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ABSTRACT: para-Hydrogen (pH2)N clusters have been the focus of numerous computational studies.
Originally motivated by the possibility of observing superfluidity, these studies also revealed rich and
complex structural properties of (pH2)N. However, their structural analysis was typically limited to
attempts to identify “magic number clusters” by computing their ground state energies EN and the
chemical potential μN = EN−EN−1 as a function of N. This was followed by structural analysis based on an
ill-defined radial density profile. Surprisingly, however, there were remarkable discrepancies between the
results reported in the literature for cluster sizes beyond approximately N = 25, and this ambiguity
remained unsettled until now. In the present paper, we apply the diffusion Monte Carlo method to
resolve inconsistencies in cluster sizes within the range (N = 24−28). Here, we try to avoid speculations
based on the highly demanding energy calculations whose numerical accuracy harbors ambiguity. Instead,
we focus on the direct and unambiguous structural analysis of the ground state wavefunctions, which
supports the conclusion that the clusters are structurally the same in the size range considered. That is,
there are no magic number clusters at least in the range N = 24−28, contrary to what some of the
previous publications have suggested. This lack of size sensitivity of para-hydrogen clusters is a direct
consequence of the strong quantum delocalization in these systems.

■ INTRODUCTION

Studies of para-hydrogen clusters (pH2)N over the past several
decades were mainly motivated by the speculation that the
cluster form of hydrogen could display superfluidity, unlike
bulk hydrogen.1,2 However, hydrogen clusters possess very
strong nuclear quantum effects (NQEs) that make them
interesting to study beyond whether or not superfluidity could
be observed. In fact, the strength of the NQEs in this system is
second only to helium out of all molecular and atomic systems.
A truly accurate description of molecular hydrogen requires

a many-body potential, which should, in particular, include the
stiff H−H degrees of freedom. However, it was argued that a
central two-body potential where the H2 molecules are treated
as point particles is sufficient unless the intramolecular
dynamics are important.3,4 This “united-atom” model is
believed to provide a qualitatively correct description of this
challenging system, while also reducing the computational cost
by at least an order of magnitude compared to the “all-atom”
model. This makes it possible to study clusters of relatively
large sizes.
There are two pair potentials to describe hydrogen clusters:

the Silvera−Goldman (SG)3 and the Buck4 pair potentials,
with the SG potential being somewhat more popular. These
two potentials are similar to one another, as well as to the more
simple Lennard−Jones (LJ) potential with an appropriate
choice of the LJ parameters. In this paper, we choose to use the
SG potential and compare our results to those reported in the

literature. We also reference the facts established from the
heavily studied LJ clusters, specifically quantum LJ clusters.5−10

Given the potential energy surface (PES), the main
approaches to study para-hydrogen clusters have been the
diffusion Monte Carlo (DMC),11−14 the path integral Monte
Carlo (PIMC),8,15 and the path integral ground state
(PIGS)16−23 methods.
A major theme in many publications on para-hydrogen

clusters beyond the topic of superfluidity has been the
identification of “magic number clusters,” i.e., the clusters
(pH2)N that would be “especially stable” relative to those with
similar sizes N. Although a correct assessment of a cluster’s
stability must rely on its free energy, at sufficiently low
temperatures, this can be reduced to an analysis of the size
dependence of the ground state energy EN. In the classical limit
(ℏ2/m → 0), this comes down to an analysis of the global
energy minima. It is therefore appropriate to draw insight from
studies of LJN clusters in this limit, which have been studied
extensively and are well understood. For example, the
equilibrium structures of classical LJ clusters have a well-
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understood size dependence, which is manifested as numerous
spikes in the chemical potential μN = EN−EN−1 (see refs
24−26). Note that the icosahedral symmetry is the dominating
motif in global minima structures of small LJ clusters with
several exceptions. Complete icosahedral structures belong to
LJ13, LJ55, and LJ147 clusters, which correspond to the most
pronounced minima of the chemical potential μN. Meanwhile,
the clusters of intermediate sizes, i.e., those with an incomplete
icosahedral outer shell, also show strong size sensitivity, albeit
with smaller fluctuations of the μN dependence. Furthermore,
there are a few other magic number clusters (e.g., LJ38, LJ75,
LJ98, etc.) that have highly symmetric but non-icosahedral
global minima.
It seems natural to assume that the SGN and LJN clusters

display similar magic number patterns due to the similarity
between SG and LJ potentials. However, to the best of our
knowledge, there has not been a both systematic and
quantitatively reliable study of magic number patterns for
quantum LJN clusters. Instead, we find references in the
literature to the NQEs washing out the size sensitivity,
specifically in the LJ clusters, due to the strong quantum
delocalization.5−7,10

