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ABSTRACT. According to the Langlands functoriality conjecture, broad-
ened to the setting of spherical varieties (of which reductive groups are
special cases), a map between L-groups of spherical varieties should give
rise to a functorial transfer of their local and automorphic spectra. The
“Beyond Endoscopy” proposal predicts that this transfer will be realized
as a comparison between limiting forms of the (relative) trace formulas
of these spaces.

In this paper we establish the local transfer for the identity map be-
tween L-groups, for spherical affine homogeneous spaces X “ HzG
whose dual group is SL2 or PGL2 (with G and H split). More pre-
cisely, we construct a transfer operator between orbital integrals for the
pXˆXq{G-relative trace formula, and orbital integrals for the Kuznetsov
formula of PGL2 or SL2. Besides the L-group, another invariant attached
to X is a certain L-value, and the space of test measures for the Kuznetsov
formula is enlarged, to accommodate the given L-value.

The fundamental lemma for this transfer operator is proven in a forth-
coming paper of Johnstone and Krishna. The transfer operator is given
explicitly in terms of Fourier convolutions, making it suitable for a global
comparison of trace formulas by the Poisson summation formula, hence
for a uniform proof, in rank one, of the relations between periods of au-
tomorphic forms and special values of L-functions.
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1. INTRODUCTION

1.1. Relative functoriality. According to the Relative Langlands Program,
the local and automorphic spectra of a spherical G-variety X should be de-
termined by its L-group LGX , which comes equipped with a distinguished
morphism

LGX ˆ SL2 Ñ LG, (1)
cf. [GN10, SV17, KS17].

Roughly speaking, this means, locally, that the Plancherel formula for
L2pXpF qq (where F is a local field) should read:⟨︁

Φ1,Φ2

⟩︁
L2pXq

“

ż

φ
JPlanch
φ pΦ1 b Φ2qνXpφq,

where the integral is over the space of Langlands parameters into LGX , νX
is the standard measure [SV17, §17.3] on this space, and JPlanch

φ is a relative
character

Jφ : SpX ˆXq Ñ Πφ b ΠφĂ Ñ C.
Here, Πφ is the sum of irreducible representations in the Arthur packet
associated to the composition of φ with the canonical map (1).

Globally, an analogous decomposition (in terms of “global Langlands
parameters”) should hold for the spectral side of the relative trace formula
of X — more precisely, for its stable part —, a distribution on the adelic
points of the quotient X ˆX{G (with G acting diagonally), whose spectral
decomposition should read, roughly:

RTFXpΦ1 b Φ2q “

ż

φ
Jgl
φ pΦ1 b Φ2qµXpφq.
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Moreover, the global distributions Jgl
φ , which can be expressed in terms of

squares of periods of automorphic forms, should (under some assumptions
on X) be equal to Euler products of the local distributions JPlanch

φv
, estab-

lishing a link between periods of automorphic forms and special values
of L-functions; this is the generalized Ichino–Ikeda conjecture proposed in
[SV17, §17.4].

We currently have no general tools to address these very general, and
uniform, conjectures. In this paper, I will propose a uniform approach
which works in the case when LGX “ SL2 or PGL2 and, hopefully, gener-
alizes to higher rank (although I cannot yet propose such a generalization).
The idea is to find a way to compare the relative trace formula for any such
variety, with the corresponding Kuznetsov formula, i.e., the relative trace
formula for the Whittaker model NψzG˚ of the group G˚ “ PGL2 or SL2

(respectively). The Kuznetsov formula, not the Arthur–Selberg trace for-
mula, seems to be the appropriate base case for such a type of functoriality,
but it requires some modification, because it does not produce on the spec-
tral side the same L-functions as the relative trace formula for X . Roughly
speaking, the spectral side of the Kuznetsov formula is weighted by the
factors

1

Lpφ,Ad, 1q
,

(where φ denotes a global Langlands parameter into LGX “ LG
˚), while

the relative trace formula for X will have an extra L-factor, depending on
X , in the numerator:

LXpφq

Lpφ,Ad, 1q
.

For example, in the case of the Arthur–Selberg trace formula (when X “

H , a reductive group), we have LXpφq “ Lpφ,Ad, 1q, which is why no
L-values appear in the end, while for X “ GmzPGL2 we have LXpφq “

Lpφ,Std, 12q2, corresponding to the square of the Hecke period. These L-
functions are obtained by enlarging the space of test measures for the Kuznetsov
formula. Thus, our comparison is achieved via a transfer operator, which is
a linear isomorphism

T : S´
LX

pNψzG˚{Nψq
„
ÝÑ SpX ˆX{Gq, (2)

between the appropriately enlarged space of test measures for the Kuznetsov
formula ofG˚, and the standard space of test measures for the relative trace
formula of X .

1.2. Rank-one spherical varieties. These ideas were explored, in the spe-
cial cases X “ T zPGL2 (where T is a torus) and X “ SL2 “ SO3zSO4, in
the papers [Sak13a, Sak19a, Sak19b, Saka, Sakb], in the case of X “ SL2

generalizing the thesis of Rudnick [Rud90]. However, it was not clear at
that point if those cases were part of a general pattern, or just reflections of
methods already known. In this paper, I demonstrate for the first time that
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there is a general “operator of functoriality” in rank one, as general and
uniform as the aforementioned conjectures.

Spherical varieties of rank one are, in some sense, the building blocks of
all spherical varieties, in the same sense that the group SL2 is the building
block of all reductive groups: to a general spherical variety X , and each
simple coroot γ of its dual group (better known as the “spherical roots”
of X), there is an associated rank-one (up to center) spherical variety Xγ

which is a degeneration of X . Thus, the comparisons studied here should
be essential in understanding cases of higher rank.

The list of spherical varieties of rank one consists of a finite number of
families, classified by Akhiezer in [Akh83] — see also the tables of [Was96,
KVS06]. Up to the action of the “center” ZpXq :“ AutGpXq, the affine ho-
mogeneous spherical varieties X “ HzG over an algebraically closed field in
characteristic zero whose dual group ǦX is either SL2 or PGL2 are listed in
the following table:

X P pXq ǦX γ LX

A1 GmzPGL2 B SL2 α LpStd, 12q2

An GLn zPGLn`1 P1,n´1,1 SL2 α1 ` ¨ ¨ ¨ ` αn LpStd, n2 q2

Bn SO2nzSO2n`1 PSO2n´1 SL2 α1 ` ¨ ¨ ¨ ` αn LpStd, n´ 1
2qLpStd, 12q

Cn Sp2n´2 ˆSp2 zSp2n
pně2q

PSL2 ˆ Sp2pn´2q
SL2 α1 ` 2α2 ` ¨ ¨ ¨ ` 2αn´1 ` αn LpStd, n´ 1

2qLpStd, n´ 3
2q

F4 Spin9 zF4 PSpin7 SL2 α1 ` 2α2 ` 3α3 ` 2α4 LpStd, 112 qLpStd, 52q

G2 SL3 zG2 PSL2 SL2 2α1 ` α2 LpStd, 52qLpStd, 12q

D2 SL2 “ SO3zSO4 B PGL2 α1 ` α2 LpAd, 1q

Dn SO2n´1zSO2n PSO2n´2 PGL2 2α1 ` ¨ ¨ ¨ ` 2αn´2 ` αn´1 ` αn LpAd, n´ 1q

D2
4 Spin7 zSpin8 PSpin6 PGL2 2α1 ` 2α2 ` α3 ` α4 LpAd, 3q

B2
3 G2zSpin7 PSL3 PGL2 α1 ` 2α2 ` 3α3 LpAd, 3q

(3)

The various columns of this table will be explained below. In this paper,
I work over a local field F in characteristic zero, and will only consider the
case when both G and H are split over F . Under these restrictions, as we
will see (Proposition 2.3.9), each line in the first group of the table above
(from A1 to G2) corresponds to a unique isomorphism class of G-varieties,
while each line in the second group (from D2 to B2

3) corresponds to a set of
isomorphism classes parametrized by square classes in Fˆ.

For almost all of the varieties in the table above, a version of the local
relative Langlands conjecture for L2pXq was established by Wee Teck Gan
and Raúl Gomez [GG14], on a case-by-case basis using the usual and ex-
ceptional theta correspondences. Similar, and other, methods can be used
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to study global periods for the spaces of Table (3); examples in the literature
include [RS89, GG06, Fli11].

In any case, the local and global conjectures should be seen as corollaries
of a deeper fact, which is encoded in the comparison of trace formulas that
I propose in this paper. Moreover, the approach of the present paper is
classification-free (except for a minor result in Lemma 2.2.4), and relies on a
sophisticated theory developed by Friedrich Knop, on the geometry of the
moment map

T ˚X Ñ g˚.

I now explain the various entries in the table: The column γ denotes the
normalized spherical root of the spherical variety, in the language of [SV17],
described in the basis of simple roots labelled as in Bourbaki. This is the
positive coroot for the canonical embedding (1). (The L-groups can be re-
placed by their identity components ǦX , Ǧ, here, since we take G to be
split.) This spherical root is either a root of G or the sum of two strongly
orthogonal roots; I have chosen the representative of the equivalence class
up to center to be such that the dual group is SL2 in the former case, and
PGL2 in the latter. Thus, we obtain two families of spherical varieties of
rank one, whose prototypes are, respectively, the examples labelled A1 and
D2 above (which, of course, are special cases of An and Dn). The case D2

4

is obtained from D4 by application of the triality automorphism of Spin8
(which does not descend to SO8). Because of the two prototypes, we say
(following [SV17]) that the spherical root is “of type T” (for “torus”) in the
first family and “of type G” (for “group”) in the second.

By P pXq we denote the conjugacy class of parabolics stabilizing the open
Borel orbit. In the table, I describe the parabolics in a way that should be
self-explanatory, by indicating the semisimple part of their Levi quotient
LpXq or, in the case of GLn, an ordered partition of n. In the case ofG “ G2,
PSL2 is such that its Levi contains a long root. Notice that the roots of the
Levi LpXq are always orthogonal to the spherical root γ. The parabolic
P pXq determines the restriction of the map (1) to the “Arthur-SL2” factor,
which has to map to a principal SL2 in the Levi subgroup of Ǧ dual to
P pXq.

Finally, LX stands for a 1
2Z-graded representation r “

À

nP 1
2
Z rn of ǦX ,

which I call the “L-value associated to X”, thinking of the L-value
ź

n

Lprn ˝ φ, nq

attached to any Langlands parameter φ into ǦX . For this reason, I denote
this graded representation by

ś

n Lprn, nq. This is the L-value attached to
the square of the global H-period, according to the generalization of the
Ichino–Ikeda conjecture [II10] proposed in [SV17, §17.4] and the local un-
ramified calculation, performed for classical groups only, of [Sak13b]. It
would be desirable to have the same calculation generalized to all cases,
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including non-classical groups. In any case, the L-value here will be deter-
mined directly in terms of the geometry of the G-space X ˆX , as follows:

‚ When the spherical root is of type T , the associated L-value is al-
ways of the formLpStd, s1qLpStd, s2q, for some positive half-integers
s1 ě s2. These are determined by the relations s1 ` s2 “ dimX

2 , and

s1 “
⟨γ̌,ρP pXq⟩

2 .
‚ When the spherical root is of type G, we have LX “ LpAd, s0q, with
s0 “

⟨︁
γ̌, ρP pXq

⟩︁
“ dimX´1

2 , always an integer.

Here, 2ρP pXq is the sum of positive roots in the nilpotent radical of the Lie
algebra of P pXq; it can be considered as a cocharacter into the canonical
maximal torus of ǦX , hence the value of the spherical coroot γ̌ (the positive
root of ǦX ) makes sense on it.

1.3. Notation and the main result. I introduce the notions and notation
necessary in order to formulate the main result. A more complete index of
notation appears in Appendix A.

All varieties will be defined over a local, locally compact field F in char-
acteristic zero, and we write X “ XpF q, etc, when no confusion arises. In
particular, all measures or functions will be on the F -points of the varieties
under consideration.

We denote by SpXq the space of (C-valued) Schwartz measures on the
F -points of a smooth variety X ; these are smooth measures which, in the
non-Archimedean case, are of compact support, and in the Archimedean
case are of rapid decay, together with their polynomial derivatives. For the
definitions in the Archimedean case, which use the semialgebraic structure
of XpF q, I point the reader to [AG08], in particular §A.1.1. (They are not
to be confused with measures/functions in the Harish-Chandra Schwartz
space, which are of slower decay.) Notice that, in the Archimedean case,
when F “ C we need to consider XpF q as a real semialgebraic manifold,
since the complex semialgebraic topology is not fine enough. Moreover, in
this case the space SpXq has a natural Fréchet topology; if X is admits a
nowhere vanishing Nash (smooth semialgebraic) density ω, so that every
element of SpXq can be written as Φ ¨ ω for a Schwartz function Φ, the
topology is induced by the seminorms

}Φω}D “ sup |DΦ|,

where D ranges over all polynomial Nash differential operators. The gen-
eral case can be reduced to that by a Nash partition of unity [AG08, Theo-
rem 4.4.1].

For uniformity of language, I will often write “smooth of rapid decay”
to describe this behavior of Schwartz measures, with the understanding
that this means compact support in the non-Archimedean case, and that
it includes their derivatives (the functions DΦ above) in the Archimedean
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case. Whenever needed, the space of Schwartz functions will be denoted by
FpXq.

The notation X � G will stand for the affine, invariant-theoretic quo-
tient SpecF rXsG of a G-variety X , and if π : X Ñ X � G denotes the
canonical quotient map, the image π˚SpXq Ă MeaspX �Gq of the pushfor-
ward map of measures will be denoted by SpX{Gq. In the Archimedean
case, where SpXq is a nuclear Fréchet space, the space SpX{Gq inherits a
quotient Fréchet topology; in the non-Archimedean case, any reference to
topology should be ignored.

Let X be one of the spaces in Table (3), with a reductive group G acting
on it, and let G˚ denote the group PGL2, if ǦX “ SL2, or SL2, if ǦX “

PGL2. Let N Ă G˚ be the upper triangular unipotent subgroup, identified
with the additive group Ga in the obvious way, and let ψ : F Ñ Cˆ be a
nontrivial character, considered also as a character of N . We fix throughout
an additive Haar measure on F , which is self-dual with respect to ψ. We
extend the notation of Schwartz spaces to the quotient that we will denote
by NψzG˚{Nψ: If A˚ Ă G˚ is the torus of diagonal elements, and w “
ˆ

´1
1

̇

, we embed A˚ in the affine quotient NzG˚ � N by A˚ Q a ÞÑ

rwas, the class of the element wa, and let SpNψzG˚{Nψq denote the space of
measures on A˚ of the form

fpaq “ πψ˚ pΦdgqpaq :“

ˆ
ż

NˆN
Φpn1wan2qψ´1pn1n2qdpn1, n2q

̇

¨δpaqda, (4)

where Φ is a Schwartz function on G˚, δ is the modular character of the
upper triangular Borel subgroup (the quotient of the right by the left Haar
measure), and da is a Haar measure on A˚. This is a twisted version of the
pushforward of the measure Φdg to NzG˚ � N , which for suitable Haar
measures reads:

π˚pΦdgqpaq “

ˆ
ż

NˆN
Φpn1wan2qdpn1, n2q

̇

¨ δpaqda.

We also fix a coordinate on A˚ which we denote by

ξpaq “ eαpaq, when G˚ “ PGL2;

ζpaq “ e
α
2 paq, when G˚ “ SL2,

where α is the positive (upper triangular) root of G˚, and we use expo-
nential notation to denote the corresponding character, since weights are
written additively. Then, NzG˚ �N is identified withA1, with coordinates
ξ, resp. ζ, the images of the elements

ˆ

´1
ξ

̇

,

ˆ

´ζ´1

ζ

̇

,

respectively (when ξ, ζ ‰ 0).
The elements of SpNψzG˚{Nψq, viewed as measures onA1 “ NzG˚ �N ,

are smooth of rapid decay away from zero, while in a neighborhood of
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0 P A1 they have a singularity which is called the “Kloosterman germ”, be-
cause in the non-Archimedean case they are smooth multiples of the mea-
sures

ξ ÞÑ

˜

ż

|u|2“|ξ|

ψ´1

ˆ

u

ξ
` u´1

̇

du

¸

dˆξ,

resp.

ζ ÞÑ

ˆ
ż

uP˘1`p
ψ´1

ˆ

u` u´1

ζ

̇

du

̇

dζ.

(See [Sak13a, Proposition 4.9.2] for the former, and the latter is similar. No-
tice that there are two separate germs in the case of SL2, corresponding to
the choice of ˘1.)

We define enlarged spaces of test measures

S´
LX

pNψzG˚{Nψq Ą SpNψzG˚{Nψq

for the Kuznetsov formula, associated to the L-values LX that appear in
Table (3), as follows (see also [Saka, §2.2]): their elements coincide with ele-
ments of SpNψzG˚{Nψq away from infinity, but in a neighborhood of infin-
ity, instead of being of rapid decay, they are allowed to be of the following
form:

‚ When G˚ “ PGL2 and LX “ LpStd, s1qLpStd, s2q with s1 ě s2,

pC1pξ´1q|ξ|
1
2

´s1 ` C2pξ´1q|ξ|
1
2

´s2qdˆξ, (5)

where C1 and C2 are smooth functions; this should be replaced by

|ξ|
1
2

´s1pC1pξ´1q ` C2pξ´1q|ξ|s1´s2 log |ξ|qdˆξ (6)

when |ξ|s1´s2 is a smooth function — that is,

– in the non-Archimedean case, when s1 “ s2;
– in the real case, when s1 ´ s2 P 2N;
– in the complex case, when s1 ´ s2 P N.

(7)

(We use the arithmetic normalization of absolute values, which is
compatible with norms to the base field; this is the square of the
usual absolute value in the complex case.)

‚ When G˚ “ SL2 and LX “ LpAd, s0q,

Cpζ´1q|ζ|1´s0dˆζ, (8)

where C is a smooth function.
In the Archimedean case, all of these spaces have an obvious Fréchet

topology, which by a partition of unity can be reduced to the topology of
the standard space of Kuznetsov test measures SpNψzG˚{Nψq (topologized
as a quotient of SpG˚q), and seminorms on the Schwartz functionsC,C1, C2

in the above asymptotic expressions at 8. The basic theorem proven in this
paper is the following:
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Theorem 1.3.1. Let CX “ pX ˆ Xq � G. There is an isomorphism CX » A1,
and the map X ˆX Ñ A1 is smooth away from the preimage of two points ofA1,
that we will call singular. We fix the isomorphisms as follows:

‚ When ǦX “ SL2, we take the set of singular points to be t0, 1u, with
Xdiag Ă X ˆX mapping to 1 P CX » A1.

‚ When ǦX “ PGL2, we take the set of singular points to be t´2, 2u, with
Xdiag Ă X ˆX mapping to 2 P CX » A1.

Then, there is a continuous linear isomorphism:

T : S´
LX

pNψzG˚{Nψq
„
ÝÑ SpX ˆX{Gq, (9)

given by the following formula:
‚ When ǦX “ SL2 with LX “ LpStd, s1qLpStd, s2q, s1 ě s2,

T fpξq “ |ξ|s1´ 1
2

´

| ‚ |
1
2

´s1ψp‚qd‚

¯

‹

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

‹ fpξq. (10)

‚ When ǦX “ PGL2 with LX “ LpAd, s0q,

T fpζq “ |ζ|s0´1
`

| ‚ |1´s0ψp‚qd‚
˘

‹ fpζq. (11)

By p| ‚ |sψp‚qd‚q ‹ we denote the operator of multiplicative convolution by
the measure p|x|sψpxqdxq (in the variable y “ ξ or ζ, respectively):

p| ‚ |sψp‚qd‚q‹fpyq “

ż

Fˆ

|x|sψpxqfpx´1yqdx “ |y|s`1

ż

fpu´1q|u|sψpuyqdu.

The measure dx is the additive Haar measure on F that we have fixed. If
these integrals do not converge, convolution should be understood as the
Fourier transform of the distribution u ÞÑ fpu´1q|u|s, followed by multipli-
cation by |y|s`1.

The operator T is clearly the correct operator of functoriality between
the relative trace formula for X and the Kuznetsov formula. Indeed, it
was shown in [Sak13a, Sak19a, Saka] that in the basic cases A1, D2 it sat-
isfies the appropriate fundamental lemma for the Hecke algebra, and that
it pulls back relative characters to relative characters (see [Sak19b, §6–7]
for precise references); these statements can also be confirmed in the gen-
eral An-case by “unfolding”. In an upcoming paper [JK], Daniel Johnstone
and Rahul Krishna prove the appropriate fundamental lemma for the trans-
fer operator in all cases. There remains to prove the fundamental lemma
for the full Hecke algebra, in order to be able to use this operator glob-
ally (together with the “Hankel transforms” for the functional equations of
the standard and adjoint L-functions, discussed in [Sak19b, §8] and [Sakb,
§8]), and obtain a uniform proof of functoriality and the relation between
X-periods of automorphic forms and the L-value LX . After a version of
this paper appeared, Gan and Xiaolei Wan confirmed that the theta corre-
spondence descends to the transfer operators introduced here, in the case
of X “ SOnzSOn`1 [GW]; their methods can be applied to other cases, as
well. It is quite satisfactory to observe that various different methods for
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comparing period integrals, such as the “unfolding” method and the theta
correspondence, all descend to the same statements at the level of relative
trace formulas!

1.4. Outline of the proof. As mentioned, the proof of Theorem 1.3.1 is
classification-free, and relies on Friedrich Knop’s theory of the moment
map. The main issue is to analyze the quotient X ˆ X{G, and to describe,
more or less explicitly, the germs of pushforward Schwartz measures for
the map X ˆX Ñ X ˆX �G.

To every spherical variety X one can attach a canonical “universal Car-
tan”, that is, a torus AX , and a “little Weyl group” WX acting on it. The
dual torus to AX is the canonical maximal torus of the dual group ǦX , and
WX is its Weyl group. Hence, in the rank-one case that we are considering,
AX » Gm and WX “ Z{2, acting onGm by inversion.

The main result about the space SpX ˆX{Gq of pushforward measures,
for X as in Table (3), is the following:

Theorem 1.4.1. There is a canonical isomorphism CX :“ XˆX�G » AX�WX ,
and the mapXˆX Ñ CX is smooth away from the preimages of r˘1s, where r˘1s

denote the images of ˘1 P AX in AX �WX .
In particular, there are two distinguished closed G-orbits X1 “ Xdiag and X´1

(over r˘1s, respectively); if d˘1 denote their codimensions, then d1 “ dimX and

d´1 “ ϵ
⟨︁
2ρP pXq, γ̌

⟩︁
´ d1 ` 2,

where γ̌ is the spherical coroot, 2ρP pXq is the sum of roots in the unipotent radical
of P pXq, and

ϵ “

#

1, when the spherical root is of type T (dual group SL2);
2, when the spherical root is of type G (dual group PGL2).

In the case of root of type G, d1 “ d´1.
The space SpX ˆ X{Gq consists of those measures on CXp» A1q which are

smooth and of rapid decay, together with their polynomial derivatives, away from
neighborhoods of r˘1s (compactly supported in the non-Archimedean case), while
in the neighborhood of r˘1s their germs coincide with germs for the twisted push-
forward maps:

A
2{pGm, | ‚ |

2´d˘1
2 q,

for spherical root of type T , and

sl2{pBad, δ
3´d˘1

2
2 q,

for spherical root of type G, where Bad denotes the Borel subgroup of PGL2, and
δ2 is its modular character.

For the precise meaning of these “twisted pushforwards”, I point the
reader to the precise formulation of Theorem 6.1.7. In other words, the
germs for the general case are twisted versions of the germs for the “basic
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cases” A1 and D2. This indirect description of the germs allows us to relate
these germs of pushforward measures for X ˆ X{G with the Kloosterman
germs for the Kunzetsov formula of G˚, based on results of [Sak13a, Sakb].

SinceX “ HzG is homogeneous, we can also writeXˆX�G “ HzG�H ;
whenX is symmetric (as is the case for most of the cases in Table (3), except
for those denoted by G2 and B2

3), the identification of this with AX �WX is
due to Richardson [Ric82].

In any case, to obtain this and Theorem 1.4.1 in general, I use Knop’s the-
ory of the moment map in a somewhat paradoxical way: While the cotan-
gent bundle together with its moment map T ˚X Ñ g˚ is classically used
for microlocal analysis on X , here I use it to obtain an explicit resolution1

of the space X ˆX under the G-action. The basic idea is, roughly, to study
the space

Z :“ T ˚X ˆg˚ T ˚X,

which is the union of conormal bundles to theG-orbits onXˆX . Where the
G-orbits are of codimension one, their conormal bundles are of dimension
one, and the map from the projectivization:

PZ Ñ X ˆX

restricts to an isomorphism. The important issue is to understand the conor-
mal bundles where this map fails to be an isomorphism.

