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Abstract

Recently directed acyclic graph (DAG) structure

learning is formulated as a constrained continuous

optimization problem with continuous acyclic-

ity constraints and was solved iteratively through

subproblem optimization. To further improve effi-

ciency, we propose a novel learning framework to

model and learn the weighted adjacency matrices

in the DAG space directly. Specifically, we first

show that the set of weighted adjacency matrices

of DAGs are equivalent to the set of weighted

gradients of graph potential functions, and one

may perform structure learning by searching in

this equivalent set of DAGs. To instantiate this

idea, we propose a new algorithm, DAG-NoCurl,

which solves the optimization problem efficiently

with a two-step procedure: 1) first we find an ini-

tial cyclic solution to the optimization problem,

and 2) then we employ the Hodge decomposition

of graphs and learn an acyclic graph by projecting

the cyclic graph to the gradient of a potential func-

tion. Experimental studies on benchmark datasets

demonstrate that our method provides compara-

ble accuracy but better efficiency than baseline

DAG structure learning methods on both linear

and generalized structural equation models, often

by more than one order of magnitude.

1. Introduction

Bayesian Networks (BN) have been widely used in various

machine learning applications (Ott et al., 2004; Spirtes et al.,

1999). Efficient structure learning of BN remains an active

area of research. The structure takes the form of a directed

acyclic graph (DAG) and plays a vital part in other machine

learning sub-areas such as causal inference (Pearl, 1988).

1Department of Mathematics, Lehigh University, Bethle-
hem, PA. 2IBM Research, Yorktown Heights, NY. 3Department
of Electrical, Computer, and Systems Engineering, Rensselaer
Polytechnic Institute, Troy, NY.. Correspondence to: Yue Yu
<yuy214@lehigh.edu>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

However, DAG learning is proven to be NP-hard (Chicker-

ing et al., 2004) and scalability becomes a major issue.

Conventional DAG learning methods usually use indepen-

dence tests (Spirtes et al., 2000b; Tsamardinos et al., 2006b)

or perform score-and-search for discrete variables, with dif-

ferent scoring functions (Huang et al., 2018) or search pro-

cedures (Silander and Myllymaki, 2006; Chickering, 2002;

Cussens, 2011). Learning DAG structures for continuous

variables is often limited to Gaussian models (Yuan and Lin,

2007; Foygel and Drton, 2010; Schmidt et al., 2007; Mohan

et al., 2012; Mohammadi et al., 2015). Recently, a fully

continuous optimization formulation is proposed (Zheng

et al., 2018), which transforms the discrete DAG constraint

into a continuous equality constraint. This approach enables

a suite of continuous optimization techniques such as gra-

dient descent to be used, and has been extend to a more

general parameter class with various neural methods (Yu

et al., 2019; Lachapelle et al., 2019; Zhu and Chen, 2019;

Ng et al., 2019).

In this work, we take a step further and investigate if we

could directly optimize in the DAG space, hence resulting

in a structure learning approach without any explicit DAG

constraint. To this end, we propose a continuous optimiza-

tion framework for DAG structure learning, which implicitly

enforces the acyclicity of the learned graph. Varando (2020)

and Ng et al. (2020) have studied the usage of empirical cor-

relation and covariance matrices for similar purposes. Dif-

ferent from their works, we propose a new graph-exterior-

calculus-based framework of DAG such that one can di-

rectly optimize in the DAG space. To solve the resultant

unconstrained optimization problem, we further propose

an efficient algorithm, DAG-NoCurl, developed based on

the graph Hodge theory (Jiang et al., 2011). Hodge theory

(Hodge, 1989), along with the related Helmholtz-Hodge De-

composition (Bhatia et al., 2012) on vector fields, describes

the decomposition of a vector field into divergence-free and

curl-free components. Hodge theory on graphs (Lim, 2015)

shows that a DAG is a sum of three components: a curl-free,

a divergence-free, and a harmonic component, where the

curl-free component is an acyclic graph and hence motivates

the naming of our algorithm.

DAG-NoCurl relies on the key step of mapping the adja-

cency weighted matrix of a directed graph onto its curl-free
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component, i.e., an acyclic graph. The main advantages of

the proposed method over conventional structure learning

algorithms are: 1) the new model provides an equivalent

representation of DAGs, which can be readily combined

with many existing structural equation models (Zheng et al.,

2018; Yu et al., 2019), 2) the new model naturally trans-

fers the DAG structure learning problem as a continuous

optimization framework, which avoids the combinatorial

search and enables a suite of continuous optimization tech-

niques; 3) comparing with other fully continuous optimiza-

tion frameworks for DAG learning (Lachapelle et al., 2019;

Yu et al., 2019; Zheng et al., 2020), our framework needs

no explicit DAG constraints, many iterations, nor expensive

post-processing, hence our learning approach achieves a

substantially better computational efficiency.

Contributions. We make several major contributions in

this work. 1) We propose a new model for DAGs based

on the graph combinatorial gradient operator. Specifically,

we theoretically show that the weighted adjacency matrix

of a DAG can be represented as the Hadamard product of

a skew-symmetric matrix and the gradient of a potential

function on graph vertices, and vice versa. 2) Based on

the new model, we develop a new continuous optimization

framework for DAG structure learning without any explicit

constraint. 3) To solve for the optimization problem effi-

ciently, we propose a new DAG structure learning algorithm,

DAG-NoCurl, that learns a weighted adjacency matrix to the

original problem efficiently without constraints or iterations.