In LJ systems, NQEs are conveniently quantified by the de
Boer quantum delocalization length m/( )σ εΛ ≔ ℏ , where
m is the particle mass and ε and σ are the parameters of the LJ
pair potential. For example, the following systems, XeN, ArN,
NeN, (D2)N, and (H2)N, respectively correspond to the
following approximate values of Λ: 0.01, 0.03, 0.095, 0.19,
and 0.28. It has been shown that an increase in Λ results in
structural changes in LJN clusters, which are generally
accompanied by an increase in disorder due to quantum
fluctuations. Moreover, quantum-induced transitions from
changing Λ have the same origin as the thermally-induced
transition in the classical systems, where both transitions result
from the competition between energetic and entropic
effects.5,7,10 For example, none of the highly symmetric non-
icosahedral structures survive in the quantum NeN clusters,
(i.e., for systems that are much less quantum than the (pH2)N
clusters). References 7, 10, 14 further demonstrate that even
the Mackay icosahedral symmetry does not survive in small
(H2)N and even (D2)N clusters. In particular, the structural
analysis of the ground state of LJ38 upon continuously
changing Λ demonstrates that the ground state of (H2)38 is
completely delocalized over all symmetry motifs; i.e., it is
liquid-like. Meanwhile, the less quantum (D2)38 is localized in a
single local energy minimum (or possibly in a few minima
separated by low energy barriers). Notably, this local minimum
is one of the many highly disordered but otherwise structurally
indistinguishable minima that all compete for the ground state.
This situation is unique to (D2)N clusters and is particularly
intriguing. However, it is also extremely difficult to investigate
numerically and, as such, deserves special attention.
We now turn to reviewing some results and conclusions

specifically on pH2 clusters reported in the literature by other
groups over the past decades. We will highlight studies whose
motivations coincide with searching for magic number clusters
and are directly related to the present work. However, by no
means should this be regarded as a comprehensive literature
review since that is beyond the scope of the present paper.
In Figure 1 we show selected results from chemical potential

computations on (pH2)N clusters obtained from different
groups and their respective methods.12,13,17,23 This figure
demonstrates that there is a disagreement between different

calculations, particularly from around cluster size N ≈ 25,
which increases with N. We find this disagreement
unsurprising. Although in-principle-exact, each of the methods
is plagued with numerical convergence problems associated
with both the systematic and statistical errors that are very
difficult to assess. For example, the main source of systematic
errors in the PIMC method is the use of a finite number of
beads P, where the exact results are obtained only in the limit
of P → ∞. When the temperature T is decreased, the number
of beads in the PIMC calculation must be increased according
to P ≈ 1/T in order to maintain the same error. This further
increases the complexity of the system, which is complex
enough even before taking into account the NQEs. The
numerical convergence of the Monte Carlo calculation is
hampered by the sampling problems associated with the
rugged character of the cluster’s PES. More specifically, the
complexity increases exponentially with the system size N if
measured in terms of the number of physically relevant local
energy minima that have to be sampled. In some well-
documented cases, the existence of just two basins of attraction
(funnels) separated by a high energy barrier is sufficient to
make the numerical problem unfeasible, even when using
advanced sampling techniques (see ref 27 for examples). This
so-called “broken ergodicity” problem is often not appreciated
and/or simply ignored, perhaps due to the lack of a universal
solution. A single Monte Carlo simulation performed on such a
system may seem converged, while in reality, the results could
drastically change if a different initial condition is used. This is
important, since a Monte Carlo simulation is naturally
initialized using the global potential energy minimum, unless
multiple independent simulations are carried out. Moreover,
when the choice of the initial condition is not specified
explicitly, it is safe to assume that this is the default. As
mentioned earlier and also demonstrated below, the global
energy minimum often contributes very little or not at all to
the ground state wavefunction for a quantum cluster, which
makes the “natural choice” for the initial conditions become
another source of systematic errors.
Early DMC studies by Guardiola and Navarro11,12 using a

version of DMC with importance sampling (DMC-IS) have

Figure 1. Chemical potential μN as a function of cluster size reported
in various publications: Guardiola08 (ref 12, using DMC-IS),
Cuervo08 (ref 12, using PIGS), Sola11 (ref 13, using DMC-IS),
and Miura18 (ref 23, using VPI, a variant of PIGS).
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shown essentially smooth chemical potential curves with
increasing cluster size, with the exception of a prominent
minimum at N = 13 (see Figure 1). While these results seem
reasonable and the existence of a prominent minimum at N =
13 is expected, numerically they may be questionable,
particularly for sizes N ≥ 30. In fact, these authors used very
small random walker populations (Nw ≈ 103), while their
numerical tests (changing Nw in the range of 500−2000)
showed a ∼2 K bias for E30. Although they assumed that the
bias was a smooth function of N, no evidence for this claim was
provided, and to the best of our knowledge, no follow-up of
this study has appeared in the literature.
Later, Sola and Boronat13 also applied DMC-IS to (pH2)N

