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ABSTRACT
Recent work shows that strong stability and dimensionality freedom are essential for robust numerical integration of thermostatted ring-
polymer molecular dynamics (T-RPMD) and path-integral molecular dynamics, without which standard integrators exhibit non-ergodicity
and other pathologies [R. Korol et al., J. Chem. Phys. 151, 124103 (2019) and R. Korol et al., J. Chem. Phys. 152, 104102 (2020)].
In particular, the BCOCB scheme, obtained via Cayley modification of the standard BAOAB scheme, features a simple reparametriza-
tion of the free ring-polymer sub-step that confers strong stability and dimensionality freedom and has been shown to yield excellent
numerical accuracy in condensed-phase systems with large time steps. Here, we introduce a broader class of T-RPMD numerical inte-
grators that exhibit strong stability and dimensionality freedom, irrespective of the Ornstein–Uhlenbeck friction schedule. In addition
to considering equilibrium accuracy and time step stability as in previous work, we evaluate the integrators on the basis of their rates
of convergence to equilibrium and their efficiency at evaluating equilibrium expectation values. Within the generalized class, we find
BCOCB to be superior with respect to accuracy and efficiency for various configuration-dependent observables, although other inte-
grators within the generalized class perform better for velocity-dependent quantities. Extensive numerical evidence indicates that the
stated performance guarantees hold for the strongly anharmonic case of liquid water. Both analytical and numerical results indicate
that BCOCB excels over other known integrators in terms of accuracy, efficiency, and stability with respect to time step for practical
applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036954., s

I. INTRODUCTION

Path-Integral Molecular Dynamics (PIMD) provides a practi-
cal and popular tool to simulate condensed-phase systems subject
to strong nuclear quantum effects.1–3 Based on the ring-polymer
correspondence between quantum and classical Boltzmann statis-
tics,4,5 PIMD exploits the computational methods of molecular
dynamics6–9 to approximate quantum thermodynamics and kinet-
ics through various classical models.10–15 Applications of PIMD
include calculations of chemical reaction rates,16,17 diffusion coeffi-
cients,18,19 absorption spectra,20,21 solid and liquid structure,22,23 and
equilibrium isotope effects.24,25

Many numerical integration schemes for PIMD are based
on a symmetric Trotter (i.e., Strang) splitting26,27 of the exact

time-evolution operator and feature a sub-step for free ring-polymer
propagation.28–30 Due to fast harmonic motions present in the
free ring polymer, a strongly stable implementation of this sub-
step is essential.31,32 Strong stability can be achieved by one of two
approaches. The first approach introduces a preconditioned form of
the equations ofmotion bymodifying the ring-polymermassmatrix.
Preconditioning improves the stability of the exact free ring-polymer
update at the expense of consistent dynamics.28,30,33–36 The second
approach does not modify the ring-polymer mass matrix, leaving
the dynamics non-preconditioned,29,37–40 and instead replaces the
exact free ring-polymer update with a strongly stable approxima-
tion.41 We apply the latter approach in the current work to Ther-
mostatted Ring-Polymer Molecular Dynamics (T-RPMD),38 a non-
preconditioned variant of PIMD featuring an Ornstein–Uhlenbeck

J. Chem. Phys. 154, 024106 (2021); doi: 10.1063/5.0036954 154, 024106-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0036954
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0036954
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0036954&domain=pdf&date_stamp=2021-January-8
https://doi.org/10.1063/5.0036954
https://orcid.org/0000-0001-9280-9808
https://orcid.org/0000-0002-1882-5380
mailto:nawaf.bourabee@rutgers.edu
mailto:tfm@caltech.edu
https://doi.org/10.1063/5.0036954


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

thermostat that approximately preserves the real-time dynamical
accuracy of RPMD for quantum correlation functions of a wide
range of observables.42

In addition to strong stability of the free ring-polymer update,
another basic requirement of a numerical integrator for T-RPMD
is the non-zero overlap between the numerically sampled and exact
ring-polymer configurational distributions in the limit of an infi-
nite number of ring-polymer beads. Standard integrators fail to sat-
isfy this requirement at any finite integration time step,43 which
motivates the introduction of dimension-free T-RPMD schemes that
allow for accurate configurational sampling with large time-stepping
and arbitrarily many ring-polymer beads. We recently found that
standard integrators could be made dimension-free through the
introduction of a suitable strongly stable ring-polymer update,43

and the current paper investigates this finding in much greater
generality.

To this end, we introduce a function θ that defines the free
ring-polymer update and deduce how the choice of θ impacts the
properties and performance of the corresponding T-RPMD inte-
grator. The case θ(x) = x, i.e., θ is the identity, corresponds to
the exact free ring-polymer update. Therefore, to ensure second-
order accuracy, θmust approximate the identity near the origin, i.e.,
θ(0) = 0, θ′(0) = 1, and θ′′(0) = 0. Moreover, strong stability requires
that the range of the function θ is within (0, π) for x > 0, and
ergodicity and dimensionality freedom of the corresponding T-
RPMD integrator impose additional requirements on θ. There are
many choices of θ that fulfill the identified requirements including
θ(x) = 2 arctan(x/2), which leads to the BCOCB scheme introduced
in Ref. 43. In fact, we find that this choice of θ is superior for the
estimation of configurational averages via T-RPMD from the per-
spectives of accuracy and efficiency, despite its poor performance
with respect to the ring-polymer velocities.

This paper is organized as follows. In Sec. II, we recall exact
T-RPMD and its time discretization, present the new function θ
that determines the free ring-polymer update, and obtain suffi-
cient conditions on θ to guarantee strong stability and dimension-
ality freedom of the corresponding T-RPMD integrator. In Sec. III,
we compare the performance of various θ in applications to the
one-dimensional quantum harmonic oscillator and to a quantum-
mechanical model of room-temperature liquid water. Section IV
summarizes the work, and appendixes provide supporting mathe-
matical proofs and computational protocols.

II. THEORY
A. T-RPMD

Consider a one-dimensional quantum particle with the Hamil-
tonian operator

Ĥ =
1
2m

p̂2 + V(q̂), (1)

where m is the particle mass, q̂ and p̂ are the position and momen-
tum operators, and V(q̂) is the potential energy surface. Ignor-
ing exchange statistics, the properties of this system at thermal
equilibrium are encoded in the quantum partition function,

Q = tr[e−βĤ], (2)

where β = (kBT)−1, kB is the Boltzmann constant, and T is the
physical temperature. Using a path-integral discretization (i.e., a
Trotter factorization of the Boltzmann operator26), Q = limn→∞Qn
can be approximated by the classical partition function Qn of a ring
polymer with n beads,4,5

Qn =
mn

(2πh̵)n ∫
dnq∫ dnv e−βHn(q,v), (3)

where q = [q0 ⋯ qn−1]
T is the vector of bead positions and v is the

corresponding vector of velocities. The ring-polymer Hamiltonian is
given by

Hn(q,v) = H0
n(q,v) + Vext

n (q), (4)

which includes contributions from the physical potential

Vext
n (q) =

1
n

n−1

∑
j=0

V(qj) (5)

and the free ring-polymer Hamiltonian

H0
n(q,v) =

mn

2

n−1

∑
j=0
[v2j + ω2

n(qj+1 − qj)
2
], (6)

wheremn =m/n, ωn = n/(h̵β), and qn = q0.
T-RPMD evolves the phase [qT vT]

T of the ring polymer as per

q̇(t) = v(t); v̇(t) = −Ω2q(t) +m−1n F(q(t))

− Γv(t) +
√

2β−1m−1n Γ1/2Ẇ(t), (7)

which is a coupling of the Hamiltonian dynamics of Hn(q, v) with
an Ornstein–Uhlenbeck thermostat. In Eq. (7), we introduced F(q)
= −∇Vext

n (q), an n-dimensional standard Brownian motion W(t),
and the n × nmatrices

Ω = U diag (0,ω1,n, . . . ,ωn−1,n)UT

and

Γ = U diag (0, γ1,n, . . . , γn−1,n)UT, (8)

where γj ,n ≥ 0 is the jth friction coefficient, U is the n × n real dis-
crete Fourier transform matrix, and the ring-polymer frequencies
are given by

ωj,n =

⎧⎪⎪
⎨
⎪⎪⎩

2ωn sin( πj2n) if j is even
2ωn sin( π(j+1)2n ) else.

(9)

Observe that the zero-frequency (i.e., centroid) ring-polymer mode
is uncoupled from the thermostat, and the coefficients {γj,n}n−1j=1 in
Eq. (8) constitute the friction schedule applied to the non-centroid
modes.