4) We demonstrate the effectiveness of the proposed method

on synthetic and benchmark datasets. While the optimiza-

tion problem remains nonconvex, the new formulation can

substantially improve the efficiency, often by more than one

order of magnitude, while preserving the accuracy.

2. Problem Statement and Motivation

Let V denote a set of d numbers of random variables, X =
(X1, · · · , Xd) ∈ R

d be an observation on V , and D denotes

the space of DAGs G = (V,E) on V , we aim to learn a

DAG G ∈ D given n i.i.d. observations of the random vector

Xi ∈ R
d, i = 1, · · · , n. We assume no latent variables. To

model X , we consider a (generalized) structural equation

model (SEM) defined by a weighted adjacency matrix A =
[a1| · · · |ad] ∈ R

d×d such that E(Xj |Xpa(Xj)) = f(aTj X),
where pa(Xj) denote the parents of random variable j in V .

Therefore [A]ij 6= 0 indicates a directed edge from vertex

i to vertex j in a directed graph GA and zero otherwise.

With a slight abuse of notation, we will treat the weighted

adjacency matrix A as a (weighted) directed graph GA.

Given the data matrix X = (X1, · · · , Xn) ∈ R
d×n and

a loss function F (A,X) that measures the goodness of fit

of X for A, in the structure learning problem we aim to

find the best DAG A∗ that minimizes F (A,X). Hence, the

overall objective can be written as:

A∗ = argmin
A

F (A,X)

subject to GA ∈ D or h(A) = 0,
(1)

where D is the DAG space and h(A) = 0 is an alternative

continuous DAG constraint (Zheng et al., 2018; Wei et al.,

2020). Formally, h(A) = tr(exp(A ◦A))− d (Zheng et al.,

2018) or h(A) = tr[(I +A ◦A/d)d]− d (Yu et al., 2019).

As one may know, the DAG space D for d variables is super-

exponential. For structure learning over discrete variables,

many exact and approximate algorithms from observational

data have been proposed (Spirtes et al., 2000a; de Campos

et al., 2009; Shimizu, 2014) with different search strategies,

such as dynamic programming (Singh and Moore, 2005;

Koivisto and Sood, 2004), A* (Yuan and Malone, 2013), or

integer programming (Jaakkola et al., 2010; Cussens et al.,

2016). In large-scale problems, approximate methods are

often needed, with additional assumptions such as bounded

tree-width (Nie et al., 2014). Sampling (Madigan et al.,

1995; Grzegorczyk and Husmeier, 2008; Niinimaki et al.,

2012; He et al., 2016) and topological order search (Fried-

man and Koller, 2000; Teyssier and Koller, 2012; Scanagatta

et al., 2015) are also popular.

In this work we assume that all variables are continuous, and

study the DAG structure learning problem with the focus of

SEM and smooth loss function F defined over A. By using

an alternative continuous DAG constraint h(A) = 0, the

constrained optimization problem in Eq (1) becomes fully

continuous. An augmented Lagrangian method is then em-

ployed in (Zheng et al., 2018; Yu et al., 2019) which solves

unconstrained subproblems iteratively to impose the con-

tinuous DAG constraint explicitly. We investigate whether

the explicit DAG constraint can be eliminated entirely, and

therefore no iteration would be required. The key device

in accomplishing this is the observation that DAG is as-

sociated with curl-free functions on edges E (please see

Definition A.7 in the supplementary material for a formal

definition of curl-free), which motivates a new representa-

tion of DAGs with A = γ(W, p), W ∈ R
d×d and p ∈ R

d,

as will be elaborated in the next section. The constrained op-

timization problem (1) can then be replaced by the following

objective:

(W ∗, p∗) = argmin
W,p

F (γ(W, p),X), (2)

with the optimal DAG A∗ = γ(W ∗, p∗). To the best of our

knowledge, both the equivalence representation of DAGs

and the application of Hodge theory in DAG structure learn-

ing have never been studied.

Main Results We propose a new equivalent model for

DAGs, discussed in Theorem 2.1 and in Section 3, and show
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that γ(W, p) = W ◦ReLU(grad(p)) can be used in Eq (2),

where ReLU is the rectified linear unit and grad is the graph

gradient operator.

Theorem 2.1. An Equivalent DAG Space. Consider a set

of d random variables, given any real vector p ∈ R
d and any

skew-symmetric weight matrix W ∈ R
d×d satisfying W =

−WT , the following (weighted) directed graph spaces are

equivalent:

{GW◦ReLU(grad(p))} = D.

We defer the proof of Theorem 2.1 to Section 3, given

together by Theorem 3.5 and Theorem 3.7. To solve (2)

with the new γ function, we further propose a new algorithm

in Section 4, based on the combinatorial Hodge theory on

graphs (Lim, 2015; Jiang et al., 2011). As we elaborate

details below, we first briefly introduce a few useful basic

graph exterior calculus operators (Bang-Jensen and Gutin,

2008; Jiang et al., 2011), then formulate DAGs into the

equivalent model. Due to the page limit, we provide basic

definitions for important concepts that are used in this paper

in Appendix A. For a more thorough introduction of graph

calculus, we refer the interested readers to (Lim, 2015).

Notation-wise, we use A0 to denote the ground truth DAG,

A∗ for the global optimal solution in Eq (1), and Ã for

the approximated solution from numerical algorithms. The

ultimate goal of our DAG structural learning problem is to

obtain a DAG Ã which recovers the structure of A0 and

obtains a comparable score F (Ã,X) as F (A∗,X).