for a broader size range, N = 13−75. Unlike the previous
DMC-IS results,11,12 they reported zigzagged shapes for the
chemical potential μN (see Figure 1). In addition, these authors
claimed that they were able to establish the alternating (in N)
behavior between the liquid and solid phases for the ground
state of (pH2)N clusters. However, these results are hardly
reliable. First, the authors used a less accurate importance
sampling (IS) wavefunction ΨT than that in ref 12. Second,
they did not report any convergence studies for their DMC-IS
calculations. Specifically, they neither provided the ground
state energy estimates EN as a function of Nw nor did they
specify the values of Nw used. Third, in order to enforce the
“solid” state of the cluster, they used an IS wavefunction ΨT
localized around its global energy minimum. As aforemen-
tioned, this choice is often wrong for hydrogen clusters
because of the strong quantum effects. Moreover, even when
the wavefunction is localized in an energy minimum, the center
of localization must be shifted relative to the classical
equilibrium configuration due to the asymmetry of the
potential energy well.7This means that an unshifted solid IS
wavefunction is always inadequate.
The population size bias in DMC-IS was investigated by

Boninsegni and Moroni.21 For this study they considered the
(pH2)48 cluster, which they referred to as “a simple test
system.” Consequently, the energy, E48, computed by DMC
did not show any sign of convergence when Nw was as large as
2 × 105, i.e., by about two orders of magnitude larger than in
the previous DMC-IS calculations.11−13 Our own convergence
tests (see below) show that even for much smaller systems
(e.g., (pH2)26) the population size bias in DMC-IS eventually
vanishes but only at values of Nw ≈ 5 × 105. Moreover, before
it vanishes completely for EN, the systematic errors in DMC-IS
do not cancel for the chemical potential μN = EN − EN−1. To
make matters worse, there is still an uncertainty in the validity
of the “converged” chemical potentials and other observables,
even when the results do converge with respect to Nw. This is
because of the uncontrollable bias introduced by the particular
choice of the IS wavefunction ΨT. This bias has no systematic
solution since the quality of the IS wavefunction typically
obtained by the variational Monte Carlo (VMC) method is
limited to relatively simple forms.
In addition to DMC studies, a number of PIMC (finite

T)9,15,19,22,28−30 and PIGS (T = 0 K)16,17,23 calculations on
pure para-hydrogen (i.e., excluding pure ortho-deuterium and
ortho-deuterium-doped clusters) have been reported in the
past few decades.
Reference 19 used PIMC to compute the superfluid

fractions ρs in (pH2)N clusters (N = 10−40), which appeared
to be size-sensitive. For example, for the N = 26 cluster they
found a significant drop of ρs relative to N = 25 and 27. This

was explained by the behavior of the corresponding radial
correlation functions ρ(r), where r defines the distance from
pH2 molecules to the cluster’s center of mass. Here and
throughout the paper, we will consider the quantity ρ(r)r2,
which is normalized as

r r r N( ) d
0

2∫ ρ =
∞

(1)

so that the weight of each peak is equal to the number of
particles forming the corresponding spherical layer. The radial
distributions for N = 25, 26, and 27 computed by either PIMC
or PIGS were later reproduced in a number of publica-
tions.15,23,29,30 In Figure 2 we show an example from a recent

paper by Miura.23 At first glance, there seems to be a structural
change when going from N = 25 to 26 with the peak at r ≈ 1.6
Å becoming noticeably sharper. This was interpreted by all of
the aforementioned authors as structural evidence for the inner
shell, which is apparently a tetrahedron formed by four pH2
molecules, being more solid-like (i.e., less delocalized) for N =
26 compared to the other two clusters. That is, the N = 26
cluster is more “solid” than its neighbors (i.e., N = 25, 27), and
as such, it was unanimously labeled as a magic number cluster.
(Reference 29 goes even further by plotting a 3D image of
(pH2)26 in which each pH2 molecule is localized in space.) We
note, however, that the structural evidence based on the
appearance of ρ(r) mentioned in all the above references is
rather coincidental. This is because the peak widths in ρ(r) are
very sensitive to where the “cluster’s center” is assumed to be.
In fact, the position of the cluster’s center of mass is generally
shifted with respect to the actual center of the shells, and
consequently, the peaks become broader when this shift is
larger. Below, we show that placing the center at that of the
inner shell removes the qualitative differences between radial
distributions of these clusters. The fact that the radial
distribution is so sensitive to the choice of the center makes
it inconvenient for structural analysis. In fact, much better
quantities exist, such as the pair correlation function g(r) or the
orientational bond order parameters,31 Q4 and Q6.