It eventually turns out thatPZ is not quite the correct resolution, because
it can be quite singular. A closely related space is a space that I denote by
PJX , and which is obtained in Section 3 as follows:

Let a˚
X be the dual Lie algebra to the torusAX , and c˚

X “ a˚
X�WX — both

of these spaces are isomorphic to the affine line. There is a smooth abelian
group scheme J over c˚

X whose general fiber is isomorphic to AX , but the
isomorphism is only determined up to the action ofWX , and whose special
fiber (over 0 “ the image of 0 P a˚

X ) is isomorphic to t˘1u ˆGa. This group
scheme is known, for example, as the group scheme of regular centralizers
over the Kostant section of sl2, and it can be abstractly defined as

J “

´

Resa˚
X{c˚

X
pAX ˆ a˚

Xq

¯WX

,

where Resa˚
X{c˚

X
denotes Weil restriction of scalars from a˚

X to c˚
X .

Knop has shown [Kno96] that, except perhaps for the non-identity com-
ponent of the nilpotent fiber of J , this group scheme acts canonically on
T ˚X over g˚. (This action is canonical in that its differential is the Hamil-
tonian vector field induced from canonical isomorphisms T ˚X � G

„
ÝÑ c˚

X
and LiepJq » T ˚c˚

X .) Thus, being a bit imprecise as far as the action of the

1The space X ˆ X is smooth, but here we take into account the G-action, and use the
term “resolution” to refer to the fibers of the quotient map XˆX Ñ XˆX�G: a resolution
is a blowup that turns them into normal crossings divisors.
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non-identity component of the nilpotent fiber goes, we have a map

J ˆc˚
X
T ˚X Ñ T ˚X ˆg˚ T ˚X,

and it is its composition with the map to X ˆ X (after projectivization)
which will give rise to the desired resolution:

PpJ ˆc˚
X
T ˚Xq Ñ X ˆX.

On the other hand, we have, by definition, a canonical quotient map
J Ñ AX�WX , and this can be used to prove the isomorphismXˆX�G „

ÝÑ

AX �WX .
Recall that there is a bijection between points of X ˆ X � G and closed

(geometric) orbits of G on X ˆ X . The diagonal X1 “ Xdiag ãÑ X ˆ X
corresponds to the class of 1 P AX , and the fiber of J ˆc˚

X
T ˚X over it is

just its conormal bundle N˚
X1

“ T ˚X . To correct the imprecision about
the non-identity component t´1u ˆ Ga of the nilpotent fiber of J , we re-
place pt´1u ˆGaq ˆc˚

X
T ˚X by a copy ofGa ˆc˚

X
N˚
X´1

, where X´1 denotes
the closed G-orbit over r´1s P AX � WX , N˚

X´1
denotes its conormal bun-

dle, and Ga maps to 0 P c˚
X . This replacement leads to a smooth scheme

JX Ñ T ˚X , birational to J ˆc˚
X
T ˚X , such that the resulting map from its

“projectivization”

PJX Ñ X ˆX,

is isomorphic to the blowup of X ˆX at the closed orbits X1 and X´1.
The formula of Theorem 1.4.1 on the codimensions of orbits is obtained

in Section 4 by a degeneration argument — developing the analog of the
Weyl integration formula for X ˆ X under the diagonal G-action, and de-
forming X to its horospherical “boundary degeneration” XH, where this
integration formula is very explicit.

The map PJX Ñ AX � WX is easy to describe, and a standard analysis
of pullbacks of Schwartz measures under resolutions shows, in Section 5,
that the elements of the pushforward space SpX ˆ X{Gq are measures on
AX �WX » A1 whose singularities at r˘1s are linear combinations of mul-

tiplicative characters of the form x ÞÑ |x|
d˘1
2

´1ηpxq, where η is quadratic.
The last task, in Section 6 is to understand this linear combination of

these characters. By linearization, this is equivalent to understanding the
pushforwards of Schwartz measures under a map

V
Q
ÝÑ A

1,

where Q is a nondegenerate, split quadratic form on a vector space V of
dimension d “ d˘1. A key proposition, 6.1.5, identifies these pushforwards
with twisted pushforwards on a two- or three-dimensional quadratic space,
as in Theorem 1.4.1.
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2. THE MOMENT MAP AND THE STRUCTURE OF BOREL ORBITS

2.1. Invariant theory of the cotangent bundle and its polarizations. Through-
out the paper, X will denote one of the homogeneous spherical varieties
of rank one appearing in Table (3). However, in this section I revisit (and
slightly reformulate) the theory of the cotangent bundle ofX due to Friedrich
Knop, which holds true for any homogeneous, quasi-affine spherical vari-
ety X under the action of a connected reductive group G.

To any such X , one attaches a conjugacy class of parabolics, denoted by
P pXq, characterized by the property that, if B Ă G is a Borel subgroup and
X̊ Ă X its open orbit, (a representative of) P pXq is given by

P pXq :“ tg P G|X̊g “ X̊u.

The Levi quotient (and sometimes, a Levi subgroup) of P pXq will be de-
noted by LpXq.

Let A denote the reductive quotient of a Borel subgroup — viewed as a
canonical torus associated to G, up to unique isomorphism, the so-called
(universal) Cartan of G. Let B denote the full flag variety of G, and let BX
denote the flag variety of parabolics in the conjugacy class of P pXq.

The unipotent radical of a parabolic P will be denoted by UP . Having
fixed a Borel subgroupB, we will also use the letterN for UB . The quotient
X̊ � N is a homogeneous space under the action of A; its action factors
through the faithful action of a quotient A ↠ AX which we will call the
(universal) Cartan of X . In fact, it is known that AX is a quotient of P pXq:

P pXq Ñ LpXq Ñ AX ,
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and that P pXq acts on X̊ � N through this quotient. We will denote by L1

the kernel of the map LpXq Ñ AX .
The rank of AX is, by definition, the rank of X ; thus, for all varieties of

Table (3),AX » Gm. The character group ofAX will be denoted by ΛX , and
called the weight lattice ofX . We use similar notation for otherB-orbits (or
B-orbit closures) Y : ΛY will denote the set of characters of nonzero rational
B-eigenfunctions on Y , and AY “ SpecF rΛY s the torus quotient by which
A acts on Y �N . The rank of Y is the rank of the group ΛY . It is known that
X̊ has maximal rank among all B-orbits on X .

We will denote Lie algebras of algebraic groups by the same letter in
Gothic lowercase, and linear duals by a star exponent. The cotangent space
T ˚X of X comes equipped with a moment map

µ : T ˚X Ñ g˚,

which, for X “ HzG, is simply the G-equivariant extension of the embed-
ding hK Ă g˚ to T ˚X “ hK ˆH G This gives rise to a G-invariant map:

T ˚X Ñ g˚ �G “ a˚ �W.

We let ĝ˚
“ g˚ ˆa˚�W a˚, and g̃˚

“ tpZ,Bq|Z P g˚, B P B, Z P uK
Bu; the

latter is the Springer–Grothendieck resolution, and the canonical quotient
uK
B Ñ a˚ induces natural, proper maps g̃˚

Ñ ĝ˚
Ñ g˚.

We define the following covers of the cotangent bundle:

‚ T ˚Xz “ T ˚X ˆa˚�W a˚ “ T ˚X ˆg˚ ĝ˚ (the polarized cotangent bun-
dle);

‚ T ˚XĆ “ tpv,Bq|v P T ˚X,B P B, µpvq P uK
Bu “ T ˚X ˆg˚ g̃˚.

Hence, we have proper maps T ˚XĆ Ñ T ˚Xz Ñ T ˚X , as base changes of the
corresponding maps between covers of g˚.

Following Knop, we construct canonical maps, that we will call Knop’s
sections,

κ̂X : pX ˆ BXq0 ˆ a˚
X Ñ T ˚Xz , (12)

κ̃X : pX ˆ Bq0 ˆ a˚
X Ñ T ˚XĆ (13)

over X , linear in the a˚
X -argument, where the exponent “0” denotes the

subset of pairs px, P q with x in the open P -orbit. The maps are given
as follows: by linearity, it is enough to define them for the lattice ΛX “

HompAX ,Gmq Ă a˚
X , where we consider characters as elements of a˚

X by
identifying them with their differentials at the identity. Let χ P ΛX , let P P

BX or P P B, respectively, and let fχ be a rational, nonzero P -eigenfunction
on X with eigencharacter χ. If x is in the open P -orbit, then

κ̂Xpx, P, χq “ pdx log fχ, χq P T ˚Xz “ T ˚X ˆa˚�W a˚,

and
κ̃Xpx, P, χq “ pdx log fχ, P q P T ˚XĆ Ă T ˚X ˆ B,
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where dx denotes the differential evaluated at x, and dx log fχ “
dxfχ
fχpxq

. The
term “sections” is due to the fact that κ̃X is a partial section of the natural
map T ˚XĆ Ñ X ˆ B ˆ a˚; we also apply it to κ̂X by abuse of language,
despite the fact that it is a partial section of some map only over an open
subset å˚

X of “regular elements” (to be defined below).
The following facts are known, or can easily be inferred, as we indicate

below, from the work of Knop:

(1) All maps T ˚XĆ Ñ T ˚Xz Ñ T ˚X are proper and dominant.
This is obvious from the definitions.

(2) There is, by definition, a natural map T ˚XĆ Ñ X ˆ B. The image of
any irreducible component is an irreducible, G-stable subset, which
therefore contains a largest G-orbit, giving rise to a map

tirreducible components of T ˚XĆu Ñ tG-orbits in X ˆ Bu.

If we fixB P B,G-orbits onXˆB are in bijection withB-orbits onX .
Under this map, the irreducible components of maximal dimension in
T ˚XĆ are in bijection with the Borel orbits of maximal rank in X .

This is [Kno95, Proposition 6.3]. We will denote by T ˚XĆ

‚
the

irreducible component corresponding to the open Borel orbit; it is
the closure of the image of κ̃X in T ˚XĆ .

(3) Considering only these components of maximal dimension in T ˚XĆ ,
and their images in T ˚Xz , we obtain a canonical bijection between
the irreducible components of T ˚Xz and the Borel orbits of maximal rank
in X .

This is [Kno95, Theorem 6.4], together with the non-degeneracy
statement of [Kno94, Lemma 3.1]. Thus, this bijection is character-
ized by the fact that the component corresponding to a B-orbit Y
contains all pairs pv P T ˚

YX,Z P a˚q with µpvq P uK
B and Z its im-

age under the canonical map uK
B Ñ a˚. In particular, the closure of

the image of Knop’s section κ̂X is the irreducible component corre-
sponding to the open B-orbit, to be denoted by T ˚Xz

‚
.

(4) The stabilizer of T ˚Xz

‚
under the natural action of W on T ˚Xz (in-

duced from its action on a˚) is a certain semidirect product WLpXq ¸

WX , and the image of T ˚Xz

‚
in a˚ coincides with a˚

X . Here, WLpXq

is the Weyl group of the Levi quotient of P pXq, which is the largest
subgroup of W acting trivially on a˚

X , and WX is the so-called little
Weyl group of the spherical variety, which acts faithfully on a˚

X . For
the examples of Table (3), WX “ Z{2.

The fact that WLpXq is precisely the centralizer of a˚
X again fol-

lows from the non-degeneracy statement of [Kno94, Lemma 3.1]; I
point the reader to the proof of [Kno95, Theorem 6.2] for the other
statements.
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The image of the moment map, followed by the Chevalley quotient:

T ˚X
µ
ÝÑ g˚ Ñ a˚ �W

is equal to the image of the map

a˚
X �WX Ñ a˚ �W,

induced from the inclusion a˚
X ãÑ a˚. Knop has shown that the map to

a˚ �W lifts canonically to a map

µinv : T ˚X Ñ c˚
X :“ a˚

X �WX , (14)

descending from the map T ˚Xz

‚
Ñ a˚

X . Under (14), c˚
X is identified with

the invariant-theoretic quotient T ˚X �G [Kno90, Satz 7.1]. The map µinv is
the invariant moment map. Thus, we have a commutative diagram

T ˚X →→

�G ↘↘

g˚
X

→→

�G
↓↓

g˚

�G
↓↓

c˚
X “ a˚

X �WX
→→ a˚ �W,

(15)

where g˚
X is the spectrum of the integral closure of the image of F rg˚s in

F rT ˚Xs. (I point the reader to [Kno90, §6] for the definition of g˚
X , denoted

there by MX , and the map g˚
X Ñ c˚

X .)
We let å˚

X denote the open WX -stable subset where WX acts freely and
c̊˚
X its image — in our rank-one cases, these are just the complements of

zero. Vectors in T ˚X (and its various covers) or g˚
X which live over c̊˚

X

will be called regular semisimple, and denoted T ˚Xrs, resp. g˚,rs
X . The reader

should not confuse this notion with the property of being regular in g˚; in
fact, the centralizer of the image of an element of T ˚Xrs in g˚ is conjugate
to a Levi of P pXq over the algebraic closure. Hence, “regular semisimple”
elements in T ˚X have an image in g˚ which is semisimple and “as regular
as possible”, though not necessarily regular.

Now we restrict to the case when X has rank one and WX “ Z{2. Thus,
a˚
X is a one-dimensional vector space, and å˚

X is the complement of zero.
We can also identify c˚

X withA1, always letting the point 0 P c˚
X (the image

of 0 P a˚
X ) correspond to 0 P A1. Then, the invariant moment map T ˚X Ñ

c˚
X can be considered as a quadratic form on the fibers of T ˚X .

Lemma 2.1.1. For X affine homogeneous of rank one with WX “ Z{2, the map
T ˚X Ñ c˚

X is a nondegenerate quadratic form on every fiber of T ˚X over X , and
g˚,rs
X is equal to the image of T ˚Xrs in g˚.

Proof. Let x P X with stabilizer H ; the fiber of T ˚X over x is canonically
identified with hK. Since H is reductive, there is a nondegenerate invariant
symmetric bilinear form on g˚ with nondegenerate restriction to hK. In-
deed, recall that every invariant symmetric bilinear form on a simple (non-
abelian) Lie algebra is a multiple of the Killing form. Take an invariant,
nondegenerate extension Q of the Killing form on the semisimple part of
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g; it is a standard fact that Q restricts to a nondegenerate form on any Car-
tan subalgebra. By invariance, the restriction of Q to h is nondegenerate;
therefore, it is also nondegenerate on hK, when we use the form to identify
g with g˚. The corresponding quadratic form

hK Ñ A
1

isH-invariant. It thus has to factor through the invariant-theoretic quotient

hK �H “ T ˚X �G “ c˚
X ,

which therefore has to be nondegenerate.
Notice that the image of a˚

X in a˚ �W is birational to the quotient of a˚
X

by its normalizer in W . Since we are in rank one, and WX is non-trivial,
this normalizer acts on a˚

X “ A1 in the same way as WX , namely by ˘1,
therefore the image of a˚

X in a˚ � W is birational to c˚
X . (They are in fact

equal, since the Killing form provides the quadratic generator of F rc˚
Xs, but

we won’t need that.) In particular, theGm-orbit c̊˚
X embeds into a˚ �W .

By [Kno90, Satz 5.4], the closure µpT ˚Xq of the image of the moment
map is equal to the set of G-translates of pl1 ` uP qK, where P is a parabolic
in the class of P pXq, and L1UP is the kernel of the map P Ñ AX . Choosing
a linear section σ of the natural quotient map pl1 ` uP qK Ñ a˚

X , the subset

σpå˚
Xq ¨G Ă µpT ˚Xq “ pl1 ` uP qK ¨G

is open, coincides with the preimage of c̊˚
X Ă a˚ � W in µpT ˚Xq, and is

smooth because the action map

σpå˚
Xq ˆL G Ñ σpå˚

Xq ¨G,

where L is the centralizer of σpa˚
Xq, is étale.

Thus, the factorization (15) of the moment map restricts to

T ˚Xrs Ñ g˚,rs
X Ñ σpå˚

Xq ¨G Ă g˚.

By construction, the map g˚
X Ñ g˚ is finite, thus the same is true for its

restriction over the subset σpå˚
Xq ¨ G. If g˚

X , c˚
X denote the images of g˚

X , c˚
X

under (15), it follows (in arbitrary rank) from [Kno90, Satz 6.4] that g˚
X is

birational to the fiber product c˚
X ˆ

c˚
X
g˚
X . (This proposition identifies g˚

X

with the invariant-theoretic quotient by WX of a variety which is birational
to σpå˚

Xq ˆL G.) Again, c˚
X is birational (actually equal) to c˚

X , so the map
g˚
X Ñ g˚

X is birational. Hence, its restriction over c̊˚
X is a finite, birational

map of normal varieties, therefore an isomorphism. □

Proposition 2.1.2. For X of rank one with WX “ Z{2, the restrictions of Knop’s
sections κ̂X and κ̃X to å˚

X are isomorphisms onto the subsets of regular semisimple
vectors on T ˚Xz

‚
, resp. T ˚XĆ

‚
.

Proof. Knop’s section κ̃X is an embedding, and κ̂X is an embedding over
å˚
X , so it is enough to prove surjectivity. We have a dominant, proper map



18 YIANNIS SAKELLARIDIS

T ˚XĆ

‚
Ñ T ˚Xz

‚
, and the image of κ̃X surjects onto the image of κ̂X , so it is

enough to prove the proposition for T ˚XĆ .
The B-orbits of non-maximal rank in X have rank zero, and therefore

any cotangent vector over such an orbit which is perpendicular to uB maps
to 0 P a˚ (because the stabilizer of a point, modulo UB , is equal to B{UB).
Therefore, the regular semisimple elements pv,Bq P T ˚XĆ

rs
all live over B-

orbits of maximal rank, that is, if x is the image of v in X , then x ¨ B is
a B-orbit of maximal rank. It suffices to show that those which belong to
T ˚XĆ

‚
live over the open orbit.

If not, that is, if there is a regular semisimple vector pv,Bq P T ˚XĆ

‚
which

lives over an orbit Y of maximal rank other than the open one, hence also

belongs to the irreducible component of T ˚XĆ

Y
Ă T ˚XĆ indexed by Y , that

means that the intersection of two distinct irreducible components

T ˚XĆ

‚

X T ˚XĆ

Y

contains regular semisimple vectors. In particular, the same holds for the
intersection of the corresponding irreducible components of T ˚Xz ,

T ˚Xz

‚

X T ˚Xz

Y
.

I claim that, in rank one with WX “ Z{2, the map T ˚Xz Ñ T ˚X is étale
over T ˚Xrs; indeed, the image of T ˚Xrs is the subset c̊˚

X of a˚ �W , and the
normalizer of a˚

X inW has to coincide withWLpXq¸WX , becauseWX “ Z{2

is the group of automorphisms finite order of the lattice ΛX Ă a˚
X » A1,

and WLpXq is its centralizer. The distinct W -conjugates of å˚
X have empty

intersections (because these are distinct one-dimensional vector subspaces
of a˚ with their origins removed), thus we have

T ˚Xz

rs
“

ğ

wPWLpXq¸WXzW

T ˚Xrs ˆc̊˚
X

på˚
Xqw

as algebraic varieties, where w denotes a representative for the given coset,
and på˚

Xqw is the w-conjugate of å˚
X inside of a˚. Hence, the map T ˚Xz

rs
Ñ

T ˚Xrs is the base change of the étale maps på˚
Xqw Ñ c̊˚

X , hence étale.
But this implies that the components of T ˚Xz

rs
have empty intersections.

□

Corollary 2.1.3. In the setting of the previous proposition, G acts transitively on
every fiber of T ˚XĆ

‚,rs
, T ˚Xz

‚,rs
or T ˚Xrs over, respectively, å˚

X , å˚
X or c̊˚

X . The
stabilizer of any point on T ˚Xz

‚,rs
is conjugate to the kernel L1 of the canonical

map LpXq Ñ AX , where LpXq is a Levi subgroup of P pXq; the stabilizer of
any point on T ˚XĆ

‚,rs
is conjugate to a Borel subgroup of such an L1; finally, the

stabilizer of any point on T ˚Xrs is conjugate over the algebraic closure to such a
subgroup L1.
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Proof. It is enough to prove transitivity of the action for T ˚XĆ

‚,rs
. By Propo-

sition 2.1.2, Knop’s section is an isomorphism onto regular semisimple vec-
tors:

pX ˆ Bq0 ˆ å˚
X

„
ÝÑ T ˚XĆ

‚,rs
.

The groupG acts transitively on pXˆBq0, hence on the fiber over any point
in å˚

X .
The statement on stabilizers, in the first two cases, follows by examining

stabilizers on the domains of Knop’s sections. In the last case, it follows
from the fact that the preimage of a G-orbit in the WX -torsor T ˚Xz

‚,rs
Ñ

T ˚Xrs consists, over the algebraic closure, of WX -many G-orbits. □

In particular, considering the map T ˚X Ñ g˚
X and setting

ĝ˚
X “ g˚

X ˆc˚
X
a˚
X ,

so that we have a map
T ˚Xz

‚

Ñ ĝ˚
X ,

the G-stabilizer of any element Ẑ P ĝ˚,rs
X , resp. Z P g˚,rs

X , acts transitively
on its fiber in T ˚Xz

‚
, resp. T ˚X . The G-stabilizer of such an element is

a Levi subgroup of G over the algebraic closure and, in the case of ĝ˚,rs
X ,

a Levi subgroup L equipped with a choice of parabolic P in the class of
P pXq. (Indeed, this is the parabolic in the class P pXq containing B, for any
lift pZ,Bq of Ẑ to g̃˚

X — equivalently, the parabolic P P BX in the domain
of Knop’s section.) Corollary 2.1.3 implies that L acts on the fiber of Ẑ
precisely through the quotient L Ñ P Ñ AX . This is a special case of
[Kno94, Proposition 2.4], giving rise to a canonical action ofAX on T ˚Xz

‚,rs
,

which commutes with the action of G:

AX ˆ T ˚Xz

‚,rs
Ñ T ˚Xz

‚,rs
. (16)

Corollary 2.1.3 implies:

Corollary 2.1.4. In the setting of Proposition 2.1.2, T ˚Xz

‚,rs
is canonically an

AX -torsor over ĝ˚,rs
X ; namely, the centralizer L of any point on ĝ˚,rs

X acts transi-
tively on its fiber via the canonical quotient L Ñ AX .

In Section 3, we will see (following Knop, again) how to formulate the
analog of this for the map T ˚Xrs Ñ g˚,rs

X , and to extend it to an action of a
group scheme over the whole space g˚

X .

2.2. Borel orbits over the algebraic closure. From now, X is always affine
homogeneous spherical G-variety of rank one, with WX “ Z{2. Its weight
lattice ΛX (the character group of AX ) is thus isomorphic to Z.

In the present subsection, we work over F̄ , the algebraic closure of F .
Recall, again, that the rank of a B-orbit on X is the rank of the torus

BxzB{N , whereBx is the stabilizer of a point x on the orbit, andN Ă B the
unipotent radical. For what follows, for a Borel subgroup B and a simple



20 YIANNIS SAKELLARIDIS

positive root α, we denote by Pα the parabolic generated by B and the
simple root space associated to the root ´α, and by RpPαq its radical (so
that Pα{RpPαq » PGL2). (We also use the notation Pαβ for the parabolic
generated by B and the negative root spaces associated to two simple roots
α, β, etc.)

Knop has defined in [Kno95] a rank-preserving action of the Weyl group
of G on the set of Borel orbits (or, equivalently, the set of B-orbit closures),
which is transitive on the subset of orbits of maximal rank, which includes
the open orbit. For the reflection wα associated to a simple root α, and a
B-orbit Y , one considers the spherical PGL2-variety Y Pα{RpPαq which is
of one of the following four types:

(1) PGL2 zPGL2, i.e., a point;
(2) T zPGL2, where T is a torus;
(3) N pT qzPGL2, where N pT q is the normalizer of a torus;
(4) SzPGL2, with N2 Ă S Ă B2, where B2 Ą N2 denote a Borel

subgroup of PGL2, and its unipotent radical.

(17)

In the first three cases, there is a single orbit of largest rank in Y Pα, and
it is fixed by wα. In the last case, there are two such orbits, say Y and
Z, and wα interchanges them; moreover, for their character groups ΛY “

HompAY ,Gmq, ΛZ “ HompAZ ,Gmq, we have:

ΛZ “ Λwα
Y (18)

inside of HompA,Gmq.
Since, in our case, X is of rank one, all B-orbits are of rank one or zero.
Following Brion [Bri01], we have by [SV17, §3.1]:

Lemma 2.2.1. There is a B-orbit Z of rank one, and a simple root α, or two
orthogonal simple roots α, β, such that, setting P “ Pα, resp. P “ Pαβ , the
spherical variety ZP {RpP q is isomorphic to one of the following:

(1) T zPGL2, where T is a torus;
(2) N pT qzPGL2, where N pT q is the normalizer of a torus;
(3) PGL2 as a PGL2

2-space (when P “ Pαβ).
Moreover, these possibilities are mutually exclusive, as in the first case the weight
lattice ΛX is spanned by a root γ of G, in the second case it is spanned by the
double 2γ of a root, and in the third case it contains the sum γ “ γ1 ` γ2 of two
strongly orthogonal roots.

