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Abstract

In recent works, directed acyclic graph (DAG) structure learning was formulated
as a constrained continuous optimization problem with continuous acyclicity con-
straints and was solved iteratively through subproblem optimization. We propose
a novel learning framework to model and learn the weighted adjacency matrices
of DAGs without iterations. Specifically, we first show that the set of weighted
adjacency matrices of DAGs are equivalent to the set of weighted gradients of
graph potential functions, and one may perform structure learning by searching
in this equivalent set of DAGs directly. To instantiate this idea, we propose an
approximation algorithm, DAG-NoCurl, which approximately solves the optimiza-
tion problem efficiently with a two-phase procedure: 1) in the prediction phase we
compute an approximate non-acyclic graph to the optimization problem, and 2)
then the projection phase employs the Hodge decomposition of graphs and forms
an acyclic approximation of the predicted graph by projecting it to the gradient of a
potential function. Experimental studies on synthetic datasets demonstrate that this
projection method provides comparable accuracy but better efficiency than baseline
DAG structure learning methods, often by more than one order of magnitude.

1 Introduction

Bayesian Networks (BN) have been widely used in various machine learning applications [29, [37].
Efficient structure learning of BN is an active area of research. The structure takes the form of a
directed acyclic graph (DAG) and plays a vital part in other machine learning sub-areas such as causal
inference [30]]. However, DAG learning is proven to be NP-hard [3] and scalability becomes a major
issue. Conventional DAG learning methods usually perform score-and-search for discrete variables
[35,116,[7]. Learning DAG structures for continuous variables is often limited to Gaussian graphical
models [44} [11}, 133] 24} 23]. Recently, a fully continuous optimization formulation is proposed
[46,142] , which transforms the discrete DAG constraint into a continuous equality constraint. This
approach enables a suite of continuous optimization techniques such as gradient descent to be used,
and has been extend to a more general parameter class with various neural methods [19, 48, 47]].
In this work, we take a step further and propose a continuous optimization framework for DAG
structure learning without any explicit constraint. Independently, [41] and [25] have studied the
usage of empirical correlation matrix and covariance matrix to formulate the continuous optimization
for structure learning without an explicit acyclicity constraint. Different from their works, a new
graph-exterior-calculus-based framework of DAG is proposed which implicitly enforces the acyclicity
of the learned graph, and an efficient approximate algorithm, DAG-NoCurl, is developed based on
the graph Hodge theory [[17, [20] to approximately solve for the resultant unconstrained optimization
problem.
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Contributions. We make several major contributions in this work: 1) We propose a new model
for DAG based on the graph combinatorial gradient operator. Specifically, we theoretically show
that the weighted adjacency matrix of a DAG can be represented as the Hadamard product of a
skew-symmetric matrix and the gradient of a potential function on graph vertices, and vice verse. 2)
Based on the new model, we develop a new continuous optimization framework for DAG structure
learning without any explicit constraint. 3) To approximately solve for the optimization problem
efficiently, we develop a projection method for DAG structure learning, or DAG-NoCurl, that provides
an approximate solution of the weighted adjacency matrix to the original problem without constraints
or iterations.

DAG-NoCurl relies on the key step of projecting the adjacency weighted matrix of an estimated
directed graph onto an acyclic one. The main advantages of the proposed method over conventional
structure learning algorithms are: 1) the new model provides a equivalent representation of DAGs,
which can be readily combined with many existing structural equation models [46| 42], 2) the
new model naturally transfers the DAG structure learning problem as a continuous optimization
framework, which avoids the combinatorial search and enables a suite of continuous optimization
techniques; 3) comparing with other fully continuous optimization frameworks for DAG learning
[19,142}147], our framework needs no explicit DAG constraints or iterations, hence the model achieves
a substantially better efficiency. Results on synthetic datasets show that while obtaining the same
accuracy, the proposed framework improves the computational efficiency by up to one or two orders
of magnitude.