Figure 2. Radial distributions ρ(r)r2 (with respect to the cluster’s
center of mass) from ref 23 computed by VPI (a variant of PIGS) for
(pH2)N clusters with N = 25, 26, and 27. The appearance of the first
peak for N = 26 was used in a number of publications15,23,29,30 as
evidence for the more solid-like (“magic”) character of this cluster.
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For the chemical potential μN, the PIMC results at T = 1 K
from ref 29 agree with the DMC results of Guardiola and
Navarro12 for small sizes N but start to show erratic behavior
for N > 17, with the disagreement growing with N. This
disagreement becomes as large as 30% of the chemical
potential itself at N = 32. Furthermore, at a lower temperature
(T = 0.25 K), the disagreement between PIMC and DMC is
much smaller but still noticeable. In order to rationalize the
strange increase in size sensitivity when the temperature was
increased, the authors suggested that strong quantum
delocalization (“quantum melting”) only takes place at
sufficiently low temperatures (e.g., T = 0.25 K), while at
higher temperatures (e.g., T = 1 K), these clusters become
solid-like and essentially resemble the classical behavior.
Similar conclusions were reached in refs 9, 15, exclusively
based on examining the behavior of ρ(r) as a function of
temperature. We note that all of the mentioned PIMC
calculations were performed by taking into account the nuclear
exchange. At the same time, the authors of refs 9, 15 stated and
showed some numerical evidence that the structural properties
(such as ρ(r)) are hardly affected by Bose statistics. This
conclusion, i.e., that due to the NQEs a pH2 cluster undergoes
a liquid−solid transition with increasing (not decreasing!)
temperature, solely made from observing the behavior of the
radial correlation function ρ(r), seems very intriguing but also
very controversial. Surprisingly, to the best of our knowledge, it
has not been revisited in the literature. Despite being
disconcerted by this conclusion, we are not in the position
of questioning it any further, as this goes beyond the scope of
the present paper.
Another study investigating the ground states of (pH2)N

clusters (N = 2−55) using the PIGS method was carried out
by Cuervo and Roy.16,17 Unlike the smooth DMC-IS chemical
potential curves reported around the same time by Guardiola
and Navarro,11,12 their μN dependence showed strong size
sensitivity for N ≥ 26 (see Figure 1). As a result, they
suggested several new magic number clusters (starting with N
= 26). In order to rationalize their findings, they also used the
radial distribution ρ(r). The striking qualitative disagreement
between DMC and PIGS was inspiring and seems to be
unsettled until now. For example, in a recent paper, Miura23

used the variational Path Integral (VPI) method (which is
essentially a variant of PIGS) to study the ground states of
(pH2)N clusters for N = 3−40. Qualitatively the VPI results
(see Figure 1) are consistent with those from PIGS17 and
PIMC (T = 0.5 K)15 in that the μN curve also displays a
zigzagged behavior for N ≥ 26. However, there were still some
substantial quantitative discrepancies in the actual values of μN
between the three sets of data. Miura23 also used ρ(r) for
structural analysis but additionally performed inherent
structure analysis for N = 26, which showed several isomers
sampled during the simulation period. In spite of this
observation, the author still concluded that the N = 26 cluster
is more rigid than N = 25 and 27 for which the inherent
structure analysis was not presented.
Finally, a thorough DMC study of just two systems, (pH2)19

and (pH2)38, and their deuterium isotopologues, was reported
by one of us.14 Rather than trying to directly settle the magic
number controversy, this study focused on the structural
analysis as a function of quantum strength (deuterium versus
hydrogen). The main tool for this study was the inherent
structure analysis in which the random walker population was
quenched to determine the isomer fractions (see below). This

analysis on both pH2 clusters resulted in millions of inherent
structures representing all existing symmetry motifs that were
supported by the underlying PES, thereby leaving no doubt
about the high level of disorder of the ground state
wavefunction. We believe that this finding alone can serve as
an indirect indication of the lack of size sensitivity of the
(pH2)N clusters, while exposing the sheer complexity of these
clusters that has certainly been underappreciated in the field.
In accordance with the above discussion, we will focus on

the smallest, yet still interesting, size range (N = 24−28), since
the discrepancy between methods (e.g., DMC and PIGS)
become apparent at N = 26. We do so in order to demonstrate
that these clusters are size insensitive, and hence, there is no
evidence for calling (pH2)26 a magic number cluster. In
addition, we will address some numerical issues associated with
the DMC calculations, where in particular, we will investigate
the performance of DMC with and without IS.

■ METHODS
The present DMC calculations without IS as originally
formulated by Anderson,32,33 were carried out following ref
14, while the DMC calculations with importance sampling
(DMC-IS) were implemented following refs 11, 13. All
calculations here were done using the SG potential.3

To briefly summarize the method, we employed the variant
of DMC that uses a population of Nw random walkers with
equivalent weights that sample the configuration space
bounded by the PES, which collectively represent the system
wavefunction at projection time τ. At each time step of length
Δτ, a “branching procedure” is introduced in which some
random walkers are replicated and some are killed to keep the
random walker population virtually constant and, hence, to
stabilize the average estimate of the ground state energy ⟨Eref⟩.
At sufficiently long τ, the ensemble of random walkers
approaches a stationary distribution and the instantaneous
energy Eref(τ) fluctuates in a predictable way around its average
value ⟨Eref⟩, and the time average provides as estimate of the
ground state energy:

E E
1

( ) d0
max 0

ref

max∫τ
τ τ≈

τ

(2)