Numerical integrators for Eq. (7) typically employ symmetric
propagator splittings of the form44–46

eΔtLn ≈ ea
Δt
2 One

Δt
2 Bne

Δt
2 Ane(1−a)ΔtOn

× e
Δt
2 Ane

Δt
2 Bnea

Δt
2 On with a ∈ {0, 1}, (10)
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where the operator Ln = An + Bn +On includes contributions from
the n-bead free ring-polymer motion (An), the external potential
(Bn), and the thermostat (On), and Δt is a sufficiently small time
step. Note that the standard microcanonical RPMD integrator is
recovered in the limit of zero coupling to the thermostat29 and that
Eq. (10) yields the OBABO scheme of Bussi et al.44 if a = 1 and the
BAOAB scheme of Leimkuhler45 if a = 0.

Standard implementations of the T-RPMD splittings in Eq. (10)
use the exact free ring-polymer propagator e

Δt
2 An to evolve the

uncoupled ring-polymer modes; however, recent work by us41

showed that such implementations exhibit poor ergodicity if large
numbers n of ring-polymer beads are employed in conjunction with
large time steps Δt and suggested replacing the exact ring-polymer
propagator with its Cayley approximation47 for improved perfor-
mance. Follow-up work43 introduced a Cayley-modified BAOAB
scheme, denoted by BCOCB, and presented numerical evidence that
cemented the scheme as an improvement over standard BAOAB due
to its superior equilibrium accuracy and time step stability.

Generalizing beyond the Cayley modification, the current work
studies a family of modified BAOAB schemes that contains BCOCB
and introduces others with similar theoretical guarantees. Specifi-
cally, the BAOAB modifications are obtained by replacing the exact
free ring-polymer update in Eq. (10) with approximations that
endow the properties listed below.

(P1) Strong stability. For a free ring polymer [i.e., for V(q)
= const.], the integrator with γj ,n = 0 is both strongly stable
and second-order accurate in Δt.

(P2) Free ring-polymer ergodicity. For a free ring polymer, the
integrator with γj ,n > 0 is ergodic with respect to the dis-
tribution with density proportional to e−βH

0
n(q,v).

(P3) Dimension-free stability. For a harmonically confined ring
polymer [i.e., for V(q) = (Λ/2) q2], the integrator with
γj ,n = 0 is stable for any n if Δt leads to stable integration
for n = 1.

(P4) Dimension-free ergodicity. For a harmonically confined ring
polymer, the integrator with γj ,n > 0 is ergodic with respect
to its stationary distribution for any n.

(P5) Dimension-free equilibrium accuracy. For a harmonically
confined ring polymer, the integrator leaves invariant an
accurate approximation of the distribution with density pro-
portional to e−

βmn
2 qT( Λ

m +Ω2
)q, with bounded error for any n.

To obtain integrators satisfying properties (P1)–(P5), we intro-
duce a function θ that defines the free ring-polymer update and then
construct θ accordingly. To this end, let

S1/2
j,n = Qj,n[

eiθ(ωj,nΔt)/2 0
0 e−iθ(ωj,nΔt)/2]Q

−1
j,n , (11)

where Qj,n = [
1 1

iωj,n −iωj,n
], and essential properties of θ are deter-

mined in the sequel. We focus on T-RPMD schemes derived from
the BAOAB splitting [i.e., a = 0 in Eq. (10)] with the exact free ring-
polymer update replaced by S1/2

j,n . For such schemes, an integration
time step is comprised by the following sequence of sub-steps:

B: Update velocities for half a step: v ← v + Δt
2

F
mn

.
Convert bead Cartesian coordinates to normal modes

using

% = UTq and φ = UTv. (12)

A: Evolve the free ring polymer in normal-mode coordinates for
half a step:

[
%j
φj
]← S1/2

j,n [
%j
φj
] for 0 ≤ j ≤ n − 1.

O: Perform an Ornstein–Uhlenbeck velocity update for a full
time step:

φj ← e−γj,nΔtφj +

¿
Á
ÁÀ1 − e−2γj,nΔt

βmn
ξj,

where ξj are independent standard normal random variables
and 0 ≤ j ≤ n − 1.

A: Evolve the free ring polymer in normal-mode coordinates for
half a step:

[
%j
φj
]← S1/2

j,n [
%j
φj
] for 0 ≤ j ≤ n − 1.

Convert back to bead Cartesian coordinates using the
inverse of U , which is just its transpose since U is orthogonal.

B: Update velocities for half a step: v ← v + Δt
2

F
mn

.
In the remainder of this section, we identify conditions on

the choice of θ that imply properties (P1)–(P5) for the corre-
sponding T-RPMD integrator. Despite our focus on BAOAB-
like splittings, we describe how the conditions on θ can be
adjusted to construct integrators derived from the OBABO
splitting [i.e., a = 1 in Eq. (10)], which satisfy properties
(P1)–(P5).

B. Strong stability of RPMD with a constant
external potential

In this section, sufficient conditions on θ are identified to sat-
isfy property (P1) in Sec. II A. Let V(q) = const. and γj ,n = 0 for 1 ≤ j
≤ n − 1, corresponding to the free ring polymer. The jth normal
mode [%j φj]

T satisfies

[
%̇j
φ̇j
] = Aj,n[

%j
φj
], where Aj,n = [

0 1
−ω2

j,n 0]. (13)

In this case, the algorithm from Sec. II A reduces to a full step of
Sj,n ≈ exp(ΔtAj,n), i.e.,

[
%j
φj
]← Sj,n[

%j
φj
] for 0 ≤ j ≤ n − 1, (14)

where Sj,n = S1/2
j,n S1/2

j,n follows from Eq. (11), and the function θ is
such that property (P1) holds.

We proceed to identify sufficient conditions on θ such that
the corresponding free ring-polymer update satisfies property (P1).
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First, note that for any function θ such that θ(−x) = −θ(x) for
x > 0, the structure of S1/2

j,n guarantees that the corresponding free
ring-polymer update is reversible, symplectic, and preserves the
free ring-polymer Hamiltonian H0

n(q,v). Now, observe that Sj,n is
exact if θ(x) = x; therefore, second-order accuracy requires that θ
approximates the identity near the origin, i.e.,

θ(0) = 0, θ′(0) = 1, and θ′′(0) = 0. (S1a)

Moreover, strong stability follows if the eigenvalues e±iθ(ωj,nΔt) ofSj,n

are distinct;41 to this end, we require that

0 < θ(x) < π for x > 0. (S2a)

Jointly, conditions (S1a) and (S2a) guarantee that the update in
Eq. (14) satisfies property (P1). There are many different choices of
θ that obey these conditions, e.g., θ(x) = arctan(x), arccos(sech(x)),48

and 2 arctan(x/2). The latter choice leads to the Cayley approxima-
tion of the free ring-polymer update, as can be verified by substitu-
tion in Eq. (11) and comparison of the resultingS1/2

j,n with Eq. (17) in
Ref. 43. Figure 1 compares the eigenvalues of Sj,n with θ(x) = x and
several choices of θ that meet conditions (S1a) and (S2a).

FIG. 1. Eigenvalues of Sj,n for 50 different time step sizes between 0.05 and 5.0
(evenly spaced) and fixed Matsubara frequency ω = 3. The colors go from blue
(smallest time step) to green and yellow to red (largest time step). In panel (a), the
eigenvalues rotate around the unit circle several times, which indicates that the
corresponding Sj,n is not always strongly stable. In panels (b)–(d), the eigenvalues
are distinct and on the unit circle; thus, the corresponding Sj,n is strongly stable.

C. Ergodicity of T-RPMD with a constant
external potential

In this section, it is shown that condition (S2a) implies property
(P2) in Sec. II A. Let V(q) = const. and γj ,n > 0 for 1 ≤ j ≤ n − 1,
corresponding to the free ring polymer with anOrnstein–Uhlenbeck
thermostat. In this case, the jth normal mode satisfies

[
%̇j
φ̇j
] = (Aj,n + Cj,n)[

%j
φj
] +
⎡
⎢
⎢
⎢
⎢
⎣

0
√

2γj,n
βmn

Ẇj

⎤
⎥
⎥
⎥
⎥
⎦

, (15)

where Cj,n = [
0 0
0 −γj,n

] and Ẇj is a scalar white-noise. The solution

[%j(t) φj(t)]
T of Eq. (15) is an ergodic Markov process, and in the

limit as t → ∞, its distribution converges to the centered bivariate
normal with covariance

Σj,n =
1

βmn
[
s2j,n 0
0 1], where s2j,n =

1
ω2
j,n
. (16)

This distribution corresponds to the jth marginal of the free
ring-polymer equilibrium distribution with density proportional to
e−βH

0
n(q,v).
The choice of γj ,n > 0 in Eq. (15) determines the rate at which

the associated Markov process converges to its stationary distribu-
tion if initialized away from it. When γj ,n < 2ωj ,n, the process is
dominated by the deterministic Hamiltonian dynamics and is char-
acterized as underdamped; on the other hand, when γj ,n > 2ωj ,n, the
process is overdamped; and at the critical value γj ,n = 2ωj ,n, the pro-
cess is characterized as critically damped and converges to equilib-
rium fastest.49,50 This analytical result motivates the so-called PILE
friction schedule.29,38 We specialize to this schedule in the remainder
of the section and set γj ,n = 2ωj ,n for 1 ≤ j ≤ n − 1.

