FUNCTORIAL TRANSFER BETWEEN RELATIVE TRACE

FORMULAS IN RANK ONE.

YIANNIS SAKELLARIDIS

ABSTRACT. According to the Langlands functoriality conjecture, broad-
ened to the setting of spherical varieties (of which reductive groups are
special cases), a map between L-groups of spherical varieties should give
rise to a functorial transfer of their local and automorphic spectra. The
“Beyond Endoscopy” proposal predicts that this transfer will be realized
as a comparison between limiting forms of the (relative) trace formulas
of these spaces.

In this paper we establish the local transfer for the identity map be-
tween L-groups, for spherical affine homogeneous spaces X = H\G
whose dual group is SL2 or PGLy (with G and H split). More pre-
cisely, we construct a transfer operator between orbital integrals for the
(X x X)/G-relative trace formula, and orbital integrals for the Kuznetsov
formula of PGL3 or SL2. Besides the L-group, another invariant attached
to X is a certain L-value, and the space of test measures for the Kuznetsov
formula is enlarged, to accommodate the given L-value.

The fundamental lemma for this transfer operator is proven in a forth-
coming paper of Johnstone and Krishna. The transfer operator is given
explicitly in terms of Fourier convolutions, making it suitable for a global
comparison of trace formulas by the Poisson summation formula, hence
for a uniform proof, in rank one, of the relations between periods of au-
tomorphic forms and special values of L-functions.
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1. INTRODUCTION

1.1. Relative functoriality. According to the Relative Langlands Program,
the local and automorphic spectra of a spherical G-variety X should be de-
termined by its L-group “Gx, which comes equipped with a distinguished
morphism
LG@x x SLy — £@, (1)

cf. [GN10, KS17].

Roughly speaking, this means, locally, that the Plancherel formula for
L%*(X(F)) (where F is a local field) should read:

<q)17 (I)2>L2(X) = J J};lanCh(q)l ® @2)1/)((90)’
©
where the integral is over the space of Langlands parameters into “Gx, vy
is the standard measure §17.3] on this space, and Jg lanch j5 a relative
character N
J<P S(X X X) —>H¢®H<p — C.

Here, II, is the sum of irreducible representations in the Arthur packet
associated to the composition of ¢ with the canonical map (T).

Globally, an analogous decomposition (in terms of “global Langlands
parameters”) should hold for the spectral side of the relative trace formula
of X — more precisely, for its stable part —, a distribution on the adelic
points of the quotient X x X /G (with G acting diagonally), whose spectral
decomposition should read, roughly:

RTFx (®; ® ®;) = J J& (@1 @ Pa)px ().
©
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Moreover, the global distributions Jél, which can be expressed in terms of
squares of periods of automorphic forms, should (under some assumptions
on X) be equal to Euler products of the local distributions J}'*"", estab-
lishing a link between periods of automorphic forms and special values
of L-functions; this is the generalized Ichino-Ikeda conjecture proposed in
[SV17, §17.4].

We currently have no general tools to address these very general, and
uniform, conjectures. In this paper, I will propose a uniform approach
which works in the case when “G x = SLs or PGL; and, hopefully, gener-
alizes to higher rank (although I cannot yet propose such a generalization).
The idea is to find a way to compare the relative trace formula for any such
variety, with the corresponding Kuznetsov formula, i.e., the relative trace
formula for the Whittaker model N, \G* of the group G* = PGL; or SLy
(respectively). The Kuznetsov formula, not the Arthur-Selberg trace for-
mula, seems to be the appropriate base case for such a type of functoriality,
but it requires some modification, because it does not produce on the spec-
tral side the same L-functions as the relative trace formula for X. Roughly
speaking, the spectral side of the Kuznetsov formula is weighted by the

factors
1

L(p,Ad, 1)’

(where ¢ denotes a global Langlands parameter into “G'x = *“G*), while
the relative trace formula for X will have an extra L-factor, depending on
X, in the numerator:
Lx(p)
L(p,Ad, 1)

For example, in the case of the Arthur-Selberg trace formula (when X =
H, a reductive group), we have Lx(¢) = L(y,Ad, 1), which is why no
L-values appear in the end, while for X = G,,\ PGL; we have Lx(¢) =
L(p, Std, 1)2, corresponding to the square of the Hecke period. These L-
functions are obtained by enlarging the space of test measures for the Kuznetsov
formula. Thus, our comparison is achieved via a transfer operator, which is
a linear isomorphism

T : 81, (Ny\G*/Ny) = S(X x X/G), )

between the appropriately enlarged space of test measures for the Kuznetsov
formula of G*, and the standard space of test measures for the relative trace
formula of X.

1.2. Rank-one spherical varieties. These ideas were explored, in the spe-
cial cases X = T\ PGLy (where T is a torus) and X = SLy = SO3\SOy, in
the papers [Sakl13a, Sak19a, [Sak19b, Saka, Sakb], in the case of X = SLo
generalizing the thesis of Rudnick [Rud90]. However, it was not clear at
that point if those cases were part of a general pattern, or just reflections of
methods already known. In this paper, I demonstrate for the first time that
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there is a general “operator of functoriality” in rank one, as general and
uniform as the aforementioned conjectures.

Spherical varieties of rank one are, in some sense, the building blocks of
all spherical varieties, in the same sense that the group SL, is the building
block of all reductive groups: to a general spherical variety X, and each
simple coroot v of its dual group (better known as the “spherical roots”
of X), there is an associated rank-one (up to center) spherical variety X,
which is a degeneration of X. Thus, the comparisons studied here should
be essential in understanding cases of higher rank.

The list of spherical varieties of rank one consists of a finite number of
families, classified by Akhiezer in [Akh83] — see also the tables of [Was96)
KVS06]. Up to the action of the “center” Z(X) := Aut(X), the affine ho-
mogeneous spherical varieties X = H\G over an algebraically closed field in
characteristic zero whose dual group G'x is either SLy or PGL are listed in

the following table:
X P(X) Gx v Lx
Aq Gm\ PGL, B SLs « L(Std, %)2
An | GLn\PGLyyy Prn-11 SL, al -+ oy L(Std, 2)?
Bn SOQn\SOQn-‘rl PSOzn—l SL2 ap+ -+ ap L(Std7 n— %)L(Stdv %)
Cn szn_Q X Sp2 \szn PSL2 X Sp2(n_2) SL2 aq + 2a2 + -+ 20[71_1 + ap L(Std, n — %)L(Std, n — %)
(n>2)
Fy Sping \ Fy Pspin, SLs a1 + 2as + 3as + 204 L(Std, ) L(Std, 3)
Gy SL3 \GQ Psr, SLo 2001 + a2 L(Std, %)L(Std, %)
Do SLy = 803\804 B PGLsy a1 + Qo L(Ad, 1)
D, SOanl\SOQn P502n72 PGL2 2001 + -+ 4+ 209 + pp_1 + L(Ad, n— 1)
Dj Spin- \ Sping Psping PGL, 2001 + 2a9 + a3 + ay L(Ad,3)
Bg GQ\ Spin7 PSL3 PGLsy a1 + 200 4+ 3as L(Ad, 3)
©)

The various columns of this table will be explained below. In this paper,
I work over a local field F in characteristic zero, and will only consider the
case when both G and H are split over F. Under these restrictions, as we
will see (Proposition 2.3.9), each line in the first group of the table above
(from A; to G3) corresponds to a unique isomorphism class of G-varieties,
while each line in the second group (from D to Bf) corresponds to a set of
isomorphism classes parametrized by square classes in F'*.

For almost all of the varieties in the table above, a version of the local
relative Langlands conjecture for L?(X) was established by Wee Teck Gan
and Raudl Gomez [GG14], on a case-by-case basis using the usual and ex-
ceptional theta correspondences. Similar, and other, methods can be used
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to study global periods for the spaces of Table (3)); examples in the literature
include [RS89, IGGO6), [Eli11].

In any case, the local and global conjectures should be seen as corollaries
of a deeper fact, which is encoded in the comparison of trace formulas that
I propose in this paper. Moreover, the approach of the present paper is
classification-free (except for a minor result in Lemma [2.2.4), and relies on a
sophisticated theory developed by Friedrich Knop, on the geometry of the
moment map

T°X — g*.

I now explain the various entries in the table: The column  denotes the
normalized spherical root of the spherical variety, in the language of [SV17],
described in the basis of simple roots labelled as in Bourbaki. This is the
positive coroot for the canonical embedding (I). (The L-groups can be re-
placed by their identity components Gx, G, here, since we take G to be
split.) This spherical root is either a root of G or the sum of two strongly
orthogonal roots; I have chosen the representative of the equivalence class
up to center to be such that the dual group is SL; in the former case, and
PGL;y in the latter. Thus, we obtain two families of spherical varieties of
rank one, whose prototypes are, respectively, the examples labelled A; and
Dy above (which, of course, are special cases of A, and D,,). The case D}
is obtained from D, by application of the triality automorphism of Sping
(which does not descend to SOg). Because of the two prototypes, we say
(following [SV17]) that the spherical root is “of type 7" (for “torus”) in the
first family and “of type G” (for “group”) in the second.

By P(X) we denote the conjugacy class of parabolics stabilizing the open
Borel orbit. In the table, I describe the parabolics in a way that should be
self-explanatory, by indicating the semisimple part of their Levi quotient
L(X) or, in the case of GL,,, an ordered partition of n. In the case of G = G,
Py, is such that its Levi contains a long root. Notice that the roots of the
Levi L(X) are always orthogonal to the spherical root 7. The parabolic
P(X) determines the restriction of the map to the “Arthur-SLy” factor,
which has to map to a principal SL; in the Levi subgroup of G dual to
P(X).

Finally, Lx stands for a %Z—graded representation r = @, . 177n of Gy,
which I call the “L-value associated to X”, thinking of the L-value

H L(rp o¢,n)

attached to any Langlands parameter ¢ into G x. For this reason, I denote
this graded representation by [ [,, L(7y,,n). This is the L-value attached to
the square of the global H-period, according to the generalization of the
Ichino-Tkeda conjecture [II10] proposed in [SV17, §17.4] and the local un-
ramified calculation, performed for classical groups only, of [Sak13b]. It
would be desirable to have the same calculation generalized to all cases,
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including non-classical groups. In any case, the L-value here will be deter-
mined directly in terms of the geometry of the G-space X x X, as follows:

e When the spherical root is of type T, the associated L-value is al-
ways of the form L(Std, s1)L(Std, s2), for some positive half-integers

s1 = sy. These are determined by the relations s; + sy = dimTX, and
Y:PP(X
5 = rroa),

e When the spherical root is of type G, we have Lx = L(Ad, sg), with
S0 = <’7a PP(X)> = %, always an integer.

Here, 2pp(x) is the sum of positive roots in the nilpotent radical of the Lie
algebra of P(X); it can be considered as a cocharacter into the canonical
maximal torus of G, hence the value of the spherical coroot 7 (the positive
root of Gx) makes sense on it.

1.3. Notation and the main result. I introduce the notions and notation
necessary in order to formulate the main result. A more complete index of
notation appears in Appendix

All varieties will be defined over a local, locally compact field F' in char-
acteristic zero, and we write X = X (F'), etc, when no confusion arises. In
particular, all measures or functions will be on the F-points of the varieties
under consideration.

We denote by S(X) the space of (C-valued) Schwartz measures on the
F-points of a smooth variety X; these are smooth measures which, in the
non-Archimedean case, are of compact support, and in the Archimedean
case are of rapid decay, together with their polynomial derivatives. For the
definitions in the Archimedean case, which use the semialgebraic structure
of X (F), I point the reader to [AGO08], in particular §A.1.1. (They are not
to be confused with measures/functions in the Harish-Chandra Schwartz
space, which are of slower decay.) Notice that, in the Archimedean case,
when F' = C we need to consider X (F') as a real semialgebraic manifold,
since the complex semialgebraic topology is not fine enough. Moreover, in
this case the space S(X) has a natural Fréchet topology; if X is admits a
nowhere vanishing Nash (smooth semialgebraic) density w, so that every
element of S(X) can be written as ® - w for a Schwartz function ®, the
topology is induced by the seminorms

|®w|p = sup |DP],

where D ranges over all polynomial Nash differential operators. The gen-
eral case can be reduced to that by a Nash partition of unity [AGO8, Theo-
rem 4.4.1].

For uniformity of language, I will often write “smooth of rapid decay”
to describe this behavior of Schwartz measures, with the understanding
that this means compact support in the non-Archimedean case, and that
it includes their derivatives (the functions D® above) in the Archimedean
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case. Whenever needed, the space of Schwartz functions will be denoted by
F(X).

The notation X / G will stand for the affine, invariant-theoretic quo-
tient Spec F[X]¢ of a G-variety X, and if 7 : X — X / G denotes the
canonical quotient map, the image 7.S(X) < Meas(X / G) of the pushfor-
ward map of measures will be denoted by S(X/G). In the Archimedean
case, where S(X) is a nuclear Fréchet space, the space S(X/G) inherits a
quotient Fréchet topology; in the non-Archimedean case, any reference to
topology should be ignored.

Let X be one of the spaces in Table (3), with a reductive group G acting
on it, and let G* denote the group PGLsy, if Gx = SlLs, or SLs, if Gx =
PGLy. Let N = G* be the upper triangular unipotent subgroup, identified
with the additive group G, in the obvious way, and let ¢ : F* — C* be a
nontrivial character, considered also as a character of V. We fix throughout
an additive Haar measure on F, which is self-dual with respect to . We
extend the notation of Schwartz spaces to the quotient that we will denote
by Ny\G*/Ny: If A* < G* is the torus of diagonal elements, and w =

1 ~ ), we embed A* in the affine quotient N\G* / N by A* 5 a —

[wa], the class of the element wa, and let S(N,\G*/N,,) denote the space of
measures on A* of the form

fa@) = ¥(@dg)(a) = ([

where @ is a Schwartz function on G*, ¢ is the modular character of the
upper triangular Borel subgroup (the quotient of the right by the left Haar
measure), and da is a Haar measure on A*. This is a twisted version of the
pushforward of the measure ®dg to N\G* / N, which for suitable Haar
measures reads:

T (Pdg)(a) = (foN @(nlwang)d(nl,n2)> -d(a)da.

We also fix a coordinate on A* which we denote by
£(a) = e*(a), when G* = PGLoy;

¢(a) = €2 (a), when G* = SL,
where « is the positive (upper triangular) root of G*, and we use expo-
nential notation to denote the corresponding character, since weights are
written additively. Then, N\G* // N is identified with A!, with coordinates
&, resp. ¢, the images of the elements

7))

respectively (when &, ¢ # 0).
The elements of S(N,\G*/Ny), viewed as measures on A' = N\G* /N,
are smooth of rapid decay away from zero, while in a neighborhood of

N ®(nywansg)y "t (ning)d(ny, ng)) 0(a)da, (4)
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0 € A' they have a singularity which is called the “Kloosterman germ”, be-
cause in the non-Archimedean case they are smooth multiples of the mea-

sures
-1 (U -1 x
— — 4 du | d¥¢,
¢ (ﬁu2—|5¢ (5 ¢ > u) ¢
-1
CH(J '’ <u+<u )d“> dc.
ue+1+p

(See [Sak13a, Proposition 4.9.2] for the former, and the latter is similar. No-
tice that there are two separate germs in the case of SLy, corresponding to
the choice of +1.)

We define enlarged spaces of test measures

Six (Np\GT/Ny) = S(Ny\G*/Ny)

resp.

for the Kuznetsov formula, associated to the L-values Lx that appear in
Table (3), as follows (see also [Saka, §2.2]): their elements coincide with ele-
ments of S(N,\G*/Ny,) away from infinity, but in a neighborhood of infin-
ity, instead of being of rapid decay, they are allowed to be of the following
form:

e When G* = PGLg and Lx = L(Std, Sl)L(Std, 52) with 51 > s9,

- L s - 558
(CLEMIEE™ + Ca(e M2 "2)d"e, 5)
where (' and C; are smooth functions; this should be replaced by
1 s - - 51—S5
€275 (C1(ETY) + Co€7H)E17 " log [€])d* ¢ (6)

when [£]°17%2 is a smooth function — that is,

— in the non-Archimedean case, when s; = s9;
— in the real case, when s; — s9 € 2N; (7)
— in the complex case, when s; — sy € N.

(We use the arithmetic normalization of absolute values, which is
compatible with norms to the base field; this is the square of the
usual absolute value in the complex case.)

e When G* = SLy and Lx = L(Ad, sg),

CCHI¢ld*¢, (8)

where C is a smooth function.

In the Archimedean case, all of these spaces have an obvious Fréchet
topology, which by a partition of unity can be reduced to the topology of
the standard space of Kuznetsov test measures S(NV,,\G*/N,;) (topologized
as a quotient of S(G*)), and seminorms on the Schwartz functions C, Cy, C>
in the above asymptotic expressions at oco. The basic theorem proven in this
paper is the following;:
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Theorem 1.3.1. Let €x = (X x X) // G. There is an isomorphism €y ~ A!,
and the map X x X — A is smooth away from the preimage of two points of A*,
that we will call singular. We fix the isomorphisms as follows:

o When Gx = SLa, we take the set of singular points to be {0, 1}, with
Xdiag = X x X mappingtole €x ~ AL.
o When G'x = PGLy, we take the set of singular points to be {—2,2}, with
Xdiag = X x X mappingto2 e €x ~ AL.
Then, there is a continuous linear isomorphism:

T :Sp (Ny\G*/Ny) — S(X x X/G), )
given by the following formula:
o When GX = SLo with Lx = L(Std, Sl)L(Std, 52), S1 = S9,

TIE) = 11773 (1o 57 p(e)de) = (|0 [F720(0)de) « f(6). (10)
o When Gy = PGLy with Ly = L(Ad, s),
TFHQ =[P~ ([ o "0 (e)de) * £(C)- (11)

By (] @ |°1)(e)de) » we denote the operator of multiplicative convolution by
the measure (|z|*y(z)dx) (in the variable y = & or (, respectively):

(1o Py f) = | lalvla)f o = ot [ fa)lulvlu)in

The measure dz is the additive Haar measure on F' that we have fixed. If
these integrals do not converge, convolution should be understood as the
Fourier transform of the distribution u +— f(u~!)|u|*, followed by multipli-
cation by |y|*TL.

The operator 7T is clearly the correct operator of functoriality between
the relative trace formula for X and the Kuznetsov formula. Indeed, it
was shown in [Sak13al [Sak19al Sakal] that in the basic cases A1, D> it sat-
isfies the appropriate fundamental lemma for the Hecke algebra, and that
it pulls back relative characters to relative characters (see [Sak19b, §6-7]
for precise references); these statements can also be confirmed in the gen-
eral A,-case by “unfolding”. In an upcoming paper [JKI, Daniel Johnstone
and Rahul Krishna prove the appropriate fundamental lemma for the trans-
fer operator in all cases. There remains to prove the fundamental lemma
for the full Hecke algebra, in order to be able to use this operator glob-
ally (together with the “Hankel transforms” for the functional equations of
the standard and adjoint L-functions, discussed in [Sak19b, §8] and [Sakb)
§8]), and obtain a uniform proof of functoriality and the relation between
X-periods of automorphic forms and the L-value Lx. After a version of
this paper appeared, Gan and Xiaolei Wan confirmed that the theta corre-
spondence descends to the transfer operators introduced here, in the case
of X = SO,\SO,+1 [GW]; their methods can be applied to other cases, as
well. It is quite satisfactory to observe that various different methods for
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comparing period integrals, such as the “unfolding” method and the theta
correspondence, all descend to the same statements at the level of relative
trace formulas!

1.4. Outline of the proof. As mentioned, the proof of Theorem is
classification-free, and relies on Friedrich Knop’s theory of the moment
map. The main issue is to analyze the quotient X x X /G, and to describe,
more or less explicitly, the germs of pushforward Schwartz measures for
themap X x X - X x X /G.

To every spherical variety X one can attach a canonical “universal Car-
tan”, that is, a torus Ax, and a “little Weyl group” Wx acting on it. The
dual torus to A is the canonical maximal torus of the dual group Gy, and
Wx is its Weyl group. Hence, in the rank-one case that we are considering,
Ax ~ Gy, and Wx = Z/2, acting on G,,, by inversion.

The main result about the space S(X x X /G) of pushforward measures,
for X as in Table (3), is the following:

Theorem 1.4.1. There is a canonical isomorphism €x := X x X /|G ~ Ax [Wx,
and the map X x X — C€x is smooth away from the preimages of [+1], where [+1]
denote the images of +1 € Ax in Ax || Wx.

In particular, there are two distinguished closed G-orbits X1 = X4 and X_4
(over [£1], respectively); if d+1 denote their codimensions, then d; = dim X and

d_1 = €(2pp(x),¥) — d1 + 2,
where 7 is the spherical coroot, 2ppx is the sum of roots in the unipotent radical
of P(X), and

1, when the spherical root is of type T' (dual group SL»);
€ =
2, when the spherical root is of type G (dual group PGL>).

In the case of root of type G, d1 = d_.

The space S(X x X/G) consists of those measures on €x(~ A') which are
smooth and of rapid decay, together with their polynomial derivatives, away from
neighborhoods of [+1] (compactly supported in the non-Archimedean case), while
in the neighborhood of [+1] their germs coincide with germs for the twisted push-

forward maps:
2-dy)

D2 /(G 0|72,
for spherical root of type T', and

3—d4q
sly/(Bad, 0y * ),
for spherical root of type G, where B,q denotes the Borel subgroup of PGLo, and
0o is its modular character.