3. An Equivalent Model for DAGs

Let Ĝ = (V,E) be a complete undirected graph where V :=
{1, · · · , d} is the set of vertices and E is the set of undi-

rected edges. Note here since Ĝ is a complete graph, the set

of k-th cliques of Ĝ is equivalent to all (unordered) subsets

of V with size k. The ordered and unordered pairs of ver-

tices are delimited by (i, j) and {i, j}, respectively, where i,
j denote the i-th and j-th vertices. Real-valued functions on

graphs can be defined on vertices, edges, triangles, and so on.

On vertices, a real-valued function f : V → R is called a

potential function, and we denote the Hilbert space of all po-

tential functions as L2(V ). We may also define real-valued

functions on edges E = {{i, j}, i, j ∈ V } and triangles

T = {{i, j, k}, i, j, k ∈ V }, with the requirement that these

functions are alternating. In particular, an alternating func-

tion on edges Y : V ×V → R requires Y (i, j) = −Y (j, i);
an alternating function on triangles Θ : V × V × V → R,

requires Θ(i, j, k) = −Θ(j, i, k) = −Θ(i, k, j). In the

following we use L2
∧(E) and L2

∧(T ) to denote the Hilbert

spaces of real-valued alternating functions on edges and

triangles, respectively. Moreover, we note that p ∈ L2(V )
corresponds to a real vector p = [p(1), · · · , p(d)] ∈ R

d, and

an alternating function Y ∈ L2
∧(E) corresponds to a skew-

symmetric real matrix Y ∈ R
d×d with [Y ]ij = Y (i, j) and

Y = −Y T . Here we use the same letter to denote a vec-

tor/matrix and the corresponding function on vertices/edges.

Next, we introduce graph calculus operators grad, curl, and

their adjoint operators below.

Definition 3.1. (Lim, 2015)

The gradient (grad : L2(V ) → L2
∧(E)) is an operator on

any function p on vertices:

(grad p)(i, j) = p(j)− p(i), ∀{i, j} ∈ E,

and grad(p) is called a gradient flow. Its adjoint operator

(grad∗ : L2
∧(E) → L2(V )) is defined on any alternating

function Y on edges:

(grad∗ Y )(i) = −

d∑

j=1

Y (i, j), ∀i ∈ V.

The divergence operator (div : L2
∧(E) → L2(V )) is the

negative operator of grad∗, which is also defined on any

alternating function Y on edges:

(div Y )(i) = −(grad∗ Y )(i) =

d∑

j=1

Y (i, j), ∀i ∈ V.

The curl (curl : L2
∧(E) → L2

∧(T )) is an operator for any

alternating function Y on edges:

(curl Y )(i, j, k) = Y (i, j) + Y (j, k) + Y (k, i),

∀{i, j, k} ∈ T,

and its adjoint operator curl∗ : L2
∧(T )→ L2

∧(E) is for any

alternating function Θ on triangles:

(curl∗ Θ)(i, j) =

d∑

k=1

Θ(i, j, k), ∀{i, j} ∈ E.

The graph Laplacian (40 : L2(V )→ L2(V )) is an opera-

tor on any function p on vertices:

(40p)(i) = −(div grad p)(i) = d·p(i)−

d∑

j=1

p(j), ∀i ∈ V.

The graph Helmholtzian (41 : L2
∧(E) → L2

∧(E)) is de-

fined on any alternating function Y on edges:

(41Y )(i, j) = (grad grad∗ Y + curl∗ curl Y )(i, j)

∀{i, j} ∈ E.

Lemma 3.2. (Jiang et al., 2011) Let p ∈ L2(V ) and Θ ∈
L2
∧(E), denote D = grad(p) and R = curl∗(Θ), then D

and R are curl-free and divergence-free, respectively:

curl(D)(i, j, k) = 0, ∀{i, j, k} ∈ T ;

div(R)(i) = − grad∗(R)(i) = 0, ∀i ∈ V.
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Given a complete undirected graph Ĝ(V,E) and a function

Y ∈ L2
∧(E), with ReLU denoting the rectified linear unit

function, we can define a weighted adjacency matrix A =
ReLU(Y ) ∈ R

d×d as:

ReLU(Y )(i, j) :=

{
Y (i, j), if Y (i, j) > 0;

0, else.

and further define a weighted directed graph GReLU(Y ) from

ReLU(Y ) as the following:

Definition 3.3. Consider a complete undirected

graph Ĝ(V,E) and Y ∈ L2
∧(E), a directed graph

GReLU(Y )(V,EReLU(Y )) is defined such that there is a

directed edge from vertex i to vertex j in GReLU(Y ) if

and only if Y (i, j) > 0, i.e., the set of directed edges

EReLU(Y ) = {(i, j)|Y (i, j) > 0}. Moreover, note that

ReLU(Y ) is a weighted adjacency matrix of GReLU(Y ).

Based on the above definition, we show that curl-free func-

tions are naturally associated with DAGs:

Lemma 3.4. Consider a complete undirected graph

Ĝ(V,E) and a curl-free function Y ∈ L2
∧(E), then

ReLU(Y ) ∈ R
d×d is the weighted adjacency matrix

of a DAG. Moreover, given any skew-symmetric matrix

W ∈ R
d×d, W ◦ ReLU(Y ) is also a DAG, where ◦ is

the Hadamard product.

All proofs can be found in the supplemental material. Since

the gradient of any potential function (gradient flow) is curl-

free, with Lemma 3.4 the first part of our main theoretical

results is obtained:

Theorem 3.5. Consider V as a set of d random vari-

ables, given any real vector p ∈ R
d and any skew-

symmetric weight matrix W ∈ R
d×d satisfying W = −WT ,

W ◦ ReLU(grad(p)) is the weighted adjacency matrix of a

DAG, i.e., {GW◦ReLU(grad(p))} ⊂ D.