In the limit of Δτ → 0, Nw → ∞, and the total propagation
time τmax → ∞, the random walker distribution converges to
the exact ground state wavefunction with ⟨Eref⟩ = E0, i.e., the
exact ground state energy.
Here, the error bars for the energies are calculated using a

reblocking scheme in which standard deviations are calculated
from the variance of interval averages following an equlibration
period.34

DMC-IS follows a similar methodology except with an
additional constraint imposed on the random walker
population through the IS wavefunction ΨT(r). More
specifically, the Schrödinger equation is rewritten in terms of
a new wavefunction

f r t r r t( , ) ( ) ( , )T= Ψ Ψ (3)

which satisfies the diffusion equation with a drift term that
depends on ΨT. This acts as an external force to guide the
diffusion of random walkers across the configuration space.
Here, we use the most simple IS wavefunction that includes
only two-body terms
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> (4)

where rij defines the pair distances between pH2 molecules.
This was implemented in the previous aforementioned studies
(see, e.g., refs 11, 13). The constants b and β are obtained by
the VMC method by minimizing the following energy
functional:

E b
H

( ; ) T T

T T
β =

⟨Ψ | ̂ |Ψ ⟩
⟨Ψ |Ψ ⟩ (5)

The exact values for these parameters vary slightly with N.
However, since this IS wavefunction is far from the exact
ground state wavefunction regardless of whether the best
parameters are used, for convenience, we implemented the
size-independent values13 b = 3.58 Å, β = 2.79 Å−1, unless
specified otherwise.
Besides the ground state energies, we also compute the

following structural properties:
(i) The orientational bond order parameters, Q4 and Q6.

31

(ii) The radial correlation function ρ(r) with respect to the
cluster’s center (to be specified later).
(iii) The pair correlation function g(r), where the quantity

g(r)r2 normalized as

g r r r( ) d 1
0

2∫ =
∞

(6)

will be plotted for consistency.
(iv) The isomer fractions f k (∑k f k = 1) obtained by

quenching the random walker configurations during the DMC
calculation. The quenching is done using the conjugate
gradient method. For each isomer, f k is set to be proportional
to the number of configurations minimized upon quenching
into the corresponding potential energy minimum.
The use of IS comes with great benefits in terms of reducing

statistical errors and, most importantly, converging DMC-IS

energies and other observables at relatively small values of Nw
(i.e., small compared to those needed in the case of DMC).
This, however, comes with a price. Theoretically, the
numerically converged (with respect to Nw, Δτ, and τmax)
DMC-IS results should not depend on the IS wavefunction ΨT.
However, the seemingly converged results do depend on ΨT in
practice, and this dependence is hard to keep under control
because the systematic improvement of ΨT is limited to
relatively simple forms. This in turn makes the problem of
assessing the accuracy, particularly of the chemical potential
estimates, orders of magnitude more difficult than merely
getting the results. In this paper, we will only demonstrate that
a nontrivial bias associated with the choice of ΨT exists since a
systematic investigation of such a bias would be too costly and
is beyond the scope of this paper.
It is also important to point out that observables of operators

(e.g., assuming a function of the coordinate A(r)), such as

A
r A r r

r r

( ) ( ) d

( ) d

2

2⟨ ⟩ ≔
∫ |Ψ |

∫ |Ψ | (7)

that do not commute with the system’s Hamiltonian, cannot
be computed naturally within the standard DMC framework.
This leaves the ground state energy as essentially the only both
interesting and true physical observable that can be computed
in a straightforward manner. However, the structural properties
defined by the system’s wavefunction Ψ(r) can still be
characterized using the quantities that are easily computed
within the DMC framework. The most natural is the Ψ-
averaged quantity

A
A r r r

r r
( ) ( ) d

( ) d1⟨ ⟩ ≔
∫ Ψ

∫ Ψ (8)

which is computed by averaging over both the random walker
population and time τ. Although not true physical observable,
this can still provide insight into the ground state properties
(e.g., the structural properties) and be related to the true, i.e.,

Figure 3. DMC (left) and DMC-IS (right) energy estimates (K) for clusters E13 and E14 and the chemical potential μ13 = E14 − E13 as a function of
time step Δτ using Nw = 5 × 106 and τmax = 2 × 107 au, and Nw = 5000 and τmax = 107 au, respectively.
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Ψ2-averaged, physical observable (eq 7). Meanwhile, one can
naturally estimate both the Ψ-averaged observable

A
f A

f
r r r r

r r r
( ) ( )/ ( ) d

( )/ ( ) d
T

T
1⟨ ⟩ =

∫ Ψ
∫ Ψ (9)

and the true physical observable through the so-called “mixed
estimate”

A A
A f A

f
r r r r

r r r
r r r

r r
( ) ( ) ( ) d

( ) ( ) d
( ) ( ) d

( ) d
T

T
IS⟨ ⟩ ≈ ⟨ ⟩ =

∫ Ψ Ψ
∫ Ψ Ψ

=
∫

∫
(10)

using DMC-IS. The problem with eq 10 is that it depends
entirely on the quality of the IS wavefunction, which for a
complex many-body system, is never good enough and thereby
introduces an uncontrollable bias.