For the precise meaning of these “twisted pushforwards”, I point the
reader to the precise formulation of Theorem In other words, the
germs for the general case are twisted versions of the germs for the “basic
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cases” Aj and Ds. This indirect description of the germs allows us to relate
these germs of pushforward measures for X x X /G with the Kloosterman
germs for the Kunzetsov formula of G*, based on results of [Sak13a, Sakb].

Since X = H\G is homogeneous, we can also write X x X /G = H\G H;
when X is symmetric (as is the case for most of the cases in Table (3), except
for those denoted by G and Bj), the identification of this with Ax / W is
due to Richardson [Ric82].

In any case, to obtain this and Theorem in general, I use Knop’s the-
ory of the moment map in a somewhat paradoxical way: While the cotan-
gent bundle together with its moment map 7% X — g* is classically used
for microlocal analysis on X, here I use it to obtain an explicit resolutiorﬂ
of the space X x X under the G-action. The basic idea is, roughly, to study
the space

Z:=T*X xg« T*X,

which is the union of conormal bundles to the G-orbits on X x X. Where the
G-orbits are of codimension one, their conormal bundles are of dimension
one, and the map from the projectivization:

PZ—->XxX

restricts to an isomorphism. The important issue is to understand the conor-
mal bundles where this map fails to be an isomorphism.

It eventually turns out that P Z is not quite the correct resolution, because
it can be quite singular. A closely related space is a space that I denote by
PJx, and which is obtained in Section 3| as follows:

Let a’% be the dual Lie algebra to the torus Ax, and ¢% = a% /Wx —both
of these spaces are isomorphic to the affine line. There is a smooth abelian
group scheme J over ¢% whose general fiber is isomorphic to Ax, but the
isomorphism is only determined up to the action of Wx, and whose special
fiber (over 0 = the image of 0 € a%) is isomorphic to {+1} x G,. This group
scheme is known, for example, as the group scheme of regular centralizers
over the Kostant section of sly, and it can be abstractly defined as

Wx
J = (Resai/ci (Ax x a}})) :

where Res,« /+ denotes Weil restriction of scalars from a to c.

Knop has shown [Kno96] that, except perhaps for the non-identity com-
ponent of the nilpotent fiber of J, this group scheme acts canonically on
T*X over g*. (This action is canonical in that its differential is the Hamil-
tonian vector field induced from canonical isomorphisms T*X | G = ¢
and Lie(J) ~ T*c%.) Thus, being a bit imprecise as far as the action of the

IThe space X x X is smooth, but here we take into account the G-action, and use the
term “resolution” to refer to the fibers of the quotient map X x X — X x X /G: aresolution
is a blowup that turns them into normal crossings divisors.
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non-identity component of the nilpotent fiber goes, we have a map
I X T*X > T*X xgs T*X,
X

and it is its composition with the map to X x X (after projectivization)
which will give rise to the desired resolution:

P(J xex T*X) > X x X.

On the other hand, we have, by definition, a canonical quotient map
J — Ax /Wx, and this can be used to prove the isomorphism X x X /G —
A 5'¢ // Wx.

Recall that there is a bijection between points of X x X / G and closed
(geometric) orbits of G on X x X. The diagonal X; = X4 < X x X
corresponds to the class of 1 € Ay, and the fiber of J X T*X over it is
just its conormal bundle N = T*X. To correct the imprecision about
the non-identity component {—1} x G, of the nilpotent fiber of .J, we re-
place ({—1} x Gq) xx T*X by a copy of Ga xx NX_, where X_; denotes
the closed G-orbit over [-1] € Ax / Wx, N _| denotes its conormal bun-
dle, and G, maps to 0 € ¢%. This replacement leads to a smooth scheme
Jx = T*X, birational to .J xx T*X, such that the resulting map from its
“projectivization”

PJ X — X x X s

is isomorphic to the blowup of X x X at the closed orbits X; and X_.

The formula of Theorem [1.4.1] on the codimensions of orbits is obtained
in Section [4 by a degeneration argument — developing the analog of the
Weyl integration formula for X x X under the diagonal G-action, and de-
forming X to its horospherical “boundary degeneration” X, where this
integration formula is very explicit.

The map PJx — Ax / Wx is easy to describe, and a standard analysis
of pullbacks of Schwartz measures under resolutions shows, in Section @
that the elements of the pushforward space S(X x X /G) are measures on
Ax [ Wx ~ A! whose singularities at [+1] are linear combinations of mul-

d
tiplicative characters of the form = — |z| %_177(1'), where 7 is quadratic.

The last task, in Section [f is to understand this linear combination of
these characters. By linearization, this is equivalent to understanding the
pushforwards of Schwartz measures under a map

V<AL

where @) is a nondegenerate, split quadratic form on a vector space V' of
dimension d = d+1. A key proposition, identifies these pushforwards
with twisted pushforwards on a two- or three-dimensional quadratic space,
as in Theorem
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2. THE MOMENT MAP AND THE STRUCTURE OF BOREL ORBITS

2.1. Invariant theory of the cotangent bundle and its polarizations. Through-
out the paper, X will denote one of the homogeneous spherical varieties
of rank one appearing in Table (3). However, in this section I revisit (and
slightly reformulate) the theory of the cotangent bundle of X due to Friedrich
Knop, which holds true for any homogeneous, quasi-affine spherical vari-
ety X under the action of a connected reductive group G.

To any such X, one attaches a conjugacy class of parabolics, denoted by
P(X), characterized by the property that, if B < G is a Borel subgroup and
X < X its open orbit, (a representative of) P(X) is given by

P(X):={geG|Xg=X}.

The Levi quotient (and sometimes, a Levi subgroup) of P(X) will be de-
noted by L(X).

Let A denote the reductive quotient of a Borel subgroup — viewed as a
canonical torus associated to G, up to unique isomorphism, the so-called
(universal) Cartan of G. Let B denote the full flag variety of G, and let Bx
denote the flag variety of parabolics in the conjugacy class of P(X).

The unipotent radical of a parabolic P will be denoted by Up. Having
tixed a Borel subgroup B, we will also use the letter N for Ug. The quotient
X / N is a homogeneous space under the action of A; its action factors
through the faithful action of a quotient A — Ax which we will call the
(universal) Cartan of X. In fact, it is known that Ay is a quotient of P(X):

P(X) — L(X) — Ax,
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and that P(X) acts on X // N through this quotient. We will denote by L,
the kernel of the map L(X) — Ax.

The rank of Ay is, by definition, the rank of X; thus, for all varieties of
Table (3), Ax ~ Gy,. The character group of Ax will be denoted by A x, and
called the weight lattice of X. We use similar notation for other B-orbits (or
B-orbit closures) Y: Ay will denote the set of characters of nonzero rational
B-eigenfunctions on Y, and Ay = Spec F[Ay] the torus quotient by which
AactsonY )/ N. The rank of Y is the rank of the group Ay. It is known that
X has maximal rank among all B-orbits on X.

We will denote Lie algebras of algebraic groups by the same letter in
Gothic lowercase, and linear duals by a star exponent. The cotangent space
T*X of X comes equipped with a moment map

p:T*X — g*,

which, for X = H\G, is simply the G-equivariant extension of the embed-
ding bt < g* to T*X = h* xH G This gives rise to a G-invariant map:

T*X > g* |G =a* | W.

We let §* = g* xqyw a*, and §* = {(Z,B)|Z € g*, B € B,Z € up}; the
latter is the Springer-Grothendieck resolution, and the canonical quotient
ug — a* induces natural, proper maps §* — g* — g*.

We define the following covers of the cotangent bundle:
o« THX = T*X Xty 0F = THX X gx g" (the polarized cotangent bun-
dle);
o T*X ={(v,B)lve T*X,B e B,u(v) eup} = T*X xgx §*.

Hence, we have proper maps T*X — T*X — T*X, as base changes of the
corresponding maps between covers of g*.

Following Knop, we construct canonical maps, that we will call Knop’s
sections,

fx (X x Bx)? xa% — T¥X, (12)
Fx (X x B xat — T*X (13)

over X, linear in the a%-argument, where the exponent “0” denotes the
subset of pairs (z, P) with z in the open P-orbit. The maps are given
as follows: by linearity, it is enough to define them for the lattice Ax =
Hom(Ax, G,,) < a%, where we consider characters as elements of a% by
identifying them with their differentials at the identity. Let x € Ax, let P e
Bx or P € B, respectively, and let f, be a rational, nonzero P-eigenfunction
on X with eigencharacter . If = is in the open P-orbit, then

fix (2, Pyx) = (delog fy, X) € T*X = T*X xgu jyy 0¥,

and .
kx(z,P,x) = (dylog fy,P) e T*X c T*X x B,
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where d, denotes the differential evaluated at x, and d, log f,, = dz(f X) The
term “sections” is due to the fact that £ x is a partial section of the natural

map T*X — X x B x a*; we also apply it to Ax by abuse of language,
despite the fact that it is a partial section of some map only over an open
subset ay of “regular elements” (to be defined below).

The following facts are known, or can easily be inferred, as we indicate
below, from the work of Knop:

)
)

€)

(4)

All maps T*X — T*X — T*X are proper and dominant.

This is obvious from the definitions.
There is, by definition, a natural map 7*X — X x B. The image of
any irreducible component is an irreducible, G-stable subset, which
therefore contains a largest G-orbit, giving rise to a map

irreducible components of’_]/’*\)z — {G-orbits in X x B}.
p

If we fix B € B, G-orbits on X x B are in bijection with B-orbits on X.
Under this map, the irreducible components of maximal dimension in

T*X are in bijection with the Borel orbits of maximal rank in X.

This is [Kno95, Proposition 6.3]. We will denote by T*X ' the
irreducible component corresponding to the open Borel orbit; it is

the closure of the image of A x in T*X.
Considering only these components of maximal dimension in 7*X,
and their images in 7% X, we obtain a canonical bijection between

the irreducible components of T*X and the Borel orbits of maximal rank
in X.

This is [Kno95, Theorem 6.4], together with the non-degeneracy
statement of [Kno94, Lemma 3.1]. Thus, this bijection is character-
ized by the fact that the component corresponding to a B-orbit YV’
contains all pairs (v € T3 X, Z € a*) with u(v) € uj; and Z its im-
age under the canonical map uj — a*. In particular, the closure of
the image of Knop’s section # x is the irreducible component corre-

sponding to the open B orbit, to be denoted by T*X

The stabilizer of 7* X under the natural action of W on T*X (in-
duced from its action on a*) is a certain semidirect product W, x

Wx, and the image of T*X ' in a* coincides with a%. Here, Wp,x)
is the Weyl group of the Levi quotient of P(X'), which is the largest
subgroup of W acting trivially on a%, and W is the so-called little
Weyl group of the spherical variety, which acts faithfully on a%. For
the examples of Table (3), Wx = Z/2.

The fact that W x is precisely the centralizer of a% again fol-
lows from the non-degeneracy statement of [Kno94, Lemma 3.1]; I
point the reader to the proof of [Kno95, Theorem 6.2] for the other
statements.
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The image of the moment map, followed by the Chevalley quotient:
T*X L g > a* JW
is equal to the image of the map
ay ) Wx —a* J W,

induced from the inclusion a% < a*. Knop has shown that the map to
a* / W lifts canonically to a map

Minvy * T*X — Cg( = a}} // Wx, (14)

descending from the map T*X - a%. Under (14), % is identified with
the invariant-theoretic quotient 7*X // G [Kno90, Satz 7.1]. The map piny is
the invariant moment map. Thus, we have a commutative diagram

T*X oy g (15)
e
ok =ak J Wx ——=a* J W,

/G

where g% is the spectrum of the integral closure of the image of F[g*] in
F[T*X]. (I point the reader to [Kno90, §6] for the definition of g%, denoted
there by My, and the map g% — ¢%.)

We let a’ denote the open Wx-stable subset where Wx acts freely and
¢ its image — in our rank-one cases, these are just the complements of
zero. Vectors in T*X (and its various covers) or g% which live over ¢
will be called regular semisimple, and denoted T* X", resp. gy . The reader
should not confuse this notion with the property of being regular in g*; in
fact, the centralizer of the image of an element of 7% X™ in g* is conjugate
to a Levi of P(X) over the algebraic closure. Hence, “regular semisimple”
elements in 7% X have an image in g* which is semisimple and “as regular
as possible”, though not necessarily regular.

Now we restrict to the case when X has rank one and Wx = Z/2. Thus,
a% is a one-dimensional vector space, and a¥ is the complement of zero.
We can also identify c¢% with Al, always letting the point 0 € ¢% (the image
of 0 € a%) correspond to 0 € A'. Then, the invariant moment map 7*X —
¢ can be considered as a quadratic form on the fibers of 7% X.

Lemma 2.1.1. For X affine homogeneous of rank one with Wx = 7Z/2, the map
T*X — % is a nondegenerate quadratic form on every fiber of T* X over X, and

gy is equal to the image of T* X™ in g*.

Proof. Let z € X with stabilizer H; the fiber of 7% X over x is canonically
identified with h*. Since H is reductive, there is a nondegenerate invariant
symmetric bilinear form on g* with nondegenerate restriction to ht. In-
deed, recall that every invariant symmetric bilinear form on a simple (non-
abelian) Lie algebra is a multiple of the Killing form. Take an invariant,
nondegenerate extension () of the Killing form on the semisimple part of
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g; it is a standard fact that @) restricts to a nondegenerate form on any Car-
tan subalgebra. By invariance, the restriction of @ to h is nondegenerate;
therefore, it is also nondegenerate on hL, when we use the form to identify
g with g*. The corresponding quadratic form

bJ_ N Al
is H-invariant. It thus has to factor through the invariant-theoretic quotient
bt ) H=T*X |G =%,

which therefore has to be nondegenerate.

Notice that the image of a% in a* / W is birational to the quotient of a%
by its normalizer in W. Since we are in rank one, and Wy is non-trivial,
this normalizer acts on a% = A in the same way as Wx, namely by +1,
therefore the image of a% in a* / W is birational to ¢%. (They are in fact
equal, since the Killing form provides the quadratic generator of F'[c% |, but
we won't need that.) In particular, the G,,,-orbit ¢% embeds into a* J W.

By [Kno90, Satz 5.4], the closure u(7*X) of the image of the moment
map is equal to the set of G-translates of ([; + u p)L, where P is a parabolic
in the class of P(X), and L, Up is the kernel of the map P — Ax. Choosing
a linear section ¢ of the natural quotient map (I; + u p)L — a%, the subset

o(d%) -G c p(T*X) = (h +up)* -G
is open, coincides with the preimage of ¢ < a* / W in u(T*X), and is
smooth because the action map
o(d%) x* G —o(ak) -G,
where L is the centralizer of o(a% ), is étale.
Thus, the factorization of the moment map restricts to
T X™ — g;}’rs —o(ay) -G c g

By construction, the map g% — g* is finite, thus the same is true for its
restriction over the subset o(a%) - G. If g%, c% denote the images of g%, c%
under (15), it follows (in arbitrary rank) from [Kno90, Satz 6.4] that g% is
birational to the fiber product % XE g%. (This proposition identifies g%
with the invariant-theoretic quotient by Wx of a variety which is birational
to o(a’%) x G.) Again, c% is birational (actually equal) to ¢%, so the map
gy — @ is birational. Hence, its restriction over c¥ is a finite, birational
map of normal varieties, therefore an isomorphism. O

Proposition 2.1.2. For X of rank one with Wx = 7Z/2, the restrictions of Knop’s
sections Kk x and and R Fx to a3 X are zsomorphzsms onto the subsets of reqular semisimple
vectors on T*X , resp. T*X

Proof. Knop’s section kx is an embedding, and s x is an embedding over
a’, so it is enough to prove surjectivity. We have a dominant, proper map
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T*X N T*X ., and the image of £ x surjects onto the image of A x, so it is
enough to prove the proposition for 7% X.

The B-orbits of non-maximal rank in X have rank zero, and therefore
any cotangent vector over such an orbit which is perpendicular to ug maps
to 0 € a* (because the stabilizer of a point, modulo Ug, is equal to B/Up).
Therefore, the regular semisimple elements (v, B) € T*X * all live over B-
orbits of maximal rank, that is, if x is the image of v in X, then = - B is
a B-orbit of maximal rank. It suffices to show that those which belong to
T*X live over the open orbit.

If not, that is, if there is a regular semisimple vector (v, B) € T*X " which
lives over an orbit Y of maximal rank other than the open one, hence also

—~—Y —
belongs to the irreducible component of 7*X < T*X indexed by Y/, that
means that the intersection of two distinct irreducible components

——o —~—Y

T*X nT*X
contains regular semisimple vectors. In particular, the same holds for the
intersection of the corresponding irreducible components of T*X,

——e _—YV

"X nT*X .

I claim that, in rank one with Wy = Z/2, the map T*X — T*X is étale
over T* X™; indeed, the image of 7% X is the subset ¢ of a* / W, and the
normalizer of a%; in W has to coincide with Wy, x) x W, because Wx = Z/2
is the group of automorphisms finite order of the lattice Ax < a% ~ A,
and Wp,x) is its centralizer. The distinct IW-conjugates of ay have empty

intersections (because these are distinct one-dimensional vector subspaces
of a* with their origins removed), thus we have

——rs

* * s ok \w

"X = | T*X™ xu (a%)
”LUEWL(X)NWX\W

as algebraic varieties, where w denotes a representative for the given coset,

and (a% )" is the w-conjugate of a¥ inside of a*. Hence, the map T*X -
T* X" is the base change of the étale maps (a%)¥ — ¢%, hence étale.

But this implies that the components of T* X ” have empty intersections.

(]

Corollary 2.1.3. In the setting of the previous proposition, G acts transitively on
every fiber of T*X ", T*X " or T*X™ over, respectively, &, &% or &&. The
stabilizer of any point on X" is conjugate to the kernel Ly of the canonical
map L(X) — Ax, where L(X) is a Levi subgroup of P(X); the stabilizer of
any point on X" is conjugate to a Borel subgroup of such an Ly; finally, the

stabilizer of any point on T* X*® is conjugate over the algebraic closure to such a
subgroup L;.
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Proof. It is enough to prove transitivity of the action for A By Propo-
sition[2.1.2} Knop's section is an isomorphism onto regular semisimple vec-
tors: s
(X x B xa% 5 T%X

The group G acts transitively on (X x B)Y, hence on the fiber over any point
ina%.

The statement on stabilizers, in the first two cases, follows by examining
stabilizers on the domains of Knop’s sections. In the last case, it follows

—— oIS

from the fact that the preimage of a G-orbit in the Wx-torsor 7*X =~ —
T* X" consists, over the algebraic closure, of Wx-many G-orbits. O

In particular, considering the map 7% X — g% and setting
gx = gk xx aX,
so that we have a map
X - g%,
the G-stabilizer of any element Z € §%'", resp. Z € g%, acts transitively
on its fiber in T*X ., resp. T*X. The G-stabilizer of such an element is

a Levi subgroup of G over the algebraic closure and, in the case of gy,
a Levi subgroup L equipped with a choice of parabolic P in the class of
P(X). (Indeed, this is the parabolic in the class P(X) containing B, for any
lift (Z, B) of Z to g’ — equivalently, the parabolic P € By in the domain
of Knop’s section.) Corollary implies that L acts on the fiber of Z
precisely through the quotient L — P — Ax. This is a special case of

——— o.1S

[Kno94, Proposition 2.4], giving rise to a canonical action of Ax on T*X
which commutes with the action of G:

—— o.1S

Ax xT*X S Tx (16)
Corollary implies:
Corollary 2.1.4. In the setting of Proposition X" is canonically an

Ax-torsor over §"; namely, the centralizer L of any point on gy acts transi-

tively on its fiber via the canonical quotient L — Ax.

In Section |3, we will see (following Knop, again) how to formulate the
analog of this for the map 7% X™ — g'*, and to extend it to an action of a
group scheme over the whole space g%

2.2. Borel orbits over the algebraic closure. From now, X is always affine
homogeneous spherical G-variety of rank one, with Wx = Z/2. Its weight
lattice A x (the character group of Ax) is thus isomorphic to Z.
In the present subsection, we work over F, the algebraic closure of F'.
Recall, again, that the rank of a B-orbit on X is the rank of the torus
B,\B/N, where B, is the stabilizer of a point = on the orbit, and N < B the
unipotent radical. For what follows, for a Borel subgroup B and a simple
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positive root a, we denote by P, the parabolic generated by B and the
simple root space associated to the root —a, and by R(P,) its radical (so
that P,/R(P,) ~ PGLy). (We also use the notation P,z for the parabolic
generated by B and the negative root spaces associated to two simple roots
a, 3, etc.)