The BAOAB-like update in Sec. II A applied to Eq. (15) can be
written compactly as

[
%j
φj
] ← Mj,n[

%j
φj
] +R1/2

j,n [
ξj
ηj
] for 0 ≤ j ≤ n − 1, (17)

where ξj and ηj are independent standard normal random variables,
and we have introduced the 2 × 2 matrices

Mj,n = S1/2
j,n Oj,nS1/2

j,n , Oj,n = [
1 0
0 e−2ωj,nΔt],

and

Rj,n =
1 − e−4ωj,nΔt

βmn
S1/2
j,n [

0 0
0 1](S

1/2
j,n )

T.

Since S1/2
j,n and the Ornstein–Uhlenbeck update are individually

preservative irrespective of the chosen θ, Eq. (17) exactly preserves
the free ring-polymer equilibrium distribution for any choice of θ
that satisfies (S1a) and (S2a).

The ergodicity of the integrator specified by Eq. (17) depends
entirely on the asymptotic stability of Mj,n, i.e., whether or not
∥Mk

j,n∥ → 0 as k → ∞ where ∥ ⋅ ∥ is a matrix norm. The matrix
Mj,n is asymptotically stable if its spectral radius (i.e., the modulus
of its largest eigenvalue) is smaller than unity,32 which depends on

det(Mj,n) = e−2ωj,nΔt
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and

tr(Mj,n) = cos(θ(ωj,nΔt))(1 + e−2ωj,nΔt).

In particular, the eigenvalues ofMj,n are both inside the unit circle
if and only if

∣tr(Mj,n)∣ < 1 + det(Mj,n) < 2,

and a proof of this claim is provided in Appendix A. This inequal-
ity reveals that condition (S2a) implies property (P2). Moreover,
if tr(Mj,n)

2
− 4 det(Mj,n) ≤ 0, then the spectral radius of Mj,n

is minimal and equal to
√
det(Mj,n) = e−ωj,nΔt ; this occurs when

|cos(θ(ωj ,nΔt))| ≤ sech(ωj ,nΔt) for all ωj ,nΔt, which holds if the
function θ satisfies

arccos(sech(x)) ≤ θ(x) ≤ π − arccos(sech(x)) for x > 0. (18)

Any choice of θ that does not satisfy Eq. (18) will be overdamped in
some modes, in the sense that the corresponding Mj,n will have a
spectral radius strictly larger than e−ωj,nΔt .

The function θ(x) = arccos(sech(x)) saturates the (left) inequal-
ity in Eq. (18) while satisfying conditions (S1a) and (S2a) and hence
provides a strongly stable and critically damped integrator for the
thermostatted free ring polymer. As illustration of this, Fig. 2(a)
shows that θ(x) = arctan(x) is overdamped for all modes, whereas
the Cayley angle θ(x) = 2 arctan(x/2) exhibits mixed damping. In
contrast, the function θ(x) = arccos(sech(x)) preserves the critically
damped behavior of its continuous counterpart under the PILE fric-
tion schedule. Figure 2(b) confirms that the spectral radius ofMj,n is
minimal at θ(x) = arccos(sech(x)) for x > 0; consequently, this choice
of θ optimizes the convergence of the integrator to stationarity.

Conditions (S1a) and (S2a) also imply property (P2) for the
OBABO-like update associated with a compliant choice of θ because
the matrices S1/2

j,n Oj,nS1/2
j,n and O1/2

j,n Sj,nO1/2
j,n have equal spectral

radii.

D. Dimension-free stability of RPMD with a harmonic
external potential

In this section, we identify a condition on θ that yields property
(P3) in Sec. II A. Let V(q) = (Λ/2) q2 and γj ,n = 0 for 1 ≤ j ≤ n − 1,
corresponding to the non-thermostatted ring polymer with a har-
monic external potential. In this case, the jth normal mode satisfies

[
%̇j
φ̇j
] = (Aj,n + B)[%jφj

], (19)

where B = [ 0 0
−Λ/m 0], and conserves the Hamiltonian

Hj,n(ρj,φj) =
mn

2
(∣φj∣

2 + (ω2
j,n +Λ/m)∣%j∣2).

For this system, the BAOAB-like update in Sec. II A reduces to

[
%j
φj
] ← Mj,n[

%j
φj
] for 0 ≤ j ≤ n − 1, (20)

where we have introduced the 2 × 2 matrices,

Mj,n = B1/2Sj,nB1/2 and B1/2
= [

1 0
−Δt(Λ/m)/2 1].

This update may be interpreted as a symplectic perturbation of the
free ring-polymer update in Eq. (14) due to the harmonic external
potential41 and conserves a modification ofHj ,n that depends on the
choices of θ and Δt.51

The update in Eq. (20) is stable if34

max
0≤j≤n−1

1
2
∣ tr(Mj,n)∣ = max

0≤j≤n−1
∣Aj,n∣ < 1, (21)

where

Aj,n = cos(θ(ωj,nΔt)) −
Δt2(Λ/m)

2
sin(θ(ωj,nΔt))

ωj,nΔt
.

Moreover, the 0th (i.e., centroid) mode, like the single-bead ring
polymer, evolves through the velocity Verlet algorithm, whose sta-
bility requires that Δt2Λ/m < 4. Combining this requirement with
condition (S2a) yields a sufficient condition for Eq. (21) to hold at
any n,

0 < θ(x) ≤ 2 arctan(x/2) for x > 0. (S3a)

FIG. 2. Spectral properties of the T-RPMD update for the free ring polymer for
various choices of θ. Panel (a) plots the functions θ(x) = arccos(sech(x)), arc-
tan(x), and arctan(x/2), and regions of overdamping and underdamping with PILE
friction, separated at the locus of points where |cos(θ(x))cosh(x)| = 1. The gray
region [|cos(θ(x))cosh(x)| < 1] is where the dynamics is underdamped, while in
the white region [| cos(θ(x)) cosh(x)| > 1], the dynamics is overdamped. The
function θ(x) = arctan(x) lies in the overdamped region for x > 0, whereas
θ(x) = 2 arctan(x/2) is in the underdamped region for x ⪅ 2.4 and in the over-
damped region otherwise. The function θ(x) = arccos(sech(x)), however, is criti-
cally damped for x > 0 and optimizes the convergence rate of the integrator. Panel
(b) plots the spectral radius of Mj,n corresponding to each choice of θ.
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A proof of this result is provided in Appendix B. The functions θ(x)
= 2 arctan(x/2), arctan(x), and arccos(sech(x)) all satisfy condition
(S3a), which ensures that the corresponding RPMD integrator meets
property (P3).

E. Dimension-free ergodicity and equilibrium
accuracy of T-RPMD with a harmonic external
potential

In this section, it is shown that condition (S3a) implies property
(P4) in Sec. II A, and an additional condition is introduced to ensure
that property (P5) holds. Let V(q) = (Λ/2) q2 and γj ,n = 2ωj ,n for 1 ≤
j ≤ n − 1. In this case, the jth normal mode satisfies

[
%̇j
φ̇j
] = (Aj,n + B + Cj,n)[

%j
φj
] +
⎡
⎢
⎢
⎢
⎢
⎣

0
√

4ωj,n

βmn
Ẇj

⎤
⎥
⎥
⎥
⎥
⎦

. (22)

The solution [%j(t) φj(t)]
T of Eq. (22) is an ergodicMarkov process,

and its distribution as t → ∞ converges to the centered bivariate
normal with the covariance matrix

Σj,n =
1

βmn
[
s2j,n 0
0 1], where s2j,n =

1
Λ/m + ω2

j,n
; (23)

the associated position-marginal is the jth marginal of the ring-
polymer configurational distribution with density e−

βmn
2 qT( Λ

m +Ω2
)q.

