation to handle dynamic brittle fracture, and provide preliminary validation
results by comparing our numerical results with available numerical simulations and experimental measurements
on three benchmark problems. Section 7 summarizes our findings and discusses future research.

2. A linear state-based peridynamic model

We consider the state-based linear peridynamic solid (LPS) model in a body occupying the domain 2 C R?,
d =2 or 3. Let 6 be the nonlocal dilatation, generalizing the local divergence of displacement, and K (r) denote
a positive radial function with compactly supported on the §-ball Bs(x). The momentum balance and nonlocal
dilatation are then given by the following,

C.

Louim (= 1) K(ly — x1) (y — %) (0x) + 0(3)) dy @.1)
m(8) Bs(x)

C _ _
=G uky - xh T BT ) uw) dy = ).
m(8) Jp;x) ly — x|

d

600 = —— [ Ky —x)(y -9 - (u(y) — u(x)) dy, 22)

m(8) Bs(x)

where u € R? denotes the displacement, f € R? denotes the body load, the weighted volume

m@) = [  K(y-xDly—xPdy.
Bs(x)
and p, A denote the shear and Lame modulus, respectively. With appropriate choice of scaling parameters C, > 0,
Cg > 0 and the weighting function K (), it can be shown that the system converges to the Navier equations [47-49]:

Lou = —V - Ar(E) + 2uE) = —(h — p)V[t(E)] — uV - 2E + t(E)I) = f, 2.3)

1 There is an emerging theory of local fracture modeling that is approached by peridynamic models with bond softening, see [24,44—46).
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Fig. 1. Notations for the projection of point x € Z{2, the corresponding unit tangential vector p(X) and the unit normal vector n(X).

1
where the strain tensor E := —(Vu + (Vu)”) and we note that tr(E) = V - u. To recover parameters for 3D linear
elasticity, C, = 3, Cg = 30. For 2D problems, C, = 2, Cg = 16. In this paper we consider 2D problems (d = 2)
and the following popular scaled kernel:

1 3
_ . K - .

K(r) = o for r < §; (r) _ P forr <§; 2.4)
0, forr >3$, m(d) 0, for r > 8.

although the idea may be generalized to more general kernels and 3D cases. As shown in [49], we can define the
nonlocal strain energy density as

Cod (A — ) 2
T2 Jo |:/Ba(x) K(ly — x|y — x) - (u(y) — u(x)) dy] dx
Cpu f K(ly —x|) }

- - dy|d
2o oy 00000 P
and the energy space Ss({2) as

Ws(w) =

K
S(2) = {ueLz(m:|u|55(Q>: e / f |;'y_ [(u(y) u<x>)~<y—x>12dydx<oo}.

Note that |ufg, ) = 0 if and only if u represents an infinitesimally rigid displacement, i.e.:

ux) e Il :={Qx+b,Q e R Q" = —-Q, b € R?}.

3. Neumann and mixed-type constraint problems

We now consider a state-based peridynamic problem with general mixed boundary conditions: 32 = 32y | 92y
and (842p)° ()(@2y)° = @. Here 0{2p and 32y are both 1D curves. We denote the regions near the boundary a2
as

= {x € N|dist(x, 9{2) < 8}, Bf? = {x ¢ 2|dist(x, 3(2) < §}, BB = {x ¢ 2|dist(x, d2) < 25}.

Note that to apply the nonlocal Dirichlet-type boundary condition, u(x) = up(x) is required in a layer with non-
zero volume outside {2, while the proposed traction load is applied as a Neumann boundary condition on the sharp
interface d{2y. To define a Dirichlet-type constraint, we denote

Z02p = {x € 2|dist(x, d{2p) < 8}, BN2p = {x ¢ N2|dist(x, 92p) < 8}, BBN2p = {x ¢ 2|dist(x, d{2p) < 28},
and assume that the value of u is given on BBf2p. Similarly, to apply the Neumann constraint, we denote

Iy = {x e 2|dist(x, d2y) < 8}, B2y = {x ¢ 2|dist(x, 02x) < &}, BBy = {x ¢ 2|dist(x, 2y) < 26}.
Unless stated otherwise, in this paper we further assume sufficient regularity in the boundary that we may take &
sufficiently small so that for any x € Z{2y (see Fig. 1 for illustration), there exists a unique orthogonal projection

of x onto 3{2y. We denote this projection as X. Therefore, one has X —x = s, n(X) for x € Z2y, where 0 < s, < §.
Here n denotes the normal direction pointing out of the domain for each x € Z{2y, and p denotes the tangential
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direction. Moreover, we employ the following notations for the directional components of the Hessian matrix of a
scalar function v:

W),y = p’ ®VVXPX), [VX)]wm =0"@®VeENE), [vX)] = p’ @®VeE)nX).

3.1. Formulation for non-homogeneous traction loading

In this section, we consider an LPS model subject to local traction loads on the sharp interface 92y, by
developing nonlocal Neumann constraint formulation with proper correction terms for x € Z{2y.

Firstly, we propose a corrected formulation for the nonlocal dilatation 6 in (2.2). When u e C'(£2) and
Bs(x)\ {2 = @, the definition of 6(x) limits to a local divergence operator V-u(x) as § — 0 by taking the Taylor series
expansion of u as u(y) = u(x)+VuXx)-(y — x)+ 0(8?) and employing a symmetry argument. However, for x € Z(2y
the domain of integration is non-spherical due to proximity to the boundary, and the loss of symmetry results in an
inconsistent 6. Thus, surface-effects manifest in the definition of dilatation before any modeling assumptions are
made regarding the material response. To address the surface-effect we modify the definition of nonlocal dilatation
in (2.2) to enforce consistency for linear displacement fields, independent of whether the horizon intersects the
boundary of the domain. In the spirit of correspondence models and corrected smoothed particle hydrodynamics
(SPH) schemes [50], we introduce a correction tensor M(x) to (2.2):

) d
0" (X) = — K(ly —x]) (y —x) - M(x) - (u(y) — u(x)) dy, (3.1
m(8) Bs(x)N§2
d -1
M(x) = [— K(IY—XI)(Y—X)®(y—X)dY] . (3.2)
m(8) Jpsxne

Note that for x € 2\Z{2y, M(x) reverts to the identity matrix and (3.1) reverts to (2.2). With a slight abuse of
notation, we denote 6°°"(x) as 6 in the remainder. In the next section, we will further show that for sufficiently
smooth domain {2 and u € C'(£2), the modified dilatation is well-posed and consistent with the local dilatation.

We next introduce a Neumann constraint to impose a traction load T on 3 {2y by modifying the state-peridynamic
peridynamic model (2.1) in Z{2y. Denoting T, and 7, as the tangential and normal components of T, respectively,
we propose the following formulation:

Co

L =—
W)= =SS Lnne

(A — ) K(ly —x]) (y —x) (0(x) + 0(y)) dy

C — —
- uk(y —xhyE 2B =9 () u)) dy
m(8) J Bsone ly — x|
20,0
_ 2Caf) O — ) K(ly = x) (y — x) dy
m(8) Bs(x)\ 2
—_ . p— . 2
G ot 20Ky —xp =D B =0 PP
2m(8) Jps\n ly — x|
Cp0(x) [(y =x) -]’
—_ ALK — ———nd
2m(3) Jpsxn2 (y=xD ly — x| nay
C —X)-
=f(x) + —2- K(ly —xp =M pPIT, Gpldy
m(8) Jp;xn0 ly — x|
Cﬁ [(y - X) . Il] 2 2 —
P K(ly —x)—~—= —x)-nl? = [(v —x) - T, d
53 o K5 =0 (ity = x) -0 — [(y — %) - p) [T,(®)n]dy
=fys (%), )

where X is the projection of x on the boundary. In the next section, we will show that this formulation provides
an approximation for the corresponding linear elastic model with local traction loadings in the case of linear
displacement fields.
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To summarize, we obtain a formulation for a static state-based peridynamic problem with general mixed boundary
conditions:

Lsu(x) = f(x), in 2\Z 2y
Lysu(x) = fys(x), in Z02y
d .
0(x) = @ Ja,00 KUy = XD = %7 (u(y) — ux)) dy, in 2UBO2p\I2y (3.4)
000 = -5 Lione KAY = XD =M (M) —uG)dy, in Tay
u(x) = up(x), in BB2p

where the correction tensor is defined as

-1
= [— K(Iy—XI)(y—X)®(y—X)dy} ,
m(8) Jpsone

and a body load fy; is defined on x € Z{2y as

C - X) -
fys(x) :=f(x) + —2 K(y — X|)[(y X) 2n] [(y — x) - pPIT,®pldy
m(3) Jpsxnn ly — x|
Cs [(y —x) -n] , .
K(ly = xD)=—"75— ([(y =% -n]> = [(y = %) - pI*) [T,(®)n]dy.
2m(®) Ja,00n0 (Iy — x) v’ (Iy =% -0’ = [(y —x) - pI*) [T, (X)n]dy

3.2. Well-posedness and consistency analysis

In this section, we will show that the modified dilatation is well-posed and consistent with the local dilatation.
Specifically, we prove that for sufficiently smooth domain, the correction tensor M is invertible, and that for
ueCl(2),6 - V.uas 8§ — 0. Moreover, we will demonstrate that for linear displacement u and under
certain geometric assumptions, the modified formulation (3.4) is consistent with the classical linear elastic problem
with traction loadings. For simplicity of notation, we indicate a generic constant independent of § as C, and write
K(ly —x]|) as K.

We first analyze existence and bounds of M:

Theorem 3.1. Given that 2 € R (d = 2) is a C? domain, then there exists a § > 0 such that for 0 < § < 8 the
correction tensor is a well-defined symmetric matrix, and
-1

rod
M m fBg(X)ﬂQ K((y - X) : P)zdy 0(82)
= d
L 0(82) m fB(g(x)ﬁ.Q K((Y - X) : n)Zdy
— d -1
(m fBg(X)ﬁ.Q K((y - X) ' P)de> + 0(84) 0(52)
= d _
i 08 (m fBa(x)ﬂQ((y —X)- n)de> + 0(8%)

Proof. To show that the correction tensor M is well-defined, it suffices to show that |det(M~")| > 0. We adopt
notation in Fig. 2, with a Cartesian coordinate system oriented so that X coincides with the origin, and the vectors
p(X) and n(X) are oriented along the positive x-axis and negative y-axis, respectively. We note that

Moo 4 [ Jas00n0 K(y —%) - p)’dy Jss00ne K@ =) - p)X(y — ) - n)dy }
" m®) | Spene K& =% P — %) -n)dy ss00n0 Ky — %) - n)dy
B [ 10 } _d [ Jp, K((y = %) - p’dy Jp, K((y = %) - )y — %) - m)dy }
101 m(8) fD(S K((y —x) -p)(y — x) - n)dy fD5 K((y — x) - n)*dy
4 [ Jo, K((y = %) - p)°dy Jo, Ky = %) - p)(y — %) - m)dy }
m@) | Jg, K =% - Py — %) - n)dy Ji, Ky =) - m)*dy
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0 o x| p®)

Fig. 2. Notation for geometric estimates: Left: illustration of regions Ds and Ggs. Green represents Ds, the region in Bs(x) which lies
opposite the boundary tangent at X. Cyan represents G, the region in Bs(x) which lies between 92 and the boundary tangent. Right: Local
Cartesian coordinate system in neighborhood of X. Here, the region Gs lies below the red curve y = f(x) when x = X. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