Knop has defined in [Kno95] a rank-preserving action of the Weyl group
of G on the set of Borel orbits (or, equivalently, the set of B-orbit closures),
which is transitive on the subset of orbits of maximal rank, which includes
the open orbit. For the reflection w, associated to a simple root «, and a
B-orbit Y, one considers the spherical PGLy-variety Y P, /R(P,) which is
of one of the following four types:

1) PGLy \ PGLy, i.e., a point;

2) T\ PGLgy, where T is a torus;

3) N(T)\ PGLy, where N (T) is the normalizer of a torus; (17)

4) S\ PGLy, with Ny ¢ S © By, where B, © N; denote a Borel
subgroup of PGLy, and its unipotent radical.

o~~~ o~

In the first three cases, there is a single orbit of largest rank in Y P,, and
it is fixed by w,. In the last case, there are two such orbits, say ¥ and
Z, and w, interchanges them; moreover, for their character groups Ay =
Hom(Ay, G,,), Az = Hom(Az, G,,), we have:

Az = A% (18)

inside of Hom(A, G,).
Since, in our case, X is of rank one, all B-orbits are of rank one or zero.
Following Brion [Bri01]], we have by [SV17, §3.1]:

Lemma 2.2.1. There is a B-orbit Z of rank one, and a simple root o, or two
orthogonal simple roots «, 3, such that, setting P = P,, resp. P = P,g, the
spherical variety Z P /R (P) is isomorphic to one of the following:

(1) T\ PGLq, where T is a torus;

(2) N(T)\ PGLg, where N'(T) is the normalizer of a torus;

(3) PGL2 as a PGL3-space (when P = P,pg).

Moreover, these possibilities are mutually exclusive, as in the first case the weight
lattice Ax is spanned by a root v of G, in the second case it is spanned by the
double 2+ of a root, and in the third case it contains the sum ~y = ~; + 2 of two
strongly orthogonal roots.

The weight v of the lemma above called the (normalized) spherical root of
X, by [SV17, §3.1]. Correspondingly to the three cases, we will say that the
spherical root is of type T, N or G.

I caution the reader that this is not the standard normalization of spheri-
cal roots in the theory of spherical varieties (e.g., as in [Lun01]), and it also
differs from yet another normalization that appears in [Kno96||; however,
in this paper I will call v the spherical root.
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Corollary 2.2.2. The spherical root is of type G if and only if all B-orbits are of
rank one.

Proof. Indeed, the spherical root were of type G, but there were a B-orbit
Zy of rank zero, since the parabolics of type P, generate the group, and
ZG = X, there is a sequence of spherical roots a4, ..., a,, such that Z; :=
Z;—1P,, is of dimension > dim Z;_1, and Z,, = X. By the analysis of the
four types of (I7), the open B-orbit on Z; either has rank zero or one, and
since X has rank one, there is a B-orbit Z of rank zero, and a simple root «,
such that ZP, contains a B-orbit of rank one. But this can happen only if
ZP,/R(P,) is isomorphic to T\ PGLy or N(T)\ PGL2, which is impossible
by the above lemma.

Vice versa, a spherical root of type T or N requires, by definition (Lemma
[2.2.7), that there be an orbit Z of rank one and a parabolic of type P, such
that ZP, /R(P,) is isomorphic to T\ PGL; or N (T")\ PGL9; in both of those
cases, the closed orbit in Z P, has smaller rank than Z. O

We now study closed B-orbits, first over the algebraic closure:

Lemma 2.2.3. Let Z < X be a B-orbit, and H < G the stabilizer of a point on
Z. The following are equivalent:

(1) H n B isa Borel subgroup of H;
(2) Z is closed.

Here, for non-connected groups, by slight abuse of language we use
“Borel” for any solvable subgroup such that the quotient is projective, whether
it is connected or not.

Proof. B-orbits on H\G are in natural bijection with H-orbits on the flag
variety G/B. Since the latter is projective, a closed H-orbit on G/B is a
projective homogeneous H-variety with solvable stabilizers, hence of the
form H/Bp for a Borel subgroup of H; vice versa, if it is of this form, it is
projective and hence closed. O

Lemma 2.2.4. Let Z < X be a closed B-orbit. Then, one of the following two
holds:

(1) Z is of rank zero, and for every simple root o such that Y := ZP, # Z,
we have Y /R(P,) ~ T\ PGLy or N (T')\ PGLq (notation as above);

(2) or, Z is of rank one, and for all simple roots o we have Z P, = Z, except
for two orthogonal simple roots «, 8 for which, setting Y := ZP,3, we

have Y /R(P.z) ~ PGLS*\ PGL3.

Proof. In the first case, we only need to exclude the possibility that Z P, /R(P,) =
S\ PGLy with Ny € S < By. Let H — G be the stabilizer of a point on Z.
Since Z is of rank zero, H n B and G n B have the same rank and, in par-
ticular, contain a common maximal torus 7". Decomposing the Lie algebras
of G and H into T-eigenspaces, we see that each root space for H is also
a root space for G. This means that the statement ZP,/R(P,) = S\ PGLy



22 YIANNIS SAKELLARIDIS

lifts to the statement that h n p,, contains the root space n, corresponding
to the root a (but not its opposite). Thus, if L/, denotes the commutator
of the standard Levi (with respect to T') of P,, then Y = ZP, contains the
space (T' n L.,)N,\L,, as a subvariety. But this is nontrivial projective, a
contradiction, since X is assumed affine.

In the second case, observe first that the spherical root is necessarily of
type G. Indeed, if H is the stabilizer of a point in the closed orbit, it follows
from the previous lemma that rk(H) = rk(G) — 1. Since X is homogeneous,
this holds for all stabilizers, and therefore there cannot be a Borel orbit of
rank zero, so by Corollary[2.2.2} the spherical root is of type G.

I will now rely on the classification of Table (3), since I currently do
not have a proof which avoids any kind of classification. Since all B-
orbits are of rank one, they form a partially ordered set (by dimension)
which can be identified, using Knop’s action, with the homogeneous set
(Wrx)y » Wx)\W for the Weyl group, with the minimal length of a rep-
resentative of a coset corresponding to the codimension of the orbit. The
little Weyl group Wx = Z/2, for spherical roots of type G (i.e., the cases
D,—BY of Table , is generated by the element w, = w.,, w-,, where 71, y2
are the two strongly orthogonal roots such that v = 71 + 2. These partially
ordered sets, together with the graph of Knop’s action, have been depicted
in [Sak13b, 6.19, 6.16], and one observes that there is actually a unique min-
imal element (Borel orbit) in this partially ordered set, and two unique,
mutually orthogonal simple roots raising it to the same Borel orbit.

(]

Notice that a subset Y < X as in the lemma is closed, since this is the
case for Z and the action map X x? P — X is proper; thus, the image of
the closed subset Z x? P is closed.

Definition 2.2.5. A pair (Y, P) as in Lemma where P = P, in the
first case and P = P, in the second, will be called a basic orbit-parabolic
pair. In other words, a basic orbit-parabolic pair consists of a parabolic P of
type P, or P,g (where («, ) is a strongly orthogonal pair of roots), and a
closed P-homogeneous subvariety Y < X such that Y /R(P) is isomorphic

to T\ PGLy or N(T')\ PGL; or, respectively, PGLS 8\ PGL3.

Such a pair will play an important role in various arguments in this pa-
per, since by the above lemma it allows us to reduce many arguments to
the basic rank-one cases, labelled A; and D, in Table (3). In reality, the pre-
cise choice of parabolic will never matter; only its class matters, and if Bp
denotes the flag variety of parabolics in this class, Y can be replaced by the
G-orbit on X x Bp, whose fiber over PisY.

Example 2.2.6. Consider the space X = SO(M)\SO(M @ F), where M is
a non-degenerate quadratic space, and M @ F' denotes a non-degenerate
quadratic space of one dimension larger. If n is even, the stabilizer P of
an isotropic flag My < My < --- C M%_l =: M’ of dimension § — 1 in
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M is a parabolic of type P,, and any of the two points on the hyperboloid
X which are represented by vectors perpendicular to M is a closed P-orbit
Y. The quotient Y /R(P) is isomorphic to the hyperboloid SO2\SO3, where
SO3 stands for SO(M'*/M’) (where the orthogonal complement is taken in
M@®F).

If n is odd, we can similarly choose an isotropic flag M; < My < --- <
Mn_s =: M’ of dimension %52 in M, and this defines a parabolic P of type

P, 52. Again, the points on the hyperboloid X perpendicular to M represent
closed P-orbits Y, and the quotient Y /R(P) is isomorphic to SO3\SOy4.

In this paper we do not consider arbitrary homogeneous spherical vari-
eties of rank one. If we divide affine homogeneous spherical varieties of
rank one into equivalence classes, with X ~ X’ if their quotients by the
groups of their G-automorphisms are isomorphic, then it turns out that
only one representative in each equivalence class is appropriate for the rel-
ative trace formula comparison that we are performing. This representative
is the one listed in Table (3), and is described by the following:

Proposition 2.2.7. If the spherical root v is of type N — equivalently, if Ax is
spanned by 2+, then there is an equivariant two-fold cover X' — X with Ax/
spanned by .

If the spherical root ~y is of type G, then there is an equivariant finite cover X' —
X (possibly X' = X) such that Ax: is spanned by 3. Moreover, Aut®(X') =
Z)2.

Moreover, in both cases, the stabilizers of points on X' are connected.

Proof. The first statement is [Lun01, Lemme 6.4.1].

For the second, if X = H\G, replace G by the simply connected cover of
its derived group; it necessarily acts transitively on X, because if the con-
nected center of G was not acting trivially, the rank of X would be greater
than one. So, we can without loss of generality denote that by G. I claim
that 3 € Hom(A, G;,). To show this, it is enough to show that its pairing
with every simple coroot is an integer. Without loss of generality, we may
replace 7y by its Weyl group conjugate 4/ = ao— 3 which belongs to the char-
acter group of a closed B-orbit Z, where «, 8 are two orthogonal simple
roots, as in Lemma @ Clearly, the pairing of 75/ with &, 3 is integral. On
the other hand, by the same lemma, for every simple root § # «, 3, we have
Y Ps = Y; in that case, the image of the cocharacter dinA=RB /N belongs
to the image of the stabilizer of a point on Y, hence (v/,4) = 0, proving
the claim. The result on the existence of X’ now follows as a simple special
case of [Lun01], Théoréme 2]; it also follows from the same that there exists
an X, whose weight lattice is spanned by ~. The cover X’ — X, gives rise
to a nontrivial involution 7 of X’, hence to an embedding Z/2 < Aut®(X’).
(This embedding can also be established as a special case of [Kno96, Theo-
rem 1.2].) On the other hand, we also have an embedding

¢ AutY(X’) <> Hom(Axr, ™),
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by considering the action of an automorphism on the lines of B-eigenvectors
in the function field F'(X’). To show that Z/2 is the whole automorphism
group, it suffices to show that «(7) is trivial on the (normalized) spherical
root ~.

The set of B-orbits of maximal rank is acted upon transitively by the
Weyl group action of Knop. Any G-automorphism o of X’ preserves the
open Borel orbits and commutes with Knop’s action on the set of Borel or-
bits, hence preserves all orbits of maximal rank. If Y, Z are two B-orbits
of maximal rank, and « is a simple root such that Z - P, = Z u 'Y, so that
Z"» =Y under Knop’s action, the quotient Z - P, /Up, is a quotient of
N\P, (where N is the unipotent radical of B), and o descends to an auto-
morphism of Z- P, /Up,, which is induced by the “left” action of an element
of A = B/N. On the character groups of the two B-orbits, therefore, which
are related by , o induces conjugate automorphisms, i.e., if ¢z denotes
the analogs of the map ¢:

vz : Aut?(X") — Hom(Az, F™),
then those are compatible with the W-action:
tzw(o) =1z(0)".

Let (Y, P,3), now, be a basic orbit-parabolic pair for X’, as in Lemma
2.2.4 Since Y’ is preserved by G-automorphisms, a G-automorphism o
of X' restricts to a P,g-automorphism of Y’. The quotient Y'/R(Pyp) is
isomorphic to PGL3, and the weight lattice of its closed B-orbit is spanned
by the weight a — 3. Since PGL3 has no PGLy x PGLg-automorphisms, we
see that ty/(0) has to be trivial on a — 3, and therefore ¢(o) has to be trivial
on its W-conjugate ~.

If the stabilizers were not connected, then there would exist a further
cover X" — X', giving an embedding of character groups of rank one with
nontrivial cokernel: Ax, © Ax». But this is impossible in both cases for the
spherical root y of X': If it is of type T, the same should hold for X”, and
their character groups are both spanned by ~; if it is of type G, the same
should hold for X”, and the character group in such a case is spanned by
either y or  (in this case, by the latter), because no smaller fraction of y can
belong to the weight lattice of A. Thus, stabilizers are connected.

O

Definition 2.2.8. The variety X’ of Proposition[2.2.7/will be called the “cor-
rect representative” of its equivalence class modulo G-automorphisms.

2.3. Borel orbits and the moment map over F.. We now return to our non-
algebraically closed field F in characteristic zero, with G split over F'. We
maintain the assumptions of the previous subsection for X, and, moreover,
we assume that it is the correct representative given by Proposition m

Under these assumptions, our main goal for the rest of this section is to
prove the following;:
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Proposition 2.3.1. The following are equivalent:

(1) The stabilizer H of one, equivalently any, F-point on X is a split reductive
group.

(2) One, equivalently every, closed Bp-orbit on X is defined over F.

(3) The invariant moment map T*X — <%, viewed as a quadratic form on
the fibers of T* X, is split (maximally isotropic) on one, equivalently every,
fiber.

Notice that H is connected, by the fact that we are working with correct
representatives (Definition 2.2.8), and Proposition The proposition is
not true without the assumption on “correct representatives”, e.g., for the
variety N (T')\ PGLo.

We begin with some preliminary lemmas and constructions. If B < G'is
a Borel subgroup, since B is split solvable, by standard Galois cohomology,
every B-orbit which is defined over F' has an F-point. This holds, in partic-
ular, for the open B-orbit, which is unique hence defined over F, therefore
X has F-points.

Lemma 2.3.2. All B-orbits of maximal rank (over F) are defined over F. More-
over, if Y is a B-orbit of maximal rank, then Y (F) meets any G(F)-orbit on X (F)
nontrivially.

Proof. The open B-orbit is defined over F' and has rank one. By the def-
inition of Knop’s action of the Weyl group on the set of Borel orbits, and
the fact that G is split, one sees from the definition that the action is de-
fined over F, therefore every F-orbit of maximal rank is defined over F.
Any G(F)-orbit is open in X (F') (in the Hausdorff topology induced by
the topology of F), and therefore has to contain F-points of the open B-
orbit. Finally, we use Knop’s action to deduce the same result for any B-
orbit of maximal rank: if Y*» = Z, with Z open in Y P,, and Z(F') con-
tains a point z in a given G(F)-orbit, then there is a ¢ € P, (F’) such that
the P, (F)-stabilizer of zg is contained in B(F) (by the fact that the map
P,(F) — B\P,(F) is surjective), therefore the same G(F')-orbit also con-
tains a point of Y (F)). O

Now let (Y, P) be a basic orbit-parabolic pair, see Definition [2.2.5|
Lemma 2.3.3. The variety Y is defined over F, and the action map Y x¥' G — X
is surjective on F-points, i.e., Y (F) xPF) G(F) - X (F).

Proof. By definition, the variety Y contains a B-orbit of maximal rank (rank
one). By Lemma this B-orbit is defined over F, and its F-points meet
every G(F')-orbit; hence, the map Y (F') x G(F) — X (F) is surjective. [

Now we define a proper cover of the cotangent bundle 7* X which is

intermediate between this and a component of the cover T*X defined in
Let (Y, P) be a basic orbit-parabolic pair. Similarly to the definition of
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T*X , we let

—_ P

T*X ={(v,P)|lveT*X,P' ~ P,u(v) € up}.
Here, P’ ~ P means that P’ is conjugate to P. (Really, P denotes here
a class of parabolics, and Y can be thought of as a G-orbit on P\G x X;
nothing depends on a choice in this class.)

—~_PY
We let T* X =Ty X up P G, where the exponent U5 means that the

image under the moment map belongs to u; — hence, T3 X UF is the pull-
back to Y of the cotangent bundle of the quotient Y /Up.

—~—_—PY

) . . . —— P .
Lemma 2.3.4. T*X  is an irreducible component of T*X and, therefore, is
proper and dominant over T*X.

Proof. 1t is irreducible, since T3 X “p is a vector bundle over the irreducible

—~_PpP
variety Y, and a closed subset of 7*X . Moreover, considering the natural

—~ —P PY '
map T*X — T*X ,itis clear from the definition that 7*X ~ contains the
image of the irreducible component of maximal dimension corresponding

—~_P
to the open B-orbit in Y; therefore, it is an irreducible component of 7* X ,
and dominant over T* X. O

Now let Y5 = Y /Up. Since Y is homogeneous under P, this is homoge-
neous under the Levi quotient L of P, and its quotient by Z(L) (the center
of L) is the rank-one spherical variety Y /R(P) described in Lemma [2.2.4}
hence isomorphic to 7"\ PGL2 or PGLs. There are natural quotient maps of
(the total spaces of) vector bundles

TEX'YP — T*Y'P — T*Y5,

with the former an isomorphism on the base and the latter an isomorphism
on the fiber.

Lemma 2.3.5. The connected center of L acts trivially on Ya, and Y5 is isomorphic
either to T\ PGLs, where T is a torus, or to SLa. Moreover, we have T*Ys | L —
%, fitting into a natural commutative diagram:

—~_PY
T*X T*X (19)

.

T*YQ XP G—— C;-.

Proof. The variety Y3 oq := Y2/Z(L) = Y /R(P) is, by Lemma[2.2.4} isomor-
phic to T\ PGLy or PGLy. If the identity component of Z(L) was acting
nontrivially on Y5, the rank of Y5, hence of Y, would be larger than one,
a contradiction. Thus, Yo — Y5 ,q is a finite cover. Since X is taken to
be the correct representative in its class, the character group Ax is gener-
ated by the spherical root v, if that is of type T', or by 7, if it is of type G.
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Correspondingly, by (18), the character group of Y (equivalently, of Y>) is
generated by «, in the first case, and by Q—;B, in the second, in the notation
of Lemma But this means that in the first case Y2 = Y5 ,4, while in
the second it has to be a two-fold connected cover of it, hence isomorphic
to SLs.

We have Ay, = Ay = A% for some element w of the Weyl group of G,
and Wy, = Wx = Z/2. This gives rise to a canonical isomorphism

cgk/g = c;{ 5

and the construction of the invariant moment maps 7*Y3 — ¢y, and 7% X —
¢ is clearly compatible with this isomorphism, showing the commutativ-
ity of the diagram. O

—_PY
Proposition 2.3.6. Let (Y, P) be a basic orbit-parabolic pair; then the map T*X ~ —
T*X is surjective on F-points.

Let y € Y with image yo € Yo, and let V- > Vp and V3 be, respectively, the

—~_P

fibers of T*X, T*X ~ , and T*Y; over y, (y, P), and ys, respectively. The kernel
of the map Vp — Va is an isotropic subspace of V' (with respect to the quadratic
map V. — <% ) of dimension

dimV — dim V5
5 .

dimker(Vp — V3) = (20)

The quadratic space V is spliiﬂ (maximally isotropic) if and only if V5 is.

Example 2.3.7. In the setting of Example[2.2.6|(in particular, G = SO(M @ F)
for a quadratic space M, X = SO(M)\SO(M @ F'), and we have a basic
orbit-parabolic pair (Y, P) as described in that example), for the point y rep-
resented by a vector perpendicular to M in the hyperboloid X, the fiber of
T*X can be identified with the dual of M, or with M itself (using the qua-
dratic form). The space Vp is the orthogonal complement of the isotropic
flag M’ described in that example, and the space V5 is the quotient M'+ /M.
If dim M is even, the group G can be split even if M is not, and this hap-
pens precisely when the two-dimensional quadratic space (M’ ~ M)/M’
is nonsplit.

Notice that V3 is isomorphic to A2, for spherical roots of type T, and to
sly, for spherical roots of type G, with Pn H acting through a 1-dimensional
torus quotient in the first case, and through a quotient isomorphic to PGL>,
in the second case.

2We will be using “split” in a slightly non-standard way: for quadratic spaces of odd
dimension d, “split” will mean maximally isotropic, i.e., containing a dgl—dimensional
isotropic subspace.




28 YIANNIS SAKELLARIDIS

Proof. Let L denote the Levi quotient of the class of parabolics P, consid-
ered as an abstract algebraic group depending only on the class of P, de-
fined uniquely up to conjugacy. We have a canonical map of coadjoint quo-
tients

*/)L—g*)G. (21)
Let

~

g* = g* Ly le * //L7

~P
g ={(Z,P)|P' ~ P, Zeup},
so we have natural, proper maps
¢ g gt
~P
At the level of F-points, the map g* — g* is not surjective, but the map
~P AP
g* —g* is.

Now, considering ¢% as a subset of g* / G and, similarly, ¢y, asa subset
of [* / L, the canonical isomorphism ¢, =~ c¢% that we saw in Lemma[2.3.5
gives rise to a lift:

¢k - ") L. (22)
The composition of this with the invariant moment map 7% X — ¢% gives
a lift:

——P ~ P
T*X > T*X =T"X xg g% , (23)
which fits into a commutative diagram

—~—Y —

T*°X ——=T*X ——>a} (24)

]

—PY —
T*X —T*X ——%

L7

T*X,

— Y ——Y
where T*X ,T*X denote the irreducible components corresponding to
the open B-orbit in Y (see §2.1). The scheme-theoretic image of 7*X in

——P —Y
T*X is the same as the image of 7*X , hence an irreducible component
—P

0 SRl o ~P ~P .
T*X  of T*X . The fact that the map g* — g* , hence its base change

—~_PY ———

7Y . . . . . . .
T X — T*X ,is surjective on F-points, proves the surjectivity state-
ment.