■ RESULTS AND DISCUSSION
The Ground State Energies and Chemical Potential.

The finite values of Nw and Δτ are sources of systematic errors
in both DMC and DMC-IS. Figure 3 shows the energy
estimates, E13 and E14, as a function of Δτ computed using
DMC and DMC-IS. As shown, the Δτ bias is much stronger
when IS is used, which can be explained by the presence of the
drift term in the diffusion equation associated with DMC-IS.
Notably however, there is a good cancellation of the Δτ bias
for chemical potential μ13 = E14 − E13. Based on these results,
all of the following calculations were performed using Δτ =
200 au for DMC and Δτ = 30 au for DMC-IS, which result in

systematic errors (for μN) well within the statistical errors.
Another important point to highlight here is that the results
from DMC and DMC-IS coincide if extrapolated to the limit of
Δτ→ 0. We will show below that this is in fact not the case for
larger cluster sizes, where we observe the manifestation of the
“curse of dimensionality” in both DMC and DMC-IS
calculations.
Next, we present the results for the size range N = 24−28

from DMC and DMC-IS calculations. Figure 4 shows the
energy estimates EN as a function of population size Nw. One
can see that the bias for the unguided DMC energies remains
at population sizes as large as Nw ≈ 107. At the same time, the
DMC-IS energies stop changing around Nw = 5 × 105, and the
two sets of energy estimates disagree by about 5 K. Notably,
the results from the unguided DMC calculation using the
largest population size (Nw = 2 × 107) agree within ∼1 K with
DMC-IS results from ref 12 with the discrepancy growing with
N. (Note, again, that ref 12 used a much better IS
wavefunction ΨT which included three-body terms.) Although
this figure only confirms the results reported a decade ago by
Guardiola and Navarro,12 it also emphasizes the dangers
associated with using IS. One can see that the present DMC-IS
energies using the less accurate two-body IS wavefunction are
strongly biased with the systematic errors undetectable without
a comparison to accurate results. It should also be noted that
this bias is too large to be due to the finite value of Δτ, which is
estimated to be less than 1 K.
These comparisons are further highlighted in Figure 5,

which shows the chemical potential curves μN obtained from

Figure 4. DMC energy estimates (K) of (pH2)N clusters with sizes N = 24−28 using Δτ = 200 au (left) and from DMC-IS using Δτ = 30 au
(right). All calculations were run with τmax = 2 × 107 au. The DMC-IS energy for N = 26 using better optimized parameters for the IS wavefunction
(b = 3.65 Å and β = 2.06 Å−1) is also shown for Nw = 5 × 105 (green star). The dashed horizontal lines show the DMC-IS results from ref 12 using
a better IS wavefunction.
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the data presented in Figure 4. The chemical potential curve
computed by DMC becomes relatively smooth as Nw increases
in the calculations without IS. On the other hand, the present
“converged” (with respect to Nw) DMC-IS results show
zigzagged chemical potential curves with a minimum at N =
26. It is very likely, albeit difficult to claim with 100% certainty,
that the observed size sensitivity in the present DMC-IS result
is simply an artifact of the bias introduced by the particular
choice of the IS wavefunction in the form of equation eq 4.
To conclude this subsection, there is no convincing

energetic data that points to the existence of a “magic number”
cluster in this range. In addition, the present results further
highlight the challenging nature of these calculations that has
led to the lack of consensus regarding the values of the exact
energies and chemical potential. To this end, we now turn to
the analysis of structural properties of the ground state
wavefunctions, which will provide more insight into the issue
of size sensitivity in these systems.
The Structural Analysis. While the accuracy of the energy

estimates appear to be very sensitive to numerical details using
any of the in-principle-exact methods (PIMC, PIGS, DMC,
DMC-IS), the structural properties appear to be much more
robust. As an example, Figure 6 shows the radial distribution
ρ(r) and the pair correlation function g(r) for (pH2)26
computed using unguided DMC with various populations of

random walkers Nw. Even for the relatively small population
size of Nw = 2.5 × 106, for which there is a significant bias in
the energy estimate, the spatial distributions are well
converged. Furthermore, these results are unchanged with
respect to the time step Δτ, and the distributions remain
within the line width in the graph (not shown). Similar results
are obtained in the case of DMC-IS (not shown).
As we have seen already, there is a clear bias associated with

the use of the trial wavefunction in the form of eq 4. That is,
the choice of the trial wavefunction ΨT matters, in spite of the
fact that DMC-IS is an in-principle-exact method, and in the
limit of Nw → ∞, Δτ → 0, τ → ∞, it should provide the exact
results regardless of what ΨT is. Once again, IS can significantly
reduce statistical errors and improve convergence with respect
to Nw. It does so by guiding the random walkers away from the
parts of the configuration space not represented by ΨT, thus
reducing the effective volume of the sampling region
accordingly. Moreover, such a reduction scales exponentially
with the system size N. However, the IS procedure can
simultaneously omit some relevant information about the
system in regions where ΨT does not have appreciable overlap
with the wavefunction. Unfortunately, this bias is impossible to
assess without having access to accurate results obtained by
other methods. To this end, we turn to Figure 7, which further
adds to the evidence indicating that DMC-IS is biased.
The discrepancy between the converged distributions (with