Here we note that the proof of Theorem 3.5 is immediately

obtain by taking Y = grad(p) in Lemma 3.4.

Remark 3.6. The skew-symmetry requirement of W was

made based on the fact that at least one or both of

ReLU(grad(p))(i, j) = 0 and ReLU(grad(p))(j, i) = 0
must hold true for any i, j ∈ V . Here we note that W is set

to be a skew-symmetric matrix instead of a full matrix so

as to have a smaller degrees of freedom (d(d− 1)/2) in the

optimization problem (11). In fact, one can use a full matrix

(with degrees of freedom d2) or a symmetric matrix (with

degrees of freedom d(d+ 1)/2) in place.

We now show that the other direction also holds true:

Theorem 3.7. Let A ∈ R
d×d be the weighted adjacency

matrix of a DAG with d nodes, denote V as the correspond-

ing random variables of these d nodes, then there exists a

skew-symmetric matrix W ∈ R
d×d, W = −WT , and a

Algorithm 1 DAG-NoCurl algorithm

1: Apre ← solve (4), and threshold Apre.

2: p̃← compute (9) with Apre.

W̃ ← solve with fixed p̃ (11).

(Full Only) W̃ , p̃← solve (3) with current W̃ , p̃.

Return Ã← W̃ ◦ ReLU(grad(p̃)), and threshold Ã.

real vector p ∈ R
d such that A = W ◦ ReLU(grad(p)),

i.e., D ⊂ {GW◦ReLU(grad(p))}. Here p is associated with

the topological order of the DAG, such that p(j) > p(i) if

there is a directed path from vertex i to j.

Hence, we have shown that the set of weighted adja-

cency matrices for DAGs is equivalent to the set of W ◦
ReLU(grad(p)), as stated in Theorem 2.1. Denoting

S := {W |W ∈ R
d×d,W = −WT } as the space of all

d×d skew-symmetric matrices, {W ◦ReLU(grad(p))|W ∈
S, p ∈ R

d} provides an admissible solution set for DAG

structural learning problems.

While we believe our formulation for DAG is general and

can have many applications where DAGs are used, in this pa-

per we apply it to the continuous DAG learning framework.

With a given loss function F (A,X), the DAG structural

learning problem can then be written as an optimization

problem without an explicit constraint:

(W ∗, p∗) = argmin
W∈S,p∈Rd

F (W ◦ ReLU(grad(p)),X), (3)

and the optimal solution A∗ = W ∗ ◦ ReLU(grad(p∗)).

The loss function in (3) is generally nonconvex. Therefore,

we inherit the difficulties associated with nonconvex op-

timization. As will be discussed in the ablation study in

Section 5.2, numerically solving (3) with a random initial-

ization of W and p may result in a stationary point which is

far from the global optimum. Therefore, instead of solving

(3) directly, we propose a two-step algorithm, DAG-NoCurl,

or NoCurl for short.

4. Algorithm: DAG with No Curl

The proposed DAG-NoCurl has two main steps. In Step

1, we compute an initial estimate of A∗, Apre ∈ R
d×d,

whose associated graph GApre is not necessarily acyclic.

In Step 2, we refine the predicted solution by projecting

Apre into the set of DAGs and obtaining the final solution

Ã = W̃ ◦ ReLU(grad(p̃)). The full algorithm is outlined

in Algorithm 1, and we introduce each step of the algorithm

in more details as follows.

Step 1: In order to compute an initial solution Apre, we

solve for the following unconstrained optimization problem

Apre = argmin
A

F (A,X) + λh(A) (4)
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where λ > 0 is a constant penalty coefficient, F (A,X) is

the loss function and h(A) is a proper continuous constraint

for acyclicity. For example, in NOTEARS (Zheng et al.,

2018) the authors proposed h(A) = tr[exp(A◦A)]−d and

in DAG-GNN (Yu et al., 2019) h(A) = tr[(I+αA◦A)d]−d,

α > 0, was employed. Note that when increasing the

penalty parameter λ to infinity and solving (4) iteratively, an

acyclic graph A will be obtained and the procedure will be

equivalent to the classical penalty method for constrained

optimization problems. However, here we solve for (4) with

fixed λ, h(Apre) is generally nonzero and Apre is likely not

a DAG. Therefore further computation is required to obtain

a DAG. In practice, we find that solving for (4) at most

twice, once with a fixed λ ( denoted by the NoCurl-1 cases)

or twice with two fixed λs ( denoted by the NoCurl-2 cases),

gives satisfactory initializations. In the NoCurl-2 cases, we

first solve for (4) with a λ = λ1, and then solve for (4)

with a larger fixed penalty coefficient λ = λ2. To achieve a

good balance between the computational time and solution

accuracy in structural discovery, in Section 5.2 we perform a

hyperparameter study for both one λ and two λ cases. Note

that the DAG constraint in the first step does not need to be

strongly enforced; we use the constraint coefficient up to

λ = 103, which is much smaller than up to λ = 1016 used

in NOTEARS.

Step 2: From Step 1, the learnt Apre is likely to be cyclic.