2 Problem Statement and Motivation

In this work we consider the DAG structure learning problem as follows: let V denote a set of d

numbers of random variables, X = (X1, ---,Xy) € R< be an observation on V, and D denotes
the space of DAGs G = (V, E) on V, we aim to learn a DAG G € D given n i.i.d. observations
of the random vector X* € R% i = 1,--- ,n. To model X, we consider a (generalized) structural

equation model (SEM) defined by a weighted adjacency matrix A = [ay] - - - |ag] € R9*? such that
E(X;|Xpa(x,)) = f(a] X), where pa(X) denote the parents of random variable j in V. Therefore
[A];; # O indicates a directed edge from vertex 7 to vertex j in a directed graph G4 and zero
otherwise. Although with a slight abuse of notation, we will treat the weighted adjacency matrix A as
a (weighted) directed graph G 4.

Given the data matrix X = (X!, X™) € R%*" and a loss function F(4, X) that measures the
goodness of fit of X for A, in this structure learning problem we aim to find the best DAG A* that
minimizes F'(A, X). Hence, the overall objective can be written as:

* =argmin  F(A,X), subject to GaeD (1)
A

As one can see, the DAG space D for d variables is super-exponential. For structure learning
over discrete variables, many exact and approximate algorithms from observational data have been
proposed [38}14, 118116, 18l,134]] with different search strategies, such as dynamic programming [36} 35,
A* [43]], or integer programming [[16[7]. In large-scale problems, approximate methods are often
needed, with additional assumptions such as bounded tree-width [26] or efficient approximating
scores [32]]. Sampling [22, [13} [10, [14] 28} [15]] and topological order search [12} 39 32]] are also
popular.

In this work we assume that all variables are continuous, and study the DAG structure learning
problem with the focus of SEM and smooth loss function I defined over A. By using an alternative
continuous DAG constraint constraint h(A) = 0 [46| 42], the constrained optimization problem
becomes fully continuous. Similar to [46,42], we seek to learn a continuous representation for A.
More importantly, we investigate whether the DAG constraint can be eliminated entirely. The key
device in accomplishing this is the observation that DAG is associated with curl-free functions on
edges, which motivates a new representation of DAGs A = v(W, p), W € R¥*? and p € R?, as will
be elaborated in the next section. The constraint optimization problem (I}) can then by replaced by
the following objective:

(W*,p") = argmin F(y(W,p), X), )

W.p

with the optimal DAG A* = ~(W™*, p*). To solve for the optimization problem in (2}, we further
propose an approximation algorithm in Section 4] based on the combinatorial Hodge theory on graphs



[20, [17], which decomposes a graph onto curl-free and divergence-free components. To the best of
our knowledge, both the equivalence representation of DAGs and the application of Hodge theory in
DAG structure learning have never been studied.

Notation-wise, we use A to denote the ground truth DAG, A* for the global optimal solution in
(1), and A for the approximated solution from numerical algorithms. The ultimate goal of our DAG
structural learning problem is to obtain a DAG A which recovers the structure of A° and obtains a
comparable score F'(A,X) as F(A*, X).

3 An Equivalent Model for DAGs

To propose the new formulation for DAG structure learning, we first briefly introduce the basic graph
exterior calculus operators [, 17} 20], then formulate DAGs into an equivalent model. For a more
thorough introduction of graph calculus, we refer the interested readers to [20]].

Let G = (V, E) be a complete undirected graph where V := {1,-- - ,d} is the set of vertices and

E is the set of undirected edges. Note here since G is a complete graph, the set of k-th cliques of

G is equivalent to { (Z) } The ordered and unordered pairs of vertices are delimited by (i, j) and

{4, j}, respectively, where i, j denote the i-th and j-th vertices. Real-valued functions on graph can
be defined on vertices, edges, triangles, and so on. On vertices, a real-valued function f : V' — R
is called a potential function, and we denote the Hilbert space of all potential functions as L?(V).
We may also define real-valued functions on edges F = {{i,j},4,j € V} and triangles T =
{{i,4,k},1, 4,k € V}, with the requirement that these functions are alternating. In particular, for
an alternating function on edges Y : V x V' — R, we require Y (4, j) = —Y (4, ); for an alternating
function on triangles © : V x V x V. — R, we require ©(i,j, k) = —0O(j,4, k) = —O(i, k, j).
In the following we use L2 (E) and L2 (T) to denote the Hilbert spaces of real-valued alternating
functions on edges and triangles, respectively. Moreover, we note that p € L2(V') corresponds to
areal vector p = [p(1),--- ,p(d)] € R%, and an alternating function Y € L2 (F) corresponds to a
skew-symmetric real matrix Y € R¥*¢ with [Y],; = Y'(4,7) and Y = —Y". Here we use the same
letter to denote a vector/matrix and the corresponding function on vertices/edges.