respect to a given method) of ρ(r) and g(r) computed with
DMC versus DMC-IS is evident in Figure 7. One can see that
this discrepancy is much greater than the statistical errors.
Moreover, when the variational parameters, b and β (cf. eq 4)),
are adjusted slightly for N = 26, the distributions also change.
Therefore, once again, we observe structural characteristics
that are indicative of a bias introduced as a result of using IS.
This structural difference, which may seem relatively small at
first glance, can correspond to greater differences in the ground
state wavefunctions. This is reflected in the bias observed in
the DMC-IS energies in Figure 4.
It should be reiterated that the Ψ-averaged quantities (cf. eq

8) are naturally obtained within the DMC framework, while
both the Ψ-averaged observables and the mixed estimate 10 of
the Ψ2-averaged quantities (i.e., the true physical observables),
are naturally calculated within the DMC-IS framework. To
allow one to ascertain the validity of this Ψ-averaged quantity
as a measure to investigate structural properties, we addition-

Figure 5. Chemical potential curves μN = EN−1 − EN generated from
the data in Figure 4.

Figure 6. Ψ-averaged radial distribution ρ(r)r2 (with respect to the cluster’s center of mass) and the pair correlation function g(r)r2 for (pH2)26
using different random walker populations Nw computed by DMC.
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ally show both Ψ and Ψ2-averaged distributions for N = 26,
computed using DMC-IS in Figure 8. As expected, Ψ2-
averaged distributions are more structured than the Ψ-
averaged quantities. Nonetheless, one can still observe the
utility of using these strictly speaking unphysical (Ψ-averaged)
quantities to characterize a cluster’s structure. Furthermore, for

the purpose of this work, which is to investigate size sensitivity
and to evaluate the DMC methods, the distinctions between
these distributions are inconsequential.
In order to relate the present results with those reported in

the literature, we compare some of them with the best we have,
i.e., the mixed estimates of the radial distributions ρ(r), in

Figure 7. Ψ-averaged radial distribution ρ(r)r2 (with respect to the cluster’s center of mass) and the pair correlation function g(r)r2 computed with
DMC using Nw = 107 as well as the Ψ-averaged quantities from DMC-IS using Nw = 5 × 105 for N = 24−28. Results with different IS parameters; b
= 3.65 Å and β = 2.06 Å−1 for N = 26 is also shown.
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Figure 9. While the latter is an approximation by construction,
to our surprise, we find significant discrepancies between the
results obtained using in-principle-exact methods (PIGS, VPI
and PIMC), which indicates that at least some of them are not
well converged.
We now turn to one of our motivations for studying these

clusters, which is to investigate the quantum delocalization and
size sensitivity using structural analysis of the ground state
wavefunctions for which the DMC method is most suited. The
left panels in Figure 10 show the isomer fractions as a function
of the isomer energies, i.e., the potential energy values at the
corresponding minima of the PES. These were obtained by
quenching the random walker configurations during the DMC
runs. First of all, we note that for each cluster, the ground state
wavefunction is delocalized over a very large number of
isomers (i.e., potential energy minima), with individual isomers
contributing less than 4% to the wavefunction. (However, in
order to make the figure readable, we only display a section
that corresponds to f k > 0.0002.) The fact that there is no
particular cluster configuration that could be associated with
the structure of the ground state, e.g., for N = 26, makes the
speculations about its solid-like character15,23,29,30 at least
questionable. Second, in all cases, except maybe N = 27, the
most contributing isomer is not the global energy minimum.
The right panels in Figure 10 show the same isomer fractions
but as a function of the Q6 orientational bond order parameter.
This plot demonstrates that the wavefunction is delocalized
over a large region of the configuration space and represents all
symmetry motifs that are supported by the underlying PES.
(Here, the reader is referred to ref 35 in which the structural
analysis of Lennard−Jones clusters using Q6 is carried out.)
We now remind the reader of the ill-defined nature of the

radial distribution ρ(r) when the distance r is measured
between the pH2 molecules and the cluster’s center of mass. In
order to demonstrate this point, we show Ψ-averaged ρ(r)
computed using a single configuration of the most populated
isomer for each cluster in the range N = 24−28 (see the top
panel of Figure 11). This is done by averaging ρ(r) over the
harmonic ground state wavefunction for the corresponding
potential energy minimum. If one assumes that such
distribution is a unique characteristic of a cluster’s structure,
then this plot would indicate a high level of size sensitivity in
these clusters. However, in the middle panel of Figure 11, we
show that this is in fact not true. We notice that in all cases, the
inner shell is formed by four particles, and hence this panel

Figure 8. Ψ- and Ψ2-averaged radial distributions ρ(r)r2 (with respect to the cluster’s center of mass) and the pair correlation functions g(r)r2

calculated using DMC-IS for (pH2)26 using Nw = 5 × 105.