To obtain an acyclic graph solution Ã, we use the prediction

Apre as an initialization and search for its curl-free com-

ponent by projecting Apre into the admissible solution set

{W ◦ ReLU(grad(p))}. In particular, we design a projec-

tion procedure based on the following theorem:

Theorem 4.1 (Hodge Decomposition Theorem (Lim, 2015;

Bhatia et al., 2012; Jiang et al., 2011)). Consider an undi-

rected graph Ĝ(V,E), any function Y ∈ L2
∧(E) can be

decomposed into three orthogonal components:

Y = grad(φ) + curl∗(Ψ) +H (5)

where φ ∈ L2(V ), Ψ ∈ L2
∧(T ), and H ∈ L2

∧(E). More-

over, H is a harmonic function satisfying 41H = 0,

curlH = 0 and divH = 0. Here 41 is the graph

Helmholtzian operator as defined in Definition 3.1.

The Hodge decomposition shows that every alternating func-

tion on edges Y ∈ L2
∧(E) can be decomposed into two

orthogonal components: a gradient flow grad(φ), which

represents the L2-optimal ordering of the vertices, and a

divergence-free component, curl∗(Ψ)+H , which measures

the inconsistency of the vertices ordering. Hence we define

a L2 projection operator Proj : L2
∧(E)→ grad(L2(V )) as:

Proj(Y ) = grad(φ), (6)

such that 〈Proj(Y ), Y − Proj(Y )〉 = 0, where 〈·, ·〉 is

the standard L2 inner product on L2
∧(E): 〈Y, Z〉 :=

∑
i,j Y (i, j)Z(i, j).

We note that φ is only unique up to a constant potential

function, i.e., if Proj(Y ) = grad(φ), then Proj(Y ) =
grad(φ+ C) also holds. Adding a constant to φ will yield

the same ordering of vertices and the same gradient flow

grad(φ). For the sake of well-posedness, we determine a

unique solution φ by fixing its value on the last vertex such

that φ(d) = 0. Taking the divergence of (5) yields:

div(Y ) = div grad(φ) = −40φ, (7)

where 40 is the graph Laplacian operator as defined in

Definition 3.1.

We obtain the following theorem for the solution of φ:

Theorem 4.2. Consider an undirected complete graph

Ĝ(V,E) and Y ∈ L2
∧(E), a solution of (6) is given by

φ = −4†
0 div(Y ) = −4†

0

∑

j

Y (i, j) (8)

where † indicates the Moore-Penrose pseudo-inverse. Fixing

φ(d) = 0, the matrix representing the graph Laplacian40

is given by

[40]ij =





d− 1, if i = j and i, j 6= d,
−1, if i 6= j and i, j 6= d,
0, otherwise.

Note that a key requirement in the above projection operator

is that Y has to be an alternating function on edges, which

corresponds to a d× d skew-symmetric matrix. However,

Apre is generally not skew-symmetric. Fortunately, any

square matrix M can be written uniquely as a symmetric and

a skew-symmetric components: M = Msym +Mskew with

Msym = 1

2
(M+MT ) and Mskew = 1

2
(M−MT ). Let C(M)

denote the connectivity matrix (Nievergelt and Hinrichs,

1993) of a directed graph M such that [C(M)]ij = 1 only

if a directed path exists from vertex i to vertex j. We apply

the projection to the skew-symmetric component of the

connectivity matrix of Apre, and we will show this operation

preserves the topological order of vertices in a DAG.

Theorem 4.3. Let A ∈ R
d×d be the weighted adjacency

matrix of a DAG with d nodes, then

p = −4†
0 div

(
1

2
(C(A)− C(A)T )

)
, (9)

preserves the topological order in A such that p(j) > p(i)
if there is a directed path from vertex i to j. Moreover, we

have A = W ◦ ReLU(grad(p)) with the skew-symmetric

matrix W defined as

[W ]ij =





0, if p(i) = p(j) or

A(i, j) = A(j, i) = 0;
A(i,j)

p(j)−p(i) , if A(i, j) 6= 0 and A(j, i) = 0;
A(j,i)

p(j)−p(i) , if A(i, j) = 0 and A(j, i) 6= 0.

(10)
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A detailed proof is provided in Appendix B. To help the

readers better understand the formulations in Theorems 4.2

and 4.3, we also provide concrete examples of the projection

procedure for several sample Apre, including both acyclic

and non-acyclic ones, in Appendix D.

Generally, from Theorem 4.3 we can see that p̃ =
−4†

0 div
(
1
2 (C(Apre)− C(Apre)T )

)
provides the topolog-

ical order for an acyclic approximation of Apre. Given an

adjacency matrix A of a DAG, p can be directly computed

from A following formulation (9). Therefore, when the

learnt Apre from Step 1 is a DAG with the correct topologi-

cal ordering (even though Apre might be different from the

ground truth A0), Theorem 4.3 ensures the learning of an

accurate p in Step 2. On the other hand, when Apre is not a

DAG but contains some correct ordering information, one

can still apply formulation (9) to learn p which encodes an

approximated topological ordering of the vertices. Hence,

learning Apre in Step 1 ensures the learning of p.

To further refine the solution of W , instead of employing

(10) directly we optimize W̃ via:

W̃ = argmin
W∈S

F (W ◦ ReLU(grad(p̃)),X). (11)

To enforce the skew-symmetric property on W we only op-

timize elements in the upper triangular matrix of W , while

setting diagonal elements zero and each lower triangular

element as negative of the corresponding upper triangular

element, i.e., Wij = −Wji.

In the full version of DAG-NoCurl, given the separately

optimized W̃ and p̃, we then jointly optimize both together

using Equation 3. As shown in Algorithm 1, our two-step

approach does not require any iterative procedure to increase

the penalty coefficient λ. The full version of DAG-NoCurl

consists of only 3 (if using only one λ) or 4 (if using two

λs) unconstrained optimization problems.