We estimate first the Ds part. Rewriting y € Ds as x + (rcos(@), rsin(f)) with s, < r < § and —7m/2 <
—arccos(sy,/r) < 6 < arccos(s,/r) < m/2, we obtain

§ arccos(sx /1) § /2
/ K((y —x) - p)’dy = / f K (r)r?sin? 0dodr < / K (r)r’sin®> 0dodr = m(8)/4,
Ds sy J— 0

arccos(sy /1) —/2

§ arccos(sy /r) § /2
/ K((y —x) -n)’dy = / / K (r)r’ cos® 0dodr < / / K (r)r? cos? 0d0dr = m(8)/4,
Ds sy J— 0

arccos(sy /1) —/2

/ K((y =x)-p)(y —x) - m)dy =0,
Ds
since the first two terms decrease monotonically with increasing s,. We then have

L[ Jp, K(y —%) - p)*dy fDSK((y—X)-p)((y—X)-n)dy}_[d,, 0]
m(@) | [p, Ky =% - p)((y — x) - m)dy Jpy K((y = %) - m)*dy =l 0o 4,

where 0 < d,,d, < 1/2. We now proceed to show that for a domain with C 3 regularity, the magnitude of all
elements in the matrix

4 [ Jo, Ky —%) - p)*dy Jo, Ky = %) - )y — %) - n)dy ]
m@) | Jg, K(y —%) - p)((y — %) - m)dy Jo, K(y = %) - ndy

are bounded by O(82). Note that with the Cartesian coordinate system in Fig. 2, X = (0,0) and 7(X) = {y = 0}.
Let: y = f(x) be the curve describing 9f2; «(x) denote the curvature of 9{2y at X; and (c1(/), c2(I)) be the
parameterization of the boundary 9f2 by the arclength /. Note that the range of / depends upon the particular
geometry of 3f2. Then we have x; = (c;(]), c2(1))7, and

(1 0 AL
X =X + < 0 ) + ( /((i)l2 ) + < /1//(0); + 0(14)
2 62 3

83
The area |Gs| < |K(i)|? + O(8*). Therefore, when § is sufficiently small, for the kernel K in (2.4) we have

3 o 2
id) =< WIGaIS < ;IK(X)IS + 0(8%) = 0(9).

/ K((y —x) - p)’dy
Gs

7
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d d
A similar bound follows for ) ‘fG,; K((y —x) - n)2dy‘. For ) ’fGa K((y —x)-n)((y — x) - p)dy|, following
m m
from the symmetry of K,

. K((y —x) - p)(y —x) - m)dy
s

’

/G Ky —x)-p)((y —x%)- n)dy‘ =
s

m(s) m(d)

where Es denotes the region in G5 which is asymmetric with respect to the y axis in the right plot of Fig. 2. As
shown in [18], the area of Es has |Es| < O(8*). Therefore

_a 2
(®) < 0(59).

For sufficiently small § we have

/E K((y =x) - p)((y — X) - m)dy
s

1
ldetM™ Y| > (1 —d,)(1 —d,) — CQ2—d,—d,)§ —C8* > i cs>0. O

Remark 1. From the proof of Theorem 3.1, we note that when |E;| = 0, i.e., when Bjs(x)\{2 is symmetric with
respect to n(X), then

d o\
(m fBa(x)ﬂ.Q K((y - X) : p) dY) 0

a -1
O (m Jay00n0(@ —%) - n)zdy>

We now show that the nonlocal dilatation 6<°"" is consistent with the local dilatation:

M = (3.5)

Theorem 3.2. Assume that u € C' and 2 is a C? domain, then there exists § > 0 such that forany 0 <§ < S,
10" (x) — V- u(x)| = O(3)

for x € IQy. If u further satisfies u € C?, then
67 (%) = V - u(x)| = 0(8%) + 0B)|ul; .

where |ul, o, is the Sobolev seminorm representing the maximum of the Hessian matrix elements for each component

of u.

Proof. We again adopt the coordinate system from Fig. 2. Denoting u,, u, as the displacement components along
the directions of p(X) and n(X), respectively, for u € C 2 we have

9T _ VY .u
d
-4 (Mu / Ky — %) - P)tp(y) — ,p(x)dy + M, / K(Y = %) - W) (tn(y) — tn(x))dly
m(3) Bs®NQ2 Bs(x)N$2
0 ou,
My / Ky — %) - P)tta(y) — (X)) + K(y — %) - m)(u(y) — u,,<x)>dy) -y - iy
Bs(x)N {2 ap on
d 0 du,
0] (Mnﬂ(x) K|(y — x) - pl2dy + My~ (x) K|(y — x) - n[*dy
m(3) op Bs(xNQ2 on Bs(N2
+ Myl / KI(y —x) - pPIy — %) - nldy
Bs(x)N§2
+ Mo / . KI(y — %) - n]([t,(X)]un [(y — X) - 0] + [0, ()] pp[(¥ — %) - 1)y
Bs(x)N
ou, ou, s du, duy,
Mz (52 + / K(y - %) p)((y —x) -m)dy + 06 ) — Z2(x) — T2(x)
n ap Es ap on
= 0(52) + AI(X)[up(X)]np + AZ(X)[un(X)]nn + A3(X)[un(x)]pp = 0(8)7 (36)

8
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where

A (x) Js;00n0 KUY = xDI(y = %) - pP[(y — %) - nldy
X) = ’

| fBa(x)ﬁQ K[(y —x) - pl*dy

K — — . 3d
Ay(x) = fBa(;)ﬂ.Q (ly = xDIy — %) 2n] v
fB5(x)ﬁ_Q K[(y — x) - n]2dy

As(x) = Ja,00n0 KUY = xDI(y = %) - pP[(y — %) - nldy

szg(X)ﬂQ K[(y - X) : n]zdy
For u € C', the conclusion can be shown with Taylor expansion following a similar procedure as above. [J

Having proven well-posedness and accuracy of the nonlocal dilatation, we next show that the formulation in
(3.4) approximately passes the linear patch test in the local limit.

Theorem 3.3. Given that 2 € R (d = 2) is a C? domain, and a linear displacement field w which is a solution
of the classical linear elastic problem in the absence of forcing term f:

1
-V -(tr(E)I4+2uE) =0, where E = E(Vu + (Vu)D), in (2,

rr(E)n+2uEn =T, on 982y,
u=up, on BBSp.

When |Es| = 0, ie., Bs(X)\{2 is symmetric with respect to n(X) for all x € Iy, u is also the solution of the
state-based peridynamic problem (3.4) in the absence of forcing term f. When Bs(X)\ (2 is not symmetric, u passes
the linear patch test approximately in L2y, i.e., Lsu(x) = f(x) for x € \Z 2y, and Lysu(x) = fys(x) + 0(5)1
for x € T(y.

Proof. Taking a linear displacement field u = Dx 4+ b where D € R¥*?, b € R?, for x € 2\Z 2y the proof can be
found in, e.g., [51]. We therefore focus on x € Z {2y, and again employ the notation in Fig. 2. Moreover, we denote
the elements of D as D;;, i, j € {1, 2}.

We first consider the case when |Es| = O for all x € Z{2y. Substituting (3.5) into the definition of 6 in (3.4), we
obtain 6(x) = D;; + Dy, for all x € 2 U Bf2p. Note that
( dup,  Ouy ) ou
Ty=pn|—-—+ =pu(Di2+ D2), T, =2V -u+2u

on op a

the proof of Lysu(x) = fys(x) is obtained via a straightforward substitution of u and 6 into (3.3).

We now consider the general case. Combining u = Dx+b and (3.6) yields 6(x) = Dy, + D1, + 0(8%). Substituting
the definitions of 6 and u into (3.3), we then have:

Lysu(x) — fys(x)
2Cy(Dy1 + Dy)

r: = (A +2wDxn + ADyy,

=061 - ———— A —w) K (y—x)dy
m(8) Bs(x)
Cs Y—Xx)Q®(—x)
- = K -D(y — x)d
m(®) Jsyone y—xP vy
J— . —_— . 2
_ Cp(Di1 + Dn) G +2/L)K[(y X) n][(y2 x) - pl ndy
2m(5) Bs(x)\ {2 ly — x|
— . 3
Cg(D11 + D2p) % [(y —x) 211] ndy
2m(3) Bs(0\2 ly — x|
C D D —X) -
_ Cpu(D1a + Do) ¢l 0—% 211] [(y — x) - p’pdy
m(8) Bs(x\ 2 ly — x|
Csl(A+2u1)D AD —X) -
~ Cpl(h +2p) Dy + 4Dy ] K[(y X) 2“] (Iy =% -n? — [(y — x) - pI*) ndy
2m(8) Bs(x)\ 2 ly — x|

9
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Y Dil(y —x) - pI* + Dul(y — x) - pll(y — X) - nJ?
=—— | unk 5 pdy
m(8) J, ly — x|
— . —_— . 2
Cs MK(D12+D21)[(Y X) ZP][(Y X) - n] ndy + 0@) = 0O®)1. O
m(8) JE, ly — x|

Corollary 1. Given that 2 € R?(d = 2) is a C* domain and |Es| = 0, then the set of rigid deformations II is in
the solution set of (3.4) with £ =0 and T = 0.

We now investigate the consistency of the proposed mixed-type volume constraint formulation for general u, by
considering the truncation estimate of the local solution. We denote u; as the solution of the nonlocal problem (3.4)
and ug as the solution of the corresponding linear elasticity problem:

1
Lou= -V -(tr(E)Y+2uE)=f,  where E = E(Vu + (Vu)!), in {2,
Atr(E)n + 2uEn =T, on 30y, G.7)
u=1up, on BB-QD

Denoting the truncation estimate e5(x) := Lsus(x) — Lsup(x) for x € 2\Z 2y and es(X) := Lysus(X) — Lysuo(X)
for x € Z{2y, we may obtain the following bound for e;:

Theorem 3.4. Assume that the local solution uy € C', then |es| = O(82) for x € 2\INy and |es| = O(1) for
X € Z.QN.

Proof. For x € \Z2y, from e; = f(x) — Lsup(x) = Loup(x) — Lsup(x), the bound of e; may be obtained
via Taylor expansion of ug following a similar derivation as in [18]. Denoting u¢p, ug, as the components of
uy along the tangential and normal directions, respectively, for x € Z {2y, with the calculation in (3.6) we have
0(ug) — V -uy = O(5). Note that the tangential and normal components of the traction load satisfies

ou oy oy
Tp=M< 0[J+ 0)» T,,:)»V~UO+2//L 807

on ap n

and with the Taylor expansion of uy, for x € Z{2y we have

1
es =(Lotlo — Lysto) + (s — ) = =5V - Gur(Vuo + (Vug) I + 2u(Vug + (Vup)"))

Cad—pp) K(y—% (V- uy®) + V - ug(y)) dy
m(3) Bs(x)NQ2
i KLQ();_X) (uo(y) —_ uo(x)) dy + M ()\’ — I’L) K (y — X) dy
m(8) J g;ne ly — x| m(3) Bs(\2
CV - up(x) [(y — %) - nl[(y — %) - pI°
_ A4+2u)K d
) gl T ¥ — x’ ey
CpV - up(x) [(y —x)-nJ? Cs [(y —x) - n] e
St Adia'hs AK dy + K=" "y —x) - pl*IT,X)pld
m () o ¥ X" ndy 1) oy one ¥ X [(y —x) - pl[T,(x)pldy
+ G KW (I =% -0l — [(y = %) - pP?) [T,®mldy + O(D1 = O(D1. O

2m(8) J psx\ 2 ly —x

Remark 2. From Theorem 4.2 in the next section, we will see that given the possible numerical error from boundary
approximations in the meshfree formulation, the O(1) truncation estimate of es for x € Z{2y is of optimal in
M-convergence tests.