The weight γ of the lemma above called the (normalized) spherical root of
X , by [SV17, §3.1]. Correspondingly to the three cases, we will say that the
spherical root is of type T , N or G.

I caution the reader that this is not the standard normalization of spheri-
cal roots in the theory of spherical varieties (e.g., as in [Lun01]), and it also
differs from yet another normalization that appears in [Kno96]; however,
in this paper I will call γ the spherical root.
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Corollary 2.2.2. The spherical root is of type G if and only if all B-orbits are of
rank one.

Proof. Indeed, the spherical root were of type G, but there were a B-orbit
Z0 of rank zero, since the parabolics of type Pα generate the group, and
ZG “ X , there is a sequence of spherical roots α1, . . . , αm such that Zi :“
Zi´1Pαi is of dimension ą dimZi´1, and Zm “ X . By the analysis of the
four types of (17), the open B-orbit on Zi either has rank zero or one, and
since X̊ has rank one, there is a B-orbit Z of rank zero, and a simple root α,
such that ZPα contains a B-orbit of rank one. But this can happen only if
ZPα{RpPαq is isomorphic to T zPGL2 or N pT qzPGL2, which is impossible
by the above lemma.

Vice versa, a spherical root of type T orN requires, by definition (Lemma
2.2.1), that there be an orbit Z of rank one and a parabolic of type Pα such
that ZPα{RpPαq is isomorphic to T zPGL2 or N pT qzPGL2; in both of those
cases, the closed orbit in ZPα has smaller rank than Z. □

We now study closed B-orbits, first over the algebraic closure:

Lemma 2.2.3. Let Z Ă X be a B-orbit, and H Ă G the stabilizer of a point on
Z. The following are equivalent:

(1) H XB is a Borel subgroup of H ;
(2) Z is closed.

Here, for non-connected groups, by slight abuse of language we use
“Borel” for any solvable subgroup such that the quotient is projective, whether
it is connected or not.

Proof. B-orbits on HzG are in natural bijection with H-orbits on the flag
variety G{B. Since the latter is projective, a closed H-orbit on G{B is a
projective homogeneous H-variety with solvable stabilizers, hence of the
form H{BH for a Borel subgroup of H ; vice versa, if it is of this form, it is
projective and hence closed. □

Lemma 2.2.4. Let Z Ă X be a closed B-orbit. Then, one of the following two
holds:

(1) Z is of rank zero, and for every simple root α such that Y :“ ZPα ‰ Z,
we have Y {RpPαq » T zPGL2 or N pT qzPGL2 (notation as above);

(2) or, Z is of rank one, and for all simple roots α we have ZPα “ Z, except
for two orthogonal simple roots α, β for which, setting Y :“ ZPαβ , we
have Y {RpPαβq » PGLdiag

2 zPGL2
2.

Proof. In the first case, we only need to exclude the possibility thatZPα{RpPαq “

SzPGL2 with N2 Ă S Ă B2. Let H Ă G be the stabilizer of a point on Z.
Since Z is of rank zero, H X B and G X B have the same rank and, in par-
ticular, contain a common maximal torus T . Decomposing the Lie algebras
of G and H into T -eigenspaces, we see that each root space for H is also
a root space for G. This means that the statement ZPα{RpPαq “ SzPGL2
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lifts to the statement that h X pα contains the root space nα corresponding
to the root α (but not its opposite). Thus, if L1

α denotes the commutator
of the standard Levi (with respect to T ) of Pα, then Y “ ZPα contains the
space pT X L1

αqNαzL1
α as a subvariety. But this is nontrivial projective, a

contradiction, since X is assumed affine.
In the second case, observe first that the spherical root is necessarily of

type G. Indeed, if H is the stabilizer of a point in the closed orbit, it follows
from the previous lemma that rkpHq “ rkpGq´1. SinceX is homogeneous,
this holds for all stabilizers, and therefore there cannot be a Borel orbit of
rank zero, so by Corollary 2.2.2, the spherical root is of type G.

I will now rely on the classification of Table (3), since I currently do
not have a proof which avoids any kind of classification. Since all B-
orbits are of rank one, they form a partially ordered set (by dimension)
which can be identified, using Knop’s action, with the homogeneous set
pWLpXq ¸ WXqzW for the Weyl group, with the minimal length of a rep-
resentative of a coset corresponding to the codimension of the orbit. The
little Weyl group WX “ Z{2, for spherical roots of type G (i.e., the cases
Dn–B2

3 of Table 3), is generated by the element wγ “ wγ1wγ2 , where γ1, γ2
are the two strongly orthogonal roots such that γ “ γ1 ` γ2. These partially
ordered sets, together with the graph of Knop’s action, have been depicted
in [Sak13b, 6.19, 6.16], and one observes that there is actually a unique min-
imal element (Borel orbit) in this partially ordered set, and two unique,
mutually orthogonal simple roots raising it to the same Borel orbit.

□

Notice that a subset Y Ă X as in the lemma is closed, since this is the
case for Z and the action map X ˆB P Ñ X is proper; thus, the image of
the closed subset Z ˆB P is closed.

Definition 2.2.5. A pair pY, P q as in Lemma 2.2.4, where P “ Pα in the
first case and P “ Pαβ in the second, will be called a basic orbit-parabolic
pair. In other words, a basic orbit-parabolic pair consists of a parabolic P of
type Pα or Pαβ (where pα, βq is a strongly orthogonal pair of roots), and a
closed P -homogeneous subvariety Y Ă X such that Y {RpP q is isomorphic
to T zPGL2 or N pT qzPGL2 or, respectively, PGLdiag

2 zPGL2
2.

Such a pair will play an important role in various arguments in this pa-
per, since by the above lemma it allows us to reduce many arguments to
the basic rank-one cases, labelled A1 and D2 in Table (3). In reality, the pre-
cise choice of parabolic will never matter; only its class matters, and if BP
denotes the flag variety of parabolics in this class, Y can be replaced by the
G-orbit on X ˆ BP , whose fiber over P is Y .

Example 2.2.6. Consider the space X “ SOpMqzSOpM ‘ F q, where M is
a non-degenerate quadratic space, and M ‘ F denotes a non-degenerate
quadratic space of one dimension larger. If n is even, the stabilizer P of
an isotropic flag M1 Ă M2 Ă ¨ ¨ ¨ Ă Mn

2
´1 “: M 1 of dimension n

2 ´ 1 in
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M is a parabolic of type Pα, and any of the two points on the hyperboloid
X which are represented by vectors perpendicular to M is a closed P -orbit
Y . The quotient Y {RpP q is isomorphic to the hyperboloid SO2zSO3, where
SO3 stands for SOpM 1K{M 1q (where the orthogonal complement is taken in
M ‘ F ).

If n is odd, we can similarly choose an isotropic flag M1 Ă M2 Ă ¨ ¨ ¨ Ă

Mn´3
2

“:M 1 of dimension n´3
2 in M , and this defines a parabolic P of type

Pαβ . Again, the points on the hyperboloid X perpendicular to M represent
closed P -orbits Y , and the quotient Y {RpP q is isomorphic to SO3zSO4.

In this paper we do not consider arbitrary homogeneous spherical vari-
eties of rank one. If we divide affine homogeneous spherical varieties of
rank one into equivalence classes, with X „ X 1 if their quotients by the
groups of their G-automorphisms are isomorphic, then it turns out that
only one representative in each equivalence class is appropriate for the rel-
ative trace formula comparison that we are performing. This representative
is the one listed in Table (3), and is described by the following:

Proposition 2.2.7. If the spherical root γ is of type N — equivalently, if ΛX is
spanned by 2γ, then there is an equivariant two-fold cover X 1 Ñ X with ΛX 1

spanned by γ.
If the spherical root γ is of typeG, then there is an equivariant finite coverX 1 Ñ

X (possibly X 1 “ X) such that ΛX 1 is spanned by γ
2 . Moreover, AutGpX 1q “

Z{2.
Moreover, in both cases, the stabilizers of points on X 1 are connected.

Proof. The first statement is [Lun01, Lemme 6.4.1].
For the second, if X “ HzG, replace G by the simply connected cover of

its derived group; it necessarily acts transitively on X , because if the con-
nected center of G was not acting trivially, the rank of X would be greater
than one. So, we can without loss of generality denote that by G. I claim
that γ

2 P HompA,Gmq. To show this, it is enough to show that its pairing
with every simple coroot is an integer. Without loss of generality, we may
replace γ by its Weyl group conjugate γ1 “ α´β which belongs to the char-
acter group of a closed B-orbit Z, where α, β are two orthogonal simple
roots, as in Lemma 2.2.4. Clearly, the pairing of γ1

2 with α̌, β̌ is integral. On
the other hand, by the same lemma, for every simple root δ ‰ α, β, we have
Y Pδ “ Y ; in that case, the image of the cocharacter δ̌ in A “ B{N belongs
to the image of the stabilizer of a point on Y , hence

⟨︁
γ1, δ̌

⟩︁
“ 0, proving

the claim. The result on the existence of X 1 now follows as a simple special
case of [Lun01, Théorème 2]; it also follows from the same that there exists
an X0 whose weight lattice is spanned by γ. The cover X 1 Ñ X0 gives rise
to a nontrivial involution τ ofX 1, hence to an embedding Z{2 ãÑ AutGpX 1q.
(This embedding can also be established as a special case of [Kno96, Theo-
rem 1.2].) On the other hand, we also have an embedding

ι : AutGpX 1q ãÑ HompΛX 1 , F̄
ˆ

q,
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by considering the action of an automorphism on the lines ofB-eigenvectors
in the function field F̄ pX 1q. To show that Z{2 is the whole automorphism
group, it suffices to show that ιpτq is trivial on the (normalized) spherical
root γ.

The set of B-orbits of maximal rank is acted upon transitively by the
Weyl group action of Knop. Any G-automorphism σ of X 1 preserves the
open Borel orbits and commutes with Knop’s action on the set of Borel or-
bits, hence preserves all orbits of maximal rank. If Y,Z are two B-orbits
of maximal rank, and α is a simple root such that Z ¨ Pα “ Z Y Y , so that
Zwα “ Y under Knop’s action, the quotient Z ¨ Pα{UPα is a quotient of
NzPα (where N is the unipotent radical of B), and σ descends to an auto-
morphism of Z ¨Pα{UPα , which is induced by the “left” action of an element
of A “ B{N . On the character groups of the two B-orbits, therefore, which
are related by (18), σ induces conjugate automorphisms, i.e., if ιZ denotes
the analogs of the map ι:

ιZ : AutGpX 1q Ñ HompΛZ , F̄
ˆ

q,

then those are compatible with the W -action:

ιZwpσq “ ιZpσqw.

Let pY 1, Pαβq, now, be a basic orbit-parabolic pair for X 1, as in Lemma
2.2.4. Since Y 1 is preserved by G-automorphisms, a G-automorphism σ
of X 1 restricts to a Pαβ-automorphism of Y 1. The quotient Y 1{RpPαβq is
isomorphic to PGL2, and the weight lattice of its closed B-orbit is spanned
by the weight α´β. Since PGL2 has no PGL2 ˆPGL2-automorphisms, we
see that ιY 1pσq has to be trivial on α´ β, and therefore ιpσq has to be trivial
on its W -conjugate γ.

If the stabilizers were not connected, then there would exist a further
cover X2 Ñ X 1, giving an embedding of character groups of rank one with
nontrivial cokernel: ΛX 1 Ă ΛX2 . But this is impossible in both cases for the
spherical root γ of X 1: If it is of type T , the same should hold for X2, and
their character groups are both spanned by γ; if it is of type G, the same
should hold for X2, and the character group in such a case is spanned by
either γ or γ

2 (in this case, by the latter), because no smaller fraction of γ can
belong to the weight lattice of A. Thus, stabilizers are connected.

□

Definition 2.2.8. The variety X 1 of Proposition 2.2.7 will be called the “cor-
rect representative” of its equivalence class modulo G-automorphisms.

2.3. Borel orbits and the moment map over F . We now return to our non-
algebraically closed field F in characteristic zero, with G split over F . We
maintain the assumptions of the previous subsection for X , and, moreover,
we assume that it is the correct representative given by Proposition 2.2.7.

Under these assumptions, our main goal for the rest of this section is to
prove the following:
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Proposition 2.3.1. The following are equivalent:
(1) The stabilizerH of one, equivalently any, F -point onX is a split reductive

group.
(2) One, equivalently every, closed BF̄ -orbit on XF̄ is defined over F .
(3) The invariant moment map T ˚X Ñ c˚

X , viewed as a quadratic form on
the fibers of T ˚X , is split (maximally isotropic) on one, equivalently every,
fiber.

Notice that H is connected, by the fact that we are working with correct
representatives (Definition 2.2.8), and Proposition 2.2.7. The proposition is
not true without the assumption on “correct representatives”, e.g., for the
variety N pT qzPGL2.

We begin with some preliminary lemmas and constructions. If B Ă G is
a Borel subgroup, since B is split solvable, by standard Galois cohomology,
everyB-orbit which is defined over F has an F -point. This holds, in partic-
ular, for the open B-orbit, which is unique hence defined over F , therefore
X has F -points.

Lemma 2.3.2. All B-orbits of maximal rank (over F̄ ) are defined over F . More-
over, if Y is aB-orbit of maximal rank, then Y pF q meets anyGpF q-orbit onXpF q

nontrivially.

Proof. The open B-orbit is defined over F and has rank one. By the def-
inition of Knop’s action of the Weyl group on the set of Borel orbits, and
the fact that G is split, one sees from the definition that the action is de-
fined over F , therefore every F -orbit of maximal rank is defined over F .
Any GpF q-orbit is open in XpF q (in the Hausdorff topology induced by
the topology of F ), and therefore has to contain F -points of the open B-
orbit. Finally, we use Knop’s action to deduce the same result for any B-
orbit of maximal rank: if Y wα “ Z, with Z open in Y Pα, and ZpF q con-
tains a point z in a given GpF q-orbit, then there is a g P PαpF q such that
the PαpF q-stabilizer of zg is contained in BpF q (by the fact that the map
PαpF q Ñ BzPαpF q is surjective), therefore the same GpF q-orbit also con-
tains a point of Y pF q. □

Now let pY, P q be a basic orbit-parabolic pair, see Definition 2.2.5.

Lemma 2.3.3. The variety Y is defined over F , and the action map Y ˆP G Ñ X

is surjective on F -points, i.e., Y pF q ˆP pF q GpF q ↠ XpF q.

Proof. By definition, the variety Y contains aB-orbit of maximal rank (rank
one). By Lemma 2.3.2, this B-orbit is defined over F , and its F -points meet
every GpF q-orbit; hence, the map Y pF q ˆGpF q Ñ XpF q is surjective. □

Now we define a proper cover of the cotangent bundle T ˚X which is
intermediate between this and a component of the cover T ˚XĆ defined in
§2.1. Let pY, P q be a basic orbit-parabolic pair. Similarly to the definition of
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T ˚XĆ , we let

T ˚XĆ

P
“ tpv, P 1q|v P T ˚X,P 1 „ P, µpvq P uK

P 1u.

Here, P 1 „ P means that P 1 is conjugate to P . (Really, P denotes here
a class of parabolics, and Y can be thought of as a G-orbit on P zG ˆ X ;
nothing depends on a choice in this class.)

We let T ˚XĆ

P,Y
“ T ˚

YX
uK
P ˆP G, where the exponent uK

P means that the
image under the moment map belongs to uK

P — hence, T ˚
YX

uK
P is the pull-

back to Y of the cotangent bundle of the quotient Y {UP .

Lemma 2.3.4. T ˚XĆ

P,Y
is an irreducible component of T ˚XĆ

P
and, therefore, is

proper and dominant over T ˚X .

Proof. It is irreducible, since T ˚
YX

uK
P is a vector bundle over the irreducible

variety Y , and a closed subset of T ˚XĆ

P
. Moreover, considering the natural

map T ˚XĆ Ñ T ˚XĆ

P
, it is clear from the definition that T ˚XĆ

P,Y
contains the

image of the irreducible component of maximal dimension corresponding

to the openB-orbit in Y ; therefore, it is an irreducible component of T ˚XĆ

P
,

and dominant over T ˚X . □

Now let Y2 “ Y {UP . Since Y is homogeneous under P , this is homoge-
neous under the Levi quotient L of P , and its quotient by ZpLq (the center
of L) is the rank-one spherical variety Y {RpP q described in Lemma 2.2.4,
hence isomorphic to T zPGL2 or PGL2. There are natural quotient maps of
(the total spaces of) vector bundles

T ˚
YX

uK
P Ñ T ˚Y uK

P Ñ T ˚Y2,

with the former an isomorphism on the base and the latter an isomorphism
on the fiber.

Lemma 2.3.5. The connected center of L acts trivially on Y2, and Y2 is isomorphic
either to T zPGL2, where T is a torus, or to SL2. Moreover, we have T ˚Y2 �L „

ÝÑ

c˚
X , fitting into a natural commutative diagram:

T ˚XĆ

P,Y
→→

↓↓

T ˚X

↓↓
T ˚Y2 ˆP G →→ c˚

X .

(19)

Proof. The variety Y2,ad :“ Y2{ZpLq “ Y {RpP q is, by Lemma 2.2.4, isomor-
phic to T zPGL2 or PGL2. If the identity component of ZpLq was acting
nontrivially on Y2, the rank of Y2, hence of Y , would be larger than one,
a contradiction. Thus, Y2 Ñ Y2,ad is a finite cover. Since X is taken to
be the correct representative in its class, the character group ΛX is gener-
ated by the spherical root γ, if that is of type T , or by γ

2 , if it is of type G.
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Correspondingly, by (18), the character group of Y (equivalently, of Y2) is
generated by α, in the first case, and by α`β

2 , in the second, in the notation
of Lemma 2.2.4. But this means that in the first case Y2 “ Y2,ad, while in
the second it has to be a two-fold connected cover of it, hence isomorphic
to SL2.

We have AY2 “ AY “ AwX for some element w of the Weyl group of G,
and WY2 “ WX “ Z{2. This gives rise to a canonical isomorphism

c˚
Y2 “ c˚

X ,

and the construction of the invariant moment maps T ˚Y2 Ñ c˚
Y2

and T ˚X Ñ

c˚
X is clearly compatible with this isomorphism, showing the commutativ-

ity of the diagram. □

Proposition 2.3.6. Let pY, P q be a basic orbit-parabolic pair; then the map T ˚XĆ

P,Y
Ñ

T ˚X is surjective on F -points.
Let y P Y with image y2 P Y2, and let V Ą VP and V2 be, respectively, the

fibers of T ˚X , T ˚XĆ

P,Y
, and T ˚Y2 over y, py, P q, and y2, respectively. The kernel

of the map VP Ñ V2 is an isotropic subspace of V (with respect to the quadratic
map V Ñ c˚

X ) of dimension

dimkerpVP Ñ V2q “
dimV ´ dimV2

2
. (20)

The quadratic space V is split2 (maximally isotropic) if and only if V2 is.

Example 2.3.7. In the setting of Example 2.2.6 (in particular,G “ SOpM‘F q

for a quadratic space M , X “ SOpMqzSOpM ‘ F q, and we have a basic
orbit-parabolic pair pY, P q as described in that example), for the point y rep-
resented by a vector perpendicular to M in the hyperboloid X , the fiber of
T ˚X can be identified with the dual of M , or with M itself (using the qua-
dratic form). The space VP is the orthogonal complement of the isotropic
flagM 1 described in that example, and the space V2 is the quotientM 1K{M 1.
If dimM is even, the group G can be split even if M is not, and this hap-
pens precisely when the two-dimensional quadratic space pM 1K X Mq{M 1

is nonsplit.

Notice that V2 is isomorphic to A2, for spherical roots of type T , and to
sl2, for spherical roots of typeG, with PXH acting through a 1-dimensional
torus quotient in the first case, and through a quotient isomorphic to PGL2,
in the second case.

2We will be using “split” in a slightly non-standard way: for quadratic spaces of odd
dimension d, “split” will mean maximally isotropic, i.e., containing a d´1

2
-dimensional

isotropic subspace.
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Proof. Let L denote the Levi quotient of the class of parabolics P , consid-
ered as an abstract algebraic group depending only on the class of P , de-
fined uniquely up to conjugacy. We have a canonical map of coadjoint quo-
tients

l˚ � L Ñ g˚ �G. (21)

Let
gp̊
P

“ g˚ ˆg˚�G l˚ � L,

gr̊
P

“ tpZ,P 1q|P 1 „ P,Z P uK
P 1u,

so we have natural, proper maps

gr̊
P

Ñ gp̊
P

Ñ g˚.

At the level of F -points, the map gp̊
P

Ñ g˚ is not surjective, but the map

gr̊
P

Ñ gp̊
P

is.
Now, considering c˚

X as a subset of g˚ � G and, similarly, c˚
Y2

as a subset
of l˚ � L, the canonical isomorphism c˚

Y2
» c˚

X that we saw in Lemma 2.3.5
gives rise to a lift:

c˚
X Ñ l˚ � L. (22)

The composition of this with the invariant moment map T ˚X Ñ c˚
X gives

a lift:

T ˚X Ñ T ˚Xz

P
:“ T ˚X ˆg˚ gp̊

P
, (23)

which fits into a commutative diagram

T ˚XĆ

Y

↓↓

→→ T ˚Xz

Y

↓↓

→→ a˚
Y

↓↓
T ˚XĆ

P,Y

↘↘

→→ T ˚Xz

P
→→

↓↓

c˚
X

T ˚X,

↑↑ ↗↗

(24)

where T ˚XĆ

Y
, T ˚Xz

Y
denote the irreducible components corresponding to

the open B-orbit in Y (see §2.1). The scheme-theoretic image of T ˚X in

T ˚Xz

P
is the same as the image of T ˚Xz

Y
, hence an irreducible component

T ˚Xz

P,Y
of T ˚Xz

P
. The fact that the map gr̊

P
Ñ gp̊

P
, hence its base change

T ˚XĆ

P,Y
Ñ T ˚Xz

P,Y
, is surjective on F -points, proves the surjectivity state-

ment.
Let us now count dimensions. The map T ˚XĆ

Y
Ñ T ˚XĆ

P,Y
is finite, hence

dimT ˚XĆ

P,Y
“ dimT ˚XĆ

Y
“ dimT ˚Xz `dimBLpXq “ dimT ˚X`dimBLpXq,
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where BLpXq denotes the full flag variety of the Levi quotient of P pXq. In
terms of the above vector spaces, setting PH “ P X H , where H is the
stabilizer of y P Y , we have

T ˚X “ V ˆH G,

T ˚XĆ

P,Y
“ VP ˆPH G,

hence the relation above translates to

dimVP ` dimpPHzHq “ dimV ` dimBLpXq. (25)

On the other hand, by Corollary 2.1.4, the general fiber of the map T ˚X Ñ

c˚
X is a single G-orbit, which is of the form L1zG over the algebraic closure,

where L1 is (non-canonically) isomorphic to kerpLpXq Ñ AXq, with LpXq a

Levi of P pXq; the general G-orbit on T ˚XĆ and T ˚XĆ

P,Y
is isomorphic over

the algebraic closure to BL1zG, where BL1 is a Borel subgroup of L1.
Similarly, the general L-orbit on T ˚Y2 is isomorphic to T1zL, where T1 is

(non-canonically) isomorphic to kerpA Ñ AXq over the algebraic closure;
notice that P pY2q is the class of Borel subgroups of L. If we consider T ˚Y2
as a P -space, we have to include UP , which acts trivially, in the point stabi-
lizers.

Hence, the relative dimension of the map T ˚
YX

uK
P Ñ T ˚Y2, by counting

dimensions of stabilizers in G, is

dimUP ´ dimULpXq “ dimUP ´ dimBLpXq.

The analogous relation for the corresponding vector spaces, by counting
dimensions of stabilizers in H , is

dimVP ´ dimV2 “ dimUPH
´ dimBLpXq “ dimpPHzHq ´ dimBLpXq. (26)

Combining (25) and (26), we obtain (20).
Since the kernel of the map VP Ñ V2 is isotropic (it maps to 0 P c˚

X by the
commutativity of (19)), the quadratic space V is maximally isotropic if and
only if V2 is. □

We are now ready to prove Proposition 2.3.1.