Return a DAG Solution: we get a DAG solution by

Ã = W̃ ◦ ReLU(grad(p̃)). By the standard practice of

thresholding in DAG learning problems (see, e.g., Zheng

et al. (2018)), we employ the same procedure to post-process

both Apre after Step 1 and Ã after Step 2. The thresholding

step in NOTEARS is motivated by rounding numerical solu-

tions to obtain an exact DAG and remove false discoveries,

while our threshold step aims to remove false discoveries

only since our solution is a DAG already. Specifically, we

threshold the edge weights of a learned A as follows: given

a fixed threshold ε > 0, set A(i, j) = 0 if |A(i, j)| < ε.
In all the numerical tests we use a fixed threshold value

ε = 0.3 as suggested by NOTEARS (Zheng et al., 2018).

Consistency. While our DAG-NoCurl algorithm can use

any loss function as long as DAGs can be represented by

an weighted adjacency matrix, we use the same loss as

NOTEARS. With the same loss and the equivalence of the

DAG space per Theorem 2.1, the global minimizer of the full

version of DAG-NoCurl is the same as that of NOTEARS

in Eq 1. In practice, the solution is only guaranteed to be a

stationary point due to the nonconvexity associated with the

DAG space, which is shared by all other algorithms within

the framework (Zheng et al., 2018).

Further Efficiency Improvement. We observe that jointly

optimizing W and p in Eq (3) in Step 2 of Algorithm 1 is

often not needed in practice, as it may not improve upon

the solutions from Eq (11). Intuitively, since p indicates the

order of all nodes, it means that the topological order p̃ from

Step 1 and W̃ from Eq (11) given p̃ are similar solution

as the ones from Eq (3). We show the numerical evidence

in the ablation study and other experiments of Section 5.2.

Hence we use this more efficient version without Eq (3) as

the DAG-NoCurl algorithm for experiments.

5. Empirical Evaluations

We present empirical evaluations to demonstrate the ef-

fectiveness of the proposed DAG continuous representa-

tion and learning algorithm. Specifically, we conduct ex-

periments on both linear and nonlinear benchmark syn-

thetic and real-world datasets, and compare the proposed

method DAG-NoCurl against competitive baselines. Here

we outline the empirical set-up, with more details includ-

ing all parameter choices provided in the supplementary

material. The code will be publicly released at https:

//github.com/fishmoon1234/DAG-NoCurl.

Datasets. We first test our algorithm in linear synthetic

datasets. We employ similar experimental setups as existing

works (Zheng et al., 2018). In each experiment, a random

graph G is generated by using the Erdős–Rényi (ER) model

or the scale-free (SF) model with k expected edges (denoted

as ERk or SFk cases) and uniformly random edge weights

to obtain a ground-truth weighted matrix A0. Given A0, we

take n = 1000 i.i.d. samples of X from the linear SEM

X = (A0)TX + Z, where the noise Z ∈ R
d is generated

from two different noise models: Gaussian and Gumbel.

To apply the NoCurl algorithm in the linear SEM, we use

the least-square loss F (A,X) = 1

2n
||X − AT

X||2F and nu-

merically solve unconstrained optimization problems with

L-BFGS (Liu and Nocedal, 1989), although we note that

other standard smooth optimization schemes can also be

employed. We have also tested loss functions with a smooth

L1 regularization in implementation. However results show

little improvements. We suspect that using the DAG regular-

ization and a standard threshold procedure may have similar

sparsity effect (Zheng et al., 2018) – a similar observation

can be found in regression problems (Jain et al., 2014).

We also test nonlinear SEM and real datasets in Section 5.5

and 5.6. The graphs in the synthetic datasets can be iden-



DAGs with No Curl

Table 1. Ablation Study: results (mean ± standard error over 100

trials) for d = 30 ER6-Gaussian Cases from DAG-NoCurl, where

bold numbers highlight the best method for each case. Lower is

better in both time and SHD. Note the usage of color in the table.

Method Time (Sec) SHD
rand init 6.04 ± 0.26 84.88 ± 2.65
rand p 7.74 ± 0.38 130.37 ± 1.66
NoCurl-1s 1.58 ± 0.10 37.36 ± 1.34
NoCurl-2s 4.69 ± 0.23 29.88 ± 1.55
NoCurl-1- 1.69 ± 0.11 32.82 ± 1.07
NoCurl-2- 4.67 ± 0.23 26.08 ± 1.07
NoCurl-1+ 5.32 ± 0.35 21.44 ± 1.56
NoCurl-2+ 10.38 ± 0.23 17.81 ± 1.29
NoCurl-1 3.34 ± 0.21 21.44 ± 1.56
NoCurl-2 7.68 ± 0.39 17.37 ± 1.18

tified exactly in these SEM settings with additive noises

(Peters et al., 2014) and hence there is no Markov equiva-

lence.

Metrics and Baselines. We use Structure Hamming Dis-

tance (SHD) (Zheng et al., 2018) to show the structure

learning accuracy. To assess the ability of methods in solv-

ing the original optimization problem in Eq (1), we also

report its score difference from the ground truth: ∆F =
F (Ã,X)− F (A0,X). For each graph-noise type combina-

tion, 100 trials are performed. The exact numerical values

for mean accuracy, mean CPU time (in seconds), and mean

score difference along with their perspective standard errors

of the mean are reported in full in the supplementary mate-

rials. We compare our method with fast greedy equivalent

search (FGS) (Ramsey et al., 2017), Causal Additive Mod-

els (Bühlmann et al., 2014), MMPC (Tsamardinos et al.,

2006a), and NOTEARS (Zheng et al., 2018). In the supple-

mental materials, we also compare our method with Equal

Variance DAG variants (Chen et al., 2019) , which is de-

signed to handle data with equal variances. For nonlinear

datasets, we also compare with several neural methods and

generalized score GES (GSGES) (Huang et al., 2018).