Remark 3. To theoretically show the L? convergence of us to the local limit uy, a nonlocal Poincare—Korn’s
inequality would be required which will be addressed in the future work. In this work we demonstrate the
asymptotic convergence rate with numerical examples in Section 5, where a first order convergence O(3) is observed
for |lus —wol|;2((,), which indicates that the O(1) truncation estimate in Z{2y is sufficient to obtain asymptotic

10
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convergence when § = O(h). A similar phenomenon was also observed on the Neumann constraint nonlocal
diffusion problem in [18].

4. Optimization-based meshfree quadrature rules

In this section, we introduce a strong-form particle discretization of the state-based peridynamics introduced
above. Discretizing the whole interaction region 2UBB{? by a collection of points X, = {X;}ji=1.2,...n,) C 2UBB2,
we aim to solve for the displacement u; ~ u(x;) and the nonlocal dilatation 6; ~ 6(x;) on all x; € X;,. We first
characterize the distribution of collocation points as follows. Recall the definitions [52] of fill distance

hy,,o = sup min|x; — X,
u; € QUBNR Xi€Xn

and separation distance
—1 in||x; — x|l
qy, = —min|lx; — X;|l2.
Xh 2 i2) J

For simplicity we drop subscripts and simply write 4 and g. We assume that y;, is quasi-uniform, namely that there
exists ¢z, > 0 such that

Gun < hy.2 = Cquly, -

To maintain an easily scalable implementation, in this paper we assume § to be chosen such that the ratio % is
bound by a constant M as § — 0, restricting ourselves to the “M-convergence” scenario [23].

As the first step, for the original LPS model (2.1), we pursue a discretization through the following one point
quadrature rule at a collection of collocation points X, [53]:

Co
(Liw); = — 3 Z O =W Kij (x; —x;) (6 +0)) ;.
m( )XjGB(;(X,')
_ % Z uki (x; —x) ® (Xé—Xi) () - w) oy = £, @.1)
m(s) x; €Bs(x;) |Xj - Xi|
d
G(X) = _5 Z K,'j (Xj — Xl‘) . (llj — lll‘) Wiji, (42)
m( )XjEBa(Xi)

where we adapt the notations f(x;) = f; and f(x;, X;) = fi;, and we specify {a) j.,-} as a to-be-determined collection
of quadrature weights admitting interpretation as a measure associated with each collocation point x;. We define
in this section an optimization-based approach to defining these weights extending previous work [17], constructed
to ensure consistency guarantees. Specifically, we seek quadrature weights for integrals supported on balls of the
form

= [ fapdy > nif= Y o 43)
Bs(x;)

X;€Bs(x;)

where we include the subscript i in {a) j,,-} to denote that we seek a different family of quadrature weights for
different subdomains B;s(x;). We obtain these weights from the following optimization problem

argmin Z w%l such that, I,[p]l=1[p] Vp eV, “4.4)

{a)jvi} X_jEB,g(X,')

where V), denotes a Banach space of functions which should be integrated exactly. We refer to previous work [17]
for further information, analysis, and implementation details.

Provided the quadrature points are unisolvent over the desired reproducing space, this problem may be proven to
have a solution by interpreting it as a generalized moving least squares (GMLS) problem [12]. For certain choices
of Vj,, such as mth-order polynomials, unisolvency holds under the assumptions that: the domain {2 satisfies a cone
condition, the pointset X, N Bs(x;) is quasi-uniform, and § is sufficiently large [52].

11
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In previous work we have provided truncation error estimates relating the quadrature error convergence rate to
the order of singularity in the kernel. As discussed in [17], the key to obtaining these quadrature weights is that
they may be evaluated analytically, either via analytic rules [54] or the aid of symbolic integration software. In this
work, we choose a reproducing space sufficient to integrate (4.1) and (4.2) exactly in the case where u and 6 are
quadratic polynomials.

Theorem 4.1. Let V), = {q = 29| p e P(RY) such that [y q(¥)dy < oo} where p € Ps(RY) is the space
of quintic polynomials, and assume Bs(x) C 2UBB{2p and that the optimization problem (4.4) has a solution. Then
the meshfree optimization-based quadrature (OBQ) approximations to (2.1) and (2.2) are exact for u € (P3(R%))?
and 6 € Py(R?). Further, for u € C3 and 6 € C? the truncation error for all nonlocal operators in (2.1) converge

to its local limit with an O(8?%) rate in the limit § — 0.

Proof. We prove only for the nonlocal gradient; the other operators follow similarly. Rewriting the gradient as
f By(x) % (y —x) (0(x) + 0(y)) dy and assuming 6 € P,, we obtain a component-wise form f Bs() ‘XP_(?)‘3 dy where
p € Ps, and thus the quadrature is exact via the equality constraint of (4.4). To prove convergence, note that we may
rewrite f Bs(x) ::i:i (y — x) (6(y) — 0(x)) dy because constants are in the null-space of the nonlocal gradient. The
proof then follows from Thm. 2.1 of [17], by approximating 6(y) — 6(x) via a third order Taylor series, converting

to polar coordinates, and bounding terms. [J

Remark 4. We have selected this particular choice of reproducing space so that the same quadrature weights may be
used for all nonlocal operators. The cost of constructing the quadrature scales as dim(V,)?, and significant savings
may result by instead generating quadrature rules for each operator specifically. For example, one may obtain the
same convergence by selecting V), = [ﬁ (p(y) + px)) | p € P,(R? )} in the nonlocal gradient. As solving (4.4)

amounts to inverting a small dense matrix, we may expect a substantial (dim(P,)/dim(Ps))’ speed-up in this case
(7> xspeedup in 2D and (56/10)° xspeedup in 3D). Because the requisite optimization problems are amenable to
fine-grained parallelism on GPUs using libraries such as the Compadre toolkit [55], we prefer in this work to use
a single quadrature rule for all operators; in our implementation the cost of constructing the quadrature weights is
negligible compared to solving the resultant stiffness matrix after discretization.

Remark 5. In many quadrature schemes it is desirable to enforce the positivity of quadrature weights (i.e. w;; > 0).
While we do not pursue this property in the current work, (4.4) may be modified to enforce this property via
an inequality constraint. In the context of maximum principle preserving meshfree discretizations this has been
considered [56]. We note that for quasi-uniform particle distributions, we have seen only a small number of negative
quadrature weights, and that these are generally very small compared to the other positive weights.

We now apply the above quadrature rule to the LPS model with traction loads applied on a sharp boundary
d{2y. For x; € Z(2y, we note that Bs(x;)\{2 # (. In the meshfree formulation, the boundary 92y is represented
by breaking bonds between x; and X; € B;s(x;)\{2, as demonstrated in Fig. 3. For x; € {2, we denote the bond
between x; and x; as “intact” and the change of displacement on material point x; may have an impact on the
displacement at x;. On the other hand, when x; ¢ (2, we consider the bonds between x; and x; as “broken”. To
discretize (3.1) and (3.3), the quadrature weights associated with intact bonds will be employed in the calculation
of integrals inside Bs;(x;) N {2 and the weights associated with broken bonds will be employed for integrals inside
Bs(x;)\{2. Particularly, we express the quadrature weights associated with intact bonds @;; and the quadrature
weights associated with broken bonds @;; in terms of the scalar mask y; ;:

1, ifx; € Bs(x;)N {2, - R
Yii = {0’ othérwisea,( ) Wji =iV, @i =w;i(l—=y). (4.5)

Numerical quadrature of a given function a(x) over Bs(x;) N {2 and Bs(x;)\ {2 may thus be calculated via

a(y)dy ~ @jia(X;), [ a(y)dy ~ @ja(X;).
/Ba(xi)m’? Z ’ ! Bs(x;)\ 2 Z ! !

X;€Bs(x;) X;€Bs(x;)
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J}M ) ’ )

= |ntact Bonds
= Broken Bonds
T; < Q
.’l]‘ g Q
@ji weighs o |
J,¢ Weights for By ()0

wj,i, Weights for/
Bs(2:)\Q

Fig. 3. Illustration of neighbor points and bonds for x; € Z{2y, where the yellow points represent x; ¢ {2 and blue points represent X; € f2.
Left: An illustration of broken/intact bonds in the meshfree formulation. Right: An approximate boundary provided by breaking bonds in
the meshfree formulation. The black and red curves indicate two possible boundaries represented by the same formulation in (4.6) and (4.7).
With a purely volumetric particle representation of the boundary, it is not possible to avoid first order truncation estimates from errors in the
representation of the geometry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

This process is consistent with how damage is typically induced in bond-based peridynamics, such as the prototype
microelastic brittle model [57]. Applying the above formulation in (3.1) and (3.3) we propose the following meshfree
scheme:

Kij i —Xi) ® (Xj —X; -
hi= 3 ] (<ot —x)000) - E B o ),
X; €Bs(x;) J TR

CpO+20m; [(x; —x;) - mll(x; —x;) - pil> | Cpamy [(x; —xi) P
+<—2Co(()‘~_l‘L)(XJ_X1)_ ﬁ( 2 M)n [(XJ X) n][(sz X) p] ﬁzn [(Xj X) ;l] )eia)j,i}
[xj —xi [xj —xi

Kijoj,i _ i —Xi) -
= f(x;) + Z bl 1 <CﬂTp(Xi)pi[(X]X)2n][(Xj - X;) pil?

By 7O o
4 CpTy(X;)n; [(Xj - Xi) -zni] <[(Xj B Xi) - [(Xj _ Xi) .pi]z) = (Ens)i, (4.6)
2 |xj —xil
d -

0, = m Z Ki;j (X_,‘—X,‘)-Mp(llj —u,')a)j,,-, 4.7

X; €Bs(x;)
where
—1
d -

M; = | — Z Kij(x; —x) @ (X; — X)), . 4.8)

m(4)
XjEB(g(Xi)

Note that although we have shown in Theorem 3.1 that M(x;) exists when 92 is sufficiently smooth, the numerical
evaluation of the correction tensor further requires that ije By Kij(Xj —X;) ® (X; —X;)@;; be invertible. This is
true as long as there are at least d non-collinear bonds within the horizon. In some settings, such as violent dynamic
fracture, for a given particle all bonds may break, leaving an isolated particle. In this case the matrix inverse Mi_]
may be replaced with a pseudo-inverse M;” to improve robustness of the scheme.

Note that in the traction-type boundary condition formulation (3.3), the unit normal vector n(xX) is required, and
the unit tangential vector p(x) can then be calculated as the orthogonal unit vector of n(x). However, in realistic
settings the analytical form of n(X) is often unavailable. To approximate the normal vector at X; for each x;, we
note that

fB,;(x)ﬂQ(y — X)dy
HfBg(x)ﬂ.Q(y - X)dyH

nx) ~ —
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Therefore numerically we calculate the normal direction as n; as

Y X —X)d)
X;j€Bs(x;)
n=—— , (4.9)
Y X X))o
X;j€Bs(x;)

and the tangential vector p; is calculated as the orthogonal direction to n;.