——Y —~—PY .
Let us now count dimensions. Themap 7*X — T%X  is finite, hence

—_PY —y —
dim7T*X  =dim7T*X =dimT*X +dim By x) = dim T* X +dim By x),
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where By,(x) denotes the full flag variety of the Levi quotient of P(X). In
terms of the above vector spaces, setting Py = P n H, where H is the
stabilizer of y € Y, we have

T*X =V x @G,

—~—P,

Y
T*X = =Vpxtn g,
hence the relation above translates to
dim Vp + dim(Py\H) = dim V' + dim By x). (25)

On the other hand, by Corollary the general fiber of the map 7% X —
¢’ is a single G-orbit, which is of the form L;\G over the algebraic closure,
where L; is (non-canonically) isomorphic to ker(L(X) — Ax), with L(X) a

Levi of P(X); the general G-orbit on T*X and T*X my is isomorphic over
the algebraic closure to By, \G, where By, is a Borel subgroup of L;.

Similarly, the general L-orbit on 7*Y5 is isomorphic to 71\ L, where T is
(non-canonically) isomorphic to ker(A — Ax) over the algebraic closure;
notice that P(Y>) is the class of Borel subgroups of L. If we consider 7*Y>
as a P-space, we have to include Up, which acts trivially, in the point stabi-
lizers.

Hence, the relative dimension of the map 7y X up T*Y>, by counting
dimensions of stabilizers in G, is

dimUp - dimUL(X) = dimUp - dimBL(X).

The analogous relation for the corresponding vector spaces, by counting
dimensions of stabilizers in H, is

dim VP — dim V2 = dim UPH — dim BL(X) = dlm(PH\H) — dim BL(X)' (26)
Combining (25) and (26)), we obtain (20).

Since the kernel of the map Vp — V3 is isotropic (it maps to 0 € ¢% by the
commutativity of (19)), the quadratic space V is maximally isotropic if and
only if V5 is. O

We are now ready to prove Proposition

Proof of Proposition[2.3.1} Suppose that the stabilizer H of a point on X is
split. Since H is connected (Proposition 2.2.7), a Borel subgroup of H is
split, solvable, connected, and is contained in a Borel subgroup B of G
(over F'). Then, the H-orbit represented by 1 on G/B is projective, hence
closed, and the corresponding B-orbit on X = H\G is defined over F.

Vice versa, if a closed Bg-orbit on X is defined over F' — equivalently,
has a point with stabilizer H, then B n H is a split Borel subgroup of H,
hence H is split.

Now let (Y, P) be a basic orbit-parabolic pair, as in Lemma By
Lemma the variety Y» = Y /Up is isomorphic to T\ PGL; for some
torus T or to SLo, hence the closed B-orbit(s) on Y5, and on Y, are defined
over F, unless we are in the case of T\ PGLy with T  not belonging to any
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Borel F-subgroup, i.e., with 7" non-split. This is equivalent to each, equiv-
alently one, fiber of T7*Ys — c¢% being isotropic, as one can see by direct
calculation: in the case of T\ PGLsy, this is the map tt — t- / T which is
isomorphic to the norm map for the quadratic splitting ring of 7', and in
the case of SL; it is simply the determinant on sl. By Proposition[2.3.6, the
tibers of T*Y> — ¢% being isotropic is equivalent to each, equivalently one,
fiber of T*X — ¢% over a point in Y being maximally isotropic. The sur-

jectivity of the map X" S T*X on F-points, by the same proposition,
implies that the same is true for every fiber of 7% X hence, applying this
argument in the reverse direction, one closed Bp-orbit being defined over
F implies that every closed Bp-orbit is defined over F'. O

Recall that we have been assuming that G is split, and that X is a “correct
representative” of its class modulo G-isomorphisms, see Definition [2.2.8f
the statement is not true for varieties such as N'(T")\ PGLs.

Remark 2.3.8. For spherical roots of type G, all B-orbits are of rank one
(maximal), hence defined over F' by Lemma Therefore, by the propo-
sition, in that case all stabilizers are split.

Finally, the next proposition explains how many isomorphism classes of
varieties over F' correspond to each line of Table , to which our results

apply:

Proposition 2.3.9. If X is the correct representative of a class of rank one affine
homogeneous spherical G p-varieties (with Wx = 7,/2) over F, then a form of
X as a G-variety over F, where G denotes the split form of G, always exists.
Moreover, if the spherical root is of type T, there is a unique such form with split
stabilizers, and if the spherical root is of type G the isomorphism classes of such
forms are naturally a torsor for the group F* /(F*)?, and stabilizers are always
split.

Proof. The existence of a model over F follows from the general Theorem
0.2 of [Bor19]. To apply it, we first replace the spherical subgroup H (over
the algebraic closure) by its spherical closure H j, = N'(Hp); I refer the reader
to the aforementioned reference for the definition of spherical closure. By
the theorem, the resulting variety X = H;\Gj has a form X as a G-
variety over F. As in the proof of Proposition if we replace G by the
simply connected cover of its derived group and H by the identity com-
ponent of its preimage in this simply connected cover, we will obtain a
variety X of rank one whose weight lattice is “as large as possible”, that
is, spanned by the spherical root v if that is of type 7', and by 7 if it is of
type G; thus, X has to be a form of X (and, in particular, the action of the
simply connected cover factors through G).

Given such a form X, the set of G-forms of X is parametrized by the first
Galois cohomology group H'(F, Aut®(X)).
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If the spherical root is of type G, then, by Remark stabilizers are
always split. Moreover, by Proposition Aut®(X) = Z/2, so the forms
are a torsor for H'(F, Aut®(X)) = F*/(F*)2.

If the spherical root is of type T, then there is a Borel orbit (over the
algebraic closure) of rank zero, and therefore the rank of H is equal to
the rank of GG, where Hy denotes the stabilizer of any point on Xz. Let
T < Hp be a maximal torus. The Lie algebra gz splits into a direct sum
of Tr-eigenspaces, and the subalgebra bz is a subsum of that. If, now, G
is defined and split over F, we may assume that T} is the extension to F'
of a maximal split torus 7' = G, hence the eigenspaces are defined over F,
and the subalgebra b is the extension to F' of a subalgebra over F'. In other
words, there is a form of X such the stabilizer of a point (hence every point,
by Proposition is split.

Assume that X is such a form. Let (Y, P,) be a basic orbit-parabolic pair,
so that Y contains a B-orbit of rank one, and two closed B-orbits of rank
zero. These closed B-orbits now are defined over F, by Proposition
Arguing as in the proof of Proposition[2.2.7, we get an injection

Aut(X) — Autbe (Y /Up,),

where L,, is the Levi quotient of P,. The weight lattice of Y /Up, is spanned
by «, hence the L,-variety Y /Up, is isomorphic to the quotient of L, by a
maximal torus 7, which now has to be split. The group Autle (Y /Up,)
is isomorphic to Z/2, with the nontrivial automorphism interchanging the
two closed Borel orbits. Hence, if ¢ is a nontrivial G-automorphism of X,
it interchanges the two closed B-orbits in Y. As a result, for any nontrivial
element of H'(F, Aut(X)), defining a form X’ of X, these B-orbits are not
defined over F' in X', and, by Proposition again, stabilizers of points
on X’ are not split. Therefore, X is the unique form with split stabilizers.
(]

Example 2.3.10. Consider the G = SO4 = (SLg x SLy)/{+1}%8%-action on
GLg. All orbits are isomorphic to H\G = SO3\SO4 = PGLy\SOy, but the
G(F')-conjugacy class of the embedding of H in G depends on the square
class of the determinant.

3. STRUCTURE AND RESOLUTION OF X x X /G

In this section we study the diagonal action of G on X x X, and the
morphism to the invariant-theoretic quotient:

XxX—>Cxi=XxX/G.

In the group case X = H, G = H x H, the invariant theoretic quo-
tient X x X // G coincides with the invariant theoretic quotient of H by
H-conjugacy, and is naturally identified with Ay / Wy, by the Chevalley
isomorphism. Moreover, the quotient map H — Ay // Wy is smooth over
the points where the quotient map Ay — Ay J/ Wy is smooth.
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A Chevalley isomorphism for X x X / G = H\G J/ H was proven by
Richardson [Ric82] in the case where X = H\G is a symmetric variety. A
Chevalley isomorphism for general reductive group actions on affine va-
rieties, in terms of fixed point sets of generic stabilizers, was proven by
Luna and Richardson [LR79]. Almost all spherical varieties of Table (3)) are
symmetric, but this is not the case for the examples denoted by G and Bf%;
those two are symmetric under the action of a bigger group, but a priori the
invariant-theoretic quotient X x X // G could be different. In any case, I do
not know how to deduce all the results that are needed directly from the
aforementioned references, even for symmetric spaces (and, in fact, do not
all hold without choosing the “correct representatives” in each equivalence
class, see Definition 2.2.8).

Thus, in this and the following section, we introduce a more conceptual
way to analyze this quotient, for varieties of rank one, and prove the results
that we need to analyze orbital integrals. Hopefully, this approach will also
be useful for higher-rank cases, where only a small fraction of spherical
varieties are symmetric. The main results that we need are the following:

(1) The invariant-theoretic quotient € x is canonically isomorphic to Ax //
Wx — which is just an affine line Al (Proposition .

(2) The quotient map X x X — Cx is smooth away from two points
[+1] on €x (Proposition 3.5.1).

(3) Each point of €x corresponds to a closed G-orbit in X x X; if X1,
denote the closed orbits over the singular points [+1], in an étale
neighborhood of those the map X x X — €x is modeled on a non-
degenerate quadratic form (see and Proposition 3.5.1).

(4) The codimensions d+; of the singular closed orbits X; satisfy a
formula of the form:

di+d_q =2e¢ <pp(X),’7> + 2.

(I point the reader to Theorem [4.0.2] for the result and notation.)

This general approach will be provided to us by Knop’s theory of the
cotangent bundle of X and the invariant collective motion — the infini-
tesimal action of the G-invariant Hamiltonian vector fields obtained from
the invariant moment map (14). It will turn out, in rank one, that even
for the non-symmetric cases the quotient € x is (canonically) isomorphic to
Ax /| Wx, with singularities of the quotient map X x X — Ax / Wx only
over the singularities of Ax — Ax / Wx; this fact does not generalize to
higher rank, although the constructions of Knop do.

By the end of this section, we will have constructed a resolution of the
G-space X x X, denoted

R:PJx — X x X.

As mentioned in the introduction, the term “resolution” refers here to the
fibers of the map X x X — €x, which under the resolution become normal
crossings divisors.
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3.1. Knop’s abelian group scheme; the [+1] and nilpotent divisors. Con-
sider Ax x a% as a constant group scheme over a%, with the simultaneous
action of Wx on Ax and on a%. Let

J = (Resqy jex (Ax x i)™, (27)

where Resgs /o denotes Weil’s restriction of scalars from a% to ¢%. Itis a
group scheme over c¢%, whose sections over any U < % (as a special case
of the universal property of Weil restriction) are the Wx-invariant sections
of Ax x 71(U), where 7 : a% — c% is the canonical map. It comes with a
canonical birational morphism

J = (Ax xax) [ Wx, (28)
obtained functorially by identifying the right hand side with

* * Wx
Resagk(/c?( ((AX X ClX) //WX Xc;k( CIX>

This map is an isomorphism over ¢ = ¢% \ {0}. It is an easy exercise in
restriction of scalars to see that, in rank one with Wx = Z/2, this scheme is
given in coordinates by

J ~ Spec F|to, t1,€]/(t2 — €2 — 1), (29)

where we have identified ¢% = A!, with a coordinate ¢ such that £ = 0
corresponds to 0 € a%. This group scheme is also familiar as the group
scheme of regular centralizers over the Kostant section of the Lie algebra
sly, under the adjoint action of SLy [Ngfrm[o]-0, §2.4].

We have a canonical identification

J xex ay ~ Ax x ay, (30)

compatible with pullback of sections from ¢% to a%, and the identification
of sections of J with Wx-equivariant sections of Ax x a%.

On the other hand, the fiber of .J over 0 € ¢% is isomorphic to G, x Z/2.
We let J° = J denote the open group subscheme whose fiber over any
point of ¢% is the identity component of the fiber of J. The group scheme
J has a canonical action of G, induced from the action of G, on Ax x a%
(on the second factor). In the coordinates above:

a- (& to,t1) = (OLQf,to,afltl). (31)

In what follows, for any variety Y equipped with a map to ¢% we will
denote
JeY i=JxuY

(and similarly for JO).

We can distinguish three divisors on J e Y, two of them to be denoted
[+1]y, and another to be denoted (J ¢ V). The first two are the images of
(£1) - Y (where (+1) are understood as Wx-invariant sections of Ax over
a%, hence as sections of .J over ¢% ), and the third is the preimage of 0 € ¢%.
In the coordinates used above, the sum of the divisors [+1]y is given by
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the equation ¢; = 0 (with the value of ¢y distinguishing the irreducible
components), and (J ¢ )P is given by ¢ = 0. Notice that the union of
these three divisors is precisely the preimage of the corresponding points
[+1] € Ax J Wx under the map J ¢ Y — Ax J Wy descending from (28);
in the coordinates above, this union corresponds to the equations ¢y = +1.

Notice that J e Y is smooth over Y (because it is obtained by base change
from the smooth group scheme J — %), and the divisors [+1]y are iso-
morphic to Y. Hence, if Y is smooth, this is also the case for these divisors
and the scheme J o Y. On the other hand, the nilpotent divisor (. e Y)"IP is
smooth on its intersection with the smooth locus of the morphism Y — ¢%.

Lemma 3.1.1. Assume that Y — % is smooth. Then, the divisors [+1]y and
(J ¢ Y)MIP intersect transversely, and the morphism J oY — Ax || W is smooth
away from [+1]y.

Proof. All these properties are stable under smooth base change, and since
the morphism Y — ¢% is smooth, the problem reduces to the case Y = ¢%,
JeoY =J.

It is then immediate to check from the equation 3 — {2 = 1 that the
intersections of the divisors £ = 0 and ¢; = 0 are transverse.

For the second statement, we note that we can identify Ay /Wy ~ Al so
that the map J — Ax / Wx corresponds to the coordinate ty. The cotangent
space of J is generated by dty, dt, d§ subject to the equation

odty — 26t dty — t2dE = 0.

Thus, dtg = 0 only when ¢; = 0. O

We now specialize to the scheme Y = 7% X, endowed with the invariant
moment map finy : T%X — ¢%§. Lemma implies that this map is
smooth away from the zero section (Whose complement we will denote by

T* X 40), hence, by we get:

Corollary 3.1.2. The divisors [+1]7xx_, and (J e T*X 20)"P in J e T* X 49
intersect transversely, and the morphism J o T*X .o — Ax /) Wx is smooth
away from [+1]7xx_,.

3.2. Integration of the invariant collective motion. The relative Lie alge-
bra Lie(J) of J over ¢% can be canonically identified with the cotangent
space of ¢%. Indeed, sections of both are canonically identified with Wx-
invariant sections of the cotangent bundle of a%. Thus, a section of the
cotangent bundle of ¢% can be viewed as a section of Lie(.J), and at the
same time induces a Hamiltonian vector field on 7* X, by pullback and the
symplectic structure. The flow along this vector field is known as the in-
variant collective motion. Knop has shown [Kno96, Theorem 4.1] that there
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is an action of the group scheme J° on T* X over g%

C: JOeT*X T*X (32)
ok

that integrates this vector field. Over ¢ = ¢% \ {0}, this action lifts through
the isomorphism to the canonical action of Ax that we discussed

on the regular semisimple part of the polarization T*X. In particular, on
the regular semisimple part this action is induced from the action of the
centralizers of coadjoint vectors: if v € T*X™ with image u(v) = Z € g%,
the centralizer of 7 is a twisted Levi L (conjugate over the algebraic closure
to a Levi of P(X)), and it acts on v through a quotient which, over the
algebraic closure, is isomorphic (up to the Wx-action) to Ax.

This action may, but does not always, extend to J, as the following ex-
amples show:

Example 32.1. Let X = SLj under the G = SO4 = SLg x SLy /{£1}%128-
action. Then ¢% = sly / SLy (under the adjoint action), and J can be iden-
tified with the group scheme of regular centralizers over c¢%, i.e., the group
scheme of centralizers in SL, over a Kostant section

% — sl
Hence, it acts (faithfully) on (7% SL3) o, by either left or right translation;
it is easy to see that this extends to the trivial action on the zero section. In
particular, the action of J° extends to J.

Example 3.2.2. Let X = G,,,\ PGL2. The group scheme of regular centraliz-
ers for PGL2 again acts faithfully on 7*X, but in this case it is isomorphic
to JY. However, one can easily see that the entire group scheme J acts, with
the action of the (—1)-section induced from the nontrivial G-automorphism
of X.

Example 3.2.3. Let X = H\G = GL2\ PGLs3, the variety of direct sum de-
compositions G2 = Vo @ V; of a based three-dimensional vector space into
the sum of a two- and a one-dimensional subspace. The fiber h* of T*X
over the point z( corresponding to the decomposition (e1, e2) @ (es) is iso-
morphic to Std @ Std*, the direct sum of the standard representation and
its dual, as a (right) representation of H = GL5. The quadratic form of the
invariant moment map is

(v,0%) > (v,v™).

Hence, T} X P = the variety of mutually orthogonal pairs (v, v*).
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Represent H as the upper left copy of GL2 in PGL3, identify g* = g = sl3
through the trace pairing, and consider representatives

0
Ze,y: 17
2
y € 0

with e # 0, for the split regular semisimple H-orbits on h* (i.e., those over
the image of a (F) — % (F)). The variable y is redundant, at the mo-
ment, but will play a role as ¢ — 0. The centralizer of Z., under the right
coadjoint representation of G is the torus of matrices (modulo center) of the
form

a
(—2a+b+c)y btc b—c
262 2 2e
5y (o bre
2¢ 2 2

It acts on the point 7y € X through the quotient (a,b,c) — 2, which is
isomorphic to Ax ~ G, (up to inversion).

Let us examine whether the action of —1 € Ax on T*X™ extends to the
nilpotent limit ¢ — 0. Representing —1 by a matrix as above, corresponding
to (a,b,¢) = (1,1, —1):

1 1
gey=|F 0 L]~|-y 0 ¢
4 € 0 % 10

(where ~ means same left H-coset), we easily see that z¢ - g., does not
have a limit in X as € — 0, unless y = 0. On the other hand, if y also tends
to zero in such a way that % has a limit, the action extends to the limit.
Geometrically, this means that if we blow up h = Std @ Std* over the
divisor Std u Std*, and remove the strict transform of the nilpotent divisor,
then the action of —1 extends to the blowup — this will be relevant when
discussing the “second” singular orbit on X x X /G, below, see Example
3.5.61

Lemma 3.2.4. For X of rank one with Wx = 7Z/2, the restriction of T*X — g%
over g (that is, over ¢ under the invariant moment map) is a J o g"-torsor.

Proof. This is a consequence of Corollary Since T*X  is an A x-torsor
over gy, and the action is the base change of the action of the group

scheme J o g on T* X, the latter is also a torsor. O

3.3. Resolution in a neighborhood of the diagonal. We denote by N} B
the conormal bundle in a smooth variety B of a subvariety A. In the case
that B = X x X, we will be using the shorthand notation N} for N B; we
denote by N4 the normal bundle.

The fiber product J ¢ T* X carries a natural G,,-action, induced from the
action on 7% X and on J. The quotient G,,\(J  T* X () will be denoted by
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the symbol of projectivization, P(.J ¢ T* X'). We use analogous notation for
all similar spaces with a G,-action.
Consider the combination of the projection and action maps:

JOeT*X — T*X xgx T*X. (33)
An immediate corollary of Lemma is:

Corollary 3.3.1. The map is an isomorphism over ¢ (ie., on the sets of
reqular semisimple vectors).

Proof. By Lemma over ¢y we have T*X"™ x g« T*X"™ = T* X' X gtrs

T*X", and by Lemma the right hand side is isomorphic to JeT* X™ =
JeT*X"™.
(]

The space on the right hand side of can be thought of as the union
of all conormal bundles to all G-orbits on X x X. Indeed, the conormal
bundle on a G-orbit for the diagonal action on X x X is the subbundle
of the cotangent bundle 7% X x T*X determined by the vanishing of the
diagonal moment map (v1,v2) — p(v1) + p(ve); multiplying ve by —1, this
becomes the fiber product over g*. This union of conormal bundles comes
with its own map to g*, which is not the moment map for the G4#¢-action
on X x X (which is zero), but “remembers” the fact that X x X had a G x G-
action. This is the microlocal analog of the spectral decomposition of the
relative trace formula.

The rough idea behind the resolution of X x X that we are about to
construct is that, generically, the projectivization of this union of conormal
bundles is isomorphic to X x X (because we are in rank one, and generic G-
orbits will be of codimension one), hence the projectivization of 7% X x g«
T*X is, roughly, a “resolution” of X x X. However, this space is quite
singular, and we will use an extension of the space on the left as a smooth
replacement.

Proposition 3.3.2. Consider the map
R:P(J%eT*X) - X x X, (34)

descending from (33). We regard PT* X as a divisor in P(J° ¢ T* X)), descending
from the divisor [1] 7+ x (see §3.7).

The map R factors through the blowup X x X' — X x X at the diagonal
X1 := XY and is an isomorphism from a G- stable neighborhood of PT*X toa

nezghborhood of the exceptional divisor in Xxx.