Proof of Proposition 2.3.1. Suppose that the stabilizer H of a point on X is
split. Since H is connected (Proposition 2.2.7), a Borel subgroup of H is
split, solvable, connected, and is contained in a Borel subgroup B of G
(over F ). Then, the H-orbit represented by 1 on G{B is projective, hence
closed, and the corresponding B-orbit on X “ HzG is defined over F .

Vice versa, if a closed BF̄ -orbit on XF̄ is defined over F — equivalently,
has a point with stabilizer H , then B X H is a split Borel subgroup of H ,
hence H is split.

Now let pY, P q be a basic orbit-parabolic pair, as in Lemma 2.2.4. By
Lemma 2.3.5, the variety Y2 “ Y {UP is isomorphic to T zPGL2 for some
torus T or to SL2, hence the closed B-orbit(s) on Y2, and on Y , are defined
over F , unless we are in the case of T zPGL2 with T not belonging to any
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Borel F -subgroup, i.e., with T non-split. This is equivalent to each, equiv-
alently one, fiber of T ˚Y2 Ñ c˚

X being isotropic, as one can see by direct
calculation: in the case of T zPGL2, this is the map tK Ñ tK � T which is
isomorphic to the norm map for the quadratic splitting ring of T , and in
the case of SL2 it is simply the determinant on sl2. By Proposition 2.3.6, the
fibers of T ˚Y2 Ñ c˚

X being isotropic is equivalent to each, equivalently one,
fiber of T ˚X Ñ c˚

X over a point in Y being maximally isotropic. The sur-

jectivity of the map T ˚XĆ

P,Y
Ñ T ˚X on F -points, by the same proposition,

implies that the same is true for every fiber of T ˚X hence, applying this
argument in the reverse direction, one closed BF̄ -orbit being defined over
F implies that every closed BF̄ -orbit is defined over F . □

Recall that we have been assuming thatG is split, and thatX is a “correct
representative” of its class modulo G-isomorphisms, see Definition 2.2.8;
the statement is not true for varieties such as N pT qzPGL2.

Remark 2.3.8. For spherical roots of type G, all B-orbits are of rank one
(maximal), hence defined over F by Lemma 2.3.2. Therefore, by the propo-
sition, in that case all stabilizers are split.

Finally, the next proposition explains how many isomorphism classes of
varieties over F correspond to each line of Table (3), to which our results
apply:

Proposition 2.3.9. If XF̄ is the correct representative of a class of rank one affine
homogeneous spherical GF̄ -varieties (with WX “ Z{2) over F̄ , then a form of
X as a G-variety over F , where G denotes the split form of GF̄ , always exists.
Moreover, if the spherical root is of type T , there is a unique such form with split
stabilizers, and if the spherical root is of type G the isomorphism classes of such
forms are naturally a torsor for the group Fˆ{pFˆq2, and stabilizers are always
split.

Proof. The existence of a model over F follows from the general Theorem
0.2 of [Bor19]. To apply it, we first replace the spherical subgroup HF̄ (over
the algebraic closure) by its spherical closure H̄ F̄ Ă N pHF̄ q; I refer the reader
to the aforementioned reference for the definition of spherical closure. By
the theorem, the resulting variety X̄ F̄ “ H̄ F̄ zGF̄ has a form X̄ as a G-
variety over F . As in the proof of Proposition 2.2.7, if we replace G by the
simply connected cover of its derived group and H̄ by the identity com-
ponent of its preimage in this simply connected cover, we will obtain a
variety X of rank one whose weight lattice is “as large as possible”, that
is, spanned by the spherical root γ if that is of type T , and by γ

2 if it is of
type G; thus, X has to be a form of XF̄ (and, in particular, the action of the
simply connected cover factors through G).

Given such a formX , the set ofG-forms ofX is parametrized by the first
Galois cohomology group H1pF,AutGpXqq.
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If the spherical root is of type G, then, by Remark 2.3.8, stabilizers are
always split. Moreover, by Proposition 2.2.7, AutGpXq “ Z{2, so the forms
are a torsor for H1pF,AutGpXqq “ Fˆ{pFˆq2.

If the spherical root is of type T , then there is a Borel orbit (over the
algebraic closure) of rank zero, and therefore the rank of HF̄ is equal to
the rank of G, where HF̄ denotes the stabilizer of any point on XF̄ . Let
TF̄ Ă HF̄ be a maximal torus. The Lie algebra gF̄ splits into a direct sum
of TF̄ -eigenspaces, and the subalgebra hF̄ is a subsum of that. If, now, G
is defined and split over F , we may assume that TF̄ is the extension to F̄
of a maximal split torus T Ă G, hence the eigenspaces are defined over F ,
and the subalgebra hF̄ is the extension to F̄ of a subalgebra over F . In other
words, there is a form ofX such the stabilizer of a point (hence every point,
by Proposition 2.3.1) is split.

Assume that X is such a form. Let pY, Pαq be a basic orbit-parabolic pair,
so that Y contains a B-orbit of rank one, and two closed B-orbits of rank
zero. These closed B-orbits now are defined over F , by Proposition 2.3.1.
Arguing as in the proof of Proposition 2.2.7, we get an injection

AutGpXq ãÑ AutLαpY {UPαq,

where Lα is the Levi quotient of Pα. The weight lattice of Y {UPα is spanned
by α, hence the Lα-variety Y {UPα is isomorphic to the quotient of Lα by a
maximal torus T , which now has to be split. The group AutLαpY {UPαq

is isomorphic to Z{2, with the nontrivial automorphism interchanging the
two closed Borel orbits. Hence, if σ is a nontrivial G-automorphism of X ,
it interchanges the two closed B-orbits in Y . As a result, for any nontrivial
element ofH1pF,AutGpXqq, defining a formX 1 ofX , theseB-orbits are not
defined over F in X 1, and, by Proposition 2.3.1 again, stabilizers of points
on X 1 are not split. Therefore, X is the unique form with split stabilizers.

□

Example 2.3.10. Consider the G “ SO4 “ pSL2 ˆSL2q{t˘1udiag-action on
GL2. All orbits are isomorphic to HzG “ SO3zSO4 “ PGL2 zSO4, but the
GpF q-conjugacy class of the embedding of H in G depends on the square
class of the determinant.

3. STRUCTURE AND RESOLUTION OF X ˆX{G

In this section we study the diagonal action of G on X ˆ X , and the
morphism to the invariant-theoretic quotient:

X ˆX Ñ CX :“ X ˆX �G.

In the group case X “ H , G “ H ˆ H , the invariant theoretic quo-
tient X ˆ X � G coincides with the invariant theoretic quotient of H by
H-conjugacy, and is naturally identified with AH � WH , by the Chevalley
isomorphism. Moreover, the quotient map H Ñ AH �WH is smooth over
the points where the quotient map AH Ñ AH �WH is smooth.
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A Chevalley isomorphism for X ˆ X � G “ HzG � H was proven by
Richardson [Ric82] in the case where X “ HzG is a symmetric variety. A
Chevalley isomorphism for general reductive group actions on affine va-
rieties, in terms of fixed point sets of generic stabilizers, was proven by
Luna and Richardson [LR79]. Almost all spherical varieties of Table (3) are
symmetric, but this is not the case for the examples denoted by G2 and B2

3 ;
those two are symmetric under the action of a bigger group, but a priori the
invariant-theoretic quotient X ˆX �G could be different. In any case, I do
not know how to deduce all the results that are needed directly from the
aforementioned references, even for symmetric spaces (and, in fact, do not
all hold without choosing the “correct representatives” in each equivalence
class, see Definition 2.2.8).

Thus, in this and the following section, we introduce a more conceptual
way to analyze this quotient, for varieties of rank one, and prove the results
that we need to analyze orbital integrals. Hopefully, this approach will also
be useful for higher-rank cases, where only a small fraction of spherical
varieties are symmetric. The main results that we need are the following:

(1) The invariant-theoretic quotient CX is canonically isomorphic toAX�
WX — which is just an affine lineA1 (Proposition 3.4.2).

(2) The quotient map X ˆ X Ñ CX is smooth away from two points
r˘1s on CX (Proposition 3.5.1).

(3) Each point of CX corresponds to a closed G-orbit in X ˆ X ; if X˘1

denote the closed orbits over the singular points r˘1s, in an étale
neighborhood of those the map X ˆ X Ñ CX is modeled on a non-
degenerate quadratic form (see (59) and Proposition 3.5.1).

(4) The codimensions d˘1 of the singular closed orbits X˘1 satisfy a
formula of the form:

d1 ` d´1 “ 2ϵ
⟨︁
ρP pXq, γ̌

⟩︁
` 2.

(I point the reader to Theorem 4.0.2 for the result and notation.)
This general approach will be provided to us by Knop’s theory of the

cotangent bundle of X and the invariant collective motion — the infini-
tesimal action of the G-invariant Hamiltonian vector fields obtained from
the invariant moment map (14). It will turn out, in rank one, that even
for the non-symmetric cases the quotient CX is (canonically) isomorphic to
AX �WX , with singularities of the quotient map X ˆX Ñ AX �WX only
over the singularities of AX Ñ AX � WX ; this fact does not generalize to
higher rank, although the constructions of Knop do.

By the end of this section, we will have constructed a resolution of the
G-space X ˆX , denoted

R : PJX Ñ X ˆX.

As mentioned in the introduction, the term “resolution” refers here to the
fibers of the map XˆX Ñ CX , which under the resolution become normal
crossings divisors.
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3.1. Knop’s abelian group scheme; the r˘1s and nilpotent divisors. Con-
sider AX ˆ a˚

X as a constant group scheme over a˚
X , with the simultaneous

action of WX on AX and on a˚
X . Let

J “ pResa˚
X{c˚

X
pAX ˆ a˚

XqqWX , (27)

where Resa˚
X{c˚

X
denotes Weil’s restriction of scalars from a˚

X to c˚
X . It is a

group scheme over c˚
X , whose sections over any U Ă c˚

X (as a special case
of the universal property of Weil restriction) are the WX -invariant sections
of AX ˆ π´1pUq, where π : a˚

X Ñ c˚
X is the canonical map. It comes with a

canonical birational morphism

J Ñ pAX ˆ a˚
Xq �WX , (28)

obtained functorially by identifying the right hand side with

Resa˚
X{c˚

X

´

pAX ˆ a˚
Xq �WX ˆc˚

X
a˚
X

¯WX

.

This map is an isomorphism over c̊˚
X “ c˚

X ∖ t0u. It is an easy exercise in
restriction of scalars to see that, in rank one with WX “ Z{2, this scheme is
given in coordinates by

J » SpecF rt0, t1, ξs{pt20 ´ ξt21 ´ 1q, (29)

where we have identified c˚
X “ A1, with a coordinate ξ such that ξ “ 0

corresponds to 0 P a˚
X . This group scheme is also familiar as the group

scheme of regular centralizers over the Kostant section of the Lie algebra
sl2, under the adjoint action of SL2 [Ngfrm[o]–0, §2.4].

We have a canonical identification

J ˆc˚
X
å˚
X » AX ˆ å˚

X , (30)

compatible with pullback of sections from c˚
X to a˚

X , and the identification
of sections of J with WX -equivariant sections of AX ˆ a˚

X .
On the other hand, the fiber of J over 0 P c˚

X is isomorphic toGa ˆ Z{2.
We let J0 Ă J denote the open group subscheme whose fiber over any
point of c˚

X is the identity component of the fiber of J . The group scheme
J has a canonical action ofGm, induced from the action ofGm on AX ˆ a˚

X
(on the second factor). In the coordinates above:

a ¨ pξ, t0, t1q “ pa2ξ, t0, a
´1t1q. (31)

In what follows, for any variety Y equipped with a map to c˚
X we will

denote
J ‚ Y :“ J ˆc˚

X
Y

(and similarly for J0).
We can distinguish three divisors on J ‚ Y , two of them to be denoted

r˘1sY , and another to be denoted pJ ‚Y qnilp. The first two are the images of
p˘1q ¨ Y (where p˘1q are understood as WX -invariant sections of AX over
a˚
X , hence as sections of J over c˚

X ), and the third is the preimage of 0 P c˚
X .

In the coordinates used above, the sum of the divisors r˘1sY is given by
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the equation t1 “ 0 (with the value of t0 distinguishing the irreducible
components), and pJ ‚ Y qnilp is given by ξ “ 0. Notice that the union of
these three divisors is precisely the preimage of the corresponding points
r˘1s P AX �WX under the map J ‚ Y Ñ AX �WX descending from (28);
in the coordinates above, this union corresponds to the equations t0 “ ˘1.

Notice that J ‚Y is smooth over Y (because it is obtained by base change
from the smooth group scheme J Ñ c˚

X ), and the divisors r˘1sY are iso-
morphic to Y . Hence, if Y is smooth, this is also the case for these divisors
and the scheme J ‚Y . On the other hand, the nilpotent divisor pJ ‚Y qnilp is
smooth on its intersection with the smooth locus of the morphism Y Ñ c˚

X .

Lemma 3.1.1. Assume that Y Ñ c˚
X is smooth. Then, the divisors r˘1sY and

pJ ‚Y qnilp intersect transversely, and the morphism J ‚Y Ñ AX �WX is smooth
away from r˘1sY .

Proof. All these properties are stable under smooth base change, and since
the morphism Y Ñ c˚

X is smooth, the problem reduces to the case Y “ c˚
X ,

J ‚ Y “ J .
It is then immediate to check from the equation t20 ´ ξt21 “ 1 that the

intersections of the divisors ξ “ 0 and t1 “ 0 are transverse.
For the second statement, we note that we can identifyAX�WX » A1 so

that the map J Ñ AX�WX corresponds to the coordinate t0. The cotangent
space of J is generated by dt0, dt1, dξ subject to the equation

2t0dt0 ´ 2ξt1dt1 ´ t21dξ “ 0.

Thus, dt0 “ 0 only when t1 “ 0. □

We now specialize to the scheme Y “ T ˚X , endowed with the invariant
moment map µinv : T ˚X Ñ c˚

X . Lemma 2.1.1 implies that this map is
smooth away from the zero section (whose complement we will denote by
T ˚X‰0), hence, by 3.1.1, we get:

Corollary 3.1.2. The divisors r˘1sT˚X‰0 and pJ ‚ T ˚X‰0qnilp in J ‚ T ˚X‰0

intersect transversely, and the morphism J ‚ T ˚X‰0 Ñ AX � WX is smooth
away from r˘1sT˚X‰0 .

3.2. Integration of the invariant collective motion. The relative Lie alge-
bra LiepJq of J over c˚

X can be canonically identified with the cotangent
space of c˚

X . Indeed, sections of both are canonically identified with WX -
invariant sections of the cotangent bundle of a˚

X . Thus, a section of the
cotangent bundle of c˚

X can be viewed as a section of LiepJq, and at the
same time induces a Hamiltonian vector field on T ˚X , by pullback and the
symplectic structure. The flow along this vector field is known as the in-
variant collective motion. Knop has shown [Kno96, Theorem 4.1] that there
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is an action of the group scheme J0 on T ˚X over g˚
X

C : J0 ‚ T ˚X

↘↘

→→ T ˚X

↙↙
g˚
X

(32)

that integrates this vector field. Over c̊˚
X “ c˚

X∖t0u, this action lifts through
the isomorphism (30) to the canonical action of AX that we discussed (16)
on the regular semisimple part of the polarization T ˚Xz . In particular, on
the regular semisimple part this action is induced from the action of the
centralizers of coadjoint vectors: if v P T ˚Xrs with image µpvq “ Z P g˚,
the centralizer of Z is a twisted Levi L (conjugate over the algebraic closure
to a Levi of P pXq), and it acts on v through a quotient which, over the
algebraic closure, is isomorphic (up to the WX -action) to AX .

This action may, but does not always, extend to J , as the following ex-
amples show:

Example 3.2.1. Let X “ SL2 under the G “ SO4 “ SL2 ˆSL2 {t˘1udiag-
action. Then c˚

X “ sl2 � SL2 (under the adjoint action), and J can be iden-
tified with the group scheme of regular centralizers over c˚

X , i.e., the group
scheme of centralizers in SL2 over a Kostant section

c˚
X ãÑ slreg2 .

Hence, it acts (faithfully) on pT ˚ SL2q‰0, by either left or right translation;
it is easy to see that this extends to the trivial action on the zero section. In
particular, the action of J0 extends to J .

Example 3.2.2. Let X “ GmzPGL2. The group scheme of regular centraliz-
ers for PGL2 again acts faithfully on T ˚X , but in this case it is isomorphic
to J0. However, one can easily see that the entire group scheme J acts, with
the action of the p´1q-section induced from the nontrivialG-automorphism
of X .

Example 3.2.3. Let X “ HzG “ GL2 zPGL3, the variety of direct sum de-
compositionsG3

a “ V2 ‘ V1 of a based three-dimensional vector space into
the sum of a two- and a one-dimensional subspace. The fiber hK of T ˚X
over the point x0 corresponding to the decomposition ⟨e1, e2⟩ ‘ ⟨e3⟩ is iso-
morphic to Std ‘ Std˚, the direct sum of the standard representation and
its dual, as a (right) representation of H “ GL2. The quadratic form of the
invariant moment map is

pv, v˚q ÞÑ ⟨v, v˚⟩ .

Hence, T ˚
x0X

nilp “ the variety of mutually orthogonal pairs pv, v˚q.
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Represent H as the upper left copy of GL2 in PGL3, identify g˚ “ g “ sl3
through the trace pairing, and consider representatives

Zϵ,y “

¨

˝

0
1

y ϵ2 0

˛

‚,

with ϵ ‰ 0, for the split regular semisimple H-orbits on hK (i.e., those over
the image of å˚

XpF q Ñ c˚
XpF q). The variable y is redundant, at the mo-

ment, but will play a role as ϵ Ñ 0. The centralizer of Zϵ,y under the right
coadjoint representation ofG is the torus of matrices (modulo center) of the
form

¨

˚

˝

a
p´2a`b`cqy

2ϵ2
b`c
2

b´c
2ϵ

pb´cqy
2ϵ

pb´cqϵ
2

b`c
2

˛

‹

‚

.

It acts on the point x0 P X through the quotient pa, b, cq ÞÑ b
c , which is

isomorphic to AX » Gm (up to inversion).
Let us examine whether the action of ´1 P AX on T ˚Xrs extends to the

nilpotent limit ϵ Ñ 0. Representing ´1 by a matrix as above, corresponding
to pa, b, cq “ p1, 1,´1q:

gϵ,y “

¨

˝

1
´y
ϵ2

0 1
ϵ

y
ϵ ϵ 0

˛

‚„

¨

˝

1
´y 0 ϵ
y
ϵ2

1 0

˛

‚

(where „ means same left H-coset), we easily see that x0 ¨ gϵ,y does not
have a limit in X as ϵ Ñ 0, unless y “ 0. On the other hand, if y also tends
to zero in such a way that y

ϵ2
has a limit, the action extends to the limit.

Geometrically, this means that if we blow up hK “ Std ‘ Std˚ over the
divisor StdYStd˚, and remove the strict transform of the nilpotent divisor,
then the action of ´1 extends to the blowup — this will be relevant when
discussing the “second” singular orbit on X ˆ X{G, below, see Example
3.5.6.

Lemma 3.2.4. For X of rank one with WX “ Z{2, the restriction of T ˚X Ñ g˚
X

over g˚,rs
X (that is, over c̊˚

X under the invariant moment map) is a J ‚ g˚,rs
X -torsor.

Proof. This is a consequence of Corollary 2.1.4: Since T ˚Xz

rs
is an AX -torsor

over ĝ˚,rs
X , and the action is the base change of the action of the group

scheme J ‚ g˚,rs
X on T ˚Xrs, the latter is also a torsor. □

3.3. Resolution in a neighborhood of the diagonal. We denote by N˚
AB

the conormal bundle in a smooth variety B of a subvariety A. In the case
that B “ X ˆX , we will be using the shorthand notation N˚

A for N˚
AB; we

denote by NA the normal bundle.
The fiber product J ‚T ˚X carries a naturalGm-action, induced from the

action on T ˚X and on J . The quotientGmzpJ ‚ T ˚X‰0q will be denoted by
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the symbol of projectivization, PpJ ‚ T ˚Xq. We use analogous notation for
all similar spaces with aGm-action.

Consider the combination of the projection and action maps:

J0 ‚ T ˚X Ñ T ˚X ˆg˚ T ˚X. (33)

An immediate corollary of Lemma 3.2.4 is:

Corollary 3.3.1. The map (33) is an isomorphism over c̊˚
X (i.e., on the sets of

regular semisimple vectors).

Proof. By Lemma 2.1.1, over c̊˚
X we have T ˚Xrs ˆg˚ T ˚Xrs “ T ˚Xrs ˆg˚,rs

X

T ˚Xrs, and by Lemma 3.2.4 the right hand side is isomorphic to J0‚T ˚Xrs “

J ‚ T ˚Xrs.
□

The space on the right hand side of (33) can be thought of as the union
of all conormal bundles to all G-orbits on X ˆ X . Indeed, the conormal
bundle on a G-orbit for the diagonal action on X ˆ X is the subbundle
of the cotangent bundle T ˚X ˆ T ˚X determined by the vanishing of the
diagonal moment map pv1, v2q ÞÑ µpv1q ` µpv2q; multiplying v2 by ´1, this
becomes the fiber product over g˚. This union of conormal bundles comes
with its own map to g˚, which is not the moment map for the Gdiag-action
onXˆX (which is zero), but “remembers” the fact thatXˆX had aGˆG-
action. This is the microlocal analog of the spectral decomposition of the
relative trace formula.

The rough idea behind the resolution of X ˆ X that we are about to
construct is that, generically, the projectivization of this union of conormal
bundles is isomorphic toXˆX (because we are in rank one, and genericG-
orbits will be of codimension one), hence the projectivization of T ˚X ˆg˚

T ˚X is, roughly, a “resolution” of X ˆ X . However, this space is quite
singular, and we will use an extension of the space on the left as a smooth
replacement.

Proposition 3.3.2. Consider the map

R : PpJ0 ‚ T ˚Xq Ñ X ˆX, (34)

descending from (33). We regardPT ˚X as a divisor inPpJ0 ‚T ˚Xq, descending
from the divisor r1sT˚X (see §3.1).

The map R factors through the blowup X ˆ XČ

1
Ñ X ˆ X at the diagonal

X1 :“ Xdiag, and is an isomorphism from a G-stable neighborhood of PT ˚X to a
neighborhood of the exceptional divisor in X ˆXČ

1
.

Proof. By the universal property of blowups, the map R factors through a
morphism to the blowup

R̃ : PJX Ñ X ˆXČ

1
, (35)
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sending the divisor PT ˚X to the exceptional divisor of the blowup, which
is isomorphic to PTX .

To show that this map is an isomorphism in a G-stable neighborhood of
the divisor PT ˚X , it is enough to show that the induced map dR̃ from the
normal bundle of the divisorPT ˚X to the normal bundle of the exceptional
divisor is an isomorphism.

The normal bundle of PT ˚X can be identified with PpLie J ‚ T ˚Xq, and
the normal bundle of the exceptional divisor can be identified with the
blowup of the tangent bundle TX at the zero section, i.e., of the normal
bundle to X1 “ Xdiag. The map dR̃ is lifted from the analogous map

dR : PpLie J ‚ T ˚X‰0q Ñ TX “ NX1 , (36)

the partial differential of the map R. We compute this map:
Recall that Lie J is canonically isomorphic to the cotangent space of c˚

X .
A section σ of Lie J gives, by pullback of differential forms via the invariant
moment map, a section µ˚

invσ of the cotangent bundle of T ˚X , hence a vec-
tor field vσ on T ˚X , by the symplectic structure. If π : T ˚X Ñ X denotes
the canonical projection, and π˚pTXq is the pullback of the tangent bundle,
we have a canonical projection of vector bundles on T ˚X

pr : T pT ˚Xq Ñ π˚pTXq,

corresponding to the projection of vector fields on T ˚X “to theX-direction”.
Let T ˚

XpT ˚Xq “ T ˚pT ˚Xq{π˚pT ˚Xq denote the relative cotangent bun-
dle of T ˚X over X ; we similarly have a projection of vector bundles

pr1 : T ˚pT ˚Xq Ñ T ˚
XpT ˚Xq.

Moreover, we have canonical identifications

T ˚
XpT ˚Xq

„
ÝÑ T ˚X ˆX TX

„
Ð π˚pTXq,

and the image prpvσq of the aforementioned vector field, as a section of
π˚pTXq, coincides under this identification with “the restriction of µ˚

invσ to
the fiber direction”, that is, with the section pr1pµ˚

invσq of T ˚
XpT ˚Xq.

Consider, for example, an identification c˚
X

ξ
ÝÑ A1 (with 0 P c˚

X mapping
to 0 P A1), and let σ “ dξ. Then, ξ ˝ µinv can be viewed as a quadratic form
on T ˚X , and it gives rise to a map

ιξ : T
˚X Ñ TX

over X . As we have seen in Lemma 2.1.1, the quadratic form is nondegen-
erate; hence, ιξ is an isomorphism.