For this system, the BAOAB-like update in Sec. II A is of the
same form as Eq. (17) with

Mj,n = B1/2S1/2
j,n Oj,nS1/2

j,n B1/2 and

Rj,n =
1 − e−4ωj,nΔt

βmn
B1/2S1/2

j,n [
0 0
0 1](B

1/2S1/2
j,n )

T. (24)

As in the case of a constant external potential (see Sec. II C), the
ergodicity of this integrator depends on the spectral radius ofMj,n.
By Theorem 1 in Appendix A and the fact that

det(Mj,n) = e−2ωj,nΔt

and

tr(Mj,n) = Aj,n(1 + e−2ωj,nΔt),

it follows that condition (S3a) gives a simple and sufficient condi-
tion for ergodicity at any bead number n and hence implies property
(P4) for the BAOAB-like update specified by Eqs. (17) and (24). Fur-
thermore, because the matrix Mj,n of the corresponding OBABO-
like update has equal trace and determinant, condition (S3a) also
guarantees property (P4) in that case.52

If condition (S3a) holds, the BAOAB-like update is ergodic with
respect to a centered bivariate normal distribution whose covariance
matrix Σj ,Δt satisfies the linear equation

Σj,Δt =Mj,nΣj,ΔtMT
j,n +Rj,n, (25)

for which the solution is

Σj,Δt =
1

βmn
[
s2j,Δt 0
0 r2j,Δt

], (26)

where the variance in the position- and velocity-marginal is
(βmn)

−1s2j,Δt and (βmn)
−1r2j,Δt , respectively, with

s2j,Δt = (ω
2
j,n +

Λ
m

ωj,nΔt/2
tan(θ(ωj,nΔt)/2)

)

−1

and

r2j,Δt = 1 −
Δt2Λ
4m

tan(θ(ωj,nΔt)/2)
ωj,nΔt/2

. (27)

Because the tangent function is monotonically increasing on the
range of θ specified by condition (S3a), we have the correspondence

0 < s2j,Δt ≤ s
2
j and 1 −

Δt2Λ
4m

≤ r2j,Δt < 1 (28)

between the exact and numerical variances of the jth ring-polymer
mode. Equation (27) reveals that θ(x) = 2 arctan(x/2) is the unique
function that complies with condition (S3a) and saturates the
inequality s2j,Δt ≤ s2j in Eq. (28); consequently, the corresponding
BAOAB-like scheme preserves the exact position-marginal in all
modes and trivially satisfies property (P5). The BCOCB integrator
from Ref. 43 corresponds to this choice of θ and, thus, uniquely pro-
vides optimal equilibrium position-marginal accuracy for harmonic
external potentials.

To identify other BAOAB-like schemes compliant with con-
dition (S3a), which satisfy property (P5), we examine the over-
lap between the numerical stationary position-marginal distribution
μn ,Δt and the exact distribution μn where

μn =
n−1

∏
j=1

N (0,
s2j
βmn
) and μn,Δt =

n−1

∏
j=1

N (0,
s2j,Δt
βmn
).

Centroid-modemarginals have been suppressed in the definitions of
μn and μn ,Δt . A BAOAB-like scheme is dimension-free if it admits an
n-independent upper bound on the distance dTV(μn, μn ,Δt) between
μn and μn ,Δt , where dTV is the total variation metric.53 In particular,
if we require

x
1 + ∣x∣

≤ θ(x) ≤ 2 arctan(x/2) for x > 0, (S4a)

then we have the dimension-free bound

dTV(μn,μn,Δt) <
⎛

⎝

√
4
3
h̵β
Δt
⎞

⎠

Δt2Λ
m

. (29)

A proof of this claim is provided in Appendix D. Condition (S4a)
ensures that any BAOAB-like integrator with a compliant choice of
θmeets property (P5).

For OBABO-like schemes, the bound in condition (S4a) must
be tightened to guarantee non-zero overlap between μn and μn ,Δt
for arbitrarily large n. In particular, replacing 2 arctan(x/2) with
min{2 arctan(x/2), C} for some C ∈ (0, π) in the upper bound of
condition (S4a) yields a n-independent bound on dTV(μn, μn ,Δt) for
all compliant OBABO-like integrators, as can be shown through
arguments similar to those in Appendix D.

Jointly, conditions (S1a)–(S4a) specify a family of BAOAB-like
schemes with dimension-free stability, ergodicity, and equilibrium
accuracy for applications with harmonic external potentials. Numer-
ical results in Sec. III suggest that the integrators exhibit similar
properties in a more realistic setting with a strongly anharmonic
external potential.
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F. Dimension-free convergence to equilibrium
of T-RPMD with a harmonic external potential

Beyond ensuring ergodicity of the T-RPMD update in Eq. (24),
condition (S3a) leads to explicit dimension-free equilibration
rates for compliant schemes. Theorem 4 in Appendix C proves
this result in the infinite-friction limit for ring-polymer modes
with arbitrarily high frequency. In detail, the theorem shows
that the configurational (i.e., position-marginal) transition ker-
nel associated with the T-RPMD update of the jth mode in
Eq. (24) is contractive in the 2-Wasserstein metric54 and equi-
librates any given initial distribution at a rate determined by
the function θ, the (external) potential curvature Λ, and the
(stable) time step Δt if condition (S3a) holds. The rate in Theo-
rem 4 in Appendix C, though obtained in the infinite-friction limit,
holds for finite friction coefficients γj ,n that lead to spectral radii
ρ(Mj,n) ≤ ∣Aj,n∣, where Aj,n is defined in the display after Eq. (21)
and ∣Aj,n∣ = limγj,n→∞ ρ(Mj,n) is the spectral radius at infinite
friction.

To illustrate dimension-free convergence, Fig. 3 plots the
2-Wasserstein distance between the stationary configurational dis-
tribution μn ,Δt and the distribution μkn,Δt at the kth T-RPMD step
evolved from a point mass at the origin using the schemes speci-
fied by θ(x) = arccos(sech(x)) [Fig. 3(a)], 2 arctan(x/2) [Fig. 3(b)],
and arctan(x) [Fig. 3(c)] for a range of bead numbers n. These
choices of θ, respectively, lead to overdamped, critical, and Cay-
ley evolution of the thermostatted free ring polymer under PILE
friction (see Sec. II C) and are identified accordingly in Fig. 3.
The ring-polymer system considered in Fig. 3 approximates the
O–H stretch dynamics in liquid water at room temperature with the
parameters listed in Sec. III A. Velocity-marginals were initialized
as in the setting of Theorem 4 (see Appendix C), and the position
of the jth ring-polymer mode at time kΔt follows a centered normal
distribution with variance (βmn)

−1
(skj,Δt)

2, where

(skj,Δt)
2
= (Mk

j,n)
2
12 + βmn

k−1

∑
ℓ=0
(Mℓ

j,nRj,n(Mℓ
j,n)

T
)
11

for k > 0.

The 2-Wasserstein distances in Fig. 3 were evaluated using a well-
known analytical result for multivariate normal distributions.55

Figures 3(a) and 3(c) clearly show that the critical and over-
damped schemes converge at dimension-free rates, but this is less
evident from Fig. 3(b) for the Cayley scheme. The latter scheme
nonetheless displays an n-independent, and hence dimension-free,
distance to stationarity at all times kΔt > 0, indicated by plateauing
of the contour lines toward the right of Fig. 3(b). The ladder-like pat-
tern that precedes this plateau illustrates a transition from geometric
(i.e., fast) to sub-geometric (i.e., slow) convergence upon introduc-
ing higher-frequency modes into the ring polymer. The transition
manifests with the Cayley scheme because of its aggressive over-
damping of the high-frequency modes, which is absent in the other
two schemes (see Fig. 2).

The example considered in this section illustrates that the equi-
libration timescale (e.g., the time until the 2-Wasserstein distance
decays below 10−6) of the Cayley scheme at large n can dramati-
cally exceed that of other BAOAB-like schemes. Although this neg-
ative feature may render the scheme impractical for pathological
applications, we find in Sec. III that the Cayley scheme’s superior

FIG. 3. Dimension-free convergence to equilibrium of BAOAB-like T-RPMD
schemes with a harmonic external potential. The physical parameters of the ring-
polymer system (i.e., Λ, m, and β) are listed in Sec. III A. Panels (a)–(c) plot
the normalized 2-Wasserstein distance between the configurational ring-polymer
distribution at stationarity and at time kΔt, as evolved via various BAOAB-like
schemes from an initial point-mass distribution. Regions with darker color indicate
the smaller 2-Wasserstein distance to stationarity, and black lines mark the iso-
distance contours. The contours plateau at some value of n for all tested schemes,
which checks that they exhibit dimension-free convergence, as predicted by
Theorem 4 in Appendix C.

configurational sampling provides compelling justification for its
preferred use in realistic settings.

III. NUMERICAL RESULTS
The current section provides numerical comparisons of the

BAOAB-like T-RPMD integrators in Sec. II on applications fea-
turing harmonic (Sec. III A) and anharmonic (Sec. III B) external
potentials. Three representative choices of θ are considered in the
numerical comparisons, namely, θ(x) = arctan(x), arccos(sech(x)),
and 2 arctan(x/2). These choices, respectively, lead to overdamped,
critical, and Cayley evolution of the thermostatted free ring poly-
mer under PILE friction (Sec. II C) and are identified accordingly
throughout the current section. It is borne out from the numerical
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comparisons that the Cayley scheme exhibits superior configura-
tional sampling among the tested schemes in both applications.