Next, we introduce graph calculus operators grad, curl and their adjoint operators below.
Definition 3.1. The gradient (grad : L*(V) — L2 (E)) is an operator on any function p on vertices:
(grad p)(la]):p(])_p(l)a V{Z7]}EE7

and grad(p) is called a gradient flow. Its adjoint operator (grad™ : L2 (E) — L?(V), or sometimes
called the negative divergence operator) is defined on any alternating function Y on edges:

(grad™ Y)(i) = —(div Y ZY i,7), VieV.

The curl (curl : L2 (E) — L2(T)) is an operator for any alternating function Y on edges:
(curl Y)(i, 4, k) =Y(i,5) + Y k) +Y(k i), V{i,jk}eT,

and its adjoint operator curl* : L2 (T) — L2 (E) is for any alternating function © on triangles:

d
(curl® ©)( Z@ (4,7,k), Y{i,j} € E.

1

k=
The graph Laplacian (g : L?>(V') — L?(V)) is an operator on any function p on vertices:
(Dop)(i) = —(div grad p)( Z p(j), VieV.

The graph Helmholtzian (/N1 : L% (E) — L% (E)) is defined on any alternating function'Y on edges:
(A1Y) (4, 5) = (grad grad™ Y + curl® curl Y)(3,5),V{i,j} € E.

Lemma 3.2. [I7] Letp € L?>(V) and © € L?%(E), denote D = grad(p) and R = curl*(0), then
D and R are curl-free and divergence-free, respectively:

curl(D)(i,5,k) =0, V{i,j,k} €T} div(R)(7) = —grad"(R)(1) =0, VieV.



Algorithm 1 DAG-NoCurl algorithm for DAG Structure Learning
1. Prediction phase: Solve for an initial prediction AP"¢ € R?*? with (@) and threshold AP,
2. Projection phase: Based on AP, obtain an approximate solution of p* as p with (), then solve
for W with fixed p in (TI). o )
3. Obtain the final approximation solution A = W o ReLU(grad(p)) and threshold A.

Given a complete undirected graph G(V, E) and a function Y € L2 (E), with ReLU denoting the
rectified linear unit function, we can define a weighted adjacency matrix A € R%*? as:

. . Y(¢,5), ifY(i,j5) >0,

and further define a weighted directed graph Gr.py(y) from A = ReLU(Y’) in the following:

Definition 3.3. Consider a complete undirected graph G(V, E) and Y € L2 (E), a directed graph
Greruy)(V, EReLU(y)) is defined such that there is a directed edge from vertex i to vertex j in

GRreLu(y) if and only if Y (i, j) > 0, i.e., the set of directed edges Ercrucyy = {(i,4)|Y (i,7) > 0}.
Moreover, note that ReLU(Y') is a weighted adjacency matrix of gReLU(Y).

Based on the above definition, we show that curl-free functions are associated with DAGs:

Lemma 3.4. Consider a complete undirected graph G(V, E) and a curl-free function' Y € L2 (E),
then ReLU(Y) € R*? s the weighted adjacency matrix of a DAG. Moreover, given any skew-
symmetric matrix W € R4 W o ReLU(Y') is also a DAG, where o is the Hadamard product.

All proofs can be found in Appendix [A] Since the gradient of any potential function (gradient flow) is
curl-free, with Lemma [3.4] the first part of our main theoretical results is obtained:

Theorem 3.5. Consider a complete undirected graph G (V, E), given any function p € L*(V) and
any skew-symmetric matrix W € R¥<, W o ReLLU(grad(p)) is the weighted adjacency matrix of a
DAG; i-e-; {gWORcLU(grad(p))} cD.