5.1. Hyperparameter Study

We first perform a quantitative study on the hyperparameter

λ choices. We use the ER3-Gaussian and ER6-Gaussian

cases to select hyperparameters. We test many sets of hy-

perparameters and due to the page limit the full numerical

results are listed in Table 4 for ER3-Gaussian and Table 5 for

ER6-Gaussian cases in the supplement. It is observed that

as long as λ ≥ 10, the accuracy results are all satisfactory.

Among which, λ = 102 and λ = (10, 103) are generally

the best values in term of both accuracy and computational

efficiency. Hence, we select them as the default values and

refer them as NoCurl-1 and NoCurl-2, respectively. For

more discussion, please refer to the supplement.

5.2. Ablation Study

We conduct an ablation study on our proposed algorithm,

listed in Algorithm 1, testing how each step would affect

the final result, with five settings: 1) solving the optimiza-

tion problem Eq (3) directly with random initialization of

(W, p) (denoted as “rand init”); 2) NoCurl without Step

1, by solving for W with a random p then performing one

additional step to jointly optimize (W, p) with Eq (3) (de-

noted as “rand p”); 3) NoCurl without Step 2, by repeat-

edly increasing the threshold of the structure until a DAG

is obtained (denoted by an additional “s” in the end). We

use the thresholds starting from 0.3 (anything below pro-

duces much worse results) and with increments of 0.05 until

h(A) < 10−8; 4) NoCurl with Eq (10) instead of Eq (11) to

find W̃ (denoted as an additional “-” in the end); 5) the full

version of NoCurl with the step to jointly optimize (W, p)
by solving Eq (3) after Step 2 (denoted as an additional

“+” in the end).

We list the results of d = 30 in ER6-Gaussian in Table 1, and

full numerical results are shown in Table 4 to 9 in the sup-

plement. As one can see from Table 1, NoCurl with random

initializations (“rand init” and “rand p”) performs subpar,

indicating the importance of Step 1 in Algorithm 1. Results

from NoCurl without Step 2 (NoCurl-1s and NoCurl-2s)

are poorer than the full algorithm (NoCurl-1 and NoCurl-2),

indicating that optimizing Eq (11) after an initialization is

important to refine the solution for better accuracy. More-

over, results from NoCurl-1- and NoCurl-2- also show the

important effects of Step 2 of our algorithm: using Eq (11)

to learn W̃ instead of Eq (10) further improves the accuracy.

As can be seen from #Missing Edge in Table 6 to 9 in the

supplement, Step 2 of our algorithm generally reduces the

number of missing edges in comparison to NoCurl-·s and

NoCurl-·- alternatives. Lastly, adding extra optimization

steps (NoCurl-1+ and NoCurl-2+), which are the full ver-

sion of DAG-NoCurl, does not result much improvements

on accuracy or ∆F . This result indicates that the efficient

version of NoCurl reaches similar solutions in practice. All

discussions above are general and consistent for all dataset

tested, as shown in Table 4 to 9 in the supplement.

5.3. Optimization Objective Results

We now study the performance of NoCurl in approximately

solving the optimization problem given by (1), by compar-

ing the scores from NoCurl solution Ã with those from

NOTEARS and the exact global minimizer from the GOB-

NILP algorithm (Cussens et al., 2016). Since GOBNILP in-

volves enumerating all possible parent sets, its experiments

are limited to small DAGs with d = 10 cases. In Table 2, we

show the relative score ∆F with respect to the ground truth

graph A0. Surprisingly, although NoCurl provides an ap-

proximate solution, we can see that the score from NoCurl-2
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Table 2. Comparison on score differences (lower is better) from the ground truth, 4F = F (Ã,X)− F (A0,X).

d=10 d=50 d=100 d=10 d=50 d=100
Method ER3,Gauss ER3,Gauss ER3,Gauss ER6,Gauss ER6,Gauss ER6,Gauss

GOBNILP −0.03± 0.00 - - −0.03± 0.00 - -
NOTEARS 0.03± 0.01 −0.25± 0.04 −1.65± 0.08 0.22± 0.40 1.97± 0.26 2.49± 0.37
NoCurl-1 0.09± 0.02 0.05± 0.05 −0.82± 0.16 0.54± 0.22 2.31± 0.41 4.30± 0.99
NoCurl-2 0.06± 0.02 −0.10± 0.05 −1.44± 0.09 0.36± 0.07 1.77± 0.38 2.61± 0.93
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Figure 1. Structural discovery results in terms of SHD (lower is better) and computational time in seconds on linear SEM datasets

(log-scale). Error bars represent standard errors over 100 simulations.

case is very close to the objective values of NOTEARS and

GOBNILP, and even outperforms NOTEARS in the ER6

d = 50 case. When d increases and the optimization prob-

lem becomes more difficult, NoCurl remains competitive

and does not deteriorate.

5.4. Structure Recovery Results

We now present the comparison with other baselines meth-

ods by comparing structure recovery accuracy and compu-

tational efficiency of NoCurl with NOTEARS, FGS, CAM,

and MMPC. In Figure 1, the top row shows the SHD of dif-

ferent methods while the buttom row shows the CPU time,

in seconds, of different methods, both in log scales. For the

detailed results in all graph types, please refer to Table 6 to

9 in the supplement.