A. One-dimensional quantum harmonic oscillator
In the current section, we numerically integrate Eq. (7) with

the harmonic potential V(q) = (Λ/2) q2 using PILE friction (i.e.,
Γ = 2 Ω), m = 0.95 amu,

√
Λ/m = 3886 cm−1, and T = 298 K. This

choice of physical parameters corresponds to a harmonic approxi-
mation of the Morse contribution to the O–H bond potential in the
q-TIP4P/F force field for water56 and sets a least upper bound for
the T-RPMD stability interval at Δtmax

= 2/
√
Λ/m = 2.74 fs. The

simulations reported throughout this section employ the time step
Δt = 0.73 ×Δtmax = 2.00 fs.

Figure 4 compares the accuracy and efficiency of various
BAOAB-like T-RPMD schemes at equilibrium as a function of the

FIG. 4. Performance at equilibrium of various BAOAB-like T-RPMD schemes
applied to the one-dimensional quantum harmonic oscillator with physical param-
eters listed in Sec. III A. Panels (a), (c), and (e), respectively, plot the equilibrium
mean primitive kinetic energy, virial kinetic energy, and non-centroid classical
kinetic energy per mode as a function of bead number n; the corresponding means
in the exact infinite bead limit are plotted as dashed lines. Panels (b), (d), and (f)
plot the integrated autocorrelation times [Eq. (31)] of the respective observables.
Exact (respectively, numerically estimated) values of the plotted quantities are
shown with empty (respectively, filled) circles. Numerical estimates were obtained
using the protocol described in Appendix G.

bead number n. For a description of the numerical simulation and
statistical estimation procedures used to generate the numerical
data (filled circles) in Fig. 4, the reader is referred to Appendix G.
Figures 4(a) and 4(c) report the mean quantum kinetic energy at
equilibrium as per the primitive and virial estimators,

KEpri
n (q) =

n
2β
−

n−1

∑
j=0

mnω2
n

2
(q j+1 − qj)2 and

KEvir
n (q) =

1
2β

+
1
2

n−1

∑
j=0
(qj − q)∂qjV

ext
n (q), (30)

where q = 1
n ∑

n−1
j=0 qj is the centroid position of the n-bead ring poly-

mer. For these two observables, Figs. 4(b) and 4(d) quantify the equi-
librium sampling efficiency of the schemes in terms of the integrated
autocorrelation time (or normalized asymptotic variance),57–61

aVar(On)

Var(On)
=
limK→∞Var( 1

√

K ∑
K−1
k=0 On(ξ(kΔt)))

Var(On)

= 1 + 2
∞

∑
k=1

Cor(On(ξ(0)),On(ξ(kΔt))), (31)

whereOn is an n-bead observable, {ξ(kΔt)}∞k=0 = {(q
(kΔt),v(kΔt))}∞k=0

is the stationary T-RPMD trajectory, Var(On) is the variance of On

at equilibrium, and Cor(On(ξ(0)),On(ξ(kΔt ))) is the lag-kΔt autocor-
relation of On along the T-RPMD trajectory. The integrated auto-
correlation time of On is interpreted as the timescale over which
adjacent observations along an equilibrium trajectory become sta-
tistically uncorrelated57–61 and is hence a measure of the efficiency
of a T-RPMD scheme at estimating the mean of On with respect to
the numerically sampled equilibrium distribution. Figures 4(a)–4(d)
show that the scheme specified by the Cayley angle (orange) outper-
forms others in terms of both accuracy and efficiency at estimating
the equilibrium average of the quantum kinetic energy observables.

From the perspective of configurational accuracy, the optimal-
ity of the Cayley angle displayed in Figs. 4(a) and 4(c) is not surpris-
ing in light of the findings in Sec. II E. Less expected are the results in
Figs. 4(b) and 4(d), which suggest that the Cayley angle is also opti-
mal from the standpoint of configurational sampling efficiency for
the quantum kinetic energy observables in Eq. (30). Appendix E sup-
ports this conjecture with an analytical result for harmonic external
potentials.

Figure 4(e) plots the mean classical kinetic energy at equilib-
rium, as computed from the non-centroid ring-polymer velocities,

KEcla
n (v) =

mn

2(n − 1)

n−1

∑
j=0
(v2j − v

2
) ≈

1
2β

, (32)

and Fig. 4(f) plots the corresponding integrated autocorrelation
time, as given by Eq. (31). For this observable, the equilibrium accu-
racy and efficiency of the Cayley scheme are significantly worse than
those of the others as n increases. This is a consequence of the
strongly overdamped behavior of Cayley T-RPMD at high frequen-
cies (see Fig. 2), for which the integrator’s ergodicity degrades as its
spectral radius approaches unity. Note that this shortcoming of the
Cayley scheme presents no adverse implications to the equilibrium
sampling of observables that exclusively depend on the ring-polymer
configuration, as confirmed by Figs. 4(a)–4(d).

J. Chem. Phys. 154, 024106 (2021); doi: 10.1063/5.0036954 154, 024106-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In summary, Fig. 4 establishes that the T-RPMD scheme spec-
ified by the Cayley angle provides optimally accurate and efficient
configurational sampling at equilibrium. To exploit this remark-
able feature in practice, the scheme must manifest rapid conver-
gence to equilibrium when initialized away from it, as is necessary
in most realistic applications of T-RPMD. Fortunately, Theorem 4
in Appendix C guarantees that any BAOAB-like scheme compliant
with conditions (S1a)–(S4a) features a contractive configurational
transition kernel for any number of ring-polymer beads, and Fig. 3
in Sec. II F illustrates this fact for the quantum harmonic oscillator
considered in the current section.

B. Room-temperature liquid water
While theoretical analysis and numerical tests of BAOAB-like

T-RPMD schemes in Secs. II and III A have focused on harmonic
external potentials, the current section demonstrates that the result-
ing insights carry over to a realistic, strongly anharmonic model
of room-temperature liquid water. Our test system is a periodic
box containing 32 water molecules at a temperature of 298 K and
a density of 0.998 g/cm3, with potential energy described by the
q-TIP4P/F force field.56 As in Sec. III A, we compare the perfor-
mance of various BAOAB-like T-RPMD schemes for integrating the
many-dimensional analog of Eq. (7) with PILE friction using the
simulation time step Δt = 1.4 fs in all simulations. Numerical tests
reported in Appendix F show that this value of Δt closely approxi-
mates the upper limit of the Verlet (i.e., n = 1) stability interval for
q-TIP4P/F liquid water. In agreement with Sec. III A, the experi-
ments reveal that among the tested T-RPMD schemes, the Cayley
scheme offers superior configurational sampling. For details on the
numerical simulation and statistical estimation procedures used to
generate the data presented in this section, the reader is referred to
Appendix G.

Figure 5 compares the equilibrium accuracy achieved by the
tested schemes in terms of the quantum and classical kinetic energy
per hydrogen atom [Figs. 5(a), 5(c), and 5(i)] and the intramolecular
potential energy per water molecule [Figs. 5(e) and 5(g)]; also plot-
ted are the respective integrated autocorrelation times as a function
of bead number n. The kinetic energy estimates in Figs. 5(a) and 5(c)
exhibit similar trends to those seen in Fig. 4 for the one-dimensional
harmonic oscillator. In particular, the T-RPMD scheme specified by
the Cayley angle outperforms others in terms of quantum kinetic
energy accuracy as n increases, most outstandingly with a highly
accurate primitive kinetic energy estimate despite the large time
step employed. Still in close agreement with the harmonic oscillator
results, Figs. 5(b) and 5(d) show that the Cayley scheme displays the
shortest integrated autocorrelation time among the tested schemes
for the quantum kinetic energy observables. Similar trends manifest
in the intramolecular potential energy averages and their autocorre-
lation times [Figs. 5(e)–5(h)], where the Cayley scheme also achieves
superior accuracy and efficiency. Finally, Figs. 5(i) and 5(j) confirm
that the relative performance of the compared schemes in terms
of velocity-marginal sampling is qualitatively consistent with the
harmonic results. Taken together, the results in Fig. 5 suggest that
the superiority of the Cayley scheme for configurational sampling,
proven in the model setting of a harmonic external potential, is also
reflected in realistic applications.

FIG. 5. Performance of various BAOAB-like T-RPMD schemes applied to q-
TIP4P/F liquid water at room temperature. As a function of the bead number n
and for a 1.4-fs time step, panels (a) and (c) plot the equilibrium kinetic energy per
H atom as per the primitive and virial estimators [Eq. (30)], and panels (b) and (d)
plot the corresponding integrated autocorrelation times. Likewise, panels (e) and
(g) plot the equilibrium potential energy per H2O molecule due to the O–H-stretch
and H–O–H-bend contributions, as defined in the q-TIP4P/F force field,56 and the
corresponding autocorrelation times are plotted by panels (f) and (h). Finally, panel
(i) plots the classical kinetic energy per H atom computed from the non-centroid
velocity estimator [Eq. (32)], and panel (j) plots the corresponding autocorrelation
time. The numerical estimates and reference results (dashed lines) were obtained
using the protocols described in Appendix G.