Remark 3.6. The skew-symmetry assumption of W was made based on the fact that at least one

or both of ReLU(grad(p)) (i, j) = 0 and ReLU(grad(p))(j,¢) = 0 must hold true for any i,j € V.

This assumption reduces the number of unknown parameters associated with W from d? to @.

We will now show that the other direction also holds true:
Theorem 3.7. Let A € RY*? be the weighted adjacency matrix of a DAG with d nodes, denote

G (V, E) as the complete undirected graph on these d nodes, then there exists a skew-symmetric
matrix W € R4 and a potential function p € L*(V') such that A = W o ReLU(grad(p)), i.e.,

D C {GwoRreLU(grad(p)) }-

The key step of the proof is to define a function p € L?(V) based on the topological order of the
DAG, such that p(j) > p(4) if there is a directed path from vertex i to j. Proof is in Appendix

Hence, we have shown that the set of weighted adjacency matrices for DAGs is equivalent to the set
of W o ReLU(grad(p)). Denoting S := {W|W € R™4 W = —WT} as the space of all d x d

skew-symmetric matrices, {W o ReLU(grad(p))|W € S, p € R} provides an admissible solution
set for DAG structural learning problems. With a given loss function F'( A, X), the structural learning
problem can be written as the following optimization problem without an explicit constraint:

(W*,p*) = argmin F(W o ReLU(grad(p)), X), 3)
WeS,peRd

and the optimal solution A* = W* o ReLU(grad(p*)).

4 A Prediction-Projection Method for DAG Structure Learning

As one can see, the loss function in is generally nonconvex. Therefore, we inherit the difficulties
associated with nonconvex optimization. As will be discussed in the ablation study in Section [5}
numerically solving with a random initialization of W and p may result in a stationary point



which is far from the global optimum. Therefore, instead of solving for (3)) directly we propose a
novel two-phase approximation algorithm, DAG-NoCurl. In the prediction phase, we compute an
initial estimate solution matrix AP™¢ € R?*¢ whose associated graph G 4»-c is not necessarily acyclic.
In the projection phase, we refine the predicted solution by projecting AP"¢ into the set of DAGs
{W oReLU(grad(p))} and obtaining an approximated solution A = W o ReLU(grad(p)). The full
algorithm is outlined in Algorithm[I] and we introduce each component of the algorithm in more
details as follows.

Prediction Phase: In order to compute an initial prediction AP, we solve for the following
unconstrained problem
AP"¢ = argmin F (A, X) + Ah(A) 4)
A

where A > 0 is a constant penalty coefficient, F'(A4, X) is the loss function and h(A) is a proper
continuous constraint for acyclicity [46}42]. For example, in NOTEARS [46] the authors proposed
h(A) = trlexp(A o A)] — d and in DAG-GNN [42] h(A) = tr[(I + aAo A)4] —d,a > Oisa
constant, was employed. Note that when increasing the penalty parameter  to infinity and solving (@)
iteratively, an acyclic graph A will be obtained and the procedure will be equivalent to the classical
penalty method for constraint optimization problems. However, here we solve for @) with fixed A,
h(AP"¢) is generally nonzero and AP" is likely not a DAG, and therefore a projection step in the
next phase is required to obtain a DAG. In practice, we find that solving for (@) at most twice, once
with a fixed A (as denoted by the NoCurl A = - cases) or twice with two fixed As (as denoted by the
NoCurl A = (A1, A2) cases), gives satisfactory initializations. In the NoCurl A = (A1, A2) cases, we
first solve for (@) with a A = A1, and then solve for (@) with a larger fixed penalty coefficient A = As.
To achieve a good balance for the computational time and solution accuracy in structural discovery,
in Section [5| we perform a hyperparameter study for both one A and two A cases.