Figure 9. Mixed estimates of the radial distributions ρ(r)r2 (with
respect to the cluster’s center of mass) computed by DMC-IS using
Nw = 5 × 105 for N = 25−28 compared to those reported in various
publications: Sola11 (ref 17, using PIGS), Miura18 (ref 23, using VPI,
a variant of PIGS), and Mezzacapo09 (ref 29, using PIMC, T = 0.5
K).
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shows that the distributions based on distances measured with
respect to the center of mass of the inner shell is a more
appropriate definition of ρ(r). Strikingly, all five radial
distributions look nearly identical around the first peak and
resemble the radial distribution function of a perfect
tetrahedron. Meanwhile, the second peak gradually increases
in size with the increasing number of particles in the second
shell. The bottom panel in Figure 11 shows the pair correlation
function g(r), which confirms that all five isomers are
structurally very similar. We note here that other highly
populated isomers from Figure 10 result in similar distributions
(not shown). Finally, Figure 12 shows the Ψ-averaged radial
distributions and pair correlation functions from the DMC
calculations for N = 24−28. These plots most clearly confirm
the conclusion that structurally all clusters in the range N =
24−28 are the same, as both distributions change systemati-
cally with increasing cluster size.

■ CONCLUSIONS

In this paper, we revisited para-hydrogen clusters, which have
been the focus in numerous publications. The controversial
issue that we tried to address was whether the size sensitivity in
these clusters persists when the strong quantum effects are
taken into account. The magic number clusters are observed in
atomic and molecular clusters of various kinds, and the
phenomenon seems to be generic. Indeed, all classical (i.e.,
without NQEs) clusters of particles interacting via a short-
range potential display high size sensitivity. For example, given
the number N of constituents in a cluster, its global energy
minimum usually corresponds to the structure of high
symmetry in which the number of nearest-neighbor pairs is
maximized, and hence, the total energy is minimized. Clearly,
there are always specific sizes with perfect symmetries for
which the binding energy per one constituent is maximized
compared to its neighbors (i.e., the sizes corresponding to a
spike in the chemical potential μN). It is also apparent that
smaller spikes in the μN dependence should exist as well. Again,

Figure 10. Isomer fraction f k from the DMC simulations (using Nw = 2 × 107) for N = 24−28 as a function of isomer energy per molecule (left)
and as a function of the orientational bond order parameter, Q6 (right). (Note the logarithm scale.) While for all the observed isomers f k < 0.04,
only isomers for which f k > 0.0002 are shown.
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this is the general property of systems with short-range
potentials. At the same time, the situation becomes more
complicated when the range (i.e., the ratio between the
effective width of the attractive well of the pair potential and
the minimum distance) of the interacting pair potential
between the constituents in the cluster becomes sufficiently
large,36 as in this case where the total energy of the cluster is
determined by the overall shape of the cluster rather than the
number of the nearest neighbor pairs. Consequently, for long-
range potentials, the symmetry is no longer a factor in
determining the cluster’s energetics, which in turn leads to
disordered (liquid-like) structures. Since magic number
patterns are closely related to the presence of symmetries,
the lack of the latter implies the lack of the former.
Interestingly, the increase of quantum strength in a many-
body system (such as that measured in terms of de Boer
quantum delocalization length Λ in Lennard-Jones clusters)
leads to an increase in the effective range of the potential.7

That is, strong NQEs result in disordered structures and hence
a loss of size sensitivity. References 10, 14 together with the
present results strongly suggest that this is the case for para-
hydrogen clusters.
As we have demonstrated in this paper, the lack of size

sensitivity can be confirmed using adequate structural markers

to characterize and compare the (pH2)N clusters of different
sizes. Another interesting observation made in this paper for
the size range considered (i.e., N = 24−28) was that among all
the data on (pH2)N clusters reported previously, ref 12 using
DMC-IS with the most accurate IS wavefunction seems to be
the most reliable both quantitatively and qualitatively.
However, in order to obtain accurate results for larger sizes
N > 28, the DMC-IS calculations should be revisited using
much larger population sizes Nw with the hope of circum-
venting the curse of dimensionality.
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Figure 11. Top panel: Ψ-averaged radial distributions ρ(r)r2 with
respect to the cluster’s center of mass, which was computed by
averaging over the harmonic ground state wavefunctions of the most
populated isomers for N = 24−28. Middle panel: Same as the top
panel but the center is set to coinside with the center of the inner shell
of the cluster. Bottom panel: The pair correlation functions g(r)r2, but
otherwise the same as the other two panels.

Figure 12. Ψ-averaged radial distributions ρ(r)r2 (with respect to the
center of the inner shell of the cluster) and the pair correlation
functions g(r)r2 for N = 24−28 from DMC calculations using Nw = 2
× 107.
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