In a final numerical test, Fig. 6 confirms that the sampling
advantages of the Cayley T-RPMD scheme are obtained with-
out downside in the estimation of dynamical quantities of typi-
cal interest. Specifically, Fig. 6(b) shows (unnormalized) infrared
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FIG. 6. Molecular dipole autocovariance function (a), corresponding infrared
absorption spectrum (b), and molecular velocity autocovariance function (c) in
room-temperature liquid water for various BAOAB-like T-RPMD schemes. The
plotted autocovariance functions exhibit minor qualitative discrepancies across
schemes, which suggests that all schemes compliant with conditions (S1a)–(S4a)
exhibit comparable accuracy in the computation of dynamical properties. Numer-
ical estimates of the autocovariance functions were obtained using the protocol
described in Appendix G.

absorption spectra for room-temperature liquid water, computed
from the 128-bead T-RPMD trajectories used to generate Fig. 5 using
linear response theory and the T-RPMD approximation to real-time
quantum dynamics.20,38 Linear response dictates that the absorption
spectrum is proportional to ω2Ĩ(ω), where Ĩ(ω) = ∫R dt e

−iωtC̃μμ(t)
is the Fourier transform of the quantum-mechanical Kubo-
transformed dipole autocorrelation function C̃μμ(t). The latter
is approximated within the T-RPMD framework11,18 by C̃μμ(t)
≈ 1

NH2O
∑

NH2O

i=1 E(μi(t) ⋅ μi(0)), where NH2O is the number of
molecules in the liquid, μi(t) is the bead-averaged dipole moment
of molecule i at time t, and the covariance E(μi(t) ⋅ μi(0)) is
estimated from a stationary T-RPMD trajectory, as indicated in
Appendix G. Figure 6(a) plots the T-RPMD estimates of C̃μμ(t),

leading to the absorption spectra in Fig. 6(b). On the scale in which
the absorption spectrum exhibits its key features, the spectra in
Fig. 6(b) show very minor qualitative discrepancies. A similar con-
clusion holds for Fig. 6(c), where the T-RPMD approximation of
the Kubo-transformed velocity autocovariance function C̃vv(t) ≈

1
NH2O
∑

NH2O

i=1 E(vi(t) ⋅ vi(0)) is plotted for the three tested T-RPMD
schemes. Collectively, these observations indicate that the accuracy
of dynamical properties computed with BAOAB-like schemes is
not significantly affected by the particular θ employed if conditions
(S1a)–(S4a) in Sec. II are met. This result is expected due to the fact
that the considered dynamical properties depend on bead-averaged
(i.e., centroid-mode) coordinates, whose evolution is largely inde-
pendent of the choice of θ under weak coupling between the centroid
and non-centroid ring-polymer modes.

IV. SUMMARY
Previous studies showed that strong stability41 and dimension-

ality freedom43 are essential features of a robust T-RPMD integra-
tion scheme that standard integrators do not possess. A T-RPMD
scheme with these features, denoted by BCOCB, was introduced
via a simple and inexpensive Cayley modification of the free ring-
polymer update (i.e., the “A” sub-step) of the standard BAOAB inte-
grator. The BCOCB scheme was then shown to dramatically outper-
form BAOAB at estimating static and dynamic properties of various
systems with remarkable accuracy at unprecedented time steps.43

The current work generalizes beyond the Cayley modifica-
tion by introducing a simple parameterization of the free ring-
polymer update and a corresponding family of strongly stable and
dimension-free modifications of the BAOAB scheme. Among these
schemes lies BCOCB, which is found to exhibit superior configura-
tional sampling despite exhibiting worse accuracy and efficiency for
observables that depend on the non-centroid ring-polymer veloci-
ties. This conclusion is obtained theoretically via exhaustive analysis
of a harmonic model and numerically via simulation of a realistic
quantum-mechanical model of liquid water at room temperature.
In this way, the current work convincingly demonstrates the supe-
riority of the BCOCB scheme for accurate and efficient equilibrium
simulation of condensed-phase systems with T-RPMD.

To conclude, we stress that implementing BCOCB or any of
the new dimension-free and strongly stable schemes leads to no
additional cost, parameters, or coding overhead relative to the stan-
dard BAOAB integrator. The modified integrators, thus, provide
“turnkey” means to significantly improve the accuracy and stability
of existing (T-)RPMD implementations.62,63

AUTHORS’ CONTRIBUTIONS

J.L.R.-R. and J.S. contributed equally to this work.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. Department

of Energy (Grant No. DE-SC0019390) and the National Institutes
of Health (Grant No. R01GM125063). N.B.-R. acknowledges sup-
port by the Alexander von Humboldt foundation and the National
Science Foundation (Grant No. DMS-1816378).

J. Chem. Phys. 154, 024106 (2021); doi: 10.1063/5.0036954 154, 024106-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

APPENDIX A: NECESSARY AND SUFFICIENT
CONDITION FOR EIGENVALUES OF A 2 × 2 REAL
MATRIX TO BE INSIDE THE UNIT CIRCLE

This section provides a proof of the standard result used in
Secs. II C and II E to infer ergodicity of the T-RPMD update for
free and harmonically confined ring polymers.

Theorem 1. The spectral radius of a 2 × 2 real matrix M is
strictly less than one if and only if

∣ tr(M)∣ < 1 + det(M) < 2. (A1)

Figure 7 plots eigenvalue pairs λ1, λ2 that satisfy Eq. (A1)
for a fixed value of det(M) = λ1λ2. Note that the spectral radius
of M is minimized when λ1 and λ2 are on the circle with radius
r =
√
det(M).

Proof. Let λ1 and λ2 be the (possibly complex) eigenvalues of
M. By definition, the spectral radius ofM is max(|λ1|, |λ2|) =: ρ. Since
M is real, both tr(M) = λ1 + λ2 and det(M) = λ1λ2 are real. Thus,
either

1. λ1 and λ2 are a complex conjugate pair or
2. λ1 and λ2 are both real.

In the first case, λ1 = a + ib and λ2 = a − ib for some real num-
bers, a and b, with b ≠ 0, and hence, det(M) = λ1λ2 = a2 + b2 > 0 and
ρ = ∣λ1∣ = ∣λ2∣ =

√
a2 + b2, i.e., the eigenvalues lie on the circle with

radius ρ =
√
a2 + b2 =

√
det(M). In this case, the first inequality in

Eq. (A1) holds since b ≠ 0 implies

∣ tr(M)∣ = 2∣a∣ < 2ρ ≤ 1 + ρ2 = 1 + det(M).

Hence, Eq. (A1) is equivalent to 1 + det(M) < 2 or ρ < 1.

FIG. 7. All possible eigenvalue pairs λ1, λ2 of a matrix M that satisfies Eq. (A1)
with det(M) = λ1λ2 = 1/4 is plotted. The eigenvalue pairs either lie on the circle
with radius r = 1/2 or are both real, and in the former case, the spectral radius of
M is minimal.

In the second case, λ1 and λ2 are both real, and the condition
|tr(M)| < 1 + det(M) is equivalent to

1 + λ1λ2 + λ1 + λ2 = (1 + λ1)(1 + λ2) > 0
and

1 + λ1λ2 − λ1 − λ2 = (1 − λ1)(1 − λ2) > 0.

Together with det(M) = λ1λ2 < 1, these conditions are equivalent to
ρ = max(|λ1|, |λ2|) < 1. ◽

APPENDIX B: STABILITY CONDITION FOR HARMONIC
EXTERNAL POTENTIALS

This section proves that condition (S3a) implies property (P3),
as claimed in Sec. II D. For notational brevity, we define

A(x) ∶= cos(θ(x)) −
Δt2(Λ/m)

2
sin(θ(x))

x
.

Note that A(x) is equal to Aj,n in the display under Eq. (21) if
x = ωj ,nΔt.

Theorem 2. For any α⋆ > 0, (ii) implies (i).
(i) For all Λ ≥ 0, m > 0, and Δt > 0 satisfying Δt2Λ/m < α⋆, the

function θ satisfies

∣A(x)∣ < 1 for x > 0.

(ii) The function θ satisfies

0 < θ(x) < 2 arctan(2x/α⋆) for x > 0.

Proof. Let α = Δt2(Λ/m). For notational brevity, define

ϕα(x) ∶= arctan(α/(2x)) for x > 0.