Proof. By the universal property of blowups, the map R factors through a
morphism to the blowup

R:PJy > XXX, (35)
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sending the divisor PT*X to the exceptional divisor of the blowup, which
is isomorphic to PTX.

To show that this map is an isomorphism in a G-stable neighborhood of
the divisor PT*X,, it is enough to show that the induced map dR from the
normal bundle of the divisor P7™* X to the normal bundle of the exceptional
divisor is an isomorphism.

The normal bundle of P7T*X can be identified with I’(Lie J ¢ T*X), and
the normal bundle of the exceptional divisor can be identified with the
blowup of the tangent bundle TX at the zero section, i.e., of the normal
bundle to X; = X428, The map dR is lifted from the analogous map

dR : P(LieJ ¢ T*X ) — TX = Ny,, (36)

the partial differential of the map R. We compute this map:

Recall that Lie J is canonically isomorphic to the cotangent space of c%.
A section o of Lie J gives, by pullback of differential forms via the invariant
moment map, a section y; o of the cotangent bundle of 7* X, hence a vec-
tor field v, on T* X, by the symplectic structure. If 7 : T*X — X denotes
the canonical projection, and 7*(7°X) is the pullback of the tangent bundle,
we have a canonical projection of vector bundles on 7% X

pr: T(T*"X) - «*(TX),
corresponding to the projection of vector fields on 7% X “to the X -direction”.

Let T% (T*X) = T*(T*X)/m*(T*X) denote the relative cotangent bun-
dle of T* X over X; we similarly have a projection of vector bundles

pr' : T*(T*X) - T%(T*X).
Moreover, we have canonical identifications
TH(T*X) S T*X xx TX <« 7*(TX),

and the image pr(v,) of the aforementioned vector field, as a section of
(T X), coincides under this identification with “the restriction of 1 o to
the fiber direction”, that is, with the section pr’(x o) of T% (T*X).

Consider, for example, an identification c¢% 5 A (with 0 € ¢§, mapping
to0 e A'), and let 0 = d¢. Then, € o i,y can be viewed as a quadratic form
on T*X, and it gives rise to a map

Lg . T*X —-TX

over X. As we have seen in Lemma the quadratic form is nondegen-
erate; hence, (¢ is an isomorphism.

The differential of the quadratic form, restricted to each fiber, is the graph
of 1¢, considered as a subset of 7*X x x T X = 7*(TX). Therefore, the sec-
tion of Lie J corresponding to d¢ defines a vector field on 7% X, whose pro-
jection to the X-direction is the graph of 1. Hence, the map dR descends
from

V' eT* X0 — (d§,v*) e Lie J @ T* X .o — 1¢(v*) e TX.
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In particular, the map dR is fiberwise an isomorphism, hence its lift dR
to the blowup is an isomorphism, and Risan isomorphism from a G-stable
neighborhood of the divisor P.Jx to a G-stable neighborhood of the excep-
tional divisor.

O

Remark 3.3.3. Notice that, under the isomorphism Lie J = T*¢%, the action
of G,, on Lie J is the following: it acts in the canonical way on the base
(a € Gy, acts by multiplying a coordinate ¢ on ¢% by a?); this induces an
inverse pullback isomorphism:

(a*)—l . T*C;- N T*C;—,
and we multiply this by a, fiberwise. In terms of the coordinates t2—¢t? = 1,
the action of G, on J is given by a - (§,t0,t1) = (a?¢,t9,a 't1). One can
now directly see that the map LieJ e T*X .., — TX that was described
above is, indeed, G;,,-equivariant.

The proposition implies:

Corollary 3.3.4. There is an open, dense, G-stable subset (X x X)° < X x
X on which every G-orbit is of codimension one, and the nonzero vectors of its
conormal bundle are regqular semisimple. Moreover, every G-orbit on this subset
is isomorphic, over the algebraic closure, to L1\G, where L, is (non-canonically)
isomorphic to ker(L(X) — Ax), with L(X) a Levi of P(X).

Proof. Indeed, consider the space T* X x4+ T*X as the union of the conor-
mal bundles of all G-orbits on X x X; the map from J e 7% X" is an isomor-
phism onto the regular semisimple subset 7% X™ x gx.s T* X™ by Corollary
and the space J o T* X" is a union of G, x G-orbits of codimension
one. By Proposition[3.3.2 a dense open G-stable subset of its projectiviza-
tion is isomorphic to an open subset of a G-stable neighborhood of the di-
agonal X; = X% The description of G-orbits follows from Corollary

214 O

3.4. Closed orbits and invariant-theoretic quotients. The following lemma
will be very basic in our analysis of the space X x X:

Lemma 3.4.1. Every G-orbit in the image of the reqular semisimple set P(J° o
T*X") under the map R is closed.

In particular, non-closed G-orbits on X x X do not contain reqular semisimple
vectors in their conormal bundles.

Proof. The second statement follows from the first, by Corollary

To prove the first, we need some preliminary results. Choose a basic
orbit-parabolic pair (Y, P) as in Lemma The subvariety ¥ x Y <
X x X is closed, hence the map (Y x V) x© G — X x X iper.

—_—

7Y . .
Consider the space T*X =Ty X » %P @, defined in §2.3 By Lemma
—_PY
2.3.4} it surjects onto T* X, hence J* ¢ T*X " surjects onto J” ¢ T*X (and
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same for the subsets of regular semisimple vectors). But the latter has dense
image in X x X, by Proposition hence so does the former. The sub-

space J o T3 X up maps to Y x Y, and we have a commutative diagram:

T eTF X s J0eT*X (37)
-
Y xF G X x X,

where Y < Y x Y denotes the closure of the image of J 0o v X B inY xY
under the map to Y x Y. Hence, the map

Y xPG—>XxX

is surjective and proper. It is thus enough to show that every P-orbit in the
image of J ¢ T3 X P15 in Y is closed.

Let H < G be the stabilizer of a pointon Y, and Hp = H n P. Con-
sider the quotient Y — Y3 = Y /Up, and remember that Y5 is isomorphic
to T\ PGL; or SLy (Lemma [2.3.5), with the connected center of the Levi
quotient of P acting trivially; in particular, stabilizers of points in Y> are
reductive. Thus, we can fix a Levi decomposition Hp = Hj, - Hy, and a
Levi subgroup L < P which contains H. Notice that Yo = H\L, hence
we can also consider Y3 as a subvariety of Y (depending on the choices that
we have made).

Use an invariant bilinear form on g to identify u5 = p. By semisim-
plicity, the image of every element of 77 X ups ynder the moment map is
Up-conjugate to an element of [. Thus, it is enough to show that the P-orbit
of Ry (a-v)is closed, for any v € T;X“?rs with p(v) € [, and any a € J over
the image of v in ¢%.

Recall that the J-action on v is induced from the action of the centralizer
of u(v) in G; since this acts by a one-dimensional quotient, the same action
is induced from the centralizer of x(v) in L, which is a torus acting nontriv-
ially. Hence, given a € J over piyy(v), thereisan ! € L witha-v = v - L.
Hence, considering Y> as a subvariety of Y, Ry (a - v) € Y2 x Y3. To avoid
confusion, we will be denoting by y a point in Y2 x Y5 considered as a sub-
set of Y x Y, and by y its image in Y> x Y5 considered as a quotient of
Y x Y. It is immediate to confirm that the LY#8-orbit of Ry (a - v) is closed
in Y5 x Y3; for every point y on that orbit, the preimage of y under the quo-
tient Y — Y x Ys is the closure of the Up-orbit of y, considered as a point
in Y. But Y is affine, hence the Up-orbit of y is closed. Hence, the P-orbit
of Ry (a - v) is closed, completing the proof of the lemma. O

Now recall the birational map @28): J — (Ax x a%) / Wx. This induces
a map

JPeT*X — (Ax x a%) J W,
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which is a smooth geometric quotient’| by the G-action when restricted to
J e T*X'™ (i.e., over ¢), by Lemma

Proposition 3.4.2. There is a commutative diagram

X x X

JO e T*X

|

(Ax xa%) ) Wx

which identifies:
o Q:X with AX // Wx,'
e for every c € €x with corresponding closed G-orbit C < X x X, the fiber
of J © T* X" over c with the set N;;™ of regular semisimple vectors in the

conormal bundle to C;
o the quotient N}, /| G with the fiber of (Ax x ax)* J Wx over c.

Proof. Since T*X /) G = %, wehave P(J? ¢ T*X) J G = Ax || Wx, so the
composition P(J% e T*X) — X x X — € indeed factors through a map
Ax /| G — €x. On the other hand, with notation as in the proof of Lemma
and by the diagram (37), the composition

—~—P)Y
*

P(J°eT*X ") »P(J'eT*X) > X x X

T*X¢O Xg;k( T*X;é()

Ax | Wx

Cx =XxX/)G

factors through a proper, surjective map Y x” G — X x X. I claim that the
composition
—~_PY
P(JPeT*X ") > P(JPeT*X) - Ax | Wx
factors through a G-invariant map
Y XP G- A X // Wx.

Indeed, recall that Y is the closure of the image of J Oe v X UBin Y x Y; the
map J e Ty X N v /| P factors through Ay // Wx for the same reasons,
but on the other hand we have a quotient map Y = Yy x Y (again, in the
notation of the proof of Lemma[3.4.1), and Y> x Y5 / P = Ax /| Wx, so the
map to Ax J/ Wx — Y // P is an isomorphism.

Therefore, the map Ax ) Wx — Cx is surjective. Proposition im-
plies that it is also birational. Since both Ax / Wx and €x are normal, the
map has to be an isomorphism.

Recall that geometric points of €x correspond bijectively to closed geo-
metric orbits of G on X x X. By Lemma these have to be precisely the
images of P(JY ¢ T*X™) in X x X. Notice that, by Lemma the set
P(J° ¢ T* X™) contains a unique G-orbit over any point of €.

3A smooth geometric quotient X — Y is a smooth surjective morphism of G-varieties,
with G acting trivially on Y, such that geometric fibers are G-orbits.
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Let c € €x be such a point, C < X x X the closed G-orbit over ¢, and
denote by an index . various fibers over ¢. By Corollary the fiber
J o T*X™ over ¢ coincides with the regular semisimple part N of its
cotangent bundle. Hence,

NE™ )G = (J o T*X™) | G = ((Ax x &%)/ Wx)..

On the other hand, the invariant moment map gives rise to a G-invariant
map N§ — ¢ which, by considering the regular semisimple and the zero
vectors, has to be surjective. Since N // G is normal, it has to coincide
with the spectrum of the integral closure of F[¢% ] in the function field of
((Ax x a%)/Wx)., which coincides with ((Ax x a%)/Wx),; that is, with a%
(up to +1), if ¢ # [+1], and with ¢%, if ¢ = [£1]. O

Corollary 3.4.3. The closure of the image of the map contains N§, for any
closed G-orbit C < X x X. Every closed G-orbit contains regular semisimple
vectors in its conormal bundle.

Proof. The second statement was already explained in the proof of the pre-
vious lemma, and the first follows by taking the closure of regular semisim-
ple vectors, and using the fact that N is irreducible. O

The statement is not true for non-closed G-orbits, which could contribute
smaller irreducible components to 7% X x g« T*X.

Example 3.4.4. Consider the case of X = GL3\ PGL3, discussed in Example
where we identified T X = b as the representation Std ® Std* of
H = GLy. Let v* € h' be a nonzero irreqular nilpotent vector, i.e., either in
Std or in Std*. The orbit of 2o under its centralizer G+ is two-dimensional.
Hence, the fiber of

T*X xg« T*X
over v* € Ty X under the first projection is (at least) two-dimensional,
while the fiber of

JeT*X

over it is one-dimensional. Thus, there are conormal vectors to G-orbits on
X x X which are not contained in the closure of the image of (33).

3.5. Blow-up of X x X at the closed orbits. We have already seen (Propo-
sition[3.3.2) that the map P(J° ¢ T*X) — X x X is an isomorphism, gener-
ically; in particular, generic fibers over €x = Ax / Wx (Proposition
are single G-orbits. We can now determine which ones:

Proposition 3.5.1. (1) Let ¢ € €x with corresponding closed G-orbit C' <
X x X. If ¢ # [£1], the linear map N — N} /| G (which is identified
with a%, up to +1, by Proposition is an isomorphism on each
fiber over C. If ¢ = [+1], the quadratic map N} — N | G = % is
nondegenerate on each fiber over C.
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(2) The map P(J° ¢ T*X) — X x X is an isomorphism over €x = Cx ~
{[£1]}. In particular, in the setting of Corollary[3.3.4, we can take (X x
X)° = (X x X) x¢y Cx.

(3) The map X x X — Cx is a smooth geometric quotient by the G-action
away from [+1] € €.

Proof. Let V be the fiber of N} over a point of C, and Hj the stabilizer of
that point. If the linear map (when ¢ # [+1])

V — a¥,

where a% is identified, up to 1, with the fiber of Ax x a% / Wx over ¢,
resp. if the quadratic map (when ¢ = [+1])

V -y

were trivial on a nonzero, necessarily Hy-stable subspace V;, < V, that
space would have an Hy-stable complement

V=1%oV,
identifying the invariant-theoretic quotients
N& | G=V [ Ho=Vg [ Hy = cX.

In particular, the G-orbit of a generic point of N (corresponding to an
Hy-orbit on V not belonging to V{)) is not closed, a contradiction, since by
Proposition [3.4.2]and Corollary the fibers over all points of ¢% are G-
homogeneous.

This proves the first claim, and it implies that closed G-orbits in X x X
over ¢ # [t+1] are of codimension one, hence coincide with the whole
fiber. Hence, by Corollary the map from J e T*X™ to the union
T*X 40 g T*X,0 of nonzero vectors in the union of conormal bundles

is an isomorphism over ¢, therefore the projectivization IP(J ¢ T* X™) (or,
equivalently, P(J° ¢ T* X)) is isomorphic to X x X over this subset.

The last claim follows from the analogous claim for IP(.J e 7% X™): Since
T*X™ is a J-torsor over gy~ by Lemma we have isomorphisms of
geometric quotients

(X x X) xe, €x)/G = (IP(J o T*X™) x¢, &X) /G = PJ™ xe, Cx = Cy.
0

Finally, we are ready to construct a resolution of X x X. We now know
that this space contains two closed G-orbits, X; = X diag and X_4, around
which the map to Ay / Wx may fail to be a geometric quotient, namely,
the ones over the points [+1] € €x. The resolution that we will construct
will eventually turn out to be, simply, the blowup at those two subsets.
However, generalizing Proposition we will construct this resolution
by a slight modification of the space J o T* X, that we will denote by Jx.



44 YIANNIS SAKELLARIDIS

The scheme Jx will be glued from two open subsets: the first is Uy :=
JO ¢ T*X. The second is U_; := JO N%_, where X, is the closed G-
orbit corresponding to [—1] € €x. We define Jx = U; u U_4, glued over
their subsets of regular semisimple vectors as follows: Notice that Uj® =
J o T*X™. Moreover, by Proposition we have an identification of
NY"™ with the subset (—1)-T* X" of JeT* X", hence U™, = Je(—1)-T*X"™.
This defines the isomorphism

U = Je(=1)-T"X™ 3 (j,(=1) - v%) = ((=1) - j,v") € J « T*X™ = UP,
hence the scheme Jx. This scheme retains a map
Jx — (AX X a}) // Wx, (38)

whose restriction to ¢ is equal to J e T* X ™.
The map extends to Jx:

Jx — T*X xgx T*X, (39)

and we define distinguished divisors [1];,, [-1];, and J;?lp, similarly as
in §3.1}
Extending Corollary

Corollary 3.5.2. The divisors [+1] Jx.eo and J}}ilio in Jx .o intersect trans-

versely, and the morphism Jx .o — Ax || Wx is smooth away from [£1] 7 _,.

Here, Jx .0 denotes the complement of the zero section JYe X < JYT*X
in Uy, and of the zero section J2 e X_; = J' e Ny  inU_;.

Proof. On the open subset Uj, this is contained in Corollary For U_;4,
the same proof, based on Lemma works, because of the non-degeneracy
statement of the first part of Proposition[3.5.1} O

Now consider the composition Jx — T#X xg+T*X — X x X. On Jx 0,
it clearly factors through the projectivization IPJx.

Proposition 3.5.3. The morphism
R : ]PJX —- X x X

is isomorphic to the blowup of X x X at the closed G-orbits X; and X_,. The
preimage of any point of €x = X x X /| G under the composition of the maps
PJx — X x X — C€x is a normal crossings divisor.

Proof. The statement identifying IPJx as a blowup has already been proven
away from [—1] € €x, by a combination of Propositions and On
a G-stable neighborhood of [—1];,, it can be proven by exactly the same
arguments as in Proposition Notice that, now, the map Ny  — c¥%,
viewed as a quadratic form on the fibers by fixing a coordinate £ on c%,
gives rise to a map from the conormal to the normal bundle:

*
NX71 g NX*I’
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and the non-degeneracy of this quadratic form (Proposition implies
that this map is an isomorphism. This fact implies, as in Propositionm
that the map from PJx to the blowup of X x X at X_; is an isomorphism
around [—1],,.

The preimage of any point on Cx is either a unique (smooth) G-orbit of
codimension one in X x X, or is contained in the divisors [+1]p;, and

PJP: by Corollary [3.5.2, these have normal crossings. O
X y Yy g

[ finish this section by stating rationality properties of the map N} —
¢%, analogous to those of the invariant moment map that were proven in
Notice that, up to this point in this section, we have not used the
fact that we are working with the “correct representative” of a variety in its
class modulo G-automorphisms (see Proposition[2.2.7), but now we will.

Let (Y, P) be a basic orbit-parabolic pair, as in Proposition hence,
Y is a closed P-orbit, and the quotient Y /R(P) is isomorphic to T\ PGLy

ey
or to PGLy. We have defined a cover T*X — T*X, and an irreducible

—_P
component 7#*X thereof; by base change, we get analogous covers for
JeT*X. Welet

~P
Jx  ={(,P)|ve Jx,P' ~ P,u(v) € up}

(where p also denotes the moment map for Jx), and we let j\)}P’Y be the
—~—PYrs ~ S
closure of J ¢ T*X in J XP. (Recall that J§¢ = J e T*X™.) Finally,

—PY
recalling that N is the closure of (—1) - T*X™ in Jx, let Ny, be the

—~—PYyrs K ~PY
closure of (—1) - T*X “in Jx

Explicitly, fix the pair (Y, P),letz; € Y < X,letV =T} X,and Vp = V
p~L(up), asin Proposition v e V. Then (—1) - v € T* X, the translate
of v under the action of the (—1)-section of J, lives over a point 2 which
also belongs to Y, because this action can be induced by the centralizer
of v in a Levi subgroup of P (as in the proof of Lemma [3.4.1). The point
x = (x1,22) € X x X belongs to the closed orbit X_;, by Lemma[3.4.1} and
setting H; for the stabilizer of z;, and V' = (h; + h2)* < g*, Vb = V' nup,
we have

PY
N§ | =VhxPothol) gy (ol g — N%

Let Yo = Y /Up, as before, and let Y5 _; be analog of X_; for Y — that
is, the closed L-orbit on Y5 x Y5 which contains the projections of cotangent
pairs (v, (—1)v), where v € T*Y3®. If Z is the image of z in Y5 1, and Vj the
fiber of Ny, | (Y2 x Y2) over Z, then we have a quotient map Vp, — V5.

Proposition 3.5.4. In the setting above, the map N%. .~ — N¥_ is surjective
on F-points.
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The kernel of the map V}, — Vi is an isotropic subspace of V' (with respect to
the quadratic map V' — ¢%;) of dimension

dim V' — dim Vj

dimker(Vp — Vj) = 5

(40)
The quadratic space V' is split (maximally isotropic) if and only if V is, which
happens if and only if the quadratic space V is.

Hence, by the equivalences of Proposition the fibers of Ny | are
split quadratic spaces if and only if the stabilizer of one point on X is split.

Proof. The proof is identical to that of Proposition we just need to
add how the property of V; being split relates to the property of V5 being
split. But this is clear from considering the space Y5 or, equivalently, Y5 ,q =
Y>/Z(L), the latter being isomorphic to 7\ PGL2 or to PGL;y. In the both
cases, there is an automorphism of rank 2 of Y5, which, applied to one copy
of Y3, interchanges the orbits YQdlag and Y 1 < Y2 xY5; so, one, equivalently
all fibers of the conormal bundle of the former are split if and only if one,
equivalently all, fibers of the conormal bundle of the latter are. O

Finally:

Lemma 3.5.5. Assume that one, equivalently all, stabilizers of points on X are
split. Then the map X x X — €x = Ax /| W is surjective on F-points.

Proof. By Proposition the stabilizers being split is equivalent to the
map T*X — % being totally isotropic, which implies that it is surjective.
This means that the projection J** ¢ T* X™ — J' is surjective on F-points.
The map J** — Ax / Wx is also surjective on F-points. Hence, the compo-
sition PJ§ = P(J™" ¢ T*X™) — X x X — Cx is surjective on F-points. [J

Example 3.5.6. Let us consider the case of the variety X = GLy\ PGL3 = the
variety of decompositions G3 = Vo, @ 11, that we already saw in Example
Letting z1 be the decomposition (e;, e2) @ (e3), and P = the stabilizer
of the plane (ez, e3), we will get 22 = a decomposition (e; + cez, e3) @ (e2),
with the scalar ¢ depending on the chosen cotangent vector. Then we see
that Hy n Hy = P n Hy n Hy ~ Gy, V! = V) = (b1 + o)t = Std; @ Stdj,
where Std; denotes the standard one-dimensional representation of G,,,
and V' intersects the nilpotent cone in g* along irregular orbits only. The
reader should compare this with Example where we saw that the
nilpotent limit of the action of the (—1)-section of J on regular semisimple
vectors does not exist, but it does exist at the exceptional divisor of the
blowup along the (irregular nilpotent) divisor Std @ Std*. This blowup,
with the strict transform of the nilpotent divisor removed, is isomorphic to
the conormal bundle N _ .