Note that the formulation (4.9) provides a practical approximation of the unit normal vector for each x € Z{2y
instead of each X € 92y, which therefore induces possible numerical errors in (4.6). Moreover, in (4.6) and (4.7)
we only solve for u and 6 in {2, which is equivalent to breaking any bond intersecting the Neumann boundary 9{2y.
We highlight that quadrature weights w;; are computed in the reference configuration before bonds are broken, and
therefore no remeshing or calculation of quadrature weights will be required as fracture progresses. This property
offers an efficient and sharp treatment of boundary geometry which may be easily implemented in popular particle
mechanics codes. However, as illustrated in Fig. 3, such a numerical approximation for the boundary shape 9 {2y
introduces an O(h) error to the boundary shape and correspondingly to the provided traction load T on d{2y, and
therefore errors in (4.6) and (4.7).

To characterize the resulting numerical error, in the following we consider an equivalent problem: a perturbed
traction load 'i‘(x) is provided on 92y, i.e., there exists a constant C which is independent of /& and 8, such that

IT(x) — T(x)| < Ch, Vx € dfy.

Moreover, due to the presumed perturbation of the geometry and the numerical error in (4.9), for x € Z2y we
assume that the normal and tangential directions are also perturbed such that i —m = O(h) and p — p = O(h).
With the perturbed traction loads and perturbed unit vectors specified above, we denote the (perturbed) nonlocal
operator defined in (3.3) as EANS, the (perturbed) nonlocal dilatation defined in (3.1) as é, and

Cg —X)-n A A
() =E00) + —2- K(ly —xp Y= B BRI, Gpldy
m(8) Jpsx\0 ly — x|
Cy - .o
b Kty —xp =B (AR (v — w0 - BI) (£ (0Idy. (4.10)
2m(8) J ;00 ly — x|?

We then provide the truncation estimate corresponding to the above perturbations as follows.

Theorem 4.2. Assume that u € C', 2 is C* smooth, T is a perturbed approximation of the local traction load
as defined in (3.7):

T,® = p (%(x) + %(x)) +0h), T,® =4V u + 2u 5200+ O(h), Vx € 00,

where u,, u, are the components of w along the non-perturbed tangentlal and normal directions respectively. The
truncation estimates from perturbed T, n and p for nonlocal operator in (3.3) is bounded by O(1) under the
M-convergence condition. Specifically,

|Lysu —fys — Lysu+fys| = 0(1).

Proof. From the definition of nonlocal dilatation in (3.1), we note that 6 is not influenced by the perturbations on
traction loads and normal/tangential directions, i.e., 6 = . To obtain the bound for the nonlocal operator in (3.3)
we separate the truncation estimate into two parts, the part from perturbation on T and the part induced by the
perturbation of n and p:

Lysu—fys — Lysu+fys = H, + Hy.

Cp [(y —x) - f] .
= k=08 BRT,® — 7 ®)pd
T m) Jane ly — x| [y =) - pPIT, (%) = T,(X)pdy
—Cﬁ [(y —x) - 0] ) A2 _ A
2m(8) Jpne  ly —xI? ([y =x) - A1 = [(y = %) - ") (T, (%) — T,,(X))Ady
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Cg(A+21)0 K A N
=Cp0 + 206 _(ly =% nll(y — % - pl’n — [(y — x) - All(y — %) - pI*f) dy

2m(8) B\ |y — x|

Cpro(x) K s 3

LpAvX) k- e o )
2m(8) Bs(0\ 2 |y _ X|2 ([(y x) -n]°’n — [(y — X) - n] n) y

e - —x) - pP[T,X)p] = [(y — x) - A][(y — X) - p]?[T,(X)p
Cg K

@ oo Iy~ (Iy =% -] ([y =) 0P’ = [y = %) - pI*) [T,(X)n]
5 (X

—[(y —x) - 8] ([(y — %) - A1* — [(y — x) - pI*) [7;,()A]) dy.

With a similar technique as in Theorem 3.4 and with the §/h = M assumption in M-convergence tests, we can
show that each term in H, and H, is bounded by O(1). O

Remark 6. From the proof of Theorem 4.2, we can see that in M-convergence tests either an O(h) error on the
provided traction load or an O(h) error on the approximated unit normal and tangential vectors will induce an
O(1) truncation estimate in (3.3) for x € Z {2y, which is of the same order generated by the proposed traction-type
boundary condition formulation as discussed in Theorem 3.4. Therefore, when using meshfree formulations and
the broken bond techniques to induce damage as in [57], the proposed nonlocal traction loading formulation is of
optimal asymptotic M-convergence rate to its local limit.

To sum up, with the meshfree discretization described above and the optimization-based quadrature weights w; ;,
i=1,...,N,, we solve for the displacement u(x;) and nonlocal dilatation 6; from:

Kn =F. 4.11)
Here n is the vector of unknowns organized as follows:

T
n=I[ui,...,upor,Vi,...,Vpor,01,...,60porl" .

DOF =#i :x; € {2 1is the total number of material points to be solved, and u, v are the components of displacement
such that w; = [u;, v;]. Kis a 3DOF x 3DOF stiffness matrix. The right hand side F is organized following a
similar way as for 7.

5. Numerical verification and asymptotic compatibility

In this section we numerically verify the approach by investigating accuracy when recovering analytic solutions
in the M-convergence limit with mixed boundary conditions. We consider: linear patch tests, smooth manufactured
solutions, analytical solutions to curvilinear surface loading problems, and analytical solutions to linearly elastic
composites. For each case, we consider various combinations of Dirichlet and traction-type boundary conditions,
exploring also the effect of reduced regularity on the traction problem by considering both Lipschitz and smooth
boundaries. For each case we consider refinements of both Cartesian grids with mesh spacing %, and nonuniform
grids generated by perturbing the Cartesian grids with a uniformly distributed random vector field (Ax, Ay),
Ax, Ay ~ U[—0.2h,0.2h]. For the sake of brevity we report the formal convergence study in the Appendix,
but summarize the setup and main conclusions for each case below, particularly focusing on whether optimal first
order convergence in § is realized as § — 0, or if a lack of boundary regularity leads to suboptimal convergence.
In all cases considered, the scheme does provide AC convergence as 6, h — 0.

5.1. Linear patch test

We consider as linear patch test the displacement

u(x, y) = (3x +2y, —x +2y)



Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

on a square domain {2 = [—n /2, 7/2] x [—m /2, /2], with three different boundary conditions:

1. Full Dirichlet-type boundary conditions: d{2p = 9{2;

2. Mixed boundary conditions with traction loads applied on a straight line: 92y = {(x, 7/2)|x € [-7 /2, 7 /2]}
and 002p = 02\02y;

3. Mixed boundary conditions with traction loads applied on corner:
0y ={(x,/2)x € [-7/2, w/2]} U {(7 /2, y)|y € [-7/2, 7 /2]} and 02p = 2\ 2.

Note that in linear patch tests, the local and nonlocal solutions coincide. On settings 2 and 3, a traction-type boundary
condition

| SA+6u u
T_|: " S+ 4y :|n (5.1)

is applied on the interface d(2y, with material parameters following the plane strain assumption:
A= Kv/((A+v)1=2v), n=K/Q2(1+v)),

for Young’s modulus K = 1. Two values of Poisson ratio v = 0.3 and 0.49 are investigated which correspond
to compressible and nearly-incompressible materials, respectively. To demonstrate independence of M-convergence
rate to choice of M, we consider both § = 3.5k and § = 3.9h. Note that in problems with the boundary condition
setting 3, when x is close to the corner the projection point X is possibly ill-defined and therefore induces ambiguity
of definition on T(X). To resolve this possible issue, in setting 3 we define T(X) following (5.1) where n is the
numerical approximation of normal direction following (4.9).

Uniform discretization: With settings 1 and 2, we observe that the numerical solution passes the patch test to
within machine precision. Note that in setting 2, d {2y consists of a straight line and therefore Bs;(x)\{? is symmetric
with respect to n, and the numerical result is consistent with Theorem 3.3. In setting 3, Bs(x)\ {2 is not symmetric
when x is close to the corner, and the numerical solution only passes the linear patch test approximately. In Fig. A.16,
we compare L2(£2) error vs. h for displacement and dilatation to demonstrate first order AC convergence for both
u and 6, independent of §/h and v.

Non-uniform discretization: For a randomly perturbed grid, machine precision accuracy is again observed for
setting 1 imposing full Dirichlet-type boundary conditions. With setting 2, the patch test is no longer satisfied as
Bs(x)\{2 is generally asymmetric with respect to the background grid. We plot the L?({2) errors of u and 6 vs. h
in Fig. A.17. To investigate the impact of error in calculation of boundary normals, we present L2({2) errors either
approximately using the estimate from (4.9), or using the exact normals. From Fig. A.17, we observe an O(h)
convergence for the L2(§2) error of u, and a deteriorated convergence rate for 6. When comparing the numerical
results from approximated n and exact n, we surprisingly observed smaller numerical errors from the cases with
approximate normal direction n.

In Fig. A.18 we consider boundary condition setting 3. Since there is no analytical normal direction defined on
the corner point, we only investigate the results from approximated normal unit vector through formulation (4.9).
Comparing with the O(h) convergence rate in the uniform discretization cases, setting 3 converges with suboptimal
0.75th order convergence for u and 0.5th order for 6 on non-uniform grids.

5.2. Manufactured solution test

To study the rate of convergence to the AC limit, we manufacture the local solution
up(x, y) = [sin(Ax) sin(Ay), — cos(Ax) cos(Ay)]
by imposing forcing consistent with the local operator
f(x, y) = [2(h 4+ 2) A% sin(Ax) sin(Ay), —2(% + 21)A? cos(Ax) cos(Ay)].

A square domain 2 = [—n/2,7/2] x [—n/2, /2] and the three boundary condition settings described in the
previous Section 5.1 are applied, to again consider the effect of boundary regularity. On BB{2p, the Dirichlet
boundary condition up(x, y) = ug(x, y) is applied, while on the Neumann boundary we apply the traction condition
T, y) = 2A(\ 4+ w)cos(Am/2)sin(Ay) 2Au sin(Am/2) cos(Ay) n
V)= 2Apsin(Ax)cos(A/2)  2A(h + p)cos(Ax)sin(Ar/2) |
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Fig. 4. Left: Problem settings for circular hole in an infinite solid under remote loading with spheres representing a non-uniformed
discretization. Right: Final deformed object when taking the far-field tensile stress op = 0.3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

We adopt material parameters under plane strain assumptions:
K=1i=Kv/(1+v)—=2v),u=K/21+Vv)),

and compare Poisson ratios v = 0.3 or 0.49 again corresponding to compressible/near-incompressible limits. The
parameter A is taken as 0.4. For the possible ambiguity of projection point in setting 3, we set T following a similar
convention as in the linear patch test: for x € Z{2y close to the corner point (1r/2, 7 /2), we set T(X) ~ T(x) where
n is numerically approximated with (4.9).