By the harmonic addition identity

cos(θ) − tan(ϕα) sin(θ) =
cos(θ + ϕα)
cos(ϕα)

,

note that (i) can be rewritten as

∣
cos(θ(x) + ϕα(x))

cos(ϕα(x))
∣ < 1 for x > 0, 0 < α < α⋆. (B1)

For 0 < θ(x) < π, Eq. (B1) holds if and only if

ϕα(x) < θ(x) + ϕα(x) < π − ϕα(x),

which can be rewritten as

0 < θ(x) < 2 arctan(2x/α), (B2)

where we used the identity

π − 2 arctan(x) = 2 arctan(1/x) valid for x > 0.

Since arctan is monotonically increasing, and 0 < α < α⋆ by assump-
tion, we may conclude that

0 < θ(x) < 2 arctan(2x/α⋆) < 2 arctan(2x/α).

Thus, if (ii) holds, then Eq. (B2) holds and, therefore, (A1)
holds. ◽
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Fix ϵ ∈ (0, 1). Since Theorem 2 is true for arbitrary α⋆, if we
take α⋆ = 4 − ϵ, then the theorem holds with Δt2Λ/m < 4 − ϵ in
Theorem 2 (i) and θ(x) < 2 arctan(2x/(4 − ϵ)) in Theorem 2 (ii).
Since ϵ > 0 is arbitrary, and arctan is monotonically increasing, we
can conclude that the theorem holds with Δt2Λ/m < 4 and θ(x)
≤ 2 arctan(x/2). We therefore have the following corollary of
Theorem 2.

Corollary 3. Suppose that the function θ satisfies

0 < θ(x) ≤ 2 arctan(x/2) for x > 0.

Then, for all Λ ≥ 0,m > 0, and Δt > 0 satisfying Δt2Λ/m < 4, we have

∣A(x)∣ < 1 for x > 0.

APPENDIX C: DIMENSION-FREE QUANTITATIVE
CONTRACTION RATE FOR HARMONIC EXTERNAL
POTENTIALS IN THE INFINITE-FRICTION LIMIT

In the infinite-friction limit, Eq. (24) simplifies to

Mj,n = B1/2S1/2
j,n [

1 0
0 0]S

1/2
j,n B1/2

and

Rj,n =
1

βmn
B1/2S1/2

j,n [
0 0
0 1](B

1/2S1/2
j,n )

T.

The kth step of the corresponding T-RPMD integrator can be
written compactly as

⎡
⎢
⎢
⎢
⎢
⎣

%(k)j

φ(k)j

⎤
⎥
⎥
⎥
⎥
⎦

= Mj,n

⎡
⎢
⎢
⎢
⎢
⎣

%(k−1)j

φ(k−1)j

⎤
⎥
⎥
⎥
⎥
⎦

+R1/2
j,n

⎡
⎢
⎢
⎢
⎢
⎣

ξ(k−1)j

η(k−1)j

⎤
⎥
⎥
⎥
⎥
⎦

,

where ξ(k−1)j and η(k−1)j are independent standard normal ran-
dom variables. Suppose that the initial velocity is drawn from the
Maxwell–Boltzmann distribution, i.e., φ(0)j ∼ N(0, (βmn)

−1
), and

the initial position is drawn from an arbitrary distribution μj on
R, i.e., %(0)j ∼ μj. Let pkj,n denote the k-step transition kernel of the

position-marginal, i.e., μjpkj,n is the probability distribution of %(k)j

with %(0)j ∼ μj.
Theorem 4 shows that starting from any two initial distribu-

tions μj and νj on R, the distance between the distributions μjpkj,n
and νjpkj,n is contractive. We quantify the distance between these dis-
tributions in terms of the 2-Wasserstein metric. For two probability
distributions μ and ν on R, the 2-Wasserstein distance between μ
and ν is defined as

W2(μ, ν) =
⎛
⎜
⎝
inf
X∼μ
Y∼ν

E(∣X − Y ∣2)
⎞
⎟
⎠

1/2

,

where the infimum is taken over all bivariate random variables
(X, Y) such that X ∼ μ and Y ∼ ν.54

Theorem 4. Suppose that the function θ satisfies

0 < θ(x) ≤ 2 arctan(x/2) for x > 0.

Then, for all k > 1, Λ ≥ 0, m > 0, and Δt > 0 satisfying Δt2Λ/m < 4,
and for all initial distributions μj and νj on R,

W2(μjpkj,n, νjp
k
j,n)

≤ {
A(ωj,nΔt)k−1W2(μj, νj) if A(ωj,nΔt) > 0
1
2

1
k−1W2(μj, νj) else.

(C1)

Proof. In the infinite-friction limit, the eigenvalues ofMj,n are
{0, A(ωj ,nΔt)}, where A(x) is defined in Appendix B. Let %(0)j ∼ μj
and %̃(0)j ∼ νj be the optimal coupling of μj and νj, i.e., W2(μj, νj)

= E(∣%(0)j − %̃(0)j ∣
2
)
1/2. Conditional on %(0)j and %̃(0)j , %(k)j and %̃(k)j

are Gaussian random variables with equal variances, but differ-
ent means. By a well-known result for the 2-Wasserstein distance
between Gaussian distributions,55

W2(μjpkj,n, νjp
k
j,n)

2

= ∣A(ωj,nΔt)∣2(k−1)(Mj,n)
2
11W2(μj, νj)2

= ∣A(ωj,nΔt)∣2(k−1)
(1 + A(ωj,nΔt))2

4
W2(μj, νj)2, (C2)

where we used (Mj,n)11 = (1 + A(ωj,nΔt))/2.
Now, we distinguish between two cases. In the case where

A(ωj ,nΔt) > 0, we obtain the required result since |A(ωj ,nΔt)| < 1 by
Corollary 3, and therefore,

(1 + A(ωj,nΔt))2

4
≤ 1. (C3)

Otherwise, for −1 < A(ωj ,nΔt) ≤ 0, the quantity ∣A(ωj,nΔt)∣2(k−1)(1
+ A(ωj,nΔt))2 is maximized at (−1 + 1/k)2k(k − 1)−2, and therefore,

∣A(ωj,nΔt)∣2(k−1)
(1 + A(ωj,nΔt))2

4
≤

1
4(k − 1)2

. (C4)

Inserting Eqs. (C3) and (C4) into Eq. (C2), and then taking square
roots, gives the required result. ◽

APPENDIX D: TOTAL VARIATION BOUND
ON THE EQUILIBRIUM ACCURACY ERROR
FOR HARMONIC EXTERNAL POTENTIALS

In this section, we show that Eq. (29) follows from conditions
(S1a)–(S4a) in the setting of Sec. II E. It is helpful to recall the
quantities

ωj = lim
n→∞

ωj,n =

⎧⎪⎪
⎨
⎪⎪⎩

πj
̵hβ if j is even
π(j+1)
̵hβ else.

(D1)

In the following, μj ,Δt and μj denote the jth factor of the product
distributions μn ,Δt and μn, respectively, introduced in Sec. II E.

Theorem 5. Suppose that the function θ satisfies conditions
(S1a)–(S4a). Then, for all Λ ≥ 0, m > 0, and Δt > 0 satisfying
Δt2Λ/m < 4, the total variation distance between μn and μn ,Δt is
bounded as in Eq. (29).
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Proof. Subadditivity of the total variation distance dTV between
product distributions and its equivalence with the Hellinger dis-
tance53 dH lead to the inequalities

dTV(μn,μn,Δt)2 ≤
n−1

∑
j=1

dTV(μj,μj,Δt)2

≤
n−1

∑
j=1

2dH(μj,μj,Δt)2 ≤
n−1

∑
j=1

2(sj − sj,Δt)2

(s2j + s2j,Δt)

≤
n−1

∑
j=1
(1 −

sj
sj,Δt
)

2

≤
n−1

∑
j=1

⎛

⎝
1 −

s2j
s2j,Δt

⎞

⎠

2

, (D2)

where the second-to-last step uses Eq. (28) and the last step uses the
elementary inequality (1 − x2)2 ≥ (1 − x)2 valid for all x ≥ 0.

Since tan(⋅) increases superlinearly on the interval (0, π), we
have θ(x)/2 ≤ tan(θ(x)/2) ≤ x/2 for x > 0, where the second inequality
uses (S3a). Consequently, the jth summand in Eq. (D2) admits the
bound

⎛

⎝
1 −

s2j
s2j,Δt

⎞

⎠

2

=
⎛

⎝

Λ/m
ω2
j,n +Λ/m

(
ωj,nΔt/2

tan(θ(ωj,nΔt)/2)
− 1)
⎞

⎠

2

≤ (
Δt2Λ/m
(ωj,nΔt)2

(
ωj,nΔt

θ(ωj,nΔt)
− 1))

2

≤ (
Δt2Λ
m
)

2
1

(ωj,nΔt)2
,

where the last line uses the lower bound in (S4a). Using that for any
even positive integer n,

n−1

∑
j=1

1
ω2
j,n
< lim

n→∞

n−1

∑
j=1

1
ω2
j,n
=
∞

∑
j=1

1
ω2
j
< (

h̵β
π
)

2 ∞

∑
j=1

2
j2
,

where we used Eq. (D1), the bound in Eq. (D2) becomes

dTV(μn,μn,Δt)2 < (
Δt2Λ
m
)

2

(
h̵β
πΔt
)

2 ∞

∑
j=1

2
j2
.