FUNCTORIAL TRANSFER IN RANK ONE 47

4. INTEGRATION FORMULA

The goal of this section is to prove the Theorem [4.0.2] below. To formu-
late it, we will need a way to fix measures compatibly on orbits which are
isomorphic over the algebraic closure:

Definition 4.0.1. Let Hy, H» < G be two subgroups that are conjugate over
the algebraic closure, and such that the normalizer of H; acts trivially on
the top exterior power /\tOp hi (in particular, H; is unimodular). Two G-
invariant measures /i1, ji2 on the spaces H1\G, H2\G, respectively, will be
said to be compatible, if they can be presented as y; = ¢ - |w;| for some in-
variant volume forms w;, i = 1, 2, and the same scalar ¢, such that, over the
algebraic closure, ws is conjugate to ew, for some € € F with || = 1.

Recall that we have fixed a Haar measure on F', so that the absolute value
of a volume form is a well-defined measure. We will apply this to the fol-
lowing setting: Consider the diagonal action of G on X x X. By Proposition
3.5.1/ and Corollary @ the G-stabilizers of points over any c € Cx (the
complement of [+1] in €x = Ax J Wx) are all conjugate, over the alge-
braic closure, to the kernel of the map L(X) — Ax, where L(X) is a Levi
subgroup of a parabolic of type P(X).

Theorem 4.0.2. Let w be a nonzero G x G-invariant volume form on X x X defin-
ing an invariant measure |w|. Fix compatible G-invariant measures dg (Definition

-) on all G-orbits over Cy.

Then, identifying €x ~ Al and letting c11 be the coordinates of the points
[£1], there is an additive Haar measure dc on A such that the following integra-
tion formula holds:

f <I><x>rw\<x>=j le—er|F e — ey T (f ¢<g>dg>dc.
XxX Cx (XxX)e

(41)
Here, d1 = dim X = codim X3, and

d_1 = codimX_1 = 2¢ <pp 7> di + 2, (42)
where  is the spherical coroot, and
B {1, for roots of type T' (dual group SLs);
2, for roots of type G (dual group PGLy).
Moreover, in the case of type G we have
di =d_1=(2pp(x),¥) + 1. (43)

Notice that the formula for codimX_; is new, and will be proven as a
corollary of the integration formula.

There are also analogous integration formulas for the normal/conormal
bundles of the orbits X; and X_;. Notice that, fixing the isomorphism
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¢k = A, by the nondegenerate quadratic forms obtained by the invariant-
theoretic quotients

N)*ﬁ -y <« Ny )
(see Proposition[3.5.1), the normal and conormal bundles are G-equivariantly
isomorphic. Again, G-stabilizers of points on X x X over any £ # 0 € ¢

are all conjugate, over the algebraic closure, to the kernel L; of the map
L(X) —» Ax.

Theorem 4.0.3. Let w be a nonzero G-invariant volume form on N%.,  which
restricts to Haar measures on the fibers. Fix compatible G-invariant measures dg
on all G-orbits over ¢.

Then, there is an additive Haar measure d¢ on ¢% ~ A such that the following
integration formula holds:

jN; B(o)el(@) = | g (j(N

+1 Xil)

The proof of Theorem is completely analogous to that of Theorem
and therefore I will only present that of Theorem leaving the
reformulation for the other to the reader.

@(g)dg) dg. (44)
3

4.1. Pullback to the polarization. Consider the map PJx B XxXx >
Ax [ Wx. Recall that J = J ¢ T*X™; we let

—~ e

S /*\o,rs /*\o,rs "
JX =JeT"X =AX><TX CJchi(aX,

where T*X_ is the distinguished irreducible component of the polarized
cotangent bundle that was defined in
We have a commutative diagram

p R

Py PJy X xX
AX AX // Wx.

Recall that we denote by [+1]p s, the exceptional divisors of the blowup
R, and by d+ the codimensions of the orbits X ;.

Lemma 4.1.1. Let K x« x be the canonical bundle on X x X. Then
R*Kxxx = Kpj((di — 1)[1]psy + (d=1 — 1)[-1]psy).

Proof. This is immediate from the characterization of PJx as the blowup of
X x X at the two divisors X; = X428 and X_; (Proposition 3.5.3). O

Hence, if w is a nonzero, G x G-invariant volume form on X x X, the
divisor of its pullback to IP Jx is

[RFw] = (di = ) [Mpux] + (da = D [[1]psy],
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where d; = codim(X1) = dim X, and d_; = codim(X_1).
SetY = PJ X.’rs, for notational simplicity. The map p : ¥ — PJx is

o rs

an étale Z/2-cover onto its image, and notice that j;\g.’rs = Ax x T*X ,
canonically. Thus, setting R = p o R, we have

[R*'w] = (d1 — D)[V1] + (d—1 — 1)[Y_4]. (45)
where YJ_rl = [il]y cY.

Fix a pair (z,B) € (X x B)°, defining an embedding ay — X"
by Knop’s section ~x (§2.1), and let L, be the stabilizer of the points in
the image. If L denotes the centralizer of the image of such a point under
the polarized moment map to g, identified with the Levi quotient L(X)

of P(X), then Ly o [L,L], and L/L; ~ Ax, canonically because of the
polarization. The action map identifies

T*X " ~d% x Li\G.
Hence: e
PJx = = Ax x L1\G. (46)
Fix an invariant volume form w L,\G on Li\G. Then, by and the fact
that the only nowhere vanishing regular functions on a torus are characters,
there is a Haar volume form w4, on Ax and an m € Z such that

R w = (a— )4 Ha+ 1) "1a™ - way A wL\@ (47)

under (46), where we have identified Ax ~ G, to fix a coordinate a. On the
other hand, this has to be invariant under the Wx-Galois action a — a1,

hence
_ di +d_q

2

4.2. Descentto X x X. The integration formula (41), now, follows from
by descending to Ax J Wx ~ A': Fix a coordinate ¢ on that space, with ¢4
the coordinates of the points [+1]. In a sufficiently small neighborhood U
of any point of Ay / Wx ~ {[£1]} the stabilizers of all points are conjugate
to a group L} which is conjugate over the algebraic closure to L;, and the
preimage of U in X x X is, G-equivariantly isomorphic to U x L)\G. Thus,
tixing the compatible measures dg on the G-orbits as in the statement of the
theorem, there is an integration formula of the form:

f | = f () f djde
XxX Ax [Wx (XxX)e

for some nonnegative measurable function ¢ on Ax / Wx ~ {[£1]}, and
some additive Haar measure dc = |wp1| on Al. On the other hand, writ-
ing, in such a neighborhood ¢, the measure dg on L\G as |'|, for some
invariant volume form ', we see by applying {@7) over a suitable algebraic

m=1

extension of F' that the pullback of wp1 A w' to IPj)\(.’rs has to be a multiple
of (a—1)" " a+1)41"1a™ wa, Awp, ¢ by arational function f(a)~* with
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|f(a)] = ¢(c(a)). Without loss of generality, the pullback of w’ is equal to
wr\¢, and an elementary calculation, choosing, for example, the isomor-
phisms and the map Ax = G,, —» Ax |/ Wx = Al givenbyc =a + a7},
shows that, up to a scalar that we can take to be 1 by scaling the forms,

o 1 1
R war] = e —al?le = cal?|wayl,
and |a — (£1)]2 - |a|~ = |c — c41| (up to a fixed scalar), hence:

d d_q
p(e) = le—ar|? e—coa| 2 !

for a suitable dc.

4.3. Degeneration. We have proven the integration formula of Theorem
except for the determination of the codimension d_; of the orbit X_;.
In this subsection we will prove the codimension formula (42):

(di —1) + (d—1 — 1) = 2¢ (pp(x), ) »

where 7 is the spherical coroot, and

1, for roots of type T' (dual group SLy);
€ =
2, for roots of type G (dual group PGLy).

withdy =d_; = <2pp(X), "y> + 1 in the case of type G.

To prove this, we degenerate X to its boundary degeneration X 5, which is
a horospherical variety. The codimension formula will follow by compar-
ing the integration formula to the corresponding formula for X g x X,
which is very easy to compute.

More precisely, consider the decomposition of the coordinate ring of X
as a G-module into irreducibles:

FIX] = @ F[X]h.

+
AeAy

The indices A denote, here, the highest weight of the representation, and
A} c Ax := Hom(Ax, G,,) ~ Z is the monoid of weights such that the
corresponding rational B-eigenfunction is regular; from now on we iden-
tify it with N. The above decomposition is not an algebra grading, a fact
that is known to be equivalent to the fact that Wx # 1 (see [Kno96]). In-
stead, it corresponds to an algebra filtration

Fr=P FlX],,

v<A

ie., F) - Fu © Faypu- The Rees family [Pop86), §4]:
F[2]:=@F\ t* c FIX][t]
A

defines an affine G-variety 2" over A! = Spec F[t], together with an action
of G, that extends to a morphism 7 : X x Al — 2°; more canonically,
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Gy, = Spec F[Ax] = Ax, and the base A! of this family is the affine em-
bedding Ax > Ax on which elements of A} extend to regular functions,

so the defining morphism is
a Z

AX7

X x Ax (48)

and extends to a canonical action of Ay x G on 2 over Ax.

By [Pop86] (see also [SV17, §2.5]), the special fiber X := Zj is an affine
horospherical G-Varietyﬁ with P(Xg) = P(X); its open G-orbit X7y is iso-
morphic to U~ L;\G, where U~ is the unipotent radical of a parabolic op-
posite to P(X), and L, is the kernel of the map L(X) — Ay, as above.
Notice that the image of the defining morphism 7 lies in the complement
of the open orbit over 0 € Ay.

It is known that there is a family of G-invariant volume forms on the
homogeneous parts of the fibers of 2" — Al that is everywhere nonva-
nishing, cf. [SV17, §4.2]. More precisely, let us fix a parabolic P in the
class of P(X), and let X be the open P- (and Borel) orbit. Restricting to
U-invariants, the above decomposition becomes a grading

FIX]" = @ FIXIY,
A

with F[X]{ = the (one-dimensional) highest weight subspace of F[X],, on
which P(X) acts by the character A of the quotient Ax. Correspondingly,
the family 2" // U becomes constant:

o: 2 JUSX U x Ay, (49)

but it can be seen from the definitions that this isomorphism is related to
the one (call it 77) that we obtain by descending the defining map 7 of
by:

U_l(i>t) = TU(f't_lvt)a (50)
where we have used the canonical action of Ax on X // U; that is, the action
of Ax on 2 descends to the action

a-(z,t) = (- a,at) (51)

onX /U x Ax.
If 2 is the union of open P-orbits on the various fibers, the restriction of
o defines an isomorphism

XU > XU x Ay,

4n other references, X & denotes just the open G-orbit in X 4. Here, I have found it more
convenient to use X for the affine degeneration, and X/ for its open G-orbit.
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which, by the local structure theorem [BLV86, Théoreme 1.4], [Kno94, The-
orem 2.3], can be lifted P = L - U-equivariantly:

G: 2 ~8SxUx Ay, (52)

for some Levi subgroup L — P, with S ~ X /U an L-stable subvariety of
X, acting by conjugation on U and via the quotient Ax, simply transitively,
on S. More precisely, L is the centralizer of the image of an element v €

T*X whirs under the moment map, and S is a “flat”, that is, the L-orbit of
the image of v on X.

From now on, by abuse of notation, any reference to 2" should be taken
to refer to the smooth locus of the map 7 : 2~ — Ax. Consider Q :=
Qg /a1 = the relative cotangent sheaf of 2~ © A'. Restricted to any fiber,
itis canonically identified with the cotangent bundle of that fiber. Its top ex-
terior power, /\tOp ), restricts to the bundles of volume forms on the fibers
(of the smooth locus).

Lemma 4.3.1. There is a G-invariant section w of \"°° Q which restricts to a non-
vanishing volume form on each fiber. Moreover, such a form is an Ax-eigenform
satisfying, for every a € Ax,

afwey = erP(X)(a) ‘wa. (53)

Notice that we use exponential notation for the character 2pp(x) =the
sum of roots in the unipotent radical of P(X), since we use additive nota-
tion for roots.

Proof. A nonzero, P-invariant volume form on X /U x U pulls back by
to a P-invariant section w ;- of the line bundle A" Q on 2 . 1f X admits
a G-invariant measure (as is the case for affine homogeneous spaces), so
does Xy [SV17, §4.2], and the g-pullback of w ., for every g € G, is a
g P 's 1 -1
intersection with .2~ ; thus, these translates glue to a global section w4 of 2
over the union 2°* of all open G-orbits on the fibers.

This section restricts, by construction, to a nonvanishing volume form
on each fiber. Notice, also, that any other such form is a multiple of w4 by
a nowhere vanishing regular function on Ax ~ A', hence by a scalar.

Regarding the action of Ay, it is enough to prove for the restriction
of wy to 2. In terms of the isomorphism (52), the P-invariant form is
given by

-invariant section of {2 on 2°¢g™", which coincides with w ;- on the

w (5, u,) = €2 (s) - ws(s) A wo(w),
where wg is an A x-invariant volume form on S, wy; is a U-invariant volume
form on U, and we have identified S ~ Ax by choosing a base point. The

action of Ax on 2 is given by on S x Ay, and trivial action on U,
therefore this form is e*’?(*)-equivariant. O
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Now we move to the space 2 =2 X1y £ . Again, we only work
over the smooth locus of the morphism to Ax. The tensor product of wy-
with itself gives rise to a section w- of the top exterior power of the relative

cotangent bundle of X - Ay, which restricts to an invariant, nonvanish-
ing, G’ x G-invariant volume form on the open orbit of each fiber.

Proposition 4.3.2. There is an isomorphism 2 || G ~ A x Ax over Ax.

Proof. Recall the heighest weight decomposition F[X] = @, F[X]), where
A ranges in a monoid A} ~ N of weights of Ax. Notice that the highest-
weight modules F'[ X are necessarily self-dual; indeed, twisting the action
of G on X = H\G by a Chevalley involution does not change its isomor-
phism class as a G-variety (because H is reductive), hence preserves the
monoid A}; because A, it acts trivially on it. Thus, (F[X]y ® F[X]\)¢ =
F, where G here acts diagonally.

This gives the structure of a graded vector space to

F[X x X]% = QFIXh @ F[X],)" = DFIXL @ FIX]) = DF,

Au A A

which also corresponds to a filtration of rings, with associated graded grF[ X x
X]¢ = F[T1], where T is the image, in the grading, of a nonzero element
T of F in the copy labelled by the first nontrivial element of A}.

But this shows that 71 € F[X x X]¢ generates the ring freely, thus, F[X x
X]¢ ~ F[Ty].

Moving now to the coordinate ring F[.2"] < F[X][t] of the Rees family,
this argument shows that

FI21% = F[Tu#?,1],
hence 2 ) G ~ A2 = A' x Ax. O

Notice that at ¢ = 0, this specializes to an isomorphism X x Xy / G ~
A' which is A x-equivariant when Ax acts by the square of the generator \;
of A% on A! (because the action of Ay on Z restricts to its diagonal action
on the two copies of the special fiber X x X). More generally, the action
of Ax on Al x Ax = Spec F[y,t], where y = T}t as in the proof above, is
given by

a-(y.t) = (N (a)y, M (a)h):

As mentioned, the restriction of the form w 7 to the fiber over any ¢ € Ax
is a G x G-invariant, nonzero volume form wy; on the special fiber, it satisfies
the integration formula:

j ol = f ef2elpronsa) f wrnel | de. (54)
X@XX@ Al Ll\G

where € is as in Theorem Indeed, the special fiber contains an open
dense subset which is Ax x G-equivariantly isomorphic to Ay x L\G,
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and which corresponds to the open Bruhat cell under the isomorphism
X3 x X5/G = Hx\G/Hg, where Hy ~ ker(P(X)™ — Ax), with P(X)~
opposite to P(X). The parabolic P(X)~ is actually conjugate to P(X): in-
deed, if X = H\G, since H is reductive there is a Chevalley involution of G
which fixes H, and hence preserves the isomorphism class of X — but this
turns the class of P(X) to the class of P(X)~. Thus, the integration formula
for the open Bruhat cell with respect to P(X)~ reads:

f ®(g)dg =j f ®(uyawug)d(uy, us) - [P (a)|da,
G AX H@XU_

P(X)

where w is the longest element of the Weyl group, and this easily translates
to (54). Here, we need to take into account that there is an isomorphism

Hy\G | Hy = A

which pulls back to the character % (a generator for Ax = Hom(Ax, G,))
under the sequence of maps

Ax —» HyAxwHg — G — Hp\G | Hy — A'.

Hence, the inverse of this sequence of maps (restricted to G,,) is given by
the cocharacter €7.

On the other hand, consider the integration formula (1)), taking into ac-
count that the points ¢, c_; on X x X J/ G, expressed now in the coordinate
T, as above, when we vary the parameter ¢ # 0 become c+1t? in the coor-
dinate 73 t2. The limit as t — 0 must coincide with the integration formula
on X x Xy, proving the codimension formula “2).

Finally, for spherical roots of type G we have, by Proposition m a
nontrivial G-automorphism of X of order 2. Applied to the first copy of X
in X x X, this automorphism does not preserve the diagonal X, hence has
to interchange it with the unique other semisimple G-orbit which can have
codimension larger than one, that is, with X_;. This completes the proof of
Theorem

5. SCHWARTZ MEASURES
We are ready to consider the pushforward of Schwartz measures:
S(X x X) — Meas(€x), (55)

whose image we have denoted by S(X x X/G). From now on, we as-
sume that X is not only a “correct representative” in its class modulo G-
automorphisms (Definition [2.2.8)), but also that stabilizers of points on X
are split; thus, by Lemma the map X x X — Cx is surjective on
F-points.

In this section we will obtain as much information as possible from ab-
stract principles about the space S(X x X /G), using the blowup PJyx. We
use the blowup in the way that it is used in Igusa integrals: as a resolution
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of the map X x X — €y, in the sense that preimages of points are normal
crossings divisors, see Proposition 3.5.3]

We will actually be working mainly with the linearizations of this G-
space. The main result of the section is Theorem leaving us only a
certain linear combination of scalars to compute in the next section. Strictly
speaking, the techniques of the next section are sufficient to obtain the main
results, Theorems and but using the resolution puts the results
into a conceptual context, up to the computation of a linear combination of
coefficients.

5.1. Generalities on Schwartz measures. Before we proceed, I recall some
concepts, and introduce some notation, related to cosheaves of Schwartz
measures; more details can be found in [AGOS].

Let Z be a smooth variety, and D < Z a divisor. We let C*(e, D) denote
the sheaf of functions on the F-points of Z which, locally, are of the form
®(2)|ep(z)|, where ® is a smooth function and ¢p is a local generator for
the divisor D. Informally, we consider such functions as “smooth sections
of the complex line bundle |£p| associated to D”.

Consider the restricted topology of semialgebraic sets on the F-points of
Z. (The F-points of Zariski open subsets will be enough, for our purposes.)
We can define a cosheaf S(e, D) of Schwartz measures valued in |Lp|. In
the Archimedean case, its sections are linear combinations of measures on
semialgebraic open subsets which can be written as products ® - w, where
w is a nowhere vanishing Nash (=smooth semialgebraic) density on such
an open subset, and @ is a section of C* (e, D) of rapid decay (together with
its derivatives). In other words, sections of S(e, D) are generated by linear
combinations of measures supported on open subsets which admit (semi-

algebraic) coordinates (z1,. .., zy), and where the divisor D is represented
by a polynomial function fp, and in such coordinates are of the form
|fp|-®-dxy---dx,, (56)

where @ is a Schwartz function on the given chart. For every open U c Z,
the space S(U, D) is a Fréchet space; if U admits such a chart, the topology
is defined by the seminorms

- ® - day - day — sup [T,

where T ranges over all smooth semialgebraic differential operators de-
fined on that chart. (In the case of affine algebraic sets, one can consider
just algebraic differential operators.) In the non-Archimedean case, sec-
tions of S(e, D) are simply linear combinations of measures which, locally
on a chart, can be written as (56), with ® compactly supported. Note that
they are not necessarily smooth as measures on Z, because of the factor
|/l

For a closed subset Y < Z (“closed” means semialgebraic, again, but
the reader can restrict their attention to Zariski closed) we define the stalk
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Sy (e, D) as the cosheaf on Z, supported on Y, whose sections over an open
U c Z are the quotient

Sy(U,D) = S(U,D)/S(U \ Y, D). (57)

The fiber Sy (e, D) is the cosheaf whose sections over U — Z are the quotient

SY(U7 D) = S(U7 D)/Cgeomp(U’ [Y])S(U7 D)7 (58)

where Cig,,,, (U, [Y]) denotes the ideal of those tempered (i.e., of polynomial
growth together with their polynomial derivatives) smooth functions that
vanish on Y. In the non-Archimedean case, the natural map Sy (e, D) —

Sy (e, D) is, of course, an isomorphism.
Our analysis of the pushforward starts from the following;:

Lemma 5.1.1. Let Z — Y be a smooth map of smooth varieties which is surjective
on F-points. Then the pushforward of S(Z) is equal to S(Y').