The differential of the quadratic form, restricted to each fiber, is the graph
of ιξ, considered as a subset of T ˚X ˆX TX “ π˚pTXq. Therefore, the sec-
tion of Lie J corresponding to dξ defines a vector field on T ˚X , whose pro-
jection to the X-direction is the graph of ιξ. Hence, the map dR descends
from

v˚ P T ˚X‰0 ÞÑ pdξ, v˚q P Lie J ‚ T ˚X‰0 ÞÑ ιξpv
˚q P TX.
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In particular, the map dR is fiberwise an isomorphism, hence its lift dR
to the blowup is an isomorphism, and R̃ is an isomorphism from aG-stable
neighborhood of the divisor PJX to a G-stable neighborhood of the excep-
tional divisor.

□

Remark 3.3.3. Notice that, under the isomorphism Lie J “ T ˚c˚
X , the action

of Gm on Lie J is the following: it acts in the canonical way on the base
(a P Gm acts by multiplying a coordinate ξ on c˚

X by a2); this induces an
inverse pullback isomorphism:

pa˚q´1 : T ˚c˚
X Ñ T ˚c˚

X ,

and we multiply this by a, fiberwise. In terms of the coordinates t20´ξt21 “ 1,
the action of Gm on J is given by a ¨ pξ, t0, t1q “ pa2ξ, t0, a

´1t1q. One can
now directly see that the map Lie J ‚ T ˚X‰0 Ñ TX that was described
above is, indeed,Gm-equivariant.

The proposition implies:

Corollary 3.3.4. There is an open, dense, G-stable subset pX ˆ Xq˝ Ă X ˆ

X on which every G-orbit is of codimension one, and the nonzero vectors of its
conormal bundle are regular semisimple. Moreover, every G-orbit on this subset
is isomorphic, over the algebraic closure, to L1zG, where L1 is (non-canonically)
isomorphic to kerpLpXq Ñ AXq, with LpXq a Levi of P pXq.

Proof. Indeed, consider the space T ˚X ˆg˚ T ˚X as the union of the conor-
mal bundles of allG-orbits onXˆX ; the map from J ‚T ˚Xrs is an isomor-
phism onto the regular semisimple subset T ˚Xrs ˆg˚,rs T ˚Xrs by Corollary
3.3.1, and the space J ‚ T ˚Xrs is a union ofGm ˆ G-orbits of codimension
one. By Proposition 3.3.2, a dense open G-stable subset of its projectiviza-
tion is isomorphic to an open subset of a G-stable neighborhood of the di-
agonal X1 “ Xdiag. The description of G-orbits follows from Corollary
2.1.4. □

3.4. Closed orbits and invariant-theoretic quotients. The following lemma
will be very basic in our analysis of the space X ˆX :

Lemma 3.4.1. Every G-orbit in the image of the regular semisimple set PpJ0 ‚

T ˚Xrsq under the map R is closed.
In particular, non-closed G-orbits on X ˆX do not contain regular semisimple

vectors in their conormal bundles.

Proof. The second statement follows from the first, by Corollary 3.3.1.
To prove the first, we need some preliminary results. Choose a basic

orbit-parabolic pair pY, P q as in Lemma 2.2.4. The subvariety Y ˆ Y Ă

X ˆX is closed, hence the map pY ˆ Y q ˆP G Ñ X ˆX is proper.

Consider the space T ˚XĆ

P,Y
“ T ˚

YX
uK
P ˆP G, defined in §2.3. By Lemma

2.3.4, it surjects onto T ˚X , hence J0 ‚ T ˚XĆ

P,Y
surjects onto J0 ‚ T ˚X (and
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same for the subsets of regular semisimple vectors). But the latter has dense
image in X ˆ X , by Proposition 3.3.2, hence so does the former. The sub-
space J0 ‚ T ˚

YX
uK
P maps to Y ˆ Y , and we have a commutative diagram:

J0 ‚ T ˚XĆ

P,Y
→→

RY

↓↓

J0 ‚ T ˚X

↓↓
Ỹ ˆP G →→ X ˆX,

(37)

where Ỹ Ă Y ˆ Y denotes the closure of the image of J0 ‚ T ˚
YX

uK
P in Y ˆ Y

under the map to Y ˆ Y . Hence, the map

Ỹ ˆP G Ñ X ˆX

is surjective and proper. It is thus enough to show that every P -orbit in the
image of J ‚ T ˚

YX
uK
P ,rs in Ỹ is closed.

Let H Ă G be the stabilizer of a point on Y , and HP “ H X P . Con-
sider the quotient Y Ñ Y2 “ Y {UP , and remember that Y2 is isomorphic
to T zPGL2 or SL2 (Lemma 2.3.5), with the connected center of the Levi
quotient of P acting trivially; in particular, stabilizers of points in Y2 are
reductive. Thus, we can fix a Levi decomposition HP “ HL ¨ HU , and a
Levi subgroup L Ă P which contains HL. Notice that Y2 “ HLzL, hence
we can also consider Y2 as a subvariety of Y (depending on the choices that
we have made).

Use an invariant bilinear form on g to identify uK
P “ p. By semisim-

plicity, the image of every element of T ˚
YX

uK
P ,rs under the moment map is

UP -conjugate to an element of l. Thus, it is enough to show that the P -orbit
of RY pa ¨vq is closed, for any v P T ˚

YX
uK
P ,rs with µpvq P l, and any a P J over

the image of v in c˚
X .

Recall that the J-action on v is induced from the action of the centralizer
of µpvq in G; since this acts by a one-dimensional quotient, the same action
is induced from the centralizer of µpvq in L, which is a torus acting nontriv-
ially. Hence, given a P J over µinvpvq, there is an l P L with a ¨ v “ v ¨ l.
Hence, considering Y2 as a subvariety of Y , RY pa ¨ vq P Y2 ˆ Y2. To avoid
confusion, we will be denoting by y a point in Y2 ˆ Y2 considered as a sub-
set of Y ˆ Y , and by ȳ its image in Y2 ˆ Y2 considered as a quotient of
Y ˆ Y . It is immediate to confirm that the Ldiag-orbit of RY pa ¨ vq is closed
in Y2 ˆ Y2; for every point y on that orbit, the preimage of ȳ under the quo-
tient Ỹ Ñ Y2 ˆ Y2 is the closure of the UP -orbit of y, considered as a point
in Ỹ . But Ỹ is affine, hence the UP -orbit of y is closed. Hence, the P -orbit
of RY pa ¨ vq is closed, completing the proof of the lemma. □

Now recall the birational map (28): J Ñ pAX ˆ a˚
Xq �WX . This induces

a map
J0 ‚ T ˚X Ñ pAX ˆ a˚

Xq �WX ,
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which is a smooth geometric quotient3 by the G-action when restricted to
J ‚ T ˚Xrs (i.e., over c̊˚

X ), by Lemma 3.2.4.

Proposition 3.4.2. There is a commutative diagram

J0 ‚ T ˚X‰0
→→

↓↓

T ˚X‰0 ˆg˚
X
T ˚X‰0

→→ X ˆX

↓↓
pAX ˆ a˚

Xq �WX
→→ AX �WX

→→ CX :“ X ˆX �G

which identifies:
‚ CX with AX �WX ;
‚ for every c P CX with corresponding closed G-orbit C Ă X ˆX , the fiber

of J ‚ T ˚Xrs over c with the set N˚,rs
C of regular semisimple vectors in the

conormal bundle to C;
‚ the quotient N˚

C �G with the fiber of pAX ˆ aXq˚ �WX over c.

Proof. Since T ˚X �G “ c˚
X , we have PpJ0 ‚ T ˚Xq �G “ AX �WX , so the

composition PpJ0 ‚ T ˚Xq Ñ X ˆ X Ñ CX indeed factors through a map
AX �G Ñ CX . On the other hand, with notation as in the proof of Lemma
3.4.1, and by the diagram (37), the composition

PpJ0 ‚ T ˚XĆ

P,Y
q ↠ PpJ0 ‚ T ˚Xq Ñ X ˆX

factors through a proper, surjective map Ỹ ˆP G Ñ X ˆX . I claim that the
composition

PpJ0 ‚ T ˚XĆ

P,Y
q Ñ PpJ0 ‚ T ˚Xq Ñ AX �WX

factors through a G-invariant map

Ỹ ˆP G Ñ AX �WX .

Indeed, recall that Ỹ is the closure of the image of J0 ‚T ˚
YX

uK
P in Y ˆY ; the

map J0 ‚ T ˚
YX

uK
P Ñ Ỹ � P factors through AX �WX for the same reasons,

but on the other hand we have a quotient map Ỹ Ñ Y2 ˆ Y2 (again, in the
notation of the proof of Lemma 3.4.1), and Y2 ˆ Y2 � P “ AX �WX , so the
map to AX �WX Ñ Ỹ � P is an isomorphism.

Therefore, the map AX � WX Ñ CX is surjective. Proposition 3.3.2 im-
plies that it is also birational. Since both AX �WX and CX are normal, the
map has to be an isomorphism.

Recall that geometric points of CX correspond bijectively to closed geo-
metric orbits of G on X ˆX . By Lemma 3.4.1, these have to be precisely the
images of PpJ0 ‚ T ˚Xrsq in X ˆ X . Notice that, by Lemma 3.2.4, the set
PpJ0 ‚ T ˚Xrsq contains a unique G-orbit over any point of CX .

3A smooth geometric quotient X Ñ Y is a smooth surjective morphism of G-varieties,
with G acting trivially on Y , such that geometric fibers are G-orbits.
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Let c P CX be such a point, C Ă X ˆ X the closed G-orbit over c, and
denote by an index c various fibers over c. By Corollary 3.3.1, the fiber
J0 ‚ T ˚Xrs over c coincides with the regular semisimple part N˚,rs

C of its
cotangent bundle. Hence,

N˚,rs
C �G “ pJ ‚ T ˚Xrsqc �G “ ppAX ˆ å˚

Xq{WXqc.

On the other hand, the invariant moment map gives rise to aG-invariant
map N˚

C Ñ c˚
X which, by considering the regular semisimple and the zero

vectors, has to be surjective. Since N˚
C � G is normal, it has to coincide

with the spectrum of the integral closure of F rc˚
Xs in the function field of

ppAX ˆ å˚
Xq{WXqc, which coincides with ppAX ˆa˚

Xq{WXqc; that is, with a˚
X

(up to ˘1), if c ‰ r˘1s, and with c˚
X , if c “ r˘1s. □

Corollary 3.4.3. The closure of the image of the map (33) contains N˚
C , for any

closed G-orbit C Ă X ˆ X . Every closed G-orbit contains regular semisimple
vectors in its conormal bundle.

Proof. The second statement was already explained in the proof of the pre-
vious lemma, and the first follows by taking the closure of regular semisim-
ple vectors, and using the fact that N˚

C is irreducible. □

The statement is not true for non-closedG-orbits, which could contribute
smaller irreducible components to T ˚X ˆg˚ T ˚X .

Example 3.4.4. Consider the case of X “ GL2 zPGL3, discussed in Example
3.2.3, where we identified T ˚

x0X “ hK as the representation Std ‘ Std˚ of
H “ GL2. Let v˚ P hK be a nonzero irregular nilpotent vector, i.e., either in
Std or in Std˚. The orbit of x0 under its centralizer Gv˚ is two-dimensional.
Hence, the fiber of

T ˚X ˆg˚ T ˚X

over v˚ P T ˚
x0X under the first projection is (at least) two-dimensional,

while the fiber of
J0 ‚ T ˚X

over it is one-dimensional. Thus, there are conormal vectors to G-orbits on
X ˆX which are not contained in the closure of the image of (33).

3.5. Blow-up of X ˆX at the closed orbits. We have already seen (Propo-
sition 3.3.2) that the map PpJ0 ‚ T ˚Xq Ñ X ˆX is an isomorphism, gener-
ically; in particular, generic fibers over CX “ AX �WX (Proposition 3.4.2)
are single G-orbits. We can now determine which ones:

Proposition 3.5.1. (1) Let c P CX with corresponding closed G-orbit C Ă

X ˆ X . If c ‰ r˘1s, the linear map N˚
C Ñ N˚

C � G (which is identified
with a˚

X , up to ˘1, by Proposition 3.4.2) is an isomorphism on each
fiber over C. If c “ r˘1s, the quadratic map N˚

C Ñ N˚
C � G “ c˚

X is
nondegenerate on each fiber over C.
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(2) The map PpJ0 ‚ T ˚Xq Ñ X ˆ X is an isomorphism over C̊X :“ CX ∖
tr˘1su. In particular, in the setting of Corollary 3.3.4, we can take pX ˆ

Xq˝ “ pX ˆXq ˆCX
C̊X .

(3) The map X ˆ X Ñ CX is a smooth geometric quotient by the G-action
away from r˘1s P CX .

Proof. Let V be the fiber of N˚
C over a point of C, and H0 the stabilizer of

that point. If the linear map (when c ‰ r˘1s)

V Ñ a˚
X ,

where a˚
X is identified, up to ˘1, with the fiber of AX ˆ a˚

X � WX over c,
resp. if the quadratic map (when c “ r˘1s)

V Ñ c˚
X

were trivial on a nonzero, necessarily H0-stable subspace V0 Ă V , that
space would have an H0-stable complement

V “ V0 ‘ V 1
0 ,

identifying the invariant-theoretic quotients

N˚
C �G “ V �H0 “ V 1

0 �H0 “ c˚
X .

In particular, the G-orbit of a generic point of N˚
C (corresponding to an

H0-orbit on V not belonging to V 1
0) is not closed, a contradiction, since by

Proposition 3.4.2 and Corollary 2.1.3 the fibers over all points of c̊˚
X are G-

homogeneous.
This proves the first claim, and it implies that closed G-orbits in X ˆ X

over c ‰ r˘1s are of codimension one, hence coincide with the whole
fiber. Hence, by Corollary 3.3.1, the map from J ‚ T ˚Xrs to the union
T ˚X‰0 ˆg˚ T ˚X‰0 of nonzero vectors in the union of conormal bundles
is an isomorphism over C̊X , therefore the projectivizationPpJ ‚T ˚Xrsq (or,
equivalently, PpJ0 ‚ T ˚Xq) is isomorphic to X ˆX over this subset.

The last claim follows from the analogous claim for PpJ ‚ T ˚Xrsq: Since
T ˚Xrs is a J-torsor over g˚,rs

X by Lemma 3.2.4, we have isomorphisms of
geometric quotients

ppX ˆXq ˆCX
C̊Xq{G “

´

PpJ ‚ T ˚Xrsq ˆCX
C̊X

¯

{G “ PJ rs ˆCX
C̊X “ C̊X .

□

Finally, we are ready to construct a resolution of X ˆ X . We now know
that this space contains two closed G-orbits, X1 “ Xdiag and X´1, around
which the map to AX � WX may fail to be a geometric quotient, namely,
the ones over the points r˘1s P CX . The resolution that we will construct
will eventually turn out to be, simply, the blowup at those two subsets.
However, generalizing Proposition 3.3.2, we will construct this resolution
by a slight modification of the space J ‚ T ˚X , that we will denote by JX .
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The scheme JX will be glued from two open subsets: the first is U1 :“
J0 ‚ T ˚X . The second is U´1 :“ J0 ‚ N˚

X´1
, where X´1 is the closed G-

orbit corresponding to r´1s P CX . We define JX “ U1 Y U´1, glued over
their subsets of regular semisimple vectors as follows: Notice that U rs

1 “

J ‚ T ˚Xrs. Moreover, by Proposition 3.4.2, we have an identification of
N˚,rs
X´1

with the subset p´1q¨T ˚Xrs of J‚T ˚Xrs, henceU rs
´1 “ J‚p´1q¨T ˚Xrs.

This defines the isomorphism

U rs
´1 “ J ‚ p´1q ¨ T ˚Xrs Q pj, p´1q ¨ v˚q ÞÑ pp´1q ¨ j, v˚q P J ‚ T ˚Xrs “ U rs

1 ,

hence the scheme JX . This scheme retains a map

JX Ñ pAX ˆ a˚
Xq �WX , (38)

whose restriction to c̊˚
X is equal to J ‚ T ˚Xrs.

The map (33) extends to JX :

JX Ñ T ˚X ˆg˚ T ˚X, (39)

and we define distinguished divisors r1sJX , r´1sJX and Jnilp
X , similarly as

in §3.1.
Extending Corollary 3.1.2,

Corollary 3.5.2. The divisors r˘1sJX,‰0
and Jnilp

X,‰0 in JX,‰0 intersect trans-
versely, and the morphism JX,‰0 Ñ AX �WX is smooth away from r˘1sJX,‰0

.

Here, JX,‰0 denotes the complement of the zero section J0‚X Ă J0‚T ˚X
in U1, and of the zero section J0 ‚X´1 Ă J0 ‚N˚

X´1
in U´1.

Proof. On the open subset U1, this is contained in Corollary 3.1.2. For U´1,
the same proof, based on Lemma 3.1.1, works, because of the non-degeneracy
statement of the first part of Proposition 3.5.1. □

Now consider the composition JX Ñ T ˚Xˆg˚T ˚X Ñ XˆX . On JX,‰0,
it clearly factors through the projectivization PJX .

Proposition 3.5.3. The morphism

R : PJX Ñ X ˆX

is isomorphic to the blowup of X ˆ X at the closed G-orbits X1 and X´1. The
preimage of any point of CX “ X ˆ X � G under the composition of the maps
PJX Ñ X ˆX Ñ CX is a normal crossings divisor.

Proof. The statement identifyingPJX as a blowup has already been proven
away from r´1s P CX , by a combination of Propositions 3.3.2 and 3.5.1. On
a G-stable neighborhood of r´1sJX , it can be proven by exactly the same
arguments as in Proposition 3.3.2. Notice that, now, the map N˚

X´1
Ñ c˚

X ,
viewed as a quadratic form on the fibers by fixing a coordinate ξ on c˚

X ,
gives rise to a map from the conormal to the normal bundle:

N˚
X´1

Ñ NX´1 ,
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and the non-degeneracy of this quadratic form (Proposition 3.5.1) implies
that this map is an isomorphism. This fact implies, as in Proposition 3.3.2,
that the map from PJX to the blowup of X ˆ X at X´1 is an isomorphism
around r´1sJX .

The preimage of any point on CX is either a unique (smooth) G-orbit of
codimension one in X ˆ X , or is contained in the divisors r˘1sPJX and
PJnilp

X ; by Corollary 3.5.2, these have normal crossings. □

I finish this section by stating rationality properties of the map N˚
X´1

Ñ

c˚
X , analogous to those of the invariant moment map that were proven in

§2.3. Notice that, up to this point in this section, we have not used the
fact that we are working with the “correct representative” of a variety in its
class modulo G-automorphisms (see Proposition 2.2.7), but now we will.

Let pY, P q be a basic orbit-parabolic pair, as in Proposition 2.3.6; hence,
Y is a closed P -orbit, and the quotient Y {RpP q is isomorphic to T zPGL2

or to PGL2. We have defined a cover T ˚XĆ

P
Ñ T ˚X , and an irreducible

component T ˚XĆ

P
thereof; by base change, we get analogous covers for

J ‚ T ˚X . We let

JXĂ
P

“ tpv, P 1q|v P JX , P
1 „ P, µpvq P uK

P 1u

(where µ also denotes the moment map for JX ), and we let JXĂ
P,Y

be the

closure of J ‚ T ˚XĆ

P,Y,rs
in JXĂ

P
. (Recall that J rs

X “ J ‚ T ˚Xrs.) Finally,

recalling that N˚
X´1

is the closure of p´1q ¨ T ˚Xrs in JX , let N˚
X´1

Č

P,Y
be the

closure of p´1q ¨ T ˚XĆ

P,Y,rs
in JXĂ

P,Y
.

Explicitly, fix the pair pY, P q, let x1 P Y Ă X , let V “ T ˚
x1X , and VP “ V X

µ´1puK
P q, as in Proposition 2.3.6, v P V rs

P . Then p´1q ¨ v P T ˚X , the translate
of v under the action of the p´1q-section of J , lives over a point x2 which
also belongs to Y , because this action can be induced by the centralizer
of v in a Levi subgroup of P (as in the proof of Lemma 3.4.1). The point
x “ px1, x2q P X ˆX belongs to the closed orbit X´1, by Lemma 3.4.1, and
setting Hi for the stabilizer of xi, and V 1 “ ph1 ` h2qK Ă g˚, V 1

P “ V 1 X uK
P ,

we have

N˚
X´1

Č

P,Y
“ V 1

P ˆpPXH1XH2q G ÝÑ V 1 ˆpH1XH2q G “ N˚
X´1

.

Let Y2 “ Y {UP , as before, and let Y2,´1 be analog of X´1 for Y2 — that
is, the closed L-orbit on Y2 ˆY2 which contains the projections of cotangent
pairs pv, p´1qvq, where v P T ˚Y rs

2 . If x̄ is the image of x in Y2,´1, and V 1
2 the

fiber of N˚
Y2,´1

pY2 ˆ Y2q over x̄, then we have a quotient map V 1
P Ñ V 1

2 .

Proposition 3.5.4. In the setting above, the map N˚
X´1

Č

P,Y
Ñ N˚

X´1
is surjective

on F -points.
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The kernel of the map V 1
P Ñ V 1

2 is an isotropic subspace of V 1 (with respect to
the quadratic map V 1 Ñ c˚

X ) of dimension

dimkerpV 1
P Ñ V 1

2q “
dimV 1 ´ dimV 1

2

2
. (40)

The quadratic space V 1 is split (maximally isotropic) if and only if V 1
2 is, which

happens if and only if the quadratic space V is.

Hence, by the equivalences of Proposition 2.3.1, the fibers of N˚
X´1

are
split quadratic spaces if and only if the stabilizer of one point on X is split.

Proof. The proof is identical to that of Proposition 3.5.4; we just need to
add how the property of V 1

2 being split relates to the property of V2 being
split. But this is clear from considering the space Y2 or, equivalently, Y2,ad “

Y2{ZpLq, the latter being isomorphic to T zPGL2 or to PGL2. In the both
cases, there is an automorphism of rank 2 of Y2, which, applied to one copy
of Y2, interchanges the orbits Y diag

2 and Y2,´1 Ă Y2ˆY2; so, one, equivalently
all fibers of the conormal bundle of the former are split if and only if one,
equivalently all, fibers of the conormal bundle of the latter are. □

Finally:

Lemma 3.5.5. Assume that one, equivalently all, stabilizers of points on X are
split. Then the map X ˆX Ñ CX “ AX �WX is surjective on F -points.

Proof. By Proposition 2.3.1, the stabilizers being split is equivalent to the
map T ˚X Ñ c˚

X being totally isotropic, which implies that it is surjective.
This means that the projection J rs ‚ T ˚Xrs Ñ J rs is surjective on F -points.
The map J rs Ñ AX �WX is also surjective on F -points. Hence, the compo-
sitionPJ rs

X “ PpJ rs ‚T ˚Xrsq Ñ X ˆX Ñ CX is surjective on F -points. □

Example 3.5.6. Let us consider the case of the varietyX “ GL2 zPGL3 “ the
variety of decompositions G3

a “ V2 ‘ V1, that we already saw in Example
3.2.3. Letting x1 be the decomposition ⟨e1, e2⟩‘ ⟨e3⟩, and P “ the stabilizer
of the plane ⟨e2, e3⟩, we will get x2 “ a decomposition ⟨e1 ` ce2, e3⟩ ‘ ⟨e2⟩,
with the scalar c depending on the chosen cotangent vector. Then we see
that H1 X H2 “ P X H1 X H2 » Gm, V 1 “ V 1

P “ ph1 ` h2qK “ Std1 ‘ Std˚
1 ,

where Std1 denotes the standard one-dimensional representation of Gm,
and V 1 intersects the nilpotent cone in g˚ along irregular orbits only. The
reader should compare this with Example 3.2.3, where we saw that the
nilpotent limit of the action of the p´1q-section of J on regular semisimple
vectors does not exist, but it does exist at the exceptional divisor of the
blowup along the (irregular nilpotent) divisor Std ‘ Std˚. This blowup,
with the strict transform of the nilpotent divisor removed, is isomorphic to
the conormal bundle N˚

X´1
.
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4. INTEGRATION FORMULA

The goal of this section is to prove the Theorem 4.0.2 below. To formu-
late it, we will need a way to fix measures compatibly on orbits which are
isomorphic over the algebraic closure:

Definition 4.0.1. Let H1, H2 Ă G be two subgroups that are conjugate over
the algebraic closure, and such that the normalizer of Hi acts trivially on
the top exterior power

Źtop hi (in particular, Hi is unimodular). Two G-
invariant measures µ1, µ2 on the spaces H1zG, H2zG, respectively, will be
said to be compatible, if they can be presented as µi “ c ¨ |ωi| for some in-
variant volume forms ωi, i “ 1, 2, and the same scalar c, such that, over the
algebraic closure, ω2 is conjugate to ϵω1, for some ϵ P F̄ with |ϵ| “ 1.