Projection Phase: To further obtain an acyclic graph solution A, we use the prediction AP as an
initialization and project it into the admissible solution set {TV o ReL.U(grad(p))}. Specifically, we
first design a projection method to obtain p based on the following theorem:

Theorem 4.1 (Hodge Decomposition Theorem [20} 21 [17]). Consider an undirected graph G (V, E),
any function Y € L2 (E) can be decomposed into three orthogonal components:

Y = grad(¢) + curl™(¥) + H ®)

where ¢ € L*>(V), ¥ € L2(T), and H € L3(E). Moreover, H is a harmonic function satisfying
AN H =0, curl H =0anddivH = 0.

The Hodge decomposition shows that every alternating function on edges Y € LZ(FE) can be

decomposed into two orthogonal components: a gradient flow grad(¢), which represents the L?-

optimal ordering of the vertices, and a divergence-free component curl® (V) + H, which measures

the inconsistency of the vertices ordering. Therefore, we define a L? projection operator Proj :
L2 (E) — grad(L?(V)) as:

Proj(Y') = grad(¢), (©)

such that (Proj(Y),Y — Proj(Y)) = 0, where (-, ) is the standard L? inner product on L2 (E):

We note that ¢ is only unique up to a constant potential function, i.e., if Proj(Y") = grad(¢), then
Proj(Y") = grad(¢ + C) also holds. Adding a constant to ¢ will yield the same ordering of vertices
and the same gradient flow. For the sake of well-posedness, in practice we determine a unique
solution ¢ by fixing its value on the last vertex such that ¢(d) = 0. Taking the divergence of (3)
yields:
div(Y) = div grad(¢) = —Lo¢. )

We obtain the following theorem for the solution of ¢:
Theorem 4.2. Consider an undirected complete graph G(V, E) and Y € L2 (E), a solution of (6))
is given by

¢ = —Aldiv(Y) = =AY Y (i, 5) ®)

j

where 1 indicates the Moore-Penrose pseudo-inverse. Fixing ¢(d) = 0, the matrix representing the
graph Laplacian g is given by
d—1, ifi=jandi,j+#d,
[Aoi; =

0, otherwise.



Note that a key requirement in the above projection operator is that Y has to be an alternating function
on edges, which corresponds to a d x d skew-symmetric matrix. However, AP"¢ is generally not skew-
symmetric. Fortunately, any square matrix M can be written uniquely as a symmetric and a skew-
symmetric components: M = Maym + Magew With Maym = (M + M") and Magew = (M — MT).
Let C'(M) denote the connectivity matrix [27] of a directed graph M such that [C'(M)];; = 1 only
if a directed path exists from vertex ¢ to vertex j. We apply the projection to the skew-symmetric
component of the connectivity matrix of AP"¢, and we will show that this operation preserves the
topological order of vertices in a DAG:

Theorem 4.3. Let A € R¥*? pe the weighted adjacency matrix of a DAG with d nodes, then

. 1
p= oy (Gc) - cn). ©
preserves the topological order in A such that p(j) > p(i) if there is a directed path from vertex i to
j. Moreover, we have A = W o ReLU(grad(p)) with the skew-symmetric matrix W defined as

0, ifp(e) =p() or A(i,5) = AG,i) = 0;
Wl =4 5oram A7) # 0and AGGi) = 0; (10)
L, ifA(i, ) = 0 and A(j,4) # 0.

A detailed proof is provided in Appendix [A]

Intuitively, from Theorem 4.3|we can see that 5 = —A] div (1 (C(AP™) — C(AP™*)")) provides the
topological order for an acyclic approximation of AP"¢. For an approximation solution of W, when
AP"¢ is not a DAG and there exists a directed cycle (c¢q, ¢a, - -+ , ¢k, ¢1), we note that the formulations
in (9) and (I0) will eliminate all the edges between vertices ¢; and ¢;, V{4, j} C {1,--- ,k}, which
then results in a DAG solution.

To further improve the quality of the approximation solution of W', instead of employing directly
we compute W via:

W = argmin F(W o ReLU(grad(p)), X). (11)
wes
Then, we obtain an approximate DAG solution A = W o ReLU(grad(p)). To ensure the skew-
symmetric property of W, one can optimize parameters only from the upper triangular matrix of W
and set the lower triangular matrix to be the negative of the upper triangular matrix.