Proof. This is standard, see, e.g., [Sak16, Proposition 3.1.2]. O

Corollary 5.1.2. Let U < X x X be the preimage of Cx = Cx ~ {[1],[-1]}.
Then the pushforward of S(U) is the space of Schwartz measures S(Cx).

Proof. Indeed, the map X x X — €y is smooth over ¢ x by Proposition
and the map is surjective on F-points by Lemma[3.5.5 O

Thus, our remaining task is to determine the behavior of the elements of
S(X x X /G) close to the points [+1] € €x. To this end, we can linearize
the problem: Let x € X1, with H.; its stabilizer in G and V4 its fiber
in the conormal bundle N%, |, so that Vi, J Hi1 = N%,, J G = %, by
Proposition[3.4.2] We let S(Vy1/Hy1) be the pushforward of S(V41) under
the map Vi1 — %.

Proposition 5.1.3. There is an F-analytic isomorphism between a neighborhood
Uy of 0 € ¢ (F) (in the Hausdorff topology on F-points) and a neighborhood U, of
[+1] € €x(F), such that the space of restrictions to Uy of elements of S(Vi1/H+1)
is equal, under this isomorphism, to the space of restrictions to Us of the pushfor-
wards of elements of S(X x X) supported in a certain G(F')-stable neighborhood

of x.

The restriction to a G(F')-stable neighborhood of x is because the map
G(F) - X+1(F) = Hi1\G(F) sending g to = - g may not be surjective on
F-points. Eventually, as we will see, the normal fibers V5 of all points
on X contribute the same germs of pushforward measures, so this detail
will not matter.

Proof. The pushforward map S(Vi1) — S(Vii/H41) factors through the
Hi-coinvariants of S(V41), and similarly the pushforward map S(X x
X) — S(X x X/G) factors through the G-coinvariants of S(X x X).
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Fix an isomorphism ¢% ~ A! and use the resulting nondegenerate qua-
dratic form (Proposition Vip — % ~ A! to identify Vi, with its
linear dual, the fiber of the normal bundle.

By Luna’s étale slice theorem [Lun73], there is an H-stable subvariety
W < X x X containing z, and a Cartesian diagram of pointed spaces with
étale diagonal maps:

(W xH+1 G x) (59)
(Vi x Gj())/ \EX x X, x)
W) Hiy
V+1//H+1Lc§</ Cx=XxX/G.

The étale diagonals induce isomorphisms between neighborhoods U
of 0 € ¢%(F) and U of [£1] € €x(F'), and [Sakl6, Corollary 4.2.1] im-
plies that such a diagram induces an isomorphism between the coinvariant
spaces over these neighborhoods; more precisely (since we are not treat-
ing V41/H+; as a stack), between the H;(F')-coinvariants of elements of
S(Vi1) supported in the preimage of U;, and the G(F')-coinvariants of ele-
ments of S(X x X') supported in the intersection of the preimage of U, with
the G/(F)-orbit of the Luna slice W (F). In particular, the pushforwards of
those measures to U; ~ U, coincide. O

From now on, we denote V4 simply by V, and H.; simply by H. The
reader should not confuse that, in the case of X_;, with the representation
X = H\G used elsewhere in this paper. The dimension d+; of V will be
denoted simply by d.

5.2. Pullback to the blowup. Let Ry : V — V be the blowup of V' at the
origin, and £ the preimage of 0 (the exceptional divisor); it is the linear
analog of the resolution R : PJxy — X x X.

Lemma 5.2.1. Pullback of Schwartz measures under the blowup Ry gives rise to
a closed embedding:

S(v) SV, (d - 1)[E)). (60)

The space on the right is the space of Schwartz measures valued in the
complex line bundle defined by the divisor (d — 1)[E], introduced in

Proof. This follows from writing any Schwartz measure, locally, as f = ® -
|w|, where ® is a Schwartz function and w a Haar volume form on V, and
taking into account that the divisor of R{,w is (d — 1)[E]. O
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The blowup V is canonically the total space of the tautological line bun-
dle over PV = the exceptional divisor; let 7 : V — PV be the projection to
the zero section. Any element of S(V, (d — 1)[E]) can be written as a prod-
uct @R dv, where ® is a Schwartz function on V and dv is a Haar measure
on V. The map ®(v)R{,dv — ®(7(v))Ri dv gives rise to a canonical identi-

fication

Sp(V,(d—1)[E]) ~ Meas®(V ~ {0})Tm " (61)

between the fiber of the Schwartz cosheaf S(V, (d — 1)[E]) over the excep-
tional divisor E, and the space of smooth measures on V'~ {0} which are
eigemﬁleasures for the multiplicative group of dilations with eigencharacter
o |%.

In particular, Sg(V, (d — 1)[ E]) contains a canonical line Sg(V, (d — 1)[E])
that will be called the line of “Haar” elements, corresponding to Haar mea-
sures on the right hand side of (61).

In the non-Archimedean case, the fiber Sg(V, (d — 1)[E]) and the stalk
Sg(V,(d — 1)[E]) coincide. In the Archimedean case, the image of a mea-
sure ®(v)R{ dv in the stalk at £ will be determined not only by the values,
but also by the transversal derivatives of ® along the exceptional divisor.

Again, there is a distinguished Cg°(V')-submodule

Haar”

Se(V, (d = D[ED#aar < Se(V, (d - 1)[E])

(where C° (V') denotes the stalk at 0 € V' of the ring of smooth functions),
generated by measures which are of the form Rj,dv in a neighborhood of
the exceptional divisor, and we have the following, almost tautological,
lemma:

Lemma 5.2.2. In the non-Archimedean case, the image of S(V') under the embed-
ding coincides with the space of those elements of S(V, (d — 1)[E]) whose

image in the fiber over the exceptional divisor lies in Sg(V, (d — 1)[E]) jaar-
In the Archimedean case, the image of S(V') coincides with the space of those
elements of S(V, (d — 1)[ E]) whose image in the stalk over the exceptional divisor

lies in SE(V, (d - 1)[E])Haar'

Proof. Among measures of the form ®(v)Rj{ dv, the image of S(V') consists
of those where the function @ is the pullback of a Schwartz function on V,
i.e., precisely those which in a neighborhood of the exceptional divisor can
be written as the product of an element of Cj°(V') with the pullback R, dv
of a Haar measure. In the non-Archimedean case, the stalk and the fiber
coincide, and the claim follows. O

5The action of F* on measures is defined in duality with its (unnormalized) action on
functions: (a -y, ®) = (u,a”" - @), where a™' - ®(z) = ®(a'z). In particular, Haar mea-
sure is (G, | ® |%)-equivariant.
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5.3. Pushforward to c¢%;,. Now we consider pushforwards of Schwartz mea-
sures to c%.

Proposition 5.3.1. The image of the pushforward map
S(V,(d—1)[E]) — Meas(ck)

consists precisely of those measures which are smooth away from 0, of rapid decay
(together with their polynomial derivatives) at infinity (compactly supported, in
the non-Archimedean case), and in a neighborhood of 0 have the form:

Col®) + eIz 1 Cul€) - (o), 62)

—

nek> /(Fx)?

where n runs over all quadratic characters of F*, Cy and the C)’s are smooth

measures, and & is a coordinate on % ~ A, except when |§]%*1n(§ ) is smooth
for some n, that is:

. when%—l =0andn=1,or

o when F = Rand % —1is an even integer and 1) is trivial, or an odd integer
and ) is the sign character, or

e when F = C (so,n=1)and d is evenE]

in which case the term || gfln(f) -Cy, (&) should be replaced by || %*177(5) log €] -
Cy(&). In the Archimedean case, this map is continuous with respect to the obvi-
ous Fréchet topology on these measures, determined by Schwartz seminorms away

from zero, and by absolute values of the derivatives of the functions %g, % at zero.

Proof. I claim that, locally around any point of the exceptional divisor, there
is a coordinate chart (eg, x1, ..., x4—1), where ez = 0 is a local equation for
E, such that the map ¢ : V — ¢% ~ Al is given by ¢ = ¢%r;. Indeed,
this is seen immediately by writing the split quadratic form V' — ¢% in
coordinates: £ = y% — y% + .-t yﬁ, and setting, e.g., 1 = %, x; = L for

ya’
2<i<d—1,eE=de
The asserted form of the pushforward of Schwartz measures under such
a map is quite a standard result. One way to prove it is using Mellin trans-
forms: The Mellin transform of a pushforward measure ;. f with respect to

®We use the arithmetic normalization of absolute values, which is compatible with
norms to the base field; this is the square of the usual absolute value in the complex case.

7In terms of the map PJx — Cx, of which the map V- % is the “linearization”, and
given that J e N¥  _, is smooth over J by non-degeneracy of the quadratic forms, the

first of the maps PJx — PJ ¢ x is smooth, and the second is given, in coordinates
t§ — &t1 = 1 for J, and a suitable identification Ax J/ Wx = A', by Q = (to £ 1) - &t1.
In a neighborhood of to = +1, where the function (¢o + 1)’1 is a nonvanishing, smooth
semialgebraic function of (£,¢1), we can set & = (to + 1)7'¢, and we get that the map is
given by Q = ¢'t7.
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the variable &, with f = |eg|*' - C(eg, 21, ..., 24-1), where C is a Schwartz
measure in d variables, is

ST 00 = Lé*f(f)x‘l(ﬁ) _ f Clepnan)lesl™ X M),

where C is the pushforward of C with respect to the map (g, 21, . .., Tq—1) —
(6 E, 1‘1).

This is the Tate zeta integral of a Schwartz measure in two variables, in
one of the variables against the character y~! and in the other against the
character |e|?~1x~2. In the non-Archimedean case, it has poles at y = |e|~*
and at the points xy = 7| e |%71 (double if any of these points coincide, sim-
ple otherwise), where 7 ranges over all quadratic characters. Such a Mellin
transform corresponds to a measure on the line which in a neighborhood
of £ = 0 is of the form

Co(©) + €127 Y Cy() - n(e),

neFX/(F*)?
unless d = 2, in which case the pole at y = | o |_1 is double, and the corre-
sponding singular term is of the form C;(§) - log [£].

A similar argument works in the Archimedean case, where double poles
appear whenever the product |¢| 51 n(€) is a smooth function of {. Here, the
above Tate integral maps continuously into the appropriate “Paley-Wiener
space” in the language of [Saka, Remark 2.1.6], with the location and multi-
plicity of poles determined by the characters |¢| B ~1n(¢), which corresponds
to the Fréchet space of measures as in the statement of the proposition. [J

Our final task will be to determine the image S(V/H) of the subspace

S(V) = S(V,(d — 1)[E]). This will be completed in the next section. We
start with the following observation:

Theorem 5.3.2. The space S(V /H) contains the space S(c% ) of Schwartz mea-
sures on ¢%. )
Moreover, in the expression (62)) for the pushforward of a measure f € S(V, (d—

1)[E]), the coefficients %’(0) depend only on the image of f in the fiber

S(V,(d— 1)[E]) = Meas®(V ~ {0})Crml*I’

(see (61)). In particular, by Lemma for all f e S(V) these coefficients will

lie in a one-dimensional subspace of CF™/(F*)?,
Let (ay),, be a vector spanning this one-dimensional subspace. Then S(V /H)
is the space of those measures of the form

Col) + €12 Cang(€) Y. ay - m(€), (63)

neF /(F>)?
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where Cy, Cying are Schwartz measures, and the same modification as in Proposi-
tion applies to the case where |¢| %—177(5 ) is smooth.

Proof. As we have seen, the complement of the origin is smooth and surjec-
tive over %, hence the image of S(V' ~ {0}) is equal to S(c%).

Hence, the germs of the measures C), at 0 depend only on the image of f
in the stalk Sg(V, (d — 1)[E]).

In the non-Archimedean case, “germ of C),” means simply the value of
% at0, and, as we saw in (61)), the stalk Sg(V, (d — 1)[F]) is identified with

Meas® (V . {0})%m/*, 50 the claim follows.

In the Archimedean case, we will show that the H-coinvariants of the
stalk So (V') are generated over the stalk Ci°(¢% ) by any measure which is
nonvanishing at the origin

For this, consider the descending filtration of the stalk So(V') which de-
fines its topology, i.e., F""Sy(V') = the germs of smooth measures f = ®dv
(where dv is a Haar measure) such that all partial derivatives of ¢ of order
< n vanish at the origin. By the G,,-action on V, this filtration corresponds
to a grading on the dense subspace of G,,,-finite germs. Notice that X x X
admits a G-invariant measure, and therefore the Haar measure dv is H-
invariant; thus, we can choose such a measure to identify the H-modules
of functions and measures. The graded piece F"Sy(V)/F""1Sy(V) is then
identified with Symg(V*) ®r C, and therefore the H-coinvariants of the
stalk are

So(V) i = lim (Sym (V*) @ C)

i (Syme (V* @ €))7 =

n

_ {u@n if F = R,

clee), ir-c, &

where we have treated H as a real group, so that Hc denotes its complexi-
fication.

The space C[[¢]], if F = R, and C[[¢,€]], if F = C, is naturally identified
with the stalk C§°(c% ) at zero of the ring of smooth functions. This stalk is
a ring that acts on Sy(V') g, and the isomorphism is equivariant with
respect to the action of this stalk. Thus, the above calculation shows that
the H-coinvariants of Sy(V') are freely generated over C§°(c% ) by the germ
of any element ®dv with ®(0) # 0.

Thus, the germs of pushforwards will also be generated, over Ci°(c% )
and up to smooth measures, by the germ of the pushforward of any such
measure ®dv. Consider such a measure with ®(v) constant (and # 0) close
to the origin. The pushforward map is G,,-equivariant (with respect to the
quadratic action on %), hence, in terms of the expression , the germ of

8We define coinvariants of Fréchet spaces by dividing by the closure of the space gener-
ated by elements of the form f — h - f.
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the pushforward of such a measure ®dv will be of the form

Col@) + €271 Y Cul&) - n(©),

neFX/(F*)2
where the measures C,, are constant around { = 0. Thus, the image of the
Haar stalk Sp(V, (d — 1)[E])Haar (in the notation of Lemma [5.2.2) in the
singular quotient of the stalk of S(V/H) at zero (i.e., ignoring the term Cj)
is of the form

€12 Cang©) D) @y m(©), (65)

J—

ner> /(F>)?

and in particular is completely determined by the coefficients «,,, which

depend only on the image of an element in the fiber Sg(V, (d — 1)[E]) g,
g

Therefore, we are left with computing the ratio between the coefficients
a,, which correspond to the singular part of the pushforward of a measure
on V which restricts to a Haar measure in a neighborhood of the origin.

6. DETERMINATION OF THE GERMS

6.1. Reduction to the basic cases. We will actually not compute the ratio
of the coefficients a, explicitly in all cases, but rather prove, by reducing to
an SLy- or PGLy-example, that they match the contributions of the Kloost-
erman germs under the transfer operator from the Kuznetsov formula. The
cases d = even and d = odd will be quite different, as we will see. We fix
throughout the isomorphism ¢ : ¢% = A! with 0 € ¢% mapping to 0, thus
viewing the map V' — V' J H = ¢% as a quadratic form.

The main result of this subsection is Proposition which says that
pushforwards of Schwartz measures for a d-dimensional split quadratic
space (under the quadratic map) are equal to twisted pushforwards for a
two- or three-dimensional quadratic space (of the same parity as d); this
will complete the proof of Theorem 1.4.1]

The two- or three-dimensional quadratic space V53 is obtained from V' by
choosing a maximal isotropic subspace M — V and a hyperplane M’ < M;
then Vo = M'+/M’. Let us go through the argument carefully:

Fix such a maximal isotropic subspace M. Since V is split, the orthogonal
complement M* is either equal to M (when d is even), or contains M as
a hyperplane (when d is odd). The quotient V /M is isomorphic to the
linear dual M* through the quadratic form, and the parabolic P < SO(V)
stabilizing M surjects to GL(M™).

The integration (pushforward) map S(V') — C factors through surjective
pushforward maps:

S(V) - S(V/M*) - S(PM*) — C. (66)
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Let M’ € PM*, identified (and denoted by the same letter) with a hy-
perplane in M. Let P’ — P be the stabilizer of the flag M’ < M < V. The
space S(PM*), considered as a representation of P, can be identified, up
to a scalar which we fix, with the (unnormalized) induced representation
IndL, (6 JUp), where dp 7, denotes the modular character of the image of
P’ in the Levi quotient of P. By Frobenius reciprocity, the P-equivariant
map S(V) — S(PM¥) is given by a (P',dps/y,)-equivariant functional.
The Lemma that follows determines this functional:

Lemma 6.1.1. Let ® be a Schwartz function on V, and dv a Haar measure. Then,
for suitable Haar measures,

Jvtl)(v)dv = LM* (J JML ®(av + Ul)dvlya\didexa> dv. (67)

Notice that the expression in brackets, viewed as a function of v € M™* ~
{0}, is (G, | ® |~%)-equivariant, hence dv denotes an invariant measure on
P M*, valued in the dual of the line bundle of (G, |#|~¢)-equivariant func-
tions on M* ~ {0}. More precisely, under the action of P’, the expression
in brackets is p/ /7, -equivariant, and dv is an invariant measure on PM*,
valued in the line bundle dual to the one induced from this character of P’.

Proof. This lemma is just a reformulation of the sequence (66). O

Let us reformulate the inner integral of @: Fix M’ e PM*, understood
again as a hyperplane in M. Its preimage in V' under the rational map
V — PM* is equal to M'*+ \. M. Fix a nonzero vector v € M* in the line
corresponding to M’; then the functional L : av — a is a linear functional
on the one-dimensional space of multiples of v in M* or, equivalently, a
functional

L:M* — G,.

The quotient V5 := M't/M’ is a nondegenerate quadratic space of di-
mension 2 or 3 (same parity as V). Fix a Haar measure dv’ on M’, and let
® — P, be the corresponding pushforward map (integration over cosets of
M’ against dv’)

F(M") = F(Va),
where F denotes the spaces of Schwartz functions. Then the inner integral
of (67) can be written as

f (I)Q (UQ)L(UQ)dim M_ld’Ug, (68)
Va

for a suitable Haar measure dvs.
Let us explicate this integral:

e If V5 is a two-dimensional (split) quadratic space, then dim M =
and there are coordinates (x,y) such that the quadratic form is £

NI
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xy and the functional L is L = z, so the integral reads:

j By (x, y)|z| 7 dudy. (69)
Vo

e If V5 is a three-dimensional (split) quadratic space, then dim M =

%, and there is an isomorphism V, ~ sl; with quadratic form & =

—detand L <A B

oo A) = C, so the integral reads:

A B d—3
J\@ Dy ( c o_ A) |C| 2 dAdBdC. (70)

In either case, these integrals can be disintegrated against the quadratic
form, i.e., written as iterated integrals § o { with the interior integral taken
X

over the fibers of the map V2 — %, but we need to choose a section o :
¢% — Vs, since the integrand is not invariant over the fibers. Choose this
section o so that its image is contained in an affine line of the hyperplane
L = 1; then it is necessarily contained in the affine line o(0) + M (where
M = M/M’, the image of M in V5); explicitly:

e 0(§) = (1,¢) in the coordinates above when V; is two-dimensional;

e 0(§) = 1 ¢ when V4 is three-dimensional.

Let By < SO(V2) be the stabilizer of the isotropic line M = M/M’, and
let 6, ! be the absolute value of the character by which it acts on M. Then:

Lemma 6.1.2. The expressions (69) and can be written:
[, | @sto@moateyim-tpag, 7
C;k( BQ

for a suitable right Haar measure on Bs.

Proof. In the coordinates above, in the two-dimensional case, M is tbe line
(0, %) and By = SO(V2) = {(a,a ')}, acting by the character a~! on M. The
integral can be written

J@g(a,a_lf)]a\dim M=1g%qde.

In the three-dimensional case, M corresponds to the subspace A = C' = 0
in (70), and By is the upper-triangular Borel subgroup of SO(V3) = PGLo,
acting on this line via the inverse of its modular character (remember that
it acts on the right), and we can write as

(7 D
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By this lemma, we have a new integration formula for V' in terms of
the quadratic form, that includes B,-orbital integrals on V5, twisted by the
character 52(b)dim M—1"Thus, the integration formula for a d-dimensional
quadratic space involves a twisted integration formula for a 2- or 3-dimensional
quadratic space:

Corollary 6.1.3. Let @ be a Schwartz function on V., and dv a Haar measure. Let
K < P be any compact subgroup such that K — P'\P = PM* is surjective.
Then, for suitable (right) Haar measures,

fv ®(v)dv = L ( L{ JBQ f 2((o(&)b+ v )k) 3o (b)dim M 1dv’dbdk> de.
(72)

Here, we have lifted the section o to M'* and the group B; to P’, by
choosing a section Vo — M’ L

Proof. The integral over K replaces the integral over PM* in (67); since it
is a compact integral of a smooth function, it can be moved to the interior,
and the result follows by applying (71). a

Remark 6.1.4. Representation-theoretically, the two inner integrals of
represent a (P’, §pr /17, )-equivariant functional, hence a morphism

S(V) - mdXY (6p ) = md3>Y) Indb (5p/07,)-

The integral over K corresponds to the quotient Ind}, (0pr/7,) — C (the
trivial representation), so the expression in brackets can be seen as a mor-
phism
so(v
S(V) - md3*V) ().
By the invariance of the left hand side of (72), this morphism is SO(V)-

invariant, hence has image in the trivial subrepresentation of IndISDO(V) (©).