Recall that we have fixed a Haar measure on F , so that the absolute value
of a volume form is a well-defined measure. We will apply this to the fol-
lowing setting: Consider the diagonal action ofG onXˆX . By Proposition
3.5.1 and Corollary 3.3.4, the G-stabilizers of points over any c P C̊X (the
complement of r˘1s in CX “ AX � WX ) are all conjugate, over the alge-
braic closure, to the kernel of the map LpXq ↠ AX , where LpXq is a Levi
subgroup of a parabolic of type P pXq.

Theorem 4.0.2. Let ω be a nonzeroGˆG-invariant volume form onXˆX defin-
ing an invariant measure |ω|. Fix compatibleG-invariant measures dg9 (Definition
4.0.1) on all G-orbits over C̊X .

Then, identifying CX » A1 and letting c˘1 be the coordinates of the points
r˘1s, there is an additive Haar measure dc onA1 such that the following integra-
tion formula holds:

ż

XˆX
Φpxq|ω|pxq “

ż

CX

|c´ c1|
d1
2

´1|c´ c´1|
d´1
2

´1

˜

ż

pXˆXqc

Φpg9 qdg9

¸

dc.

(41)
Here, d1 “ dimX “ codimX1, and

d´1 “ codimX´1 “ 2ϵ
⟨︁
ρP pXq, γ̌

⟩︁
´ d1 ` 2, (42)

where γ̌ is the spherical coroot, and

ϵ “

#

1, for roots of type T (dual group SL2);
2, for roots of type G (dual group PGL2).

Moreover, in the case of type G we have

d1 “ d´1 “
⟨︁
2ρP pXq, γ̌

⟩︁
` 1. (43)

Notice that the formula for codimX´1 is new, and will be proven as a
corollary of the integration formula.

There are also analogous integration formulas for the normal/conormal
bundles of the orbits X1 and X´1. Notice that, fixing the isomorphism
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c˚
X “ A1, by the nondegenerate quadratic forms obtained by the invariant-

theoretic quotients
N˚
X1

Ñ c˚
X Ð N˚

X´1

(see Proposition 3.5.1), the normal and conormal bundles areG-equivariantly
isomorphic. Again, G-stabilizers of points on X ˆ X over any ξ ‰ 0 P c˚

X
are all conjugate, over the algebraic closure, to the kernel L1 of the map
LpXq ↠ AX .

Theorem 4.0.3. Let ω be a nonzero G-invariant volume form on N˚
X˘1

which
restricts to Haar measures on the fibers. Fix compatible G-invariant measures dg9
on all G-orbits over c̊˚

X .
Then, there is an additive Haar measure dξ on c˚

X » A1 such that the following
integration formula holds:

ż

N˚
X˘1

Φpxq|ω|pxq “

ż

c˚
X

|ξ|
d˘1
2

´1

˜

ż

pN˚
X˘1

qξ

Φpg9 qdg9

¸

dξ. (44)

The proof of Theorem 4.0.3 is completely analogous to that of Theorem
4.0.2, and therefore I will only present that of Theorem 4.0.2, leaving the
reformulation for the other to the reader.

4.1. Pullback to the polarization. Consider the map PJX
R
ÝÑ X ˆ X Ñ

AX �WX . Recall that J rs
X “ J ‚ T ˚Xrs; we let

JXx
‚,rs

“ J ‚ T ˚Xz

‚,rs
“ AX ˆ T ˚Xz

‚,rs
Ă JX ˆc˚

X
a˚
X ,

where T ˚Xz

‚
is the distinguished irreducible component of the polarized

cotangent bundle that was defined in §2.1.
We have a commutative diagram

PJXx
‚,rs p →→

↓↓

PJX
R →→

↓↓

X ˆX

↙↙
AX →→ AX �WX .

Recall that we denote by r˘1sPJX the exceptional divisors of the blowup
R, and by d˘1 the codimensions of the orbits X˘1.

Lemma 4.1.1. Let KXˆX be the canonical bundle on X ˆX . Then

R˚KXˆX “ KPJX ppd1 ´ 1qr1sPJX ` pd´1 ´ 1qr´1sPJX q.

Proof. This is immediate from the characterization ofPJX as the blowup of
X ˆX at the two divisors X1 “ Xdiag and X´1 (Proposition 3.5.3). □

Hence, if ω is a nonzero, G ˆ G-invariant volume form on X ˆ X , the
divisor of its pullback to PJX is

rR˚ωs “ pd1 ´ 1q rr1sPJX s ` pd´1 ´ 1q rr´1sPJX s ,
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where d1 “ codimpX1q “ dimX , and d´1 “ codimpX´1q.
Set Y “ PJXx

‚,rs
, for notational simplicity. The map p : Y Ñ PJX is

an étale Z{2-cover onto its image, and notice that JXx
‚,rs

“ AX ˆ T ˚Xz

‚,rs
,

canonically. Thus, setting R̂ “ p ˝ R, we have

rR̂˚
ωs “ pd1 ´ 1qrY1s ` pd´1 ´ 1qrY´1s. (45)

where Y˘1 “ r˘1sY Ă Y .
Fix a pair px,Bq P pX ˆ Bq˝, defining an embedding å˚

X Ñ T ˚Xz

‚,rs

by Knop’s section κ̂X (§2.1), and let L1 be the stabilizer of the points in
the image. If L denotes the centralizer of the image of such a point under
the polarized moment map to ĝ˚

X , identified with the Levi quotient LpXq

of P pXq, then L1 Ą rL,Ls, and L{L1 » AX , canonically because of the
polarization. The action map identifies

T ˚Xz

‚,rs
» å˚

X ˆ L1zG.

Hence:
PJXx

‚,rs
“ AX ˆ L1zG. (46)

Fix an invariant volume form ωL1zG on L1zG. Then, by (45) and the fact
that the only nowhere vanishing regular functions on a torus are characters,
there is a Haar volume form ωAX

on AX and an m P Z such that

R̂˚
ω “ pa´ 1qd1´1pa` 1qd´1´1am ¨ ωAX

^ ωL1zG (47)

under (46), where we have identifiedAX » Gm to fix a coordinate a. On the
other hand, this has to be invariant under the WX -Galois action a ÞÑ a´1,
hence

m “ 1 ´
d1 ` d´1

2
.

4.2. Descent toXˆX . The integration formula (41), now, follows from (47)
by descending to AX �WX » A1: Fix a coordinate c on that space, with c˘1

the coordinates of the points r˘1s. In a sufficiently small neighborhood U
of any point of AX �WX ∖ tr˘1su the stabilizers of all points are conjugate
to a group L1

1 which is conjugate over the algebraic closure to L1, and the
preimage of U in X ˆX is, G-equivariantly isomorphic to U ˆL1

1zG. Thus,
fixing the compatible measures dg9 on theG-orbits as in the statement of the
theorem, there is an integration formula of the form:

ż

XˆX
|ω| “

ż

AX�WX

φpcq

ż

pXˆXqc

dg9dc

for some nonnegative measurable function φ on AX � WX ∖ tr˘1su, and
some additive Haar measure dc “ |ωA1 | on A1. On the other hand, writ-
ing, in such a neighborhood c, the measure dg9 on L1

1zG as |ω1|, for some
invariant volume form ω1, we see by applying (47) over a suitable algebraic
extension of F that the pullback of ωA1 ^ ω1 to PJXx

‚,rs
has to be a multiple

of pa´1qd1´1pa`1qd´1´1am ¨ωAX
^ωL1zG by a rational function fpaq´1 with
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|fpaq| “ φpcpaqq. Without loss of generality, the pullback of ω1 is equal to
ωL1zG, and an elementary calculation, choosing, for example, the isomor-
phisms and the map AX “ Gm Ñ AX � WX “ A1 given by c “ a ` a´1,
shows that, up to a scalar that we can take to be 1 by scaling the forms,

|R̂˚
ωA1 | “ |c´ c1|

1
2 |c´ c´1|

1
2 |ωAX

|,

and |a´ p˘1q|2 ¨ |a|´1 “ |c´ c˘1| (up to a fixed scalar), hence:

φpcq “ |c´ c1|
d1
2

´1|c´ c´1|
d´1
2

´1

for a suitable dc.

4.3. Degeneration. We have proven the integration formula of Theorem
4.0.2, except for the determination of the codimension d´1 of the orbit X´1.
In this subsection we will prove the codimension formula (42):

pd1 ´ 1q ` pd´1 ´ 1q “ 2ϵ
⟨︁
ρP pXq, γ̌

⟩︁
,

where γ̌ is the spherical coroot, and

ϵ “

#

1, for roots of type T (dual group SL2);
2, for roots of type G (dual group PGL2).

with d1 “ d´1 “
⟨︁
2ρP pXq, γ̌

⟩︁
` 1 in the case of type G.

To prove this, we degenerate X to its boundary degeneration XH, which is
a horospherical variety. The codimension formula will follow by compar-
ing the integration formula (41) to the corresponding formula forXH ˆXH,
which is very easy to compute.

More precisely, consider the decomposition of the coordinate ring of X
as a G-module into irreducibles:

F rXs “
à

λPΛ`
X

F rXsλ.

The indices λ denote, here, the highest weight of the representation, and
Λ`
X Ă ΛX :“ HompAX ,Gmq » Z is the monoid of weights such that the

corresponding rational B-eigenfunction is regular; from now on we iden-
tify it with N. The above decomposition is not an algebra grading, a fact
that is known to be equivalent to the fact that WX ‰ 1 (see [Kno96]). In-
stead, it corresponds to an algebra filtration

Fλ “
à

νďλ

F rXsν ,

i.e., Fλ ¨ Fµ Ă Fλ`µ. The Rees family [Pop86, §4]:

F rX s :“
à

λ

Fλ ¨ tλ Ă F rXsrts

defines an affine G-variety X overA1 “ SpecF rts, together with an action
of Gm that extends to a morphism τ : X ˆ A1 Ñ X ; more canonically,
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Gm “ SpecF rΛXs “ AX , and the base A1 of this family is the affine em-
bedding AX Ą AX on which elements of Λ`

X extend to regular functions,
so the defining morphism is

X ˆAX

↘↘

τ →→ X

π↙↙
AX ,

(48)

and extends to a canonical action of AX ˆG on X over AX .
By [Pop86] (see also [SV17, §2.5]), the special fiber XH :“ X0 is an affine

horospherical G-variety4 with P pXHq “ P pXq; its open G-orbit X‚
H is iso-

morphic to U´L1zG, where U´ is the unipotent radical of a parabolic op-
posite to P pXq, and L1 is the kernel of the map LpXq ↠ AX , as above.
Notice that the image of the defining morphism τ lies in the complement
of the open orbit over 0 P AX .

It is known that there is a family of G-invariant volume forms on the
homogeneous parts of the fibers of X Ñ A1 that is everywhere nonva-
nishing, cf. [SV17, §4.2]. More precisely, let us fix a parabolic P in the
class of P pXq, and let X̊ be the open P - (and Borel) orbit. Restricting to
U -invariants, the above decomposition becomes a grading

F rXsU “
à

λ

F rXsUλ ,

with F rXsUλ “ the (one-dimensional) highest weight subspace of F rXsλ, on
which P pXq acts by the character λ of the quotient AX . Correspondingly,
the family X � U becomes constant:

σ : X � U „
ÝÑ X � U ˆAX , (49)

but it can be seen from the definitions that this isomorphism is related to
the one (call it τU ) that we obtain by descending the defining map τ of (48)
by:

σ´1px̄, tq “ τU px̄ ¨ t´1, tq, (50)

where we have used the canonical action ofAX onX �U ; that is, the action
of AX on X descends to the action

a ¨ px̄, tq “ px̄ ¨ a, atq (51)

on X � U ˆAX .
If X̊ is the union of open P -orbits on the various fibers, the restriction of

σ defines an isomorphism

X̊ {U
„
ÝÑ X̊{U ˆAX ,

4In other references, XH denotes just the open G-orbit in XH. Here, I have found it more
convenient to use XH for the affine degeneration, and X‚

H for its open G-orbit.
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which, by the local structure theorem [BLV86, Théorème 1.4], [Kno94, The-
orem 2.3], can be lifted P “ L ¨ U -equivariantly:

σ̃ : X̊ » S ˆ U ˆAX , (52)

for some Levi subgroup L Ă P , with S » X̊{U an L-stable subvariety of
X , acting by conjugation on U and via the quotientAX , simply transitively,
on S. More precisely, L is the centralizer of the image of an element v P

T ˚X̊
uK,rs

under the moment map, and S is a “flat”, that is, the L-orbit of
the image of v on X .

From now on, by abuse of notation, any reference to X should be taken
to refer to the smooth locus of the map π : X Ñ AX . Consider Ω :“

ΩX {A1 “ the relative cotangent sheaf of X
π
ÝÑ A1. Restricted to any fiber,

it is canonically identified with the cotangent bundle of that fiber. Its top ex-
terior power,

ŹtopΩ, restricts to the bundles of volume forms on the fibers
(of the smooth locus).

Lemma 4.3.1. There is aG-invariant section ω of
ŹtopΩ which restricts to a non-

vanishing volume form on each fiber. Moreover, such a form is an AX -eigenform
satisfying, for every a P AX ,

a˚ωX “ e2ρP pXqpaq ¨ ωX . (53)

Notice that we use exponential notation for the character 2ρP pXq “the
sum of roots in the unipotent radical of P pXq, since we use additive nota-
tion for roots.

Proof. A nonzero, P -invariant volume form on X{U ˆU pulls back by (52)
to a P -invariant section ωX̊ of the line bundle

ŹtopΩ on X̊ . If X admits
a G-invariant measure (as is the case for affine homogeneous spaces), so
does XH [SV17, §4.2], and the g-pullback of ωX̊ , for every g P G, is a
gPg´1-invariant section of Ω on X̊ g´1, which coincides with ωX̊ on the
intersection with X̊ ; thus, these translates glue to a global section ωX of Ω
over the union X ‚ of all open G-orbits on the fibers.

This section restricts, by construction, to a nonvanishing volume form
on each fiber. Notice, also, that any other such form is a multiple of ωX by
a nowhere vanishing regular function on AX » A1, hence by a scalar.

Regarding the action of AX , it is enough to prove (53) for the restriction
of ωX to X̊ . In terms of the isomorphism (52), the P -invariant form is
given by

ωX̊ ps, u, tq “ e2ρP psq ¨ ωSpsq ^ ωU puq,

where ωS is anAX -invariant volume form on S, ωU is a U -invariant volume
form on U , and we have identified S » AX by choosing a base point. The
action of AX on X̊ is given by (51) on S ˆ AX , and trivial action on U ,
therefore this form is e2ρP pXq-equivariant. □
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Now we move to the space XĂ :“ X ˆAX
X . Again, we only work

over the smooth locus of the morphism to AX . The tensor product of ωX

with itself gives rise to a section ω
XĂ

of the top exterior power of the relative
cotangent bundle of XĂ Ñ AX , which restricts to an invariant, nonvanish-
ing, GˆG-invariant volume form on the open orbit of each fiber.

Proposition 4.3.2. There is an isomorphism XĂ �G » A1 ˆAX over AX .

Proof. Recall the heighest weight decomposition F rXs “
À

λ F rXsλ, where
λ ranges in a monoid Λ`

X » N of weights of AX . Notice that the highest-
weight modulesF rXsλ are necessarily self-dual; indeed, twisting the action
of G on X “ HzG by a Chevalley involution does not change its isomor-
phism class as a G-variety (because H is reductive), hence preserves the
monoid Λ`

X ; because Λ`
X , it acts trivially on it. Thus, pF rXsλ b F rXsλqG “

F , where G here acts diagonally.
This gives the structure of a graded vector space to

F rX ˆXsG “
à

λ,µ

pF rXsλ b F rXsµqG “
à

λ

pF rXsλ b F rXsλqG “
à

λ

F,

which also corresponds to a filtration of rings, with associated graded grF rXˆ

XsG “ F rT1s, where T1 is the image, in the grading, of a nonzero element
T1 of F in the copy labelled by the first nontrivial element of Λ`

X .
But this shows that T1 P F rXˆXsG generates the ring freely, thus, F rXˆ

XsG » F rT1s.
Moving now to the coordinate ring F rX s Ă F rXsrts of the Rees family,

this argument shows that

F rXĂsG “ F rT1t
2, ts,

hence XĂ �G » A2 “ A1 ˆAX . □

Notice that at t “ 0, this specializes to an isomorphism XH ˆXH �G »

A1 which isAX -equivariant whenAX acts by the square of the generator λ1
of Λ`

X onA1 (because the action of AX on XĂ restricts to its diagonal action
on the two copies of the special fiber XH ˆXH). More generally, the action
of AX on A1 ˆ AX “ SpecF ry, ts, where y “ T1t

2 as in the proof above, is
given by

a ¨ py, tq “ pλ21paqy, λ1paqtq.

As mentioned, the restriction of the form ω
XĂ

to the fiber over any t P AX
is aGˆG-invariant, nonzero volume form ωt; on the special fiber, it satisfies
the integration formula:

ż

XHˆXH

|ω0| “

ż

A1

|c|2ϵ⟨ρP pXq,γ̌⟩
˜

ż

L1zG
|ωL1zG|

¸

dc, (54)

where ϵ is as in Theorem 4.0.2. Indeed, the special fiber contains an open
dense subset which is AX ˆ G-equivariantly isomorphic to AX ˆ L1zG,
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and which corresponds to the open Bruhat cell under the isomorphism
X‚

H ˆ X‚
H{G “ HHzG{HH, where HH » kerpP pXq´ Ñ AXq, with P pXq´

opposite to P pXq. The parabolic P pXq´ is actually conjugate to P pXq: in-
deed, if X “ HzG, since H is reductive there is a Chevalley involution of G
which fixes H , and hence preserves the isomorphism class of X — but this
turns the class of P pXq to the class of P pXq´. Thus, the integration formula
for the open Bruhat cell with respect to P pXq´ reads:

ż

G
Φpgqdg “

ż

AX

ż

HHˆU´

P pXq

Φpu1awu2qdpu1, u2q ¨ |e2ρP pXqpaq|da,

where w is the longest element of the Weyl group, and this easily translates
to (54). Here, we need to take into account that there is an isomorphism

HHzG �HH
„
ÝÑ A

1

which pulls back to the character γ
ϵ (a generator for ΛX “ HompAX ,Gmq)

under the sequence of maps

AX Ñ HHAXwHH ãÑ G Ñ HHzG �HH
„
ÝÑ A

1.

Hence, the inverse of this sequence of maps (restricted to Gm) is given by
the cocharacter ϵγ̌.

On the other hand, consider the integration formula (41), taking into ac-
count that the points c1, c´1 onXˆX �G, expressed now in the coordinate
T1 as above, when we vary the parameter t ‰ 0 become c˘1t

2 in the coor-
dinate T1t2. The limit as t Ñ 0 must coincide with the integration formula
(54) on XH ˆXH, proving the codimension formula (42).

Finally, for spherical roots of type G we have, by Proposition 2.2.7, a
nontrivial G-automorphism of X of order 2. Applied to the first copy of X
in XˆX , this automorphism does not preserve the diagonal X1, hence has
to interchange it with the unique other semisimple G-orbit which can have
codimension larger than one, that is, with X´1. This completes the proof of
Theorem 4.0.2.

5. SCHWARTZ MEASURES

We are ready to consider the pushforward of Schwartz measures:

SpX ˆXq Ñ MeaspCXq, (55)

whose image we have denoted by SpX ˆ X{Gq. From now on, we as-
sume that X is not only a “correct representative” in its class modulo G-
automorphisms (Definition 2.2.8), but also that stabilizers of points on X
are split; thus, by Lemma 3.5.5, the map X ˆ X Ñ CX is surjective on
F -points.

In this section we will obtain as much information as possible from ab-
stract principles about the space SpX ˆ X{Gq, using the blowup PJX . We
use the blowup in the way that it is used in Igusa integrals: as a resolution
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of the map X ˆ X Ñ CX , in the sense that preimages of points are normal
crossings divisors, see Proposition 3.5.3.

We will actually be working mainly with the linearizations of this G-
space. The main result of the section is Theorem 5.3.2, leaving us only a
certain linear combination of scalars to compute in the next section. Strictly
speaking, the techniques of the next section are sufficient to obtain the main
results, Theorems 1.4.1 and 1.3.1, but using the resolution puts the results
into a conceptual context, up to the computation of a linear combination of
coefficients.

5.1. Generalities on Schwartz measures. Before we proceed, I recall some
concepts, and introduce some notation, related to cosheaves of Schwartz
measures; more details can be found in [AG08].

Let Z be a smooth variety, and D Ă Z a divisor. We let C8p‚, Dq denote
the sheaf of functions on the F -points of Z which, locally, are of the form
Φpzq|ϵDpzq|, where Φ is a smooth function and ϵD is a local generator for
the divisor D. Informally, we consider such functions as “smooth sections
of the complex line bundle |LD| associated to D”.

Consider the restricted topology of semialgebraic sets on the F -points of
Z. (The F -points of Zariski open subsets will be enough, for our purposes.)
We can define a cosheaf Sp‚, Dq of Schwartz measures valued in |LD|. In
the Archimedean case, its sections are linear combinations of measures on
semialgebraic open subsets which can be written as products Φ ¨ ω, where
ω is a nowhere vanishing Nash (=smooth semialgebraic) density on such
an open subset, and Φ is a section of C8p‚, Dq of rapid decay (together with
its derivatives). In other words, sections of Sp‚, Dq are generated by linear
combinations of measures supported on open subsets which admit (semi-
algebraic) coordinates px1, . . . , xnq, and where the divisor D is represented
by a polynomial function fD, and in such coordinates are of the form

|fD| ¨ Φ ¨ dx1 ¨ ¨ ¨ dxn, (56)

where Φ is a Schwartz function on the given chart. For every open U Ă Z,
the space SpU,Dq is a Fréchet space; if U admits such a chart, the topology
is defined by the seminorms

|fD| ¨ Φ ¨ dx1 ¨ ¨ ¨ dxn ÞÑ sup |TΦ|,

where T ranges over all smooth semialgebraic differential operators de-
fined on that chart. (In the case of affine algebraic sets, one can consider
just algebraic differential operators.) In the non-Archimedean case, sec-
tions of Sp‚, Dq are simply linear combinations of measures which, locally
on a chart, can be written as (56), with Φ compactly supported. Note that
they are not necessarily smooth as measures on Z, because of the factor
|fD|.

For a closed subset Y Ă Z (“closed” means semialgebraic, again, but
the reader can restrict their attention to Zariski closed) we define the stalk
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SY p‚, Dq as the cosheaf on Z, supported on Y , whose sections over an open
U Ă Z are the quotient

SY pU,Dq “ SpU,Dq{SpU ∖ Y,Dq. (57)

The fiber SY p‚, Dq is the cosheaf whose sections over U Ă Z are the quotient

SY pU,Dq “ SpU,Dq{C8
temppU, rY sqSpU,Dq, (58)

whereC8
temppU, rY sq denotes the ideal of those tempered (i.e., of polynomial

growth together with their polynomial derivatives) smooth functions that
vanish on Y . In the non-Archimedean case, the natural map SY p‚, Dq Ñ

SY p‚, Dq is, of course, an isomorphism.
Our analysis of the pushforward (55) starts from the following:

Lemma 5.1.1. Let Z Ñ Y be a smooth map of smooth varieties which is surjective
on F -points. Then the pushforward of SpZq is equal to SpY q.

Proof. This is standard, see, e.g., [Sak16, Proposition 3.1.2]. □

Corollary 5.1.2. Let U Ă X ˆ X be the preimage of C̊X :“ CX ∖ tr1s, r´1su.
Then the pushforward of SpUq is the space of Schwartz measures SpC̊Xq.

Proof. Indeed, the map X ˆ X Ñ CX is smooth over C̊X by Proposition
3.5.1, and the map is surjective on F -points by Lemma 3.5.5. □

Thus, our remaining task is to determine the behavior of the elements of
SpX ˆ X{Gq close to the points r˘1s P CX . To this end, we can linearize
the problem: Let x P X˘1, with H˘1 its stabilizer in G and V˘1 its fiber
in the conormal bundle N˚

X˘1, so that V˘1 � H˘1 “ N˚
X˘1

� G “ c˚
X , by

Proposition 3.4.2. We let SpV˘1{H˘1q be the pushforward of SpV˘1q under
the map V˘1 Ñ c˚

X .