Consistent with existing observations (Zheng et al., 2018;

Bühlmann et al., 2014), FGS, MMPC, and CAM’s perfor-

mances suffer when the number of edges gets larger. While

NOTEARS is significantly more accurate than other base-

lines, NoCurl achieves a similar accuracy as NOTEARS,

and can sometimes beat NOTEARS, especially on dense

and large graphs. For instance, when d = 100, in all

ERk-Gaussian cases the NoCurl-2 achieves the lowest SHD,

while in SF4-Gumbel cases the NoCurl-1 achieves the low-

est SHD among all methods. When comparing the ef-

ficiency, NoCurl requires a similar runtime as FGS and

MMPC, which is faster than NOTEARS by more than one

or two orders of magnitude. Overall, NoCurl substantially

improves the efficiency comparing with NOTEARS, while

still sustaining the comparable structure discovery accuracy.

In addition, we also test our method with Equal Variance

DAG learning algorithm and its variants (EqV-TD and EqV-

BU) (Chen et al., 2019), with their results shown in Table 6

to 9 in the supplement. Our method outperforms both EqV

variants by a significant margin.

5.5. Nonlinear Synthetic Datasets

We further test the capability of NoCurl with more general

models and datasets by sampling X from nonlinear SEM

Xj = f(A,Xpa(j)) + Zj for j = 1, · · · , d with nonlinear

functions f , following the same setting as Yu et al. (2019).

For the nonlinear SEM, we combine NoCurl with DAG-

GNN, where nonlinear SEM is learnt using neural networks

and the standard machinery of augmented Lagrangian was

applied to enforce the continuous constraint. We generated

3 Datasets (denoted as Nonlinear Case 1 to 3), and for the

exact modeling and implementation details, please refer to

the supplement.

For nonlinear SEM datasets, we compare NoCurl with

DAG-GNN with CAM, MMPC, GSGES, and recent neural-

based methods DAG-GNN (Yu et al., 2019), GraN-DAG

(Lachapelle et al., 2019) and NOTEARS-MLP (Zheng et al.,
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2020). The results are shown in Table 10 in the supplement.

Generally neural-based models outperform heuristic-based

methods. Comparing with DAG-GNN, NoCurl has simi-

lar accuracy performance across different variable sizes d.

NoCurl (along with DAG-GNN) is better than NOTEAR-

MLP in Nonlinear Case 1 but does not perform as well

as GraN-DAG. NoCurl achieves the best overall perfor-

mance in Nonlinear Case 2. In Nonlinear Case 3, NoCurl

is worse than NOTEARS-MLP but much better than GraN-

DAG. Regarding the computational time, NoCurl achieves

about 3 ∼ 4 times computational efficiency gain over its

base model DAG-GNN on average. NoCurl is also more

than one order of magnitude faster than NOTEARS-MLP

and GraN-DAG. Note that NoCurl’s performance is lim-

ited by the base model, and we choose DAG-GNN as the

base model to combine with NoCurl because other neural

methods (such as NOTEARS-MLP and GraN-DAG) use a

gradient-based adjacency matrix representation, which is

different from the weighted A formulation in NoCurl. It

would be an interesting future work to extend NoCurl to

these frameworks.

5.6. Real-World Dataset

We now apply NoCurl+DAG-GNN to a real-world bioin-

formatics dataset (Sachs et al., 2005) for the discovery of

a protein signaling network based on expression levels of

proteins and phospholipids. This is a widely used dataset

for research on graphical models, with experimental an-

notations accepted by the biological research community.

Based on n = 7466 samples of d = 11 cell types, 20

edges were estimated in the ground truth graph (Sachs et al.,

2005). In Table 11 of the supplement, we compare our re-

sults and baselines against the ground truth offered (Sachs

et al., 2005). The proposed NoCurl+DAG-GNN obtains an

SHD of 16 with 18 estimated edges. The learnt graph is

also plotted in supplementary materials. Comparing with

the other methods reporting a similar number of nonzero

edges, NoCurl has a better performance in terms of SHD.

6. Conclusion

We proposed a novel theoretically-justified continuous rep-

resentation of DAG structures based on graph exterior cal-

culus operators, and proved that this new formulation can

represent the adjacency matrices of DAGs without explicit

acyclicity constraints, which is often the most intricate part

of the optimization. We proposed a new algorithm, which

we coin DAG-NoCurl, to approximately solve for the uncon-

strained optimization problem efficiently. The key step in

this approach is based on the Hodge decomposition theorem,

which projects a cyclic graph to the gradient of a potential

function and obtains a DAG approximation of the graph.

Empirically the proposed DAG-NoCurl achieves compa-

rable accuracy but with substantially better computational

efficiency than their counter parts with constraints in all the

datasets tested. We believe it is a promising new frame-

work for DAG structure learning where both continuous and

discrete optimization approaches can be applied.

Assumptions made in the paper (e.g., SEMs and smooth

loss functions) are widely used and studied in the literature,

including the NOTEARS and many related methods. We as-

sume smoothness so we could use gradient-based optimiza-

tion methods (such as LBFGS) in our proposed algorithm

(for ease of comparison with baselines). In fact, the smooth-

ness assumption of loss functions can be further relaxed. For

instance, the BFGS method is proved to converge for con-

tinuously differentiable loss functions (Li and Fukushima,

2001). Moreover, we note that the proposed framework and

algorithm is general, which enables the employment of other

optimization methods. For instance, our framework could

handle L0 penalties if one were to use optimization methods

such as dynamic programming or equivalent search as sug-

gested by Van de Geer and Bühlmann (2013). Investigation

of the new DAG space in these DAG learning frameworks

would be an interesting future work.
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