By the standard practice of thresholding in DAG learning problems (see, e.g., [46]), we employ the
same procedure to post-process AP"¢ after the prediction phase and A after the projection phase.
Specifically, we threshold the edge weights of a learned A as follows: given a fixed threshold € > 0,
set A(i,7) = 0if |A(7, j)| < €. In all the numerical tests we use a default threshold value ¢ = 0.3 as
suggested in NOTEARS [46]. Note that The thresholding step in NOTEARS is motivated by rounding
the numerical solution into exact DAG and removing false discoveries. Since the our characterization
returns an exact DAG, so the purpose of the thresholding step is to remove false discoveries, which is
slightly different from NOTEARS.

As shown in Algorithm [T} the full procedure consists of only two (if using only one \) or three (if
using two As) unconstrained optimization problems, since this prediction-projection approach doesn’t
require any iterative procedure to increase the penalty coefficient A. We note that (W, p) is only
an approximate solution of (3). However, as will be discussed in the experiments of Section [5] the
approximate solution found by our algorithm are typically close to global minima in practice, by
comparing our results to the global minimizer.

S Experiments

We present empirical evaluations to demonstrate the effectiveness of the proposed DAG continuous
representation and the approximation algorithm. Specifically, we conduct experiments on synthetic
datasets, and compare the proposed method DAG-NoCurl against competitive baselines. Here we
outline the empirical set-up, with more details including all parameter choices provided in Appendix

Bl

For the experiments with synthetic datasets, we employ similar experimental setups as existing work
[46]. In each experiment a random graph G is generated by using the Erd6s—Rényi (ER) model or



the scale-free (SF) model with kd expected edges (denoted as ERk or SFk cases) and uniformly
random edge weights to obtain a ground-truth weighted matrix A°. Given A°, we take n = 1000
i.i.d. samples X from the linear SEM X = (A%)T X + Z where the noise Z € R is generated from
two different noise models: Gaussian and Gumbel. To apply the NoCurl algorithm in the linear SEM
we use the least-square loss Fspa (A, X) = 5-[|X — A”X||% and numerically solve unconstrained
optimization problems with L-BFGS [21]], although we note that other standard smooth optimization
schemes can also be employed.

We use Structure Hamming Distance (SHD) [46] to show the structure learning accuracy. To assess
the ability of methods in solving the original problem (T)), we also report its score difference from the
ground truth: AF = F(fl, X) — F(A% X). For each graph type-noise type combination, 100 trials
are performed, and the mean accuracy, mean time, mean score difference along with their perspective
standard error of the mean are reported in Appendix [CF} We compare our method with fast greedy
equivalent search (FGS) [31], Causal Additive Models [3], MMPC [40], and NOTEARS [46]. In the
appendix, we also compare with equal variance methods, Eq-BU and Eq-TD [9].

Hyperparameter Study: We first perform a quantitative study on the hyperparameter A choices
as well as an albation study on different components of the proposed algorithm. We focus on the
ER3-Gaussian and ER6-Gaussian cases. Numberical results are listed in Table [3 for ER3-Gaussian
and Table[d]for ER6-Gaussian cases in Appendlx!It is observed that as long as A > 10, the accuracy
results are all satisfactory. Among which, A\ = 10 and A\ = (10, 103) are the best values in term of
both accuracy and computational efficiency. Hence, we select them as the default values. For more
discussion, please see Appendix

Ablation Study we conduct an ablation study on Algorithm [I] testing how each step would affect
the final result, with three settings: 1. solving the optimization problem (@) directly with random
initialization of (W, p) (denoted as “rand init”); 2. NoCurl without the prediction phase, by solving for
W with a random p then performing one additional step to jointly optimize (W, p) with (3) (denoted
as “rand p”); 3. NoCurl with one additional step to jointly optimize (W, p) by solving (3) after the
projection step (denoted as A = -+). As one can see from Table[3|and [{]in the Appendix [C| NoCurl
with random initializations performs subpar, indicating the importance of the prediction step in
Algorithm[I] Moreover, adding extra optimization steps after does not result much improvements on
accuracy or AF'. This result indicates that although NoCurl doens’t guarantee to provide a stationary
point of the problem (3), it reaches an approximate solution near a stationary point in many cases.