Proposition 5.1.3. There is an F -analytic isomorphism between a neighborhood
U1 of 0 P c˚

XpF q (in the Hausdorff topology on F -points) and a neighborhood U2 of
r˘1s P CXpF q, such that the space of restrictions toU1 of elements of SpV˘1{H˘1q

is equal, under this isomorphism, to the space of restrictions to U2 of the pushfor-
wards of elements of SpX ˆ Xq supported in a certain GpF q-stable neighborhood
of x.

The restriction to a GpF q-stable neighborhood of x is because the map
GpF q Ñ X˘1pF q “ H˘1zGpF q sending g to x ¨ g may not be surjective on
F -points. Eventually, as we will see, the normal fibers V˘1 of all points
on X˘1 contribute the same germs of pushforward measures, so this detail
will not matter.

Proof. The pushforward map SpV˘1q Ñ SpV˘1{H˘1q factors through the
H˘1-coinvariants of SpV˘1q, and similarly the pushforward map SpX ˆ

Xq Ñ SpX ˆX{Gq factors through the G-coinvariants of SpX ˆXq.
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Fix an isomorphism c˚
X » A1 and use the resulting nondegenerate qua-

dratic form (Proposition 3.5.1) V˘1 Ñ c˚
X » A1 to identify V˘1 with its

linear dual, the fiber of the normal bundle.
By Luna’s étale slice theorem [Lun73], there is an H˘1-stable subvariety

W Ă X ˆX containing x, and a Cartesian diagram of pointed spaces with
étale diagonal maps:

pW ˆH˘1 G, xq

←← →→

↓↓

pV˘1 ˆH˘1 G, 0q

↓↓

pX ˆX,xq

↓↓

W �H˘1

←← →→
V˘1 �H˘1 “ c˚

X CX “ X ˆX �G.

(59)

The étale diagonals induce isomorphisms between neighborhoods U1

of 0 P c˚
XpF q and U2 of r˘1s P CXpF q, and [Sak16, Corollary 4.2.1] im-

plies that such a diagram induces an isomorphism between the coinvariant
spaces over these neighborhoods; more precisely (since we are not treat-
ing V˘1{H˘1 as a stack), between the H˘1pF q-coinvariants of elements of
SpV˘1q supported in the preimage of U1, and the GpF q-coinvariants of ele-
ments of SpXˆXq supported in the intersection of the preimage of U2 with
the GpF q-orbit of the Luna slice W pF q. In particular, the pushforwards of
those measures to U1 » U2 coincide. □

From now on, we denote V˘1 simply by V , and H˘1 simply by H . The
reader should not confuse that, in the case of X´1, with the representation
X “ HzG used elsewhere in this paper. The dimension d˘1 of V will be
denoted simply by d.

5.2. Pullback to the blowup. Let RV : Ṽ Ñ V be the blowup of V at the
origin, and E the preimage of 0 (the exceptional divisor); it is the linear
analog of the resolution R : PJX Ñ X ˆX .

Lemma 5.2.1. Pullback of Schwartz measures under the blowup RV gives rise to
a closed embedding:

SpV q
R˚

V
ãÑ SpṼ , pd´ 1qrEsq. (60)

The space on the right is the space of Schwartz measures valued in the
complex line bundle defined by the divisor pd´ 1qrEs, introduced in §5.1.

Proof. This follows from writing any Schwartz measure, locally, as f “ Φ ¨

|ω|, where Φ is a Schwartz function and ω a Haar volume form on V , and
taking into account that the divisor of R˚

V ω is pd´ 1qrEs. □
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The blowup Ṽ is canonically the total space of the tautological line bun-
dle over PV “ the exceptional divisor; let π : Ṽ Ñ PV be the projection to
the zero section. Any element of SpṼ , pd´ 1qrEsq can be written as a prod-
uct ΦR˚

V dv, where Φ is a Schwartz function on Ṽ and dv is a Haar measure
on V . The map ΦpvqR˚

V dv ÞÑ ΦpπpvqqR˚
V dv gives rise to a canonical identi-

fication

SEpṼ , pd´ 1qrEsq » Meas8pV ∖ t0uqGm,|‚|d (61)

between the fiber of the Schwartz cosheaf SpṼ , pd ´ 1qrEsq over the excep-
tional divisor E, and the space of smooth measures on V ∖ t0u which are
eigenmeasures for the multiplicative group of dilations with eigencharacter
| ‚ |d. 5

In particular, SEpṼ , pd´ 1qrEsq contains a canonical line SEpṼ , pd´ 1qrEsqHaar,
that will be called the line of “Haar” elements, corresponding to Haar mea-
sures on the right hand side of (61).

In the non-Archimedean case, the fiber SEpṼ , pd´ 1qrEsq and the stalk
SEpṼ , pd ´ 1qrEsq coincide. In the Archimedean case, the image of a mea-
sure ΦpvqR˚

V dv in the stalk at E will be determined not only by the values,
but also by the transversal derivatives of Φ along the exceptional divisor.
Again, there is a distinguished C8

0 pV q-submodule

SEpṼ , pd´ 1qrEsqHaar Ă SEpṼ , pd´ 1qrEsq

(where C8
0 pV q denotes the stalk at 0 P V of the ring of smooth functions),

generated by measures which are of the form R˚
V dv in a neighborhood of

the exceptional divisor, and we have the following, almost tautological,
lemma:

Lemma 5.2.2. In the non-Archimedean case, the image of SpV q under the embed-
ding (60) coincides with the space of those elements of SpṼ , pd ´ 1qrEsq whose
image in the fiber over the exceptional divisor lies in SEpṼ , pd´ 1qrEsqHaar.

In the Archimedean case, the image of SpV q coincides with the space of those
elements of SpṼ , pd´ 1qrEsq whose image in the stalk over the exceptional divisor
lies in SEpṼ , pd´ 1qrEsqHaar.

Proof. Among measures of the form ΦpvqR˚
V dv, the image of SpV q consists

of those where the function Φ is the pullback of a Schwartz function on V ,
i.e., precisely those which in a neighborhood of the exceptional divisor can
be written as the product of an element of C8

0 pV q with the pullback R˚
V dv

of a Haar measure. In the non-Archimedean case, the stalk and the fiber
coincide, and the claim follows. □

5The action of Fˆ on measures is defined in duality with its (unnormalized) action on
functions: ⟨a ¨ µ,Φ⟩ “

⟨︁
µ, a´1

¨ Φ
⟩︁
, where a´1

¨ Φpxq “ Φpa´1xq. In particular, Haar mea-
sure is pGm, | ‚ |

d
q-equivariant.
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5.3. Pushforward to c˚
X . Now we consider pushforwards of Schwartz mea-

sures to c˚
X .

Proposition 5.3.1. The image of the pushforward map

SpṼ , pd´ 1qrEsq Ñ Measpc˚
Xq

consists precisely of those measures which are smooth away from 0, of rapid decay
(together with their polynomial derivatives) at infinity (compactly supported, in
the non-Archimedean case), and in a neighborhood of 0 have the form:

C0pξq ` |ξ|
d
2

´1
ÿ

ηPFˆ{pFˆq2{

Cηpξq ¨ ηpξq, (62)

where η runs over all quadratic characters of Fˆ, C0 and the Cη’s are smooth
measures, and ξ is a coordinate on c˚

X » A1, except when |ξ|
d
2

´1ηpξq is smooth
for some η, that is:

‚ when d
2 ´ 1 “ 0 and η “ 1, or

‚ when F “ R and d
2 ´1 is an even integer and η is trivial, or an odd integer

and η is the sign character, or
‚ when F “ C (so, η “ 1) and d is even,6

in which case the term |ξ|
d
2

´1ηpξq ¨Cηpξq should be replaced by |ξ|
d
2

´1ηpξq log |ξ| ¨

Cηpξq. In the Archimedean case, this map is continuous with respect to the obvi-
ous Fréchet topology on these measures, determined by Schwartz seminorms away
from zero, and by absolute values of the derivatives of the functions C0

dξ , Cη

dξ at zero.

Proof. I claim that, locally around any point of the exceptional divisor, there
is a coordinate chart pϵE , x1, . . . , xd´1q, where ϵE “ 0 is a local equation for
E, such that the map ξ : Ṽ Ñ c˚

X » A1 is given by ξ “ ϵ2Ex1. Indeed,
this is seen immediately by writing the split quadratic form V Ñ c˚

X in
coordinates: ξ “ y21 ´ y22 ` ¨ ¨ ¨ ˘ y2d, and setting, e.g., x1 “

ξ
y2d

, xi “
yi
yd

, for

2 ď i ď d´ 1, ϵE “ yd.7

The asserted form of the pushforward of Schwartz measures under such
a map is quite a standard result. One way to prove it is using Mellin trans-
forms: The Mellin transform of a pushforward measure ξ˚f with respect to

6We use the arithmetic normalization of absolute values, which is compatible with
norms to the base field; this is the square of the usual absolute value in the complex case.

7In terms of the map PJX Ñ CX , of which the map Ṽ Ñ c˚
X is the “linearization”, and

given that J ‚ N˚
X˘1,‰0 is smooth over J by non-degeneracy of the quadratic forms, the

first of the maps PJX Ñ PJ
Q

ÝÑ CX is smooth, and the second is given, in coordinates
t20 ´ ξt21 “ 1 for J , and a suitable identification AX � WX “ A

1, by Q “ pt0 ˘ 1q
´1

¨ ξt21.
In a neighborhood of t0 “ ˘1, where the function pt0 ˘ 1q

´1 is a nonvanishing, smooth
semialgebraic function of pξ, t1q, we can set ξ1

“ pt0 ˘ 1q
´1ξ, and we get that the map is

given by Q “ ξ1t21.
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the variable ξ, with f “ |ϵE |d´1 ¨CpϵE , x1, . . . , xd´1q, where C is a Schwartz
measure in d variables, is

ξ˚f}pχq :“

ż

F
ξ˚fpξqχ´1pξq “

ż

C̄pϵE , x1q|ϵE |d´1χ´1pϵ2Ex1q,

where C̄ is the pushforward ofC with respect to the map pϵE , x1, . . . , xd´1q ÞÑ

pϵE , x1q.
This is the Tate zeta integral of a Schwartz measure in two variables, in

one of the variables against the character χ´1 and in the other against the
character |‚|d´1χ´2. In the non-Archimedean case, it has poles at χ “ |‚|´1

and at the points χ “ η ¨ | ‚ |
d
2

´1 (double if any of these points coincide, sim-
ple otherwise), where η ranges over all quadratic characters. Such a Mellin
transform corresponds to a measure on the line which in a neighborhood
of ξ “ 0 is of the form

C0pξq ` |ξ|
d
2

´1
ÿ

ηPFˆ{pFˆq2{

Cηpξq ¨ ηpξq,

unless d “ 2, in which case the pole at χ “ | ‚ |´1 is double, and the corre-
sponding singular term is of the form C1pξq ¨ log |ξ|.

A similar argument works in the Archimedean case, where double poles
appear whenever the product |ξ|

d
2

´1ηpξq is a smooth function of ξ. Here, the
above Tate integral maps continuously into the appropriate “Paley–Wiener
space” in the language of [Saka, Remark 2.1.6], with the location and multi-
plicity of poles determined by the characters |ξ|

d
2

´1ηpξq, which corresponds
to the Fréchet space of measures as in the statement of the proposition. □

Our final task will be to determine the image SpV {Hq of the subspace
SpV q ãÑ SpṼ , pd ´ 1qrEsq. This will be completed in the next section. We
start with the following observation:

Theorem 5.3.2. The space SpV {Hq contains the space Spc˚
Xq of Schwartz mea-

sures on c˚
X .

Moreover, in the expression (62) for the pushforward of a measure f P SpṼ , pd´

1qrEsq, the coefficients Cη

dξ p0q depend only on the image of f in the fiber

SpṼ , pd´ 1qrEsq “ Meas8pV ∖ t0uqGm,|‚|d

(see (61)). In particular, by Lemma 5.2.2, for all f P SpV q these coefficients will

lie in a one-dimensional subspace of CFˆ{pFˆq2{

.
Let paηqη be a vector spanning this one-dimensional subspace. Then SpV {Hq

is the space of those measures of the form

C0pξq ` |ξ|
d
2

´1Csingpξq
ÿ

ηPFˆ{pFˆq2{

aη ¨ ηpξq, (63)
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where C0, Csing are Schwartz measures, and the same modification as in Proposi-
tion 5.3.1 applies to the case where |ξ|

d
2

´1ηpξq is smooth.

Proof. As we have seen, the complement of the origin is smooth and surjec-
tive over c˚

X , hence the image of SpV ∖ t0uq is equal to Spc˚
Xq.

Hence, the germs of the measures Cη at 0 depend only on the image of f
in the stalk SEpṼ , pd´ 1qrEsq.

In the non-Archimedean case, “germ of Cη” means simply the value of
Cη

dξ at 0, and, as we saw in (61), the stalk SEpṼ , pd´1qrEsq is identified with

Meas8pV ∖ t0uqGm,|‚|d , so the claim follows.
In the Archimedean case, we will show that the H-coinvariants of the

stalk S0pV q are generated over the stalk C8
0 pc˚

Xq by any measure which is
nonvanishing at the origin.8

For this, consider the descending filtration of the stalk S0pV q which de-
fines its topology, i.e., FnS0pV q “ the germs of smooth measures f “ Φdv
(where dv is a Haar measure) such that all partial derivatives of Φ of order
ă n vanish at the origin. By theGm-action on V , this filtration corresponds
to a grading on the dense subspace ofGm-finite germs. Notice that X ˆX
admits a G-invariant measure, and therefore the Haar measure dv is H-
invariant; thus, we can choose such a measure to identify the H-modules
of functions and measures. The graded piece FnS0pV q{Fn`1S0pV q is then
identified with Symn

RpV ˚q bR C, and therefore the H-coinvariants of the
stalk are

S0pV qH “ lim
Ð
n

pSymn
RpV ˚q bR Cq

H
“ lim

Ð
n

pSymn
CpV ˚ bR Cqq

HC “

“

#

Crrξss, if F “ R,
Crrξ, ξ̄ss, if F “ C,

(64)

where we have treated H as a real group, so that HC denotes its complexi-
fication.

The space Crrξss, if F “ R, and Crrξ, ξ̄ss, if F “ C, is naturally identified
with the stalk C8

0 pc˚
Xq at zero of the ring of smooth functions. This stalk is

a ring that acts on S0pV qH , and the isomorphism (64) is equivariant with
respect to the action of this stalk. Thus, the above calculation shows that
the H-coinvariants of S0pV q are freely generated over C8

0 pc˚
Xq by the germ

of any element Φdv with Φp0q ‰ 0.
Thus, the germs of pushforwards will also be generated, over C8

0 pc˚
Xq

and up to smooth measures, by the germ of the pushforward of any such
measure Φdv. Consider such a measure with Φpvq constant (and ‰ 0) close
to the origin. The pushforward map isGm-equivariant (with respect to the
quadratic action on c˚

X ), hence, in terms of the expression (62), the germ of

8We define coinvariants of Fréchet spaces by dividing by the closure of the space gener-
ated by elements of the form f ´ h ¨ f .
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the pushforward of such a measure Φdv will be of the form

C0pξq ` |ξ|
d
2

´1
ÿ

ηPFˆ{pFˆq2{

Cηpξq ¨ ηpξq,

where the measures Cη are constant around ξ “ 0. Thus, the image of the
Haar stalk SEpṼ , pd ´ 1qrEsqHaar (in the notation of Lemma 5.2.2) in the
singular quotient of the stalk of SpV {Hq at zero (i.e., ignoring the term C0)
is of the form

|ξ|
d
2

´1Csingpξq
ÿ

ηPFˆ{pFˆq2{

aη ¨ ηpξq, (65)

and in particular is completely determined by the coefficients αη, which
depend only on the image of an element in the fiber SEpṼ , pd´ 1qrEsqHaar.

□

Therefore, we are left with computing the ratio between the coefficients
aη, which correspond to the singular part of the pushforward of a measure
on V which restricts to a Haar measure in a neighborhood of the origin.

6. DETERMINATION OF THE GERMS

6.1. Reduction to the basic cases. We will actually not compute the ratio
of the coefficients aη explicitly in all cases, but rather prove, by reducing to
an SL2- or PGL2-example, that they match the contributions of the Kloost-
erman germs under the transfer operator from the Kuznetsov formula. The
cases d “ even and d “ odd will be quite different, as we will see. We fix
throughout the isomorphism ξ : c˚

X
„
ÝÑ A1 with 0 P c˚

X mapping to 0, thus
viewing the map V Ñ V �H “ c˚

X as a quadratic form.
The main result of this subsection is Proposition 6.1.5, which says that

pushforwards of Schwartz measures for a d-dimensional split quadratic
space (under the quadratic map) are equal to twisted pushforwards for a
two- or three-dimensional quadratic space (of the same parity as d); this
will complete the proof of Theorem 1.4.1.

The two- or three-dimensional quadratic space V2 is obtained from V by
choosing a maximal isotropic subspace M Ă V and a hyperplane M 1 Ă M ;
then V2 “ M 1K{M 1. Let us go through the argument carefully:

Fix such a maximal isotropic subspaceM . Since V is split, the orthogonal
complement MK is either equal to M (when d is even), or contains M as
a hyperplane (when d is odd). The quotient V {MK is isomorphic to the
linear dual M˚ through the quadratic form, and the parabolic P Ă SOpV q

stabilizing M surjects to GLpM˚q.
The integration (pushforward) map SpV q Ñ C factors through surjective

pushforward maps:

SpV q Ñ SpV {MKq Ñ SpPM˚q Ñ C. (66)



FUNCTORIAL TRANSFER IN RANK ONE 63

Let M 1 P PM˚, identified (and denoted by the same letter) with a hy-
perplane in M . Let P 1 Ă P be the stabilizer of the flag M 1 Ă M Ă V . The
space SpPM˚q, considered as a representation of P , can be identified, up
to a scalar which we fix, with the (unnormalized) induced representation
IndPP 1pδP 1{UP

q, where δP 1{UP
denotes the modular character of the image of

P 1 in the Levi quotient of P . By Frobenius reciprocity, the P -equivariant
map SpV q Ñ SpPM˚q is given by a pP 1, δP 1{UP

q-equivariant functional.
The Lemma that follows determines this functional:

Lemma 6.1.1. Let Φ be a Schwartz function on V , and dv a Haar measure. Then,
for suitable Haar measures,

ż

V
Φpvqdv “

ż

PM˚

ˆ
ż

Gm

ż

MK

Φpav ` v1qdv1|a|dimMdˆa

̇

dv. (67)

Notice that the expression in brackets, viewed as a function of v P M˚ ∖
t0u, is pGm, | ‚ |´dq-equivariant, hence dv denotes an invariant measure on
PM˚, valued in the dual of the line bundle of pGm, |‚|´dq-equivariant func-
tions on M˚ ∖ t0u. More precisely, under the action of P 1, the expression
in brackets is δP 1{UP

-equivariant, and dv is an invariant measure on PM˚,
valued in the line bundle dual to the one induced from this character of P 1.

Proof. This lemma is just a reformulation of the sequence (66). □

Let us reformulate the inner integral of (67): Fix M 1 P PM˚, understood
again as a hyperplane in M . Its preimage in V under the rational map
V Ñ PM˚ is equal to M 1K ∖MK. Fix a nonzero vector v P M˚ in the line
corresponding to M 1; then the functional L : av ÞÑ a is a linear functional
on the one-dimensional space of multiples of v in M˚ or, equivalently, a
functional

L :M 1K Ñ Ga.

The quotient V2 :“ M 1K{M 1 is a nondegenerate quadratic space of di-
mension 2 or 3 (same parity as V ). Fix a Haar measure dv1 on M 1, and let
Φ ÞÑ Φ2 be the corresponding pushforward map (integration over cosets of
M 1 against dv1)

FpM 1Kq ↠ FpV2q,

where F denotes the spaces of Schwartz functions. Then the inner integral
of (67) can be written as

ż

V2

Φ2pv2qLpv2qdimM´1dv2, (68)

for a suitable Haar measure dv2.
Let us explicate this integral:

‚ If V2 is a two-dimensional (split) quadratic space, then dimM “ d
2 ,

and there are coordinates px, yq such that the quadratic form is ξ “
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xy and the functional L is L “ x, so the integral reads:
ż

V2

Φ2px, yq|x|
d´2
2 dxdy. (69)

‚ If V2 is a three-dimensional (split) quadratic space, then dimM “
d´1
2 , and there is an isomorphism V2 » sl2 with quadratic form ξ “

´det and L
ˆ

A B
C ´A

̇

“ C, so the integral reads:

ż

V2

Φ2

ˆ

A B
C ´A

̇

|C|
d´3
2 dAdBdC. (70)

In either case, these integrals can be disintegrated against the quadratic
form, i.e., written as iterated integrals

ş

c˚
X

ş

with the interior integral taken
over the fibers of the map V2 Ñ c˚

X , but we need to choose a section σ :
c˚
X Ñ V2, since the integrand is not invariant over the fibers. Choose this

section σ so that its image is contained in an affine line of the hyperplane
L “ 1; then it is necessarily contained in the affine line σp0q ` M̄ (where
M̄ “ M{M 1, the image of M in V2); explicitly:

‚ σpξq “ p1, ξq in the coordinates above when V2 is two-dimensional;

‚ σpξq “

ˆ

ξ
1

̇

when V2 is three-dimensional.

Let B2 Ă SOpV2q be the stabilizer of the isotropic line M̄ “ M{M 1, and
let δ´1

2 be the absolute value of the character by which it acts on M̄ . Then:

Lemma 6.1.2. The expressions (69) and (70) can be written:
ż

c˚
X

ż

B2

Φ2pσpξqbqδ2pbqdimM´1dbdξ, (71)

for a suitable right Haar measure on B2.

Proof. In the coordinates above, in the two-dimensional case, M̄ is the line
p0, ˚q and B2 “ SOpV2q “ tpa, a´1qu, acting by the character a´1 on M̄ . The
integral (69) can be written

ż

Φ2pa, a´1ξq|a|dimM´1dˆadξ.

In the three-dimensional case, M̄ corresponds to the subspaceA “ C “ 0
in (70), and B2 is the upper-triangular Borel subgroup of SOpV2q “ PGL2,
acting on this line via the inverse of its modular character (remember that
it acts on the right), and we can write (70) as

ż

V2

Φ2

ˆˆ

a´1 ´a´1b
1

̇ ˆ

ξ
1

̇ ˆ

a b
1

̇̇

|a|dimM´1dˆadbdξ.

□
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By this lemma, we have a new integration formula for V in terms of
the quadratic form, that includes B2-orbital integrals on V2, twisted by the
character δ2pbqdimM´1. Thus, the integration formula for a d-dimensional
quadratic space involves a twisted integration formula for a 2- or 3-dimensional
quadratic space:

Corollary 6.1.3. Let Φ be a Schwartz function on V , and dv a Haar measure. Let
K Ă P be any compact subgroup such that K Ñ P 1zP “ PM˚ is surjective.
Then, for suitable (right) Haar measures,

ż

V
Φpvqdv “

ż

c˚
X

ˆ
ż

K

ż

B2

ż

M 1

Φppσpξqb` v1qkqδ2pbqdimM´1dv1dbdk

̇

dξ.

(72)

Here, we have lifted the section σ to M 1K and the group B2 to P 1, by
choosing a section V2 Ñ M 1K.

Proof. The integral over K replaces the integral over PM˚ in (67); since it
is a compact integral of a smooth function, it can be moved to the interior,
and the result follows by applying (71). □

Remark 6.1.4. Representation-theoretically, the two inner integrals of (72)
represent a pP 1, δP 1{UP

q-equivariant functional, hence a morphism

SpV q Ñ Ind
SOpV q

P 1 pδP 1{UP
q “ Ind

SOpV q

P IndPP 1pδP 1{UP
q.

The integral over K corresponds to the quotient IndPP 1pδP 1{UP
q Ñ C (the

trivial representation), so the expression in brackets can be seen as a mor-
phism

SpV q Ñ Ind
SOpV q

P pCq.

By the invariance of the left hand side of (72), this morphism is SOpV q-
invariant, hence has image in the trivial subrepresentation of IndSOpV q

P pCq.
Let ℓξpΦq be the SOpV q-invariant functional represented by the expres-

sion in brackets of (72). Comparing (72) with the integration formula of
Theorem 4.0.3 (for the special case H “ SOpV q), we get:

ℓξpΦq “ |ξ|
d
2

´1OξpΦq, (73)

where the Oξ’s are orbital integrals on the fibers over ξ ‰ 0, against invari-
ant measures dg9 ξ obtained by identifying all nondegenerate SOpV q-orbits
over the algebraic closure, and choosing volume forms as in Theorem 4.0.3.