Let £¢(®) be the SO(V)-invariant functional represented by the expres-
sion in brackets of (72). Comparing with the integration formula of
Theorem [4.0.3| (for the special case H = SO(V)), we get:

(e(@) = |€[2710¢(), (73)

where the O¢’s are orbital integrals on the fibers over ¢ # 0, against invari-
ant measures dg, obtained by identifying all nondegenerate SO(V')-orbits
over the algebraic closure, and choosing volume forms as in Theorem

Thus, we arrive at the following result about the coefficients a,, of the
expression (63)):

Proposition 6.1.5. If d is even, we have a,, = 0 except for n = 1, and there is an

equality between the space of pushforward measures for V £, Al and the measures
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on A of the form
e (] steaoi T ara) de 7
Gm

where ® varies among Schwartz functions on A2
If d is odd, there is an equality between the space of pushforward measures for

V £ Al and the measures on AL of the form

£ < JBM o, (Ad(bl) (1 5)) 62(b)d23db> de, (75)

where $o varies among Schwartz functions on sly, Baq denotes the upper trian-
gular Borel subgroup of PGLq, 02 is its modular character, and db is a right Haar
measure.

Here, sticking with standard notation, we have denoted by Ad the left
adjoint representation of PGL3 on sly; but recall that our convention is that
G acts on the right on X x X, hence H acts on the right on V, and this
convention is extended to the group SO(V).

Remarks 6.1.6. (1) In other words, the germs are reduced to twisted ver-
sions of the infinitesimal versions of the basic cases X = G,,\ PGLy
and X = SLy = SO3\SO4. Indeed, the linearizations of those two
are, respectively, A,/G,, and sl;/ PGLy, and the latter can also be
replaced by sly/B,q, because the affine quotients sl; / PGLy and
sly /| Baq are the same. Putting an appropriate character on G, or
B4, we obtain the germs for the general case. This fact will be used
to relate those germs to the Kloosterman germs of the Kuznetsov
formula, under the transfer operator.

(2) As we saw in (69), (70), the measures (74), can be considered
as twisted pushforwards of the Haar measures ®3dv (where dv is a
Haar measure on A2, resp. sly), dual to the twisted pullback maps:

¥ U(z,y) = U(ay)le| 7, (76)
resp.
- (A B d=3
\IIH\I/<C _A) =V (A% + BO)|C| = . (77)

Proof. Let £¢(®) be the SO(V)-invariant functional represented by the ex-
pression in brackets of (72). By that formula, the pushforward f of ®dv can
be written

f(&) = Le(P)dE = f f X (0(€)) 8o (b) ™ ML bk,
K JB,
where ®X e F(V43) is the Schwartz function

vy — J f O ((vg +v')k)dv'dk. (78)
K Jmr
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As we have seen in Lemma this is equal to the expressions (74),
in the two cases, applied to the function ®X. We just need to argue that
these spaces of pushforward measures obtained from a function of the form
@I is the same as the space obtained from an arbitrary Schwartz function
®y € F(Va). The pushforward map S(M't) — S(V4) is surjective, and
starting from an arbitrary Schwartz measure ®,dvy € S(V2) we can choose
a preimage ®1dv; € S(M'H). Without loss of generality (in terms of the
output of (74), (79)), we will assume that ®; is K n P’-invariant.

Notice that we have freedom in choosing K, as long as the map K —
P'\P = IPM* is surjective. Identify M™* as a subspace of V' through an
isotropic splitting of the quotient V' — M*, so that we have a direct sum de-
composition V = M+ @®M*, and choose K in the Levi subgroup GL(M*)
P. Any element of K fixing the line in M* corresponding to M’ has to be-
long to K n P'. Thus, for any two vy, vy € M’ L with nonzero image in M L
the relation v; - k = vy for some k € K implies that vy € vy - (K n P’). Hence,
the map of topological quotients

M"Y /K nP' - V/K,

surjective by our assumption on K, is also injective. Thus, ®;, a K n P'-
invariant function on M'*, is the restriction of a unique K-invariant func-
tion ® on V; in particular, the average ®£ (defined in terms of ®, and using
probability measure on K) is equal to the function ®, that we started from.

In the non-Archimedean case, it is immediate to see that if ®; is smooth,
so is ®, because smoothness means that they are locally constant on the
topological quotient V /K. In the Archimedean case, taking KX = SO, (R)
when F' = Rand K = U,(R) when F' = C (where n = dim M), the quo-
tient M*/K can be identified with R through the distance function from
the origin. For any one-dimensional subspace F'v of M*, any K n GL;(F)-
invariant smooth function on F'v is the restriction of a smooth radial func-
tion on M*.

Finally, in the case d = even, to show that the coefficients a,, with  # 0
vanish, we can use the same argument as in the proof of Proposition [5.3.1|
in order to analyze the twisted orbital integrals (74). In this case, without
any need to pass to a blowup, the Mellin transform in the variable £ can be
written as a product of two Tate integrals:

[x© (j <I>2<a,a—1s>ra\dfdxcz) i = [[ st e lalolaaay,

which is a holomorphic multiple of the product of local Dirichlet L-functions
1 d -
L(X 17 Q)L(X 17 1)
Hence as in the proof of Proposition the measure is a linear com-
bination of the form

Co(€) + €27 C(e),
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with Cy and C Schwartz measures, with the usual logarithmic modifica-
tion when [¢| 21 is smooth at zero. O

By Proposition[5.1.3} this completes the proof of Theorem[1.4.1, which we
state here more precisely. Notice that the precise local (F-analytic) isomor-
phism between a neighborhood of 0 € ¢% and a neighborhood of [+1] € Cx,
mentioned in Proposition is not important, since the germs are in-
variant under any F-analytic automorphism. In particular, fixing isomor-
phisms ¢§ ~ A} and €x = A} with c; corresponding to [+1], we can take
§=c—car.

Theorem 6.1.7. There is a canonical isomorphism €x := X x X |G ~ Ax W,
and the map X x X — €y is smooth away from the preimages of [+1], where [+1]
denote the images of +1 € Ax in Ax || Wx.

In particular, there are two distinguished closed G-orbits X1 = X diag g X4
(over [+1], respectively); if d+, denote their codimensions, then d; = dim X and

d_y = €(20p(x),7) —d1 + 2,

where % is the spherical coroot, 2pp(x) is the sum of roots in the unipotent radical
of P(X), and

. 1, when the spherical root is of type T' (dual group SLs);
| 2, when the spherical root is of type G (dual group PGLy).

In the case of root of type G, di = d_.

The space S(X x X/G) consists of measures on €x (~ Al) which are smooth
and of rapid decay, together with their polynomial derivatives (compactly sup-
ported in the non-Archimedean case) away from neighborhoods of c1 (the coordi-
nates of the points [+1]), while in neighborhoods of c+1 they are of the form
— when the spherical root is of type T — or — when the spherical root is of
type G—, with § = ¢ — c+1 and d = d+1.

Remark 6.1.8. Recall that, up to a linear combination of coefficients, the sin-
gularities of the measures of the form (74), have been described explic-
itly in Theorem In the Archimedean case, there is a natural Fréchet
topology on the space of these measures, and by Proposition[5.3.1| the map
from S(X x X) is continuous; hence, the quotient topology on S(X x X /G)
coincides with the natural Fréchet topology on the space of such measures.

6.2. Completion of the proof of the main theorem. We are now ready to
prove Theorem The remaining step of the proof relies on a result from
[Sakbl], which I state here:

Proposition 6.2.1. Let G* = SLy. The operator

¢ (1o 5 (o)) + ()
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defines an isomorphism

_ . ~, SLy
away from the poles of the local L-functions L(n, 3 — s), where 1 ranges over
all quadratic characters; here, the space on the right is the space of measures on
the affine line A (with coordinate (), which are smooth away from ¢ = +2, of
rapid decay (together with their derivatives) at infinity, and in a neighborhood of
¢ = 2, setting & =  F 2, are of the form ([75), with 53 = -1 — s.

Proof. This is [Sakb| Proposition 8.3.3], in the special case x = 6°. O

We will need an analogous result for the transform of the Kloosterman
germ when G* = PGLs. A special case of this result was proven in [Sak13al;
therefore, I will confine myself to sketching the proof of the general case:

Proposition 6.2.2. Let G* = PGLy. The operator
foo (e Bmiteyde) « (1o 2 20(e)de )+ g

takes elements of S(Ny\G*/Ny,) into a space M of measures on the affine line
which in the neighborhood of & = 1 are of the form

(@1(&) + P2(&)€ — 127 1)de, (80)
where ®1, o are smooth functions, with the second summand replaced, when |€ —
1515271 4s smooth, by ®o(€)|€ — 117527 L og |€ — 1.

Moreover, the subspace S(F*) < S(Ny\G*/Ny,) gets mapped to smooth mea-
sures in a neighborhood of £ = 1, and the transform descends to an isomorphism

S(N\G*/Ny) [S(F*) = My /S(F)1,

between the “Kloosterman stalk” and the “singular stalk of M at & = 17, that is,
the quotient of My = the stalk of M at { = 1 by S(F'); = the stalk of smooth
measures.

More precise information will be obtained about the image of the space
S(Ny\G*/Ny) and its extension S, (Ny\G*/Ny) under the transfer oper-
ator in Theorem

Proof. When s; = s = %, this is a special case of [Sakl3a, Theorem 5.1],
more precisely, the matching of the short exact sequences (5.3) and (5.4).
The same arguments work in the general case; they rely on the fact that
the Kloosterman germ can be explicitly written as a Fourier transform in
the case of G* = PGLy, see [Sakl3a, Proposition 4.8]. Thus, I will leave
the verification to the reader, mentioning only that, after application of the

first convolution, by <\ . ]%_SQ@D( o)do) , the Kloosterman stalk contributes a
singularity of the form

B(E) Y (€Y [¢]= 2 de
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at zero, which after the second convolution, by <| o |%*51 ¢(o)do> , gives rise
to a singularity

®a(E)]€ — 1 dg
in a neighborhood of ¢ = 1. O

I repeat the statement of Theorem|1.3.1} for the convenience of the reader.
Recall that G* is such that its dual group is Gx, that is: G* = PGLy
when the spherical root of X is of type 7', and G* = SLs when the spher-
ical root is of type G, and that we have defined in an enlarged space
Sr. (Ny\G*/Ny) of test measures for the Kuznetsov formula of G*, deter-
mined by the L-value associated to X.

Theorem 6.2.3. Let €x = (X x X) // G. There is an isomorphism €x ~ Al,
and the map X x X — A is smooth away from the preimage of two points of A*,
that we will call singular. We fix the isomorphisms as follows:

e When Gx = SLo, we take the set of singular points to be {0, 1}, with
Xdieg = X x X mappingtole €x ~ AL,
o When Gx = PGLy, we take the set of singular points to be {—2, 2}, with
Xdiee = X x X mappingto2 e €x ~ AL,
Then, there is a continuous linear isomorphism:
T SEX(N¢\G*/Nw) = S(X x X/@Q), (81)
given by the following formula:
e When GX = SLo with Lx = L(Std, Sl)L(Std, 82) with s1 = o,

THE) = 16775 (|0 [Fope)de ) « (| o |7 20(0)de) + (). (82)
o When Gx = PGLy with Lx = L(Ad, s),
THQ) = ¢ (1 [0t (s)de) * £(0): (83)

Remark 6.2.4. The points s1, s2, 5o are determined by the geometry, accord-
ing to the following formulas:

dim X
s14 89 = = (84)
2
5 = W’ (85)
and therefore, by (42),
81—82=%—15 (86)
. dimX -1 dimX_-1
so=(Vppx) = —5— = 2 — ®7)

the last one by (43).
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Proof. Let us start with the case G* = SLy. Proposition settles this
case, but let me first observe, since similar arguments will be needed in
the case of G* = PGLy, that apart from the Kloosterman germ, the ef-
fect of Fourier convolutions can be calculated explicitly. Indeed, the space
S1 (Ny\G*/Ny) can be thought of as the space of sections of a cosheaf over

P!(F); in a neighborhood of infinity, its elements have the form

FQO) = [¢]" 0@ (¢ Hdx¢,

where @ is a smooth function. If we consider the subspace S; _(Ny\G*/ Ny)°
of Schwartz sections in the complement of 0 € P!, it is immediate to see that
the transfer operator of defines a continuous isomorphism between
this space and the space S(A!) of usual Schwartz measures on the F-points
of the affine line. Indeed,

TFQ) = [¢1*7! (Jo['%00(e)de) * (I¢|'0D(¢)d"¢) =
1—sg
= [¢[otaxc f 2 1-0rp(z2) | >dz:d<-f¢<<u><1><u>du, (88)

z
z

¢

which is the usual Fourier transform of a Schwartz function.

There remains to determine the behavior of the stalk at zero under this
transform, i.e., the behavior of the “Kloosterman germs”. Applying Propo-
sition with s) = 3 — s, we get that the operator 7 maps the space
St (Ny\G*/Ny) isomorphically to S( S(I;f,s 5 ), in the notation of that propo-

Bad,05
sition. This is precisely the space of measures on the affine line A® (with
coordinate c), which are smooth away from ¢ = +2, of rapid decay (to-
gether with their derivatives) at infinity, and in a neighborhood of ¢ = +2,
setting £ = ¢ T 2, are of the form , with % =so— 1. By Theorem
this is precisely the space S(X x X/G).
In the case G* = PGLy, we start again with the subspace S (Ny\G*/ Ny)°

of Schwartz sections in the complement of zero; those, now, are of the form

1) = (@1(EMIEE™ + @a(e7N 1) a¢ (89)

in a neighborhood of infinity, with the suitable logarithmic modification
when [¢]°27%2 is smooth. (All ®;’s, here and below, denote smooth func-
tions.)

The transfer operator 7 in this case is the composition of two multiplica-

P

tive convolutions, followed by multiplication by the factor |{ |31_%. I claim
that the first convolution, by the measure

(1o F2u(e)de) = (o [F720(e)a%e),

takes the space S (Ny\G*/Ny)" to the space of measures which at infinity
are of the form ®3(¢71)[¢| 3=s1gx ¢, while at zero are of the form ®4(&)|¢| %*S2d§,
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and otherwise smooth. Indeed, for the summand

1
o (¢71)|g[2 ¢
of (89), computing as in (88) we see that it is mapped to a Schwartz measure
times |¢| 272 To determine the image of the germ represented by

Oy (¢ h[¢zaxe,

we first notice that, by elementary properties of Fourier transform and a
calculation like (88), its image under this convolution will be a smooth,

but not necessarily compactly supported measure, times the factor | 2752,
Thus, we need to determine its behavior at infinity.

In the non-Archimedean case, the stated behavior follows immediately
from the functional equation of Tate integrals, which can be written as

(| o [*1p(e)d o) » x = y(x,1—5,7) - X
(see [Sakal, 2.12]); this formula contains the usual Fourier transform of the
expression |e|*"1x~!(e), viewed as a generalized function by meromorphic
continuation of the Tate zeta integrals, and makes sense away from the
poles and zeroes of the gamma factor. Thus, if f is a smooth measure,

supported away from 0, which at infinity is a multiple of || 27, it will
remain a multiple of this character after convolution, away from the poles
or zeroes of the gamma factor v(s2 — s1,v). In the non-Archimedean case,
this gamma factor is zero when s; = sg, and infinite when s2 = s1 + 1,
but here we have assumed that s; > s;. When s; = so, instead of the
asymptotics (88), we have a logarithmic term. To deal with that, and with
the Archimedean case, one needs to consider the Mellin transforms of the
measure f before and after convolution, which live in a certain “Paley-
Wiener” space of meromorphic functions, with poles determined by the
asymptotics. I point the reader to [Igu78, Theorem 1.6] and [Saka) §2.1] for
the relevant arguments.

Finally, again by a calculation as in (88), the second convolution, by

<| . |%_Slzp(o)do>, takes this space to the space of measures which are of
rapid decay (compactly supported, in the non-Archimedean case), of the
form <<I>5(§)|§|%*51 + @6(5)|§|%*52) d¢ in a neighborhood of £ = 0, and oth-

erwise smooth, and multiplication by the factor |£ |31*% (by our convention
that s; = max(sy, s2)) turns the germs at zero to

(85(0)+ 0ol ) de = (2(6) + (0T ) .

There remains to examine the effect of the transfer operator to the “Kloost-
erman germs”, i.e., to the stalk of S (Ny\G*/Ny,) at zero. By Proposition
this stalk contributes an extra summand of

Br(€)|€ — 1227 1dg = D()]e — 1T e
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in a neighborhood of £ = 1. Notice that multiplication by the factor |£ 512,
which is smooth at £ = 1, does not alter this singularity. By Theorem
and Proposition this is the singularity of the elements of the space
S(X x X/G) at £ = 1. (Here, we apply the statement of Proposition [6.1.5]
about the coefficients a,, instead of the more implicit expression (74).)

U

APPENDIX A. INDEX OF NOTATION

I list some notation used through various sections. Notation used only
locally is not included here.

0 € c%: Denotes the image of 0 € a%. When an isomorphism of these
spaces with A! is chosen, this point should map to 0.

[£1]: The images of the points +1 € Ax in Ax / Wx.

A: The universal Cartan of G, i.e., the quotient of any Borel subgroup
B by its unipotent radical V.

Ax: The universal Cartan of X, p.

a: The Wyx-stable subset of a% where W acts freely. Equal to a% ~
{0} in rank one.

B: Stands for a Borel subgroup of G; typically, the choice of Borel sub-
group does not matter for the statements, so we do not fix one.

c¢%: The quotient a% / Wx.

¢y: The quotient a/Wx.

Cx: The quotient X x X // G (diagonal action of G). After Proposition
this is also identified with the quotient Ay / W (in rank one).

QQfX: The complement of [+1] € Ax |/ Wx = Cx.

dx,d*x: The additive Haar measure on F' which is self-dual with re-
spect to a fixed additive character ¢/, and the multiplicative Haar
measure on F'* given by d*z = %.

0: Used for modular characters of various groups, defined as the quo-
tient of the right by the left Haar measure.

F(X): The space of Schwartz functions on the F-points of a smooth
variety X, p.[q

g%, §*: The polarization and Springer-Grothendieck resolution of g*,
p.

g%: gormal cover of the image of the moment map, p.

Gx: The dual group of the spherical variety X.

G*: The split group (PGLz or SLy) whose dual group is equal to G,
p-

J: Kr[?op’s abelian group scheme over %, p.

JO: The open subsceme of identity components in the fibers of J, p.
33

Jx: A certain scheme that is birational to J e 7% X, introduced on p.
44

kx, kx: Knop's sections, p.
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Lx: The L-value attached to the spherical variety X, p.

L(X): The Levi quotient of the parabolic P(X), p. also, a Levi sub-
group, when the choice of Levi does not matter.

L;: The kernel of the map L(X) — Ay, p.

Ax: The character group of Ay, Ax = Hom(Ax, G,,); analogous no-
tation used for character groups of Borel orbits, p.

M; e Ms: For schemes over ¢%, denotes M; x ok M.

M?™s: For a scheme over a% or c%, the preimage of a¥, resp. ¢, p.

p: The moment map 7% X — g*.

Linv: The invariant moment map 7% X — %, p.

N: The unipotent radical of a Borel subgroup B of G; or, the upper
triangular unipotent subgroup of G* = PGLs, SL, identified with
the additive group G,.

N (H): The normalizer of a subgroup H.

Ny X, Ny X: The normal, conormal bundle of ¥ in X.

Ny, N5+ Specifically for the ambient variety X x X, this is shorthand
for Ny (X x X), Nj+(X x X).

Pg: For a set S of simple roots, and having fixed a Borel subgroup B,
the parabolic Ps © B generated by the root spaces of the roots —a,
aeS.

P(X): The class of parabolics stabilizing the open Borel orbit, p.

R(G): The radical of a group G.

S(X): The space of Schwartz measures on the F-points of a smooth
variety X, p.[

S(X/G): The pushforward of S(X) under X — X / G, p.[]}

S(Ny\G*/Ny): The twisted pushforward for the Kuznetsov quotient,

p-

Sp (Ny\G*/Ny): The enlarged space of Kuznetsov test measures de-
termined by the L-value Lx, p.

Sy (o), Sy (e): The stalks and fibers of certain cosheaves of Schwartz
measures over a closed subspace Y/, p.

Ty X, Ty X: The restriction of the tangent, cotangent bundle of X to

the subspace Y.
T*X,T*X: The polarization and Springer-Grothendieck lift of 7% X,
/& .@/\/ [ ] —_— T ~——
T*X ,T*X : The distinguished irreducible components of 7% X, T* X,
p-
Up: The unipotent radical of a parabolic P.
Wx: The Weyl group of the spherical variety X, p.
X: The open Borel orbit on X (for some choice of Borel subgroup).
Xgs, Xg: The affine boundary degeneration of X, and its open G-

orbit, p.

X / G: The invariant-theoretic quotient Spec F[X]¢.



(E

FUNCTORIAL TRANSFER IN RANK ONE 75

A fixed, non-trivial additive character F' — C*; also identified with
a character of the upper triangular unipotent subgroup N < G* =
PGL2 or SL2

Z(G): The center of a group G.
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