Uniform discretization: For Dirichlet boundary condition second-order convergence is achieved, consistent with
the analysis in Theorem 4.1 and the L?(§2) convergence results are presented in Fig. A.19. For traction loadings on
straight and corner boundaries (Settings 2 and 3), we present L>(£2) convergence results in Fig. A.20 and Fig. A.21,
respectively. In these settings first-order convergence is observed for both u and 6.

Non-uniform discretization: With non-uniform particle distribution, Fig. A.22 demonstrates second-order L>({2)
convergence for both u and 6 under Setting 1. Under Setting 2, Fig. A.23 demonstrates again first-order convergence.
Again, somewhat surprisingly, when using the estimated normals one obtains improved accuracy, albeit with the
same convergence rates. In Fig. A.24, we further consider Setting 3 where 92y includes a corner. Comparing with
the results from uniform discretizations as shown in Fig. A.21, a similar convergence rate (O(h)) is obtained for
both u and 6 on non-uniform discretizations with setting 3.

5.3. Traction loading on curvilinear surfaces

We next consider more physical settings corresponding to homogeneous and inhomogeneous traction loadings
on a curvilinear surface. Two different problems are considered:

1. We consider a free-surface circular hole of radius a in an infinite solid under remote loading oy, as illustrated
in Fig. 4. Under a plane strain assumption the classical linear elasticity model yields the displacement field

‘;0—” I:g(K + 1)cosd + 27” (1 +k)cosBh + cos 30) — % cos39]
u(r,0)=| " '

e [g(x —3)sin + 2 (1 — ©)sin6 + sin 36) — 2 sin39]

(5.2)

where k = 3 — 4v and (7, 6) are the radial distance and azimuthal angle in cylindrical coordinates. To set
the problem up, we impose the analytic local solution uy as a Dirichlet-type condition on the nonlocal collar
around the perimeter of a unit square. We then break all bonds crossing the circle of radius a = 0.2, and
apply T = 0 on the sharp interface 32y = {(x, y)|x?> + y*> = a?}, fixing 0y = 1.

2. As an example of imposing non-zero traction loads, we consider the deformation of a hollow cylinder under
an internal pressure py, as illustrated in Fig. 5. Under a plane strain assumption the classical linear elasticity
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Fig. 5. Left: Problem settings for a hollow disk under internal pressure with spheres representing a non-uniformed discretization. Right:
Final deformed disk when taking the internal pressure po = 0.1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

model predicts displacements given by

o) = [Ax+ =25 Ay B
uy(x,y)=|Ax + ——,
olx, y 12 y

where
(1+ )1 — 2v)poR? (14 v)poRER?
T KRE-R) T K(RP-RY)
Ry and R, are the interior and exterior radius of the hollow disk. Here we take Ry = 1 and R = 1.5. We

impose the analytic local solution ug as a Dirichlet-type condition on the nonlocal collar around the exterior
boundary 3£2p = {(x, y)|x* + y* = R?} and break all bonds crossing the inner circle of radius Ry = 1, and
apply T = pon on the interface 32y = {(x, y)|x*> + y? = R3}. In all M-convergence tests we take py = 0.1.

In the following tests we take the Young’s modulus K = 1 and test with different Poisson ratios v = 0.3 and 0.49.
To investigate the asymptotic compatibility when §/h = C, we employ uniform and non-uniform discretizations and
refine § and & simultaneously while keeping the ratio §/ 4 a constant. In uniform discretizations, we take collocation
points X; = {(ah, bh),a,b € N}, and in non-uniform discretizations the uniform grid points are perturbed with
(Ax, Ay), Ax, Ay ~ U[—0.2h, 0.2h]. Note here even with uniform discretizations, the collocation points do not
align with 02y since the later is a circular curve, which introduces numerical errors as discussed in Theorem 4.2.
In both settings we also investigate performances of the proposed formulation with the approximated normal unit
vector formulation (4.9) and the analytical normal direction.

Setting 1, Free circular surface: In Fig. A.25 and Fig. A.26, we demonstrate AC convergence for uniform
and non-uniform particle distributions, respectively, for both compressible (v = 0.3) and incompressible (v = 0.49)
materials. From the results, we observe first order convergence in the L?(2) norm for the displacements in all cases.
A deteriorated order of convergence is observed for 6, where a roughly 0.7th order is achieved for both uniform
and non-uniform discretizations. When comparing the results with approximated n and the results with analytical
n, the formulation with analytical n performs similar or sometime slightly better than the results with approximated
n. Therefore, the formulation (4.9) still provides a reasonable numerical approximation for the normal unit vector
n.

Setting 2, Hollow disk under pressure: In Figs. A.27 and A.28, we present AC convergence for uniform
and non-uniform particle configurations. We observe nearly first-order L2(f2)-norm convergence for displacements
in both compressible and nearly-incompressible materials. Surprisingly, for nearly-incompressible materials, O(h)
order convergence is achieved for 6, but for compressible material a reduced order (around 0.65) convergence is
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observed. Again, the convergence rates are nearly identical for analytical n and approximated n. Therefore, the
approximation formulation (4.9) again provides a good practical estimate of n.

5.4. Composite materials with discontinuous material properties

We now further consider an extension of the state-based peridynamics formulation (2.1) to composite materials
constituted of n phases, so that the domain may be partitioned into disjoint subdomains with piecewise constant
material properties, i.e. 2 = U, & N 2 = @, and A(X) = A, u(x) = i for x € (2. Discussions on the
mathematical properties of this heterogeneous system can be found in, e.g., [58]. Specifically, when A(x) and (x)
may vary for each material point X, we propose the following formulation:

C,
Lou = — (X, y) — 1, ¥) K (Iy — XI) (y — %) (0%) + 6(3)) dy (5.3)
m(8) Bs(x)
C —_ —_
=G [ iy —xhET2E 0T ) uw) dy = o),
m(8) Jpsx) ly — x|

where the two-point functions u(-,-), A(:,-) denote averaged material properties satisfying wu(z,z) = w(z) and
Mz, z) = A(z). We will consider for the purposes of this work the harmonic mean

2 1 4 1 2 1 . 1
wxy)  px o uwy) Mxy)  Ax Ay
Correspondingly, to evaluate the above formulation, we modify the meshfree formulation with optimization-based
quadrature weights in (4.1) as follows:

(5.4)

Cq
- m(a) Z ()‘ij - /’Lij) Kij (Xj - Xi) (91' + 9]') Wj.i
XjE€Bs(x;)
C X —X)® (x; — x;
B _:33 > “inij( LI 5 ) () —w) e =1, (5.5)
m( )xjeBa<xf> \Xj - Xi}

where A;; = A(X;, X;) and p;; = u(x;, X;).

We numerically investigate the AC convergence of the nonlocal solution for a hydrostatically loaded cylindrical
inclusion of radius a in an infinite plate. We denote the interior of the inclusion as {2, and the exterior as (2, with
corresponding constant material properties (@1, A1) and (u2, A2). Assuming a far-field hydrostatic stress P, and
plane strain conditions, we define the coefficients

— POO
AT 200 )
P M+ + p2)
B — £l
2(A1 + )2 + 2u2)
Pooa® (A1 — Ao + 1 — p2)
Ce=-—

200 + )2 + 2u2)
and the analytic local solution for the displacement field in cylindrical coordinates is given by

CA}’ XGQ],

= Ug =0.
Cpr+Cc/r XxX€ (b,

-
We use this solution to assess the stability of the method in the vicinity of large jumps in material properties — for
such scenarios high-order meshfree reconstructions have been shown to demonstrate unphysical oscillations near
material interfaces [59]. Note that the consistency conditions derived only guarantee asymptotic compatibility under
the assumption of an isotropic material; this benchmark thus explores the applicability of the approach beyond the
guarantees of the approximation theory in Theorem 4.1.

We first investigate whether the discretization is AC. We take a = 0.2, impose a jump in the bulk modulus
(K| =2, K, = 1), and apply the analytic local solution ug as a Dirichlet-type condition on the nonlocal collar around
the perimeter of a unit square. We consider three scenarios corresponding to different material compressibilities: (1)
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vy = =0.25, (2) vi = v, =0.49 and (3) v; = 0.49, v, = 0.25. We present L2(02) convergence for both uniform
and randomly perturbed particle distributions in Fig. A.29 and Fig. A.30 respectively. For both scenarios, for all
three Poisson ratio combinations we obtain first- and half-order convergence for the displacement and dilatation,

respectively.
We next investigate the stability of the approach over a large range of material parameters. To do this, we set
p1 = 1 and fix the Poisson ratio in both phases to v = v, = % and impose a jump in the Young’s modulus of

Ky/Ky = Q, for Q € {278,28}. In these tests we employ a square domain 2 := [—7/2, /2] x [—7/2, /2] and
apply the analytic local solution uy as a Dirichlet-type condition on the nonlocal collar around the perimeter of
2. In Fig. 6, we plot a profile of the x-component of displacement along the y = 0 line to provide a qualitative
assessment of the solution. We demonstrate convergence for both a stiff inclusion (K| = 64K;), a soft inclusion
(K, = 64K/), and then illustrate that we reproduce well the displacement for a wide range of parameters.

6. Fracture dynamics for brittle fracture experiments

The previous sections have established the ability of the scheme to recover local solutions of boundary value
problems in elasticity governed by traction loadings and ensured that the breaking bonds treatment does not impair
the AC convergence of the quadrature treatment. Of course, the main appeal of peridynamic discretizations is to
handle fracture problems, and we devote the remainder of the paper to demonstrating how the scheme prescribed
previously adapts to practical engineering settings, where now free surfaces are associated with the time evolution
of a fracture surface. We specifically consider brittle fracture mechanics in linearly elastic materials and provide
validation against experiment and existing numerical results. The main objective of this section is to provide a
proof-of-principle demonstration that the framework introduced thus far applies to realistic settings, however overall

the provided preliminary validation provides good agreement.
In this section we introduce an inertial term to handle dynamics

92u(x,1)

pPUSD | s 1) = fex, 1), for (x, 1) € D\I 2y x [0, T,

P% + Lysu(x, 1) = fys(x, 1), for (x,7) € Ty x [0, T1,

o(x.1) = ﬁ Loy KAy = XDy = %7 (u(y, 1) = u(x, 1) dy. for 1) € (@UBONE x 0,11,
0(x, 1) = ﬁ Jas00ne KUy = XD =" M) (u(y, 1) —u(x,n)dy,  for (x,1) € Iy x [0, T],

ux. 1) = up(x. 1), for (x,t) € BBf2p x [0, T],

u(x, 0) = usc(x), 20 — v (x), 323(%0) = wic(x), for x & 2U BB,

where p is the material density and w;¢, v;c, Wyc are the initial displacement, velocity and acceleration fields,
respectively. To model brittle fracture, for x; € Bjs(x;) we break the bond between x; and x; when the associated
strain exceeds a critical strain criteria sq:

ey w4 X = x| = X — x|

517 = > $o. (6.2)
! Ix; — x;l

We employ the criteria derived in [60] relating 5o to material parameters:

0= \/ 40— B + 8up” (©3)

where 8 = 2—7‘i, B’ = 0.238736, and Gy is the critical energy release rate or fracture energy. For x; € Bs(x;), this
damage criterion can be implemented by replacing the static state weight y;; in (4.5) with a history-dependent
scalar boolean state function y; ;():

1, if 5;;(r) <s0, VT <t, and X; € Bs(x;){2,

0, otherwise,

v;,i(t) = {
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Fig. 6. Displacements across the y = 0 line, comparing prediction to analytic solution for composite problem. Upper left: Convergence to
analytic solution for a soft inclusion (K,/K; = 1/64). Upper right: Convergence to analytic solution for a stiff inclusion (K»/K; = 64).
Bottom: For a fixed resolution of 642 points, reproduction of analytic solution for a wide range of K»/K; € (2_8, 28). Solid line corresponds
to analytic solution, while dots correspond to numerical result. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

such that @;; = wj,;y;i(t), ®j; = w;j;(1 —y;()). To postprocess fracture evolution and identify cracks, we define
the damage as

Zx_/eB(xi)(l — v5.i(0))
ZXJ*EB(X,') 1 .