Thus, we arrive at the following result about the coefficients aη of the
expression (63):

Proposition 6.1.5. If d is even, we have aη “ 0 except for η “ 1, and there is an

equality between the space of pushforward measures for V ξ
ÝÑ A1 and the measures
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onA1 of the form

ξ ÞÑ

ˆ
ż

Gm

Φ2pa, a´1ξq|a|
d´2
2 dˆa

̇

dξ, (74)

where Φ2 varies among Schwartz functions onA2.
If d is odd, there is an equality between the space of pushforward measures for

V
ξ

ÝÑ A1 and the measures onA1 of the form

ξ ÞÑ

ˆ
ż

Bad

Φ2

ˆ

Adpb´1q

ˆ

ξ
1

̇̇

δ2pbq
d´3
2 db

̇

dξ, (75)

where Φ2 varies among Schwartz functions on sl2, Bad denotes the upper trian-
gular Borel subgroup of PGL2, δ2 is its modular character, and db is a right Haar
measure.

Here, sticking with standard notation, we have denoted by Ad the left
adjoint representation of PGL2 on sl2; but recall that our convention is that
G acts on the right on X ˆ X , hence H acts on the right on V , and this
convention is extended to the group SOpV q.

Remarks 6.1.6. (1) In other words, the germs are reduced to twisted ver-
sions of the infinitesimal versions of the basic cases X “ GmzPGL2

and X “ SL2 “ SO3zSO4. Indeed, the linearizations of those two
are, respectively, A2{Gm and sl2{PGL2, and the latter can also be
replaced by sl2{Bad, because the affine quotients sl2 � PGL2 and
sl2 � Bad are the same. Putting an appropriate character on Gm or
Bad, we obtain the germs for the general case. This fact will be used
to relate those germs to the Kloosterman germs of the Kuznetsov
formula, under the transfer operator.

(2) As we saw in (69), (70), the measures (74), (75) can be considered
as twisted pushforwards of the Haar measures Φ2dv (where dv is a
Haar measure onA2, resp. sl2), dual to the twisted pullback maps:

Ψ ÞÑ Ψ̃px, yq “ Ψpxyq|x|
d´2
2 , (76)

resp.

Ψ ÞÑ Ψ̃

ˆ

A B
C ´A

̇

“ ΨpA2 `BCq|C|
d´3
2 . (77)

Proof. Let ℓξpΦq be the SOpV q-invariant functional represented by the ex-
pression in brackets of (72). By that formula, the pushforward f of Φdv can
be written

fpξq “ ℓξpΦqdξ “

ż

K

ż

B2

ΦK2 pσpξqbqδ2pbqdimM´1dbdk,

where ΦK2 P FpV2q is the Schwartz function

v2 Ñ

ż

K

ż

M 1

Φppv2 ` v1qkqdv1dk. (78)
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As we have seen in Lemma 6.1.2, this is equal to the expressions (74),
(75) in the two cases, applied to the function ΦK2 . We just need to argue that
these spaces of pushforward measures obtained from a function of the form
ΦK2 is the same as the space obtained from an arbitrary Schwartz function
Φ2 P FpV2q. The pushforward map SpM 1Kq Ñ SpV2q is surjective, and
starting from an arbitrary Schwartz measure Φ2dv2 P SpV2q we can choose
a preimage Φ1dv1 P SpM 1Kq. Without loss of generality (in terms of the
output of (74), (75)), we will assume that Φ1 is K X P 1-invariant.

Notice that we have freedom in choosing K, as long as the map K Ñ

P 1zP “ PM˚ is surjective. Identify M˚ as a subspace of V through an
isotropic splitting of the quotient V Ñ M˚, so that we have a direct sum de-
composition V “ MK ‘M˚, and chooseK in the Levi subgroup GLpM˚q Ă

P . Any element of K fixing the line in M˚ corresponding to M 1 has to be-
long to K X P 1. Thus, for any two v1, v2 P M 1K with nonzero image in MK,
the relation v1 ¨k “ v2 for some k P K implies that v2 P v1 ¨ pKXP 1q. Hence,
the map of topological quotients

M 1K{K X P 1 Ñ V {K,

surjective by our assumption on K, is also injective. Thus, Φ1, a K X P 1-
invariant function on M 1K, is the restriction of a unique K-invariant func-
tion Φ on V ; in particular, the average ΦK2 (defined in terms of Φ, and using
probability measure on K) is equal to the function Φ2 that we started from.

In the non-Archimedean case, it is immediate to see that if Φ1 is smooth,
so is Φ, because smoothness means that they are locally constant on the
topological quotient V {K. In the Archimedean case, taking K “ SOnpRq

when F “ R and K “ UnpRq when F “ C (where n “ dimM ), the quo-
tient M˚{K can be identified with Rě0 through the distance function from
the origin. For any one-dimensional subspace Fv of M˚, any K X GL1pF q-
invariant smooth function on Fv is the restriction of a smooth radial func-
tion on M˚.

Finally, in the case d “ even, to show that the coefficients aη with η ‰ 0
vanish, we can use the same argument as in the proof of Proposition 5.3.1
in order to analyze the twisted orbital integrals (74). In this case, without
any need to pass to a blowup, the Mellin transform in the variable ξ can be
written as a product of two Tate integrals:
ż

χ´1pξq

ˆ
ż

Φ2pa, a´1ξq|a|
d´2
2 dˆa

̇

dξ “

ĳ

Φ2px, yqχ´1pxyq|x|
d
2 |y|dˆxdˆy,

which is a holomorphic multiple of the product of local DirichletL-functions

Lpχ´1,
d

2
qLpχ´1, 1q.

Hence as in the proof of Proposition 5.3.1, the measure (74) is a linear com-
bination of the form

C0pξq ` |ξ|
d
2

´1C1pξq,
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with C0 and C1 Schwartz measures, with the usual logarithmic modifica-
tion when |ξ|

d
2

´1 is smooth at zero. □

By Proposition 5.1.3, this completes the proof of Theorem 1.4.1, which we
state here more precisely. Notice that the precise local (F -analytic) isomor-
phism between a neighborhood of 0 P c˚

X and a neighborhood of r˘1s P CX ,
mentioned in Proposition 5.1.3, is not important, since the germs are in-
variant under any F -analytic automorphism. In particular, fixing isomor-
phisms c˚

X » A1
ξ and CX “ A1

c with c˘1 corresponding to r˘1s, we can take
ξ “ c´ c˘1.

Theorem 6.1.7. There is a canonical isomorphism CX :“ XˆX�G » AX�WX ,
and the mapXˆX Ñ CX is smooth away from the preimages of r˘1s, where r˘1s

denote the images of ˘1 P AX in AX �WX .
In particular, there are two distinguished closed G-orbits X1 “ Xdiag and X´1

(over r˘1s, respectively); if d˘1 denote their codimensions, then d1 “ dimX and

d´1 “ ϵ
⟨︁
2ρP pXq, γ̌

⟩︁
´ d1 ` 2,

where γ̌ is the spherical coroot, 2ρP pXq is the sum of roots in the unipotent radical
of P pXq, and

ϵ “

#

1, when the spherical root is of type T (dual group SL2);
2, when the spherical root is of type G (dual group PGL2).

In the case of root of type G, d1 “ d´1.
The space SpX ˆ X{Gq consists of measures on CXp» A1

cq which are smooth
and of rapid decay, together with their polynomial derivatives (compactly sup-
ported in the non-Archimedean case) away from neighborhoods of c˘1 (the coordi-
nates of the points r˘1s), while in neighborhoods of c˘1 they are of the form (74)
— when the spherical root is of type T — or (75) — when the spherical root is of
type G—, with ξ “ c´ c˘1 and d “ d˘1.

Remark 6.1.8. Recall that, up to a linear combination of coefficients, the sin-
gularities of the measures of the form (74), (75) have been described explic-
itly in Theorem 5.3.2. In the Archimedean case, there is a natural Fréchet
topology on the space of these measures, and by Proposition 5.3.1 the map
from SpXˆXq is continuous; hence, the quotient topology on SpXˆX{Gq

coincides with the natural Fréchet topology on the space of such measures.

6.2. Completion of the proof of the main theorem. We are now ready to
prove Theorem 1.3.1. The remaining step of the proof relies on a result from
[Sakb], which I state here:

Proposition 6.2.1. Let G˚ “ SL2. The operator

f ÞÑ |ζ|´
1
2

´s ¨

´

| ‚ |
3
2

`sψp‚qdˆ‚

¯

‹ fpζq
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defines an isomorphism

S´

LpAd, 1
2

´sq
pNψzG˚{Nψq

„
ÝÑ S

˜

SL2

Bad, δ
1
2

`s

¸

(79)

away from the poles of the local L-functions Lpη, 12 ´ sq, where η ranges over
all quadratic characters; here, the space on the right is the space of measures on
the affine line A1 (with coordinate ζ), which are smooth away from ζ “ ˘2, of
rapid decay (together with their derivatives) at infinity, and in a neighborhood of
ζ “ ˘2, setting ξ “ ζ ¯ 2, are of the form (75), with d´3

2 “ ´1
2 ´ s.

Proof. This is [Sakb, Proposition 8.3.3], in the special case χ “ δs. □

We will need an analogous result for the transform of the Kloosterman
germ whenG˚ “ PGL2. A special case of this result was proven in [Sak13a];
therefore, I will confine myself to sketching the proof of the general case:

Proposition 6.2.2. Let G˚ “ PGL2. The operator

f ÞÑ

´

| ‚ |
1
2

´s1ψp‚qd‚

¯

‹

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

‹ f

takes elements of SpNψzG˚{Nψq into a space M of measures on the affine line
which in the neighborhood of ξ “ 1 are of the form

pΦ1pξq ` Φ2pξq|ξ ´ 1|s1`s2´1qdξ, (80)

where Φ1,Φ2 are smooth functions, with the second summand replaced, when |ξ´

1|s1`s2´1 is smooth, by Φ2pξq|ξ ´ 1|s1`s2´1 log |ξ ´ 1|.
Moreover, the subspace SpFˆq Ă SpNψzG˚{Nψq gets mapped to smooth mea-

sures in a neighborhood of ξ “ 1, and the transform descends to an isomorphism

SpNψzG˚{Nψq{SpFˆq
„
ÝÑ M1{SpF q1,

between the “Kloosterman stalk” and the “singular stalk of M at ξ “ 1”, that is,
the quotient of M1 “ the stalk of M at ξ “ 1 by SpF q1 “ the stalk of smooth
measures.

More precise information will be obtained about the image of the space
SpNψzG˚{Nψq and its extension S´

LX
pNψzG˚{Nψq under the transfer oper-

ator in Theorem 6.2.3.

Proof. When s1 “ s2 “ 1
2 , this is a special case of [Sak13a, Theorem 5.1],

more precisely, the matching of the short exact sequences (5.3) and (5.4).
The same arguments work in the general case; they rely on the fact that
the Kloosterman germ can be explicitly written as a Fourier transform in
the case of G˚ “ PGL2, see [Sak13a, Proposition 4.8]. Thus, I will leave
the verification to the reader, mentioning only that, after application of the
first convolution, by

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

, the Kloosterman stalk contributes a
singularity of the form

Φpξqψ´1pξ´1q|ξ|s2´ 1
2dξ
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at zero, which after the second convolution, by
´

| ‚ |
1
2

´s1ψp‚qd‚

¯

, gives rise
to a singularity

Φ2pξq|ξ ´ 1|s1`s2´1dξ

in a neighborhood of ξ “ 1. □

I repeat the statement of Theorem 1.3.1, for the convenience of the reader.
Recall that G˚ is such that its dual group is ǦX , that is: G˚ “ PGL2

when the spherical root of X is of type T , and G˚ “ SL2 when the spher-
ical root is of type G, and that we have defined in §1.3 an enlarged space
S´
LX

pNψzG˚{Nψq of test measures for the Kuznetsov formula of G˚, deter-
mined by the L-value associated to X .

Theorem 6.2.3. Let CX “ pX ˆ Xq � G. There is an isomorphism CX » A1,
and the map X ˆX Ñ A1 is smooth away from the preimage of two points ofA1,
that we will call singular. We fix the isomorphisms as follows:

‚ When ǦX “ SL2, we take the set of singular points to be t0, 1u, with
Xdiag Ă X ˆX mapping to 1 P CX » A1.

‚ When ǦX “ PGL2, we take the set of singular points to be t´2, 2u, with
Xdiag Ă X ˆX mapping to 2 P CX » A1.

Then, there is a continuous linear isomorphism:

T : S´
LX

pNψzG˚{Nψq
„
ÝÑ SpX ˆX{Gq, (81)

given by the following formula:
‚ When ǦX “ SL2 with LX “ LpStd, s1qLpStd, s2q with s1 ě s2,

T fpξq “ |ξ|s1´ 1
2

´

| ‚ |
1
2

´s1ψp‚qd‚

¯

‹

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

‹ fpξq. (82)

‚ When ǦX “ PGL2 with LX “ LpAd, s0q,

T fpζq “ |ζ|s0´1
`

| ‚ |1´s0ψp‚qd‚
˘

‹ fpζq. (83)

Remark 6.2.4. The points s1, s2, s0 are determined by the geometry, accord-
ing to the following formulas:

s1 ` s2 “
dimX

2
; (84)

s1 “

⟨︁
γ̌, ρP pXq

⟩︁
2

, (85)

and therefore, by (42),

s1 ´ s2 “
dimX´1

2
´ 1; (86)

s0 “
⟨︁
γ̌, ρP pXq

⟩︁
“

dimX ´ 1

2
“

dimX´1 ´ 1

2
, (87)

the last one by (43).
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Proof. Let us start with the case G˚ “ SL2. Proposition 6.2.1 settles this
case, but let me first observe, since similar arguments will be needed in
the case of G˚ “ PGL2, that apart from the Kloosterman germ, the ef-
fect of Fourier convolutions can be calculated explicitly. Indeed, the space
S´
LX

pNψzG˚{Nψq can be thought of as the space of sections of a cosheaf over
P1pF q; in a neighborhood of infinity, its elements have the form

fpζq “ |ζ|1´s0Φpζ´1qdˆζ,

where Φ is a smooth function. If we consider the subspace S´
LX

pNψzG˚{Nψq0

of Schwartz sections in the complement of 0 P P1, it is immediate to see that
the transfer operator of (83) defines a continuous isomorphism between
this space and the space SpA1q of usual Schwartz measures on the F -points
of the affine line. Indeed,

T fpζq “ |ζ|s0´1
`

| ‚ |1´s0ψp‚qd‚
˘

‹
`

|ζ|1´s0Φpζ´1qdˆζ
˘

“

“ |ζ|s0´1dˆζ ¨

ż

|z|1´s0ψpzq

ˇ

ˇ

ˇ

ˇ

ζ

z

ˇ

ˇ

ˇ

ˇ

1´s0

Φp
z

ζ
qdz “ dζ ¨

ż

ψpζuqΦpuqdu, (88)

which is the usual Fourier transform of a Schwartz function.
There remains to determine the behavior of the stalk at zero under this

transform, i.e., the behavior of the “Kloosterman germs”. Applying Propo-
sition 6.2.1 with s0 “ 1

2 ´ s, we get that the operator T maps the space
S´
LX

pNψzG˚{Nψq isomorphically to Sp SL2

Bad,δ
1´s0
2

q, in the notation of that propo-

sition. This is precisely the space of measures on the affine line A1 (with
coordinate c), which are smooth away from c “ ˘2, of rapid decay (to-
gether with their derivatives) at infinity, and in a neighborhood of c “ ˘2,
setting ξ “ c¯ 2, are of the form (75), with d´3

2 “ s0 ´ 1. By Theorem 6.1.7,
this is precisely the space SpX ˆX{Gq.

In the caseG˚ “ PGL2, we start again with the subspace S´
LX

pNψzG˚{Nψq0

of Schwartz sections in the complement of zero; those, now, are of the form

fpξq “

´

Φ1pξ´1q|ξ|
1
2

´s1 ` Φ2pξ´1q|ξ|
1
2

´s2
¯

dˆξ (89)

in a neighborhood of infinity, with the suitable logarithmic modification
when |ξ|s1´s2 is smooth. (All Φi’s, here and below, denote smooth func-
tions.)

The transfer operator T in this case is the composition of two multiplica-
tive convolutions, followed by multiplication by the factor |ξ|s1´ 1

2 . I claim
that the first convolution, by the measure

´

| ‚ |
1
2

´s2ψp‚qd‚

¯

“

´

| ‚ |
3
2

´s2ψp‚qdˆ‚

¯

,

takes the space S´
LX

pNψzG˚{Nψq0 to the space of measures which at infinity

are of the form Φ3pξ´1q|ξ|
1
2

´s1dˆξ, while at zero are of the form Φ4pξq|ξ|
1
2

´s2dξ,
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and otherwise smooth. Indeed, for the summand

Φ2pξ´1q|ξ|
1
2

´s2dˆξ

of (89), computing as in (88) we see that it is mapped to a Schwartz measure
times |ξ|

1
2

´s2 . To determine the image of the germ represented by

Φ1pξ´1q|ξ|
1
2

´s1dˆξ,

we first notice that, by elementary properties of Fourier transform and a
calculation like (88), its image under this convolution will be a smooth,
but not necessarily compactly supported measure, times the factor |ξ|

1
2

´s2 .
Thus, we need to determine its behavior at infinity.

In the non-Archimedean case, the stated behavior follows immediately
from the functional equation of Tate integrals, which can be written as

`

| ‚ |sψp‚qdˆ‚
˘

‹ χ “ γpχ, 1 ´ s, ψq ¨ χ

(see [Saka, 2.12]); this formula contains the usual Fourier transform of the
expression |‚|s´1χ´1p‚q, viewed as a generalized function by meromorphic
continuation of the Tate zeta integrals, and makes sense away from the
poles and zeroes of the gamma factor. Thus, if f is a smooth measure,
supported away from 0, which at infinity is a multiple of |ξ|

1
2

´s1dˆξ, it will
remain a multiple of this character after convolution, away from the poles
or zeroes of the gamma factor γps2 ´ s1, ψq. In the non-Archimedean case,
this gamma factor is zero when s1 “ s2, and infinite when s2 “ s1 ` 1,
but here we have assumed that s1 ě s2. When s1 “ s2, instead of the
asymptotics (88), we have a logarithmic term. To deal with that, and with
the Archimedean case, one needs to consider the Mellin transforms of the
measure f before and after convolution, which live in a certain “Paley–
Wiener” space of meromorphic functions, with poles determined by the
asymptotics. I point the reader to [Igu78, Theorem 1.6] and [Saka, §2.1] for
the relevant arguments.

Finally, again by a calculation as in (88), the second convolution, by
´

| ‚ |
1
2

´s1ψp‚qd‚

¯

, takes this space to the space of measures which are of
rapid decay (compactly supported, in the non-Archimedean case), of the
form

´

Φ5pξq|ξ|
1
2

´s1 ` Φ6pξq|ξ|
1
2

´s2
¯

dξ in a neighborhood of ξ “ 0, and oth-

erwise smooth, and multiplication by the factor |ξ|s1´ 1
2 (by our convention

that s1 “ maxps1, s2q) turns the germs at zero to
`

Φ5pξq ` Φ6pξq|ξ|s1´s2
˘

dξ “

ˆ

Φ5pξq ` Φ6pξq|ξ|
d´1
2

´1

̇

dξ.

There remains to examine the effect of the transfer operator to the “Kloost-
erman germs”, i.e., to the stalk of S´

LX
pNψzG˚{Nψq at zero. By Proposition

6.2.2, this stalk contributes an extra summand of

Φ7pξq|ξ ´ 1|s1`s2´1dξ “ Φ7pξq|ξ ´ 1|
d1
2

´1dξ
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in a neighborhood of ξ “ 1. Notice that multiplication by the factor |ξ|s1´ 1
2 ,

which is smooth at ξ “ 1, does not alter this singularity. By Theorem 6.1.7
and Proposition 6.1.5, this is the singularity of the elements of the space
SpX ˆ X{Gq at ξ “ 1. (Here, we apply the statement of Proposition 6.1.5
about the coefficients aη, instead of the more implicit expression (74).)

□

APPENDIX A. INDEX OF NOTATION

I list some notation used through various sections. Notation used only
locally is not included here.

0 P c˚
X : Denotes the image of 0 P a˚

X . When an isomorphism of these
spaces withA1 is chosen, this point should map to 0.

r˘1s: The images of the points ˘1 P AX in AX �WX .
A: The universal Cartan of G, i.e., the quotient of any Borel subgroup
B by its unipotent radical N .

AX : The universal Cartan of X , p. 13.
å˚
X : The WX -stable subset of a˚

X where WX acts freely. Equal to a˚
X ∖

t0u in rank one.
B: Stands for a Borel subgroup of G; typically, the choice of Borel sub-

group does not matter for the statements, so we do not fix one.
c˚
X : The quotient a˚

X �WX .
c̊˚
X : The quotient å˚

X{WX .
CX : The quotient X ˆX �G (diagonal action of G). After Proposition

3.4.2, this is also identified with the quotientAX �WX (in rank one).
C̊X : The complement of r˘1s P AX �WX “ CX .
dx, dˆx: The additive Haar measure on F which is self-dual with re-

spect to a fixed additive character ψ, and the multiplicative Haar
measure on Fˆ given by dˆx “ dx

|x|
.

δ: Used for modular characters of various groups, defined as the quo-
tient of the right by the left Haar measure.

FpXq: The space of Schwartz functions on the F -points of a smooth
variety X , p. 6.

ĝ˚, g̃˚: The polarization and Springer–Grothendieck resolution of g˚,
p. 14.

g˚
X : A normal cover of the image of the moment map, p. 16.
ǦX : The dual group of the spherical variety X .
G˚: The split group (PGL2 or SL2) whose dual group is equal to ǦX ,

p. 7.
J : Knop’s abelian group scheme over c˚

X , p. 33.
J0: The open subsceme of identity components in the fibers of J , p.

33.
JX : A certain scheme that is birational to J ‚ T ˚X , introduced on p.

44.
κ̂X , κ̃X : Knop’s sections, p. 14.
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LX : The L-value attached to the spherical variety X , p. 5.
LpXq: The Levi quotient of the parabolic P pXq, p. 13; also, a Levi sub-

group, when the choice of Levi does not matter.
L1: The kernel of the map LpXq Ñ AX , p. 14.
ΛX : The character group of AX , ΛX “ HompAX ,Gmq; analogous no-

tation used for character groups of Borel orbits, p. 14.
M1 ‚M2: For schemes over c˚

X , denotes M1 ˆc˚
X
M2.

M rs: For a scheme over a˚
X or c˚

X , the preimage of å˚
X , resp. c̊˚

X , p. 16.
µ: The moment map T ˚X Ñ g˚.
µinv: The invariant moment map T ˚X Ñ c˚

X , p. 16.
N : The unipotent radical of a Borel subgroup B of G; or, the upper

triangular unipotent subgroup of G˚ “ PGL2,SL2, identified with
the additive groupGa.

N pHq: The normalizer of a subgroup H .
NYX,N

˚
YX : The normal, conormal bundle of Y in X .

NY , N
˚
Y : Specifically for the ambient variety X ˆ X , this is shorthand

for NY pX ˆXq, N˚
Y pX ˆXq.

PS : For a set S of simple roots, and having fixed a Borel subgroup B,
the parabolic PS Ą B generated by the root spaces of the roots ´α,
α P S.

P pXq: The class of parabolics stabilizing the open Borel orbit, p. 13.
RpGq: The radical of a group G.
SpXq: The space of Schwartz measures on the F -points of a smooth

variety X , p. 6.
SpX{Gq: The pushforward of SpXq under X Ñ X �G, p. 7.
SpNψzG˚{Nψq: The twisted pushforward for the Kuznetsov quotient,

p. 7.
S´
LX

pNψzG˚{Nψq: The enlarged space of Kuznetsov test measures de-
termined by the L-value LX , p. 8.

SY p‚q,SY p‚q: The stalks and fibers of certain cosheaves of Schwartz
measures over a closed subspace Y , p. 56.

TYX,T
˚
YX : The restriction of the tangent, cotangent bundle of X to

the subspace Y .
T ˚Xz , T ˚XĆ : The polarization and Springer–Grothendieck lift of T ˚X ,

p. 14.
T ˚Xz

‚
, T ˚XĆ

‚
: The distinguished irreducible components of T ˚Xz , T ˚XĆ ,

p. 15.
UP : The unipotent radical of a parabolic P .
WX : The Weyl group of the spherical variety X , p. 13.
X̊ : The open Borel orbit on X (for some choice of Borel subgroup).
XH, X

‚
H: The affine boundary degeneration of X , and its open G-

orbit, p. 51.
X �G: The invariant-theoretic quotient SpecF rXsG.
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ψ: A fixed, non-trivial additive character F Ñ Cˆ; also identified with
a character of the upper triangular unipotent subgroup N Ă G˚ “

PGL2 or SL2.
ZpGq: The center of a group G.
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