Table 1: Comparison on score differences from the ground truth, AF = F(A, X) — F(A°, X).

d=10 d=50 d=100 d=10 d=50 d=100
Method ER3,Gauss ER3,Gauss ER3,Gauss ER6,Gauss ER6,Gauss ER6,Gauss
GOBNILP —0.03 £0.00 - - —0.03 £ 0.00 - -
NOTEARS 0.03 £0.01 —0.25 £0.04 —1.65 £ 0.08 0.22 + 0.40 1.97 + 0.26 2.49 +0.37
A =102 0.09 £ 0.02 0.05 £ 0.05 —0.82£0.16 0.54 £+ 0.22 2.31+0.41 4.30 £ 0.99
A = (10,10%) 0.06 £+ 0.02 —0.10 £ 0.05 —1.44 £ 0.09 0.36 £+ 0.07 1.77 +0.38 2.61 +0.93

Optimization Objective Results: We now study the performance of NoCurl in approximately
solving the optimization problem given by (I)), by comparing the scores from NoCurl solution A
with those from NOTEARS and the exact global minimizer from the GOBNILP algorithm [7]. Since
GOBNILP involves enumerating all possible parent sets, its experiments are limited to small DAGs
with d = 10 cases. In Table[I} we show the relative score AF' with respect to the ground truth graph
AP, Surprisingly, although NoCurl doesn’t guarantee to return a minimizer, we can see that the score
from NoCurl A = (10, 10%) case is very close to the objective values of NOTEARS and GOBNILP,
and even outperforms NOTEARS in the ER6 d = 50 case. When d increases and the optimization
problem becomes more difficult, the fast projection of NoCurl remains competitive and does not
degrade, which is an encouraging evidence that NoCurl can find good approximated solutions.

Structure Recovery Results: We now present the comparison with other baselines methods by
comparing structure recovery accuracy and computational efficiency of NoCurl with NOTEARS,
FGS, CAM, and MMPC. In Figure T} the top row shows the SHD of different methods while the
buttom row shows the CPU time, in seconds, of different methods, both in log scales. For the full
numerical results in all graph types, please refer to Table [5}{§]in Appendix [F]

Consistent with existing observations [46| 3], FGS, MMPC, and CAM’s performances deteriorates
when the number of edges gets larger. While NOTEARS is significantly more accurate than other
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Figure 1: Structural discovery in terms of SHD (lower is better) and computational time in seconds
on linear SEM datasets. Error bars represent standard errors over 100 simulations.

baselines, NoCurl achieves a similar accuracy as NOTEARS, and can sometimes beat NOTEARS,
especially on dense and large graphs. For instance, when d = 100, in all ERk-Gaussian cases the
NoCurl with A = (10, 10%) achieves the lowest SHD, while in SF4-Gumbel cases the NoCurl with
A = 102 achieves the lowest SHD among all methods. When comparing the efficiency, NoCurl
requires a similar runtime as FGS and MMPC, which is faster than NOTEARS by more than one
or two orders of magnitude. Overall, NoCurl substantially improves the efficiency comparing with
NOTEARS, while still sustaining the comparable structure discovery accuracy.

6 Conclusion

We proposed a novel theoretically-justified continuous representation of DAG structures based on
graph exterior calculus operators, and proved that this new formulation can represent the adjacency
matrices of DAGs without explicit acyclicity constraints, which is often the most intricate part of
the optimization. We also proposed a prediction-projection approach, which we coin DAG-NoCurl,
to approximately solve for the unconstrained optimization problem efficiently. The key step in this
approach is based on the Hodge decomposition theorem, which projects a non-acyclic graph to the
gradient of a potential function and obtains a DAG approximation of the graph. Empirically the
proposed DAG-NoCurl achieves comparable accuracy but with substantially better computational
efficiency than their counter parts with constraints in all the datasets tested. Future works could
investigate different choices of hyperparameters and applications to more model classes. A full
theoretical understanding of the proposed approximate solution to the global minimizer of Equation|[I]
and the local minimizer of the original NOTEARS framework is an interesting next step to better
understand the optimization behaviors.
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