For the purposes of fracture identification, we say that a crack occurs at x; if ¢; exceeds 0.35. This threshold is
somewhat arbitrary, but necessary to, e.g., postprocess the crack propagation velocity at which a crack grows.
To discretize we apply the Newmark scheme together with the meshfree quadrature established previously

¢i(1) =

(6.4)

S U =0 4 25+ An + A, for x; in N\Z,
.. . 2. .
%uﬁ’“ + (L)t = (L ort 4 %(ul’f + Ard? + AT’ul’.‘), for x; in ZOGM,
d
9{'+1 = W Z Kij(xj — X,')T (ll;H_l - ll;H_l) Wi, for X; in 2 U BQD\IQX,JFI,
mn X;€B5(x;) (65)
d
91."“ = ) Z Kij(x; —x)"M; (u?“ — ul'.”’l) O, for x; in IQX,H,
" X;€Bs(x;)
ut = up(x)), for x; in BBSp,

where At is the time step size, fl'-”rl = f(x;, "), Eg’ and Ei,’\,s are the discretized nonlocal operators as defined in
(4.1) and (4.6), respectively, and f];va is also as defined in (4.6). The acceleration and velocity at the n + 1th time
step are then calculated as follows:

ﬁn+l — 4
T A

Note that because the evolving fracture creates new free surfaces, 32y and Z{2y alter with time. To capture the

implicit coupling between the material response and the evolving geometry due to fracture evolution, we employ

.. . A
Wt —u! — Ara?) — iy, W=l + ?(u? + .
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Table 1

Material properties used in pre-cracked soda-lime glass experiment.

Young’s modulus E Poisson ratio v Density p Fracture energy Gy
72 GPa 0.23 2440 kg/m® 3.8 J/m?

A
0.02m T

v [€— 0.05m —>
pre-notch l

v v v v v v vy

0.1m

Fig. 7. Problem setup for pre-cracked soda-lime glass experiment under tensile loading, following [63].

subiterations at each time step as follows. We first assume no new bonds have been broken at the current time step
and solve for the displacement field. Based on the displacement field, we evaluate the damage criteria (6.2) for each
bond. If any bond meets the criteria of breaking, we break all these bonds, update the corresponding state functions
yj,i and quadrature weights ®;; and @;;, then solve for the displacement field again with new free surfaces. We
repeat this procedure until no new broken bonds are detected, and finally proceed to the next time step.

We consider three benchmark problems involving material damage. In Sections 6.1-6.2 we study dynamic crack
propagation and branching in glass. In Section 6.1, we adopt the benchmark problem from [61] and simulate a
pre-cracked glass plate under sudden tensile loading. In Section 6.2, we reproduce a recent experiment considering
V-notched glass samples impacted by a striker [62]. In Section 6.3, we simulate the material fragmentation of a
cylinder under internal pressure and identify the number of fragments.

6.1. Dynamic brittle fracture I: Pre-cracked glass under tensile loading

We first investigate the crack propagation and branching of soda-lime glass as a prototypical brittle fracture
exemplar, whereby a pre-notched thin rectangular plate is subject to tensile loads on its top and bottom (Fig. 7).
Following the setup in [63], we consider plate dimensions of 0.1 m by 0.04 m with an initial crack of length 0.05 m,
and a constant tensile load o = 2 MPa applied on the top and bottom of the sample starting at 7 = 0. All other
boundaries, including the new boundaries created by cracks, are treated as free surfaces. The mechanical properties
of soda-lime glass are listed in Table 1. This problem was studied in several numerical studies on bond-based
peridynamics [37,63,64] and non-ordinary state-based peridynamics [65] (see [26] for a review). Experimentally
the crack propagation speed is fairly reproducible and was reported as 1580 m/s in [66]. To validate our scheme’s
ability to reproduce crack propagation speed and branching location we compare against available numerical and
experimental results from [61,63,66].

We first plot in Fig. 8 the fracture evolution based on a uniform grid spacing with h = 5 x 107* m, § = 4h
and At = 6.25 x 1072 pus. A qualitative comparison to the results from [61, Figure 5] shows that we qualitatively
recover the same dynamics as existing simulations, independent of particle distribution.

For engineering applications, non-uniform discretizations are desirable to handle complex geometries and
establish grid independence. For many discretizations, so-called grid-imprinting may qualitatively numerically skew
fracture patterns so that they correlate with mesh orientation and special care is often required in numerical
methods [30,61]. To this end, we compare the effect of particle anisotropy on the resulting fracture, comparing
our approach to a popular meshfree quadrature rule from designed for Cartesian particle distributions [25,68]. We
also compare against a mesh-based approach, building a Delaunay mesh on a Cartesian grid with nodal spacing
h and assigning particles at cell centroids with quadrature weight equal to the cell measure [64,67]. We generate
non-uniform discretizations by perturbing either the particle locations or Delaunay nodes by 0.2k , and consider
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Fig. 8. Simulated damage evolution of pre-cracked soda-lime glass crack branching study, using resolution 2 = 0.0005 m and § = 0.002 m.
Left: uniform discretization, Right: non-uniform discretization. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 9. Simulated fracture pattern at 7 = 42 s for pre-cracked soda-lime glass crack branching study, using various quadrature strategies and
resolution 7 = 0.0005 m, § = 0.002 m. Left: uniform discretization, Right: non-uniform discretization. For non-uniform grids, the proposed
meshfree approach predicts branching in line with a Delaunay mesh-based discretization [64,67]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

h =5 x 10~* m. Ideally, we would hope to recover results comparable to the mesh-based approach on non-uniform
discretizations, without the need to introduce a mesh into the problem. By comparing the corresponding fracture
patterns in Figs. 8 and 9, we can see that with our proposed meshfree scheme is more robust to particle anisotropy
than traditional meshfree quadrature, providing nearly identical results on uniform or nonuniform grids.
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Table 2

Quantitative comparison of crack dynamics to existing experimental and numerical works. Here “Exp” stands for experimental results from
[66], “BB” is the estimated result with the bond-based peridynamics measured from [63], and “SB” corresponds to the current approach
with the state-based peridynamics.

Quantity Exp BB (5§ =2e-3m) BB (5§ =5e-4m) SB (§ =2e-3m) SB (§ =le-3m)
Branching Location (m) - 0.065 0.068 0.070 0.068
Branching Time (us) - 23.0 21.5 21.8 22.5
Max Prop Speed (m/s) 1580 2000 1679 2250 2000
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Fig. 10. Comparison of the soda-lime glass (normalized) crack propagation speed: proposed formulation versus numerical results reported
in [61]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To quantitatively validate our simulation results, we validate the time and location of crack branching and the
crack propagation speed and compare against [61,63,66]. In all experiments, we kept a fixed time step size Ar =
6.25x 1072 ps and a fixed ratio 8/ h = 4. Theoretically, the nonlocal length scale in state-based peridynamics should
be smaller than geometrical features to prevent unrealistic nonlocal interactions. Therefore, we also investigate the
M-convergence test by decreasing 4 and § simultaneous to see if crack propagation features converge, considering
h=5x10"*mand h = 2.5 x 107* m. In Table 2, we compare these quantities of interest against numerical and
experimental data. We obtain good agreement for the branching time and location, but overestimate the maximum
speed. This may be a result of under-resolution, as the overestimation is reduced under refinement. However, we
note that several other methods [26,64,65] achieve similar results. To conclusively establish an improvement in the
current formulation regarding this quantity of interest, we defer a deeper investigation of this discrepancy to an
upcoming work involving a parallel implementation of the current scheme allowing a more involved refinement
study.

In Fig. 10 we plot the predicted crack propagation speeds under different § as functions of time, and compare
them with the numerical results from [63]. All results are normalized by the Rayleigh wave speed cg = 3102 m/s.
We can observe that the numerical simulation shows a similar trend: prior to the crack entering the branching
phase, the speed gradually decreases, and then rapidly increases after branching. These trends are also observed in
experiments [62,69].

6.2. Dynamic brittle fracture II: V-notched glass under impact

Recently, Dondeti and Tippur have studied impact-induced crack branching experiments on soda-lime glass by
applying three prevalent optical techniques: transmission photoelasticity, 2D Digital Image Correlation (DIC) and
transmission Digital Gradient Sensing (DGS) [62]. Following the setup sketched in Fig. 11, a Hopkinson pressure
bar was used to impart a impulse upon a V-notch and study the resulting fracture — we defer to [62] for further
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Fig. 11. Problem setup for V-notched soda-lime glass specimen under impact, following [62].

Fig. 12. Experimental fracture patterns and comparison to numerical prediction for V-notch case. From left to right: experimental results
from photoelasticity in [62]; experimental results from Digital Image Correlation (DIC) in [62]; experimental results from Digital Gradient
Sensing (DGS) in [62]; numerical simulation results from the proposed approach. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3

Mechanical properties for V-notched soda-lime glass specimens taken from [62].

Young’s modulus E Poisson ratio v Density p Fracture energy Go
70 GPa 0.22 2500 kg/m? 8 J/m?

details of the experimental setup. Three nominally identical but separate experiments were carried out to compare
three different optical techniques in [62], and the experimental results are reproduced here in the first three plots
of Fig. 12. Although the branching location and the branching angles were not reported in [62], we used the
photographs shown in Fig. 12 to measure branch locations and angles to serve as validation data. For the three
specimens, crack branching was observed at 53%, 56%, and 53% of the width, with branching angles as 57°, 69°,
and 55°, respectively. Moreover, one can observe that in all specimens the crack path presents small oscillations
near the far end of the sample due to wave reflections/spalling, which we aim to reproduce.

In this experiment, detailed information regarding contact force history, crack propagation speed, branching angle
and point of branching are provided, allowing validation of numerical simulations against experiment using identical
experimental loading conditions. In Table 3 we list the material properties of soda-lime glass as provided in [62],
where the fracture energy Gy = 8 J/m? is measured during the experiment using the DGS technique when crack
initiates. The force histories on the V-notch faces of the specimen by the long-bar were evaluated with DGS, as
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Fig. 13. Left: Normal force loads applied to V-notch, demonstrating forces measured from experiment (DGS) (reproduced from [62]) and
approximate piecewise linear load applied in simulations. Right: Crack speed profiles, comparing experimental results (DGS) (reproduced
from [62]) to numerical prediction. Time is denoted after the onset of branching. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

reproduced in blue in the left plot of Fig. 13. In our numerical simulations, a piecewise linear approximation of
the applied normal force is applied uniformly over the V-notch surface as a time-varying traction load. Following
the settings in [62], the frictional effect is neglected. Moreover, since the actual measurement of the bar tip shape
was not provided in experiments, we assume that the full length of the V-notch is loaded, although we note that
the predicted failure patterns might differ from the ones produced by the partial loading of the notch surfaces [70].
Crack velocities were also estimated in [62], and the results indicate that both the photoelastic recording and the
DGS method provided reliable velocity history profiles.

To simulate the experiment, plane stress assumptions are adopted and traction loads are applied consistent with
the experimentally measured normal force at the V-notch and free surfaces over the remainder of the boundary.
A uniform discretization is employed with grid size &~ = 0.5 mm, and we select horizon § = 4k , and time step
At = 0.125 ps. The predicted fracture pattern and crack velocity profile is given in Fig. 12 and Fig. 13, respectively.
In Fig. 12, results show that branching happens at location 60% away from the left edge of the sample, with
a branching angle of around 58°. While the branching angle matches very well within the range of angles from
experimental measurements (55°—69°), the branching location is a little further than the measurements in experiment
(53% — 56%), in what follows we explore possible explanations. Oscillations in the fracture surface are reproduced
near the back of the specimen. In Fig. 13 we provide comparisons of the crack speed as a function of time.

For the results provided, the results provide qualitative agreement sufficient for the purposes of this work. We
do offer speculation regarding possible explanation and areas which may lead to improved quantitative agreement.
Regarding the discrepancy in branching location, Mehrmashhadi et al. was able to achieve better agreement with
experiment by applying the normal force loading over a subset of the full V-notch, to model the effect of reduced
area under contact [70]. We remark that we were able to achieve improved agreement in crack branching location
with similar techniques. We omit any results along these lines however, as our focus is only to demonstrate our
boundary treatment for a realistic problem and a careful analysis of physical modeling assumptions is beyond the
scope of this work. We also note that Mehrmashhadi et al. was able to employ a finer mesh; again we defer a
careful analysis of such effects to a future work where we introduce a scalable implementation.

Next we characterize the reproducibility of the predicted crack paths, considering in particular the effect
of anisotropy in the underlying discretization. For an increasing magnitude of perturbation ratio r € (0, 1), a
quasi-uniform pointset is generated by perturbing every point in the uniform grid by a uniformly distributed
random variable of magnitude rk. In this study we take ~ = 0.5 mm, At = 0.125 ps, § = 2 mm and
r € {0.01, 0.03, 0.05, 0.1, 0.15, 0.2}. For each r, we calculate solutions corresponding to 20 non-uniform particle
distributions. To investigate the impact of non-uniform grids on crack features, we record the branching location
and branching angle, and report their means and standard errors versus the grid perturbation ratio r in Fig. 14.

For the branching location, all simulations predict fairly consistent results: the crack starts to branch at around
60%—62% of the specimen width. Larger variations are observed on the branching angle when » > 0.03, which is
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Fig. 14. Reproducibility and effect of anisotropy in spatial location of crack branching point. Non-uniform discretizations are employed by
perturbing the uniform particle locations by rh, r € [0,0.2]. Left: Mean and standard error of predicted branching location. Right: Mean
and standard error of branching angles.

Table 4
Mechanical properties for the cylinder fragmentation under internal pressure example, following [71,72].
Material properties Young’s modulus E Poisson ratio v Density p Fracture energy Gy
Value 200 GPa 0.3 7800 kg/m? 1.125 x 10° J/m?
Table §

Predicted number of large and small fragments in the cylinder under
internal pressure simulation.

Number of Number of large Number of small
particles fragments fragments

3124 12 2

12587 15 3

22413 15 9

35035 14 4

possibly due to the fact that these estimates are sensitive to the placement of the branching points. Across all r, a
mean angle with 57°-60° is predicted, which lies in the range observed from experiments (55°—69°). The numerical
results indicate that these crack features are not overly sensitive to small perturbations in the discretization grids,
demonstrating the suitability of the scheme to handle nontrivial problems without imparting grid anisotropy effects
on the resulting fracture prediction.

6.3. Fragmentation of cylinder expansion

In the last example simulation, we consider the fragmentation of a cylinder under internal pressure, so as to
evaluate the proposed algorithm on handling multiple cracks and fragments. Following a similar setting as in [71],
a cylinder with inner radius 80 mm and outer radius 150 mm is employed, with material properties listed in Table 4.
The cylinder is subject to an internal p = poe~"/", where py = 2.5 GPa, and ty = 0.01 ms. We run the simulation
with § = 4h, Ar = 0.05 ps, and four different levels of spatial resolution: 3124, 12587, 22413, and 35035
discretization points (particles). For each set of discretization points, we generate non-uniform grids by perturbing
particle positions by a uniformly distributed perturbation of magnitude 0.2/ . In Fig. 15, we show simulation results
at T = 0.2 ms, when the cylinder breaks into fragments. The number of large and small fragments are listed in
Table 5, where we can observe that the number of large fragments is generally consistent except for the case with
the coarsest resolution. The number of small fragments generally increases when using finer discretizations but it
is not monotonic. These observations as well as the number of large fragments are consistent with the simulation
results in [71], where a particle model was employed and 15-16 numbers of large fragments were predicted in
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Fig. 15. Predicted fragmentation of a cylinder under internal pressure at 7 = 0.2 ms, with different discretization resolutions. Left top: 3124
particles. Right top: 12587 particles. Left bottom: 22413 particles. Right bottom: 35035 particles. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

numerical simulations with 12500-39 000 particles. This suggests the current scheme is appropriate for handling
blast loading predictions, and provides consistent predictions as resolution is refined.

7. Conclusion and future work

Peridynamics presents a flexible framework for modeling fracture mechanics. In particular, bond-based fracture
models admit a sharp representation of fracture surfaces while avoiding the loss of mass associated with damage
models and element death [73]. This flexibility comes with a cost however, as the free-surface introduced during
fracture compounds traditional challenges in peridynamic models related to nonlocal boundary conditions. This
work has presented a complete workflow demonstrating for linearly elastic material how quadrature, boundary
and traction loading may be handled in such a way that one preserves a limit to the relevant local problem
as resolution is increased. This is a major contribution to the field of peridynamics — while numerous works
have demonstrated the flexibility of peridynamics in modeling a diverse set of physical phenomena, comparatively
few have demonstrated rigorous notions of convergence and grid independence. Rigorous accuracy guarantees are
fundamental to trusting predictions made by numerical models, and this work aims to provide an important first
step toward putting peridynamics on the same footing as e.g. finite element methods for local mechanics.

The primary focus of this work has been to establish schemes, quadrature rules, and boundary treatment and
provide rigorous mathematical analysis. While numerical examples have been provided at a level appropriate
for establishing the scheme’s feasibility for practical problems, an important next step is to generate a perfor-
mant parallel implementation allowing one to consider high-resolution predictions in two and three dimensions.
For several of the validation studies provided here we were unable to reach the resolution used by other
state-of-the-art peridynamic discretizations due to memory limitations of our serial implementation. The method
itself is embarrassingly parallelizable, as the generation of quadrature weights and dilatation corrections involves
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Fig. A.18. Linear patch test with non-uniform discretizations: traction loads applied on boundary including a corner. Left: L2(£2) errors of
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only the local construction and inversion of small linear matrices. In an upcoming work we will provide a clear
demonstration of how the convergence guarantees provided by our approach translates to improved prediction
accuracy for realistic problems. We will additionally consider the generalization of this approach to nonlinear
elastoplasticity governing ductile failure.
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, v=0.3, slope=1.10 -8-$=3.5h, v=0.3, slope=1.15
-8-6=3.9h, »=0.3, slope=1.19
-0-0=3.5h, 1=0.49, slope=0.93
v=0.49, slope=0.97

I I I -3 I I I
/128 /64 /32 /16 /8 ! 07r/1 28 /64 /32 /16 /8

h h
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Fig. A.21. M-convergence tests on a square domain with uniform discretizations and traction loads applied on boundary including a corner.
Left: the L?(£2) difference between displacement u and its local limit ug. Right: the L2(£2) difference between the nonlocal dilatation 6
and its local limit 8y = V - ug. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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0 and its local limit 6y = V -ug. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. A.29. M-convergence tests for composite materials with uniform discretizations. Left: the L>(£2) difference between displacement u
and its local limit ug. Right: the L2(£2) difference between the nonlocal dilatation 6 and its local limit 8y = V - ug. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.30. M-convergence tests for composite materials with non-uniform discretizations. Left: the L2(£2) difference between displacement
u and its local limit ug. Right: the L2(2) difference between the nonlocal dilatation 6 and its local limit 6y = V - ug. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Convergence studies

Al

Linear patch tests

See Figs. A.16-A.18.

A2

Manufactured solution test

See Figs. A.19-A.24.

A3

Traction loads on curvilinear free surfaces

See Figs. A.25-A.28.

A4

Composite materials with discontinuous material properties

See Figs. A.29 and A.30.

References

[1]
[2]

[3]

[4]
[51

[6]

[71
[8]

[9]
[10]
(11]
[12]
[13]
[14]

[15]
[16]

[17]
(18]
[19]
[20]

[21]

S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (1) (2000) 175-209.
P. Seleson, M.L. Parks, M. Gunzburger, R.B. Lehoucq, Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul.
8 (1) (2009) 204-2217.

M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code, Comput. Phys.
Comm. 179 (11) (2008) 777-783.

M. Zimmermann, A Continuum Theory with Long-Range Forces for Solids (Ph.D. thesis), Massachusetts Institute of Technology, 2005.
E. Emmrich, O. Weckner, Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear
elasticity, Math. Mech. Solids 12 (4) (2007) 363-384.

Q. Du, K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal. 45 (02)
(2011) 217-234.

F. Bobaru, J.T. Foster, PH. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling, CRC Press, 2016.

Z.P. Bazant, M. Jirdsek, Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech. 128 (11) (2002)
1119-1149.

Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal
balance laws, Math. Models Methods Appl. Sci. 23 (03) (2013) 493-540.

X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer.
Anal. 52 (4) (2014) 1641-1665.

M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, Z. Zhou, Numerical methods for nonlocal and fractional models, 2020, arXiv
preprint arXiv:2002.01401.

Y. Leng, X. Tian, N. Trask, J.T. Foster, Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal
diffusion, 2019, arXiv preprint arXiv:1907.12031.

M. Pasetto, Y. Leng, J.-S. Chen, J.T. Foster, P. Seleson, A reproducing kernel enhanced approach for peridynamic solutions, Comput.
Methods Appl. Mech. Engrg. 340 (2018) 1044-1078.

M. Hillman, M. Pasetto, G. Zhou, Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods,
non-local derivative operations, and an arbitrary-order state-based peridynamic formulation, Comput. Part. Mech. 7 (2) (2020) 435-469.
P. Seleson, D.J. Littlewood, Convergence studies in meshfree peridynamic simulations, Comput. Math. Appl. 71 (11) (2016) 2432-2448.
Q. Du, Local limits and asymptotically compatible discretizations, in: Handbook of Peridynamic Modeling, Chapman and Hall/CRC,
2016, pp. 87-108.

N. Trask, H. You, Y. Yu, M.L. Parks, An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications
to peridynamics, Comput. Methods Appl. Mech. Engrg. 343 (2019) 151-165.

H. You, X. Lu, N. Trask, Y. Yu, An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems,
ESAIM Math. Model. Numer. Anal. 54 (4) (2020) 1373-1413.

H. You, Y. Yu, D. Kamensky, An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping
regions, Comput. Methods Appl. Mech. Engrg. 366 (2020) 113038.

Y. Tao, X. Tian, Q. Du, Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations,
Appl. Math. Comput. 305 (2017) 282-298.

S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct. 83 (17-18) (2005)
1526-1535.

34


http://refhub.elsevier.com/S0045-7825(21)00027-X/sb1
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb2
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb2
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb2
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb3
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb3
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb3
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb4
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb5
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb5
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb5
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb6
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb6
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb6
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb7
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb8
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb8
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb8
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb9
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb9
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb9
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb10
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb10
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb10
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/2002.01401
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://arxiv.org/abs/1907.12031
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb13
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb13
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb13
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb14
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb14
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb14
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb15
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb16
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb16
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb16
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb17
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb17
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb17
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb18
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb18
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb18
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb19
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb19
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb19
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb20
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb20
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb20
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb21
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb21
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb21

Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

[22]
(23]

[24]
[25]

[26]

(271
[28]

(291
(30]
[31]
(32]

[33]
[34]

[35]
[36]
[37]
[38]
(391
[40]
[41]
[42]
[43]

[44]
[45]

[46]

(471
(48]

[49]
(501

[51]
[52]
(53]
(54]
[55]
[56]

(571
(58]

[591

[60]
[61]

[62]

M. Bessa, J. Foster, T. Belytschko, W.K. Liu, A meshfree unification: reproducing kernel peridynamics, Comput. Mech. 53 (6) (2014)
1251-1264.

F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J. Xu, Convergence, adaptive refinement, and scaling in 1D peridynamics,
Internat. J. Numer. Methods Engrg. 77 (6) (2009) 852-877.

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, J. Elasticity 117 (1) (2014) 21-50.

M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, S.A. Silling, Peridynamics with LAMMPS: A User Guide V0.2 Beta, Sandia
National Laboraties, Albuquerque, NM, 2008.

P. Diehl, S. Prudhomme, M. Lévesque, A review of benchmark experiments for the validation of peridynamics models, J. Peridyn.
Nonlocal Model. 1 (1) (2019) 14-35.

A. Javili, R. Morasata, E. Oterkus, S. Oterkus, Peridynamics review, Math. Mech. Solids 24 (11) (2019) 3714-3739.

C. Cortazar, M. Elgueta, J.D. Rossi, N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by
nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 (1) (2008) 137-156.

Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech. 78 (6) (2011) 1156-1168.
F. Bobaru, Y.D. Ha, Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng. 9 (6) (2011).
Q. Du, R.B. Lehoucq, A.M. Tartakovsky, Integral approximations to classical diffusion and smoothed particle hydrodynamics, Comput.
Methods Appl. Mech. Engrg. 286 (2015) 216-229.

M. D’Elia, X. Tian, Y. Yu, A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal
volume constraints, STAM J. Sci. Comput. 42 (4) (2020) A1935-A1949.

Q. Le, F. Bobaru, Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech. 61 (4) (2018) 499-518.

E. Madenci, E. Oterkus, Coupling of the peridynamic theory and finite element method, in: Peridynamic Theory and its Applications,
Springer, 2014, pp. 191-202.

E. Oterkus, Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures (Ph.D. thesis),
The University of Arizona, 2010.

R.W. Macek, S.A. Silling, Peridynamics via finite element analysis, Finite Elem. Anal. Des. 43 (15) (2007) 1169-1178.

Q. Du, Y. Tao, X. Tian, A peridynamic model of fracture mechanics with bond-breaking, J. Elasticity (2017) 1-22.

E. Madenci, E. Oterkus, Peridynamic theory, in: Peridynamic Theory and its Applications, Springer, 2014, pp. 19-43.

S. Oterkus, Peridynamics for the Solution of Multiphysics Problems, The University of Arizona, 2015.

R. Lipton, P.K. Jha, Classic dynamic fracture recovered as the limit of a nonlocal peridynamic model: The single edge notch in tension,
2019, arXiv preprint arXiv:1908.07589.

E. Madenci, M. Dorduncu, A. Barut, N. Phan, Weak form of peridynamics for nonlocal essential and natural boundary conditions,
Comput. Methods Appl. Mech. Engrg. 337 (2018) 598-631.

B. Aksoylu, G.A. Gazonas, On nonlocal problems with inhomogeneous local boundary conditions, J. Peridyn. Nonlocal Model. (2020)
1-25.

E. Emmrich, O. Weckner, et al., On the well-posedness of the linear peridynamic model and its convergence towards the Navier
equation of linear elasticity, Commun. Math. Sci. 5 (4) (2007) 851-864.

R. Lipton, Cohesive dynamics and brittle fracture, J. Elasticity 124 (2) (2016) 143-191.

PK. Jha, R.P. Lipton, Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model, Int. J. Fract. 226 (1)
(2020) 81-95.

R.P. Lipton, PK. Jha, Plane elastodynamic solutions for running cracks as the limit of double well nonlocal dynamics, 2020, arXiv
preprint arXiv:2001.00313.

T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math. 14 (04) (2012) 1250028.

T. Mengesha, Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A
144 (1) (2014) 161-186.

T. Mengesha, Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elasticity 116 (1) (2014) 27-51.
G. Oger, M. Doring, B. Alessandrini, P. Ferrant, An improved SPH method: Towards higher order convergence, J. Comput. Phys. 225
(2) (2007) 1472-1492.

S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory, J. Elasticity 93 (1) (2008) 13-37.

H. Wendland, Scattered Data Approximation, Vol. 17, Cambridge University Press, 2004.

S. Silling, R. Lehoucq, Peridynamic theory of solid mechanics, Adv. Appl. Mech. 44 (1) (2010) 73-166.

G.B. Folland, How to integrate a polynomial over a sphere, Amer. Math. Monthly 108 (5) (2001) 446-448.

P. Kuberry, P. Bosler, N. Trask, Compadre toolkit version 1.0.1, 2019, http://dx.doi.org/10.5281/zenodo.2560287.

B. Seibold, Minimal positive stencils in meshfree finite difference methods for the Poisson equation, Comput. Methods Appl. Mech.
Engrg. 198 (3-4) (2008) 592-601.

S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct. 83 (2005) 1526-1535.
G. Capodaglio, M. D’Elia, P. Bochev, M. Gunzburger, An energy-based coupling approach to nonlocal interface problems, Comput.
& Fluids (2020) 104593.

N. Trask, M. Perego, P. Bochev, A high-order staggered meshless method for elliptic problems, SIAM J. Sci. Comput. 39 (2) (2017)
A479-A502.

H. Zhang, P. Qiao, A state-based peridynamic model for quantitative fracture analysis, Int. J. Fract. 211 (1-2) (2018) 217-235.

F. Bobaru, G. Zhang, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, Int. J. Fract. 196 (1-2) (2015)
59-98.

S. Dondeti, H. Tippur, A comparative study of dynamic fracture of soda-lime glass using photoelasticity, digital image correlation and
digital gradient sensing techniques, Exp. Mech. 60 (2) (2020) 217-233.

35


http://refhub.elsevier.com/S0045-7825(21)00027-X/sb22
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb22
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb22
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb23
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb23
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb23
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb24
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb25
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb25
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb25
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb26
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb26
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb26
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb27
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb29
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb30
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb31
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb31
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb31
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb33
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb34
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb34
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb34
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb35
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb35
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb35
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb36
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb37
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb38
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb39
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://arxiv.org/abs/1908.07589
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb41
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb41
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb41
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb42
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb42
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb42
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb43
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb43
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb43
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb44
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb45
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb45
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb45
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://arxiv.org/abs/2001.00313
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb47
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb48
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb48
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb48
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb49
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb50
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb50
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb50
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb51
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb52
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb53
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb54
http://dx.doi.org/10.5281/zenodo.2560287
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb56
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb56
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb56
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb57
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb58
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb58
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb58
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb59
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb59
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb59
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb60
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb61
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb61
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb61
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb62
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb62
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb62

Y. Yu, H. You and N. Trask Computer Methods in Applied Mechanics and Engineering 377 (2021) 113691

[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
(711
[72]

(73]

Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract. 162 (1-2) (2010)
229-244.

X. Gu, Q. Zhang, X. Xia, Voronoi-based peridynamics and cracking analysis with adaptive refinement, Internat. J. Numer. Methods
Engrg. 112 (13) (2017) 2087-2109.

X. Zhou, Y. Wang, Q. Qian, Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the
extended non-ordinary state-based peridynamics, Eur. J. Mech. A Solids 60 (2016) 277-299.

F. Bowden, J. Brunton, J. Field, A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature 216 (5110)
(1967) 38-42.

M. Bufiler, P. Diehl, D. Pfliiger, S. Frey, F. Sadlo, T. Ertl, M.A. Schweitzer, Visualization of fracture progression in peridynamics,
Comput. Graph. 67 (2017) 45-57.

Y. Yu, EF. Bargos, H. You, M.L. Parks, M.L. Bittencourt, G.E. Karniadakis, A partitioned coupling framework for peridynamics and
classical theory: analysis and simulations, Comput. Methods Appl. Mech. Engrg. 340 (2018) 905-931.

B.M. Sundaram, H.V. Tippur, Dynamic fracture of soda-lime glass: A full-field optical investigation of crack initiation, propagation
and branching, J. Mech. Phys. Solids 120 (2018) 132-153.

J. Mehrmashhadi, M. Bahadori, F. Bobaru, Comparison of Peridynamic and Phase-Field Models for Dynamic Brittle Fracture in Glassy
Materials, engrXiv, 2020.

T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Internat. J. Numer. Methods
Engrg. 61 (13) (2004) 2316-2343.

N. Abd-Allah, M. El-Fadaly, M. Megahed, A. Eleiche, Fracture toughness properties of high-strength martensitic steel within a wide
hardness range, J. Mater. Eng. Perform. 10 (5) (2001) 576-585.

K. Bathe, S. Bolourchi, S. Ramaswamy, M. Snyder, Some computational capabilities for nonlinear finite element analysis, Nucl. Eng.
Des. 46 (2) (1978) 429-455.

36


http://refhub.elsevier.com/S0045-7825(21)00027-X/sb63
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb63
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb63
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb64
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb64
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb64
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb65
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb65
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb65
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb66
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb66
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb66
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb67
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb67
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb67
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb68
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb68
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb68
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb69
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb69
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb69
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb70
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb70
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb70
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb71
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb71
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb71
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb72
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb72
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb72
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb73
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb73
http://refhub.elsevier.com/S0045-7825(21)00027-X/sb73

	An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture
	Introduction
	A linear state-based peridynamic model
	Neumann and mixed-type constraint problems
	Formulation for non-homogeneous traction loading
	Well-posedness and consistency analysis

	Optimization-based meshfree quadrature rules
	Numerical verification and asymptotic compatibility
	Linear patch test
	Manufactured solution test
	Traction loading on curvilinear surfaces
	Composite materials with discontinuous material properties

	Fracture dynamics for brittle fracture experiments
	Dynamic brittle fracture I: Pre-cracked glass under tensile loading
	Dynamic brittle fracture II: V-notched glass under impact
	Fragmentation of cylinder expansion

	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	Appendix. Convergence studies
	Linear patch tests
	Manufactured solution test
	Traction loads on curvilinear free surfaces
	Composite materials with discontinuous material properties

	References