Taking square roots and using the Riemann zeta function64 to
evaluate the infinite sum yield Eq. (29). ◽

APPENDIX E: ASYMPTOTIC VARIANCE OF KINETIC
ENERGY OBSERVABLES FOR HARMONIC EXTERNAL
POTENTIALS IN THE INFINITE-FRICTION LIMIT

In Sec. III A, Figs. 4(b) and 4(d) show that the T-RPMD scheme
specified by θ(x) = 2 arctan(x/2), which coincides with the Cayley-
modified BAOAB scheme introduced in Ref. 43, provides the small-
est integrated autocorrelation time [Eq. (31)] for quantum kinetic
energy observables [Eq. (30)] among several schemes with proper-
ties (P1)–(P5). In this section, we show that this scheme minimizes
an upper bound [Eq. (E2)] on the integrated autocorrelation time of
the quantum kinetic energy among all dimension-free and strongly
stable BAOAB-like schemes for harmonic external potentials.

To this end, note that for a n-bead thermostatted ring polymer
with external potential Vext

n (q) = Λ
2n ∣q∣

2, Eq. (30) can be rewritten as

KEpri
n (%) =

n
2β
−

n−1

∑
j=1

mnω2
j,n

2
%2j and

KEvir
n (%) =

1
2β

+
n−1

∑
j=1

Λ
2n

%2j , (E1)

where % is defined in Eq. (12). In the following, we denote both
observables in Eq. (E1) as KEn and distinguish between the two as
needed.

To control the integrated autocorrelation time ofKEn, we need
the stationary autocorrelation Cor(KEn(%(0)),KEn(%(kΔt))) for

k ≥ 0. Note that the distributions of %(kΔt ) and %(0) are equal by
stationarity and that components (%j)n−1j=0 are uncorrelated in a
harmonic external potential. Thus,

Cor(KEn(%(0)),KEn(%(kΔt))) =
n−1

∑
j=1

χj,nCor(∣%(0)j ∣
2, ∣%(kΔt)j ∣

2
),

where

χj,n =
κ2j,nVar(∣%

(0)
j ∣

2
)

∑
n−1
i=1 κ2i,nVar(∣%

(0)
i ∣

2)

and

κj,n =
⎧⎪⎪
⎨
⎪⎪⎩

mnω2
j,n

2 for KEpri
n

Λ
2n for KEvir

n .

If the evolution of the ring polymer is governed by the BAOAB-like
update in Eq. (17), then the jth mode satisfies

Cor(∣%(0)j ∣
2, ∣%(kΔt)j ∣

2
) =

Cov(∣%(0)j ∣
2, ∣%(kΔt)j ∣

2
)

Var(∣%(0)j ∣
2)

= (Mk
j,n)

2
11,

where we used that the phase [%(kΔt)j φ(kΔt)j ]
T
follows a centered

Gaussian distribution with covariance given in Eq. (26) for all
k ≥ 0. Therefore, in the infinite-friction limit whereMj,n is given in
Appendix C, the integrated autocorrelation time ofKEn evaluates to

aVar(KEn)

Var(KEn)
= 1 + 2

n−1

∑
j=1

χj,n
∞

∑
k=1
(Mk

j,n)
2
11

≤ 1 +
1
2

max
1≤j≤n−1

∣
1 + A(ωj,nΔt)
1 − A(ωj,nΔt)

∣, (E2)

where simplification of (Mk
j,n)11 was aided by the Cayley–Hamilton

theorem for 2 × 2 matrices,65 A(x) is defined in Appendix B, and in
the last line, we used that ∑n−1

j=1 χj,n = 1. Equation (E2) states that
the integrated autocorrelation time of KEn can only be as small as
that of the component |%j|2 exhibiting the slowest uncorrelation at
stationarity.
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Having derived Eq. (E2), we now prove our claim for this sec-
tion. Let x ∶= ωj ,nΔt > 0 and α ∶= Δt2Λ/m ∈ (0, 4). For fixed x and
α, the function A(x) ∶= cos(θ(x)) − α

2x sin(θ(x)) monotonically
decreases toward −1 as the angle θ(x) increases toward π. Conse-
quently, the function ∣(1 + A(x))/(1 − A(x))∣ decreases (toward 0)
as θ(x) increases (toward π), but condition (S3a) requires θ(x) ≤ 2
arctan(x/2) to achieve stable evolution. Therefore, as the largest sta-
ble angle, the choice θ(x) = 2 arctan(x/2) (i.e., the Cayley angle)
minimizes the upper bound in Eq. (E2).

A similar argument can bemade to support the conjecture, sug-
gested by Fig. 4(f), that the non-centroid velocity estimator for the
classical kinetic energy KEcla

n in Eq. (32), equivalently written as

KEcla
n (φ) =

mn

2(n − 1)

n−1

∑
j=1

φ2
j (E3)

with φ defined in Eq. (12), exhibits amaximal integrated autocorre-
lation time if the Cayley angle θ(x) = 2 arctan(x/2) is used. Indeed,
the integrated autocorrelation time of this estimator is bounded by

aVar(KEcla
n )

Var(KEcla
n )
≤ 1 +

1
2

max
1≤j≤n−1

∣
1 − A(ωj,nΔt)
1 + A(ωj,nΔt)

∣, (E4)

where the function ∣(1 − A(x))/(1 + A(x))∣monotonically increases
as θ(x) approaches the largest stable (i.e., Cayley) angle for fixed x
and α.

To conclude, we note that the claim proven in this section
holds for arbitrary T-RPMD friction schedules despite our use of the
infinite-friction limit in Eqs. (E2) and (E4).

APPENDIX F: STABILITY INTERVAL CALIBRATION
FOR LIQUID WATER SIMULATIONS

This section describes the computational procedure used to
identify Δt = 1.4 fs as close to the upper bound of the stability inter-
val of T-RPMD applied to q-TIP4P/F liquid water at 298 K and
0.998 g/cm3. The procedure consisted of integrating an ensemble of
104 thermally initialized T-RPMD trajectories using the algorithm
outlined in Sec. II A in its single-bead realization (identical to veloc-
ity Verlet in classical MD8) and counting the fraction of trajectories
that remained within an energy sublevel (i.e., they did not exhibit
detectable energy drift) throughout their duration for each tested
time step. A time step was deemed stable if 99% or more of the
ensemble remained in an energy sublevel throughout a 50-ps time
period. A range of time steps were tested, and the fraction of stable
trajectories at each time step is reported in Fig. 8.

To avoid initialization bias in the stability interval estimation,
thermalized initial phase-points were generated with a metropolized
Markov-chain Monte Carlo sampler targeted at the equilibrium
configurational distribution of the liquid. Specifically, a random-
ized Hamiltonian Monte Carlo34,66 (rHMC) simulation of sufficient
length was used to thermalize a crystalline configuration of the sys-
tem at the target density, and 102 configurations were extracted
fromwell-separated points along the rHMC trajectory. Each of these
approximately independent draws from the equilibrium configura-
tional distribution of the liquid at the target physical conditions was
subsequently paired with 102 independent velocities drawn from

FIG. 8. Stability interval calibration for q-TIP4P/F room-temperature liquid water
simulations. Data points correspond to the fraction of thermally initialized single-
bead T-RPMD trajectories that remained stable over a 50-ps period at the respec-
tive integration time step Δt. The error bars correspond to the standard error of
the fraction of stable trajectories across initialization points with different configu-
rations. The gray dashed line marks the ≥99% threshold for deeming a time step
stable, which no time step beyond Δt = 1.4 fs reaches.

the corresponding Maxwell–Boltzmann distribution, yielding 104

approximately independent draws from the phase space distribution
of the classical liquid at thermal equilibrium.

APPENDIX G: SIMULATION AND ESTIMATION DETAILS
This section compiles simulation protocols and statistical esti-

mation methods used to generate Fig. 4 for the one-dimensional
quantum harmonic oscillator and Figs. 5 and 6 for room-
temperature liquid water.

1. One-dimensional quantum harmonic oscillator
Numerical equilibrium averages and integrated autocorrelation

times for the quantum harmonic oscillator were estimated by aver-
aging over a 10-ns T-RPMD trajectory integrated using the algo-
rithm listed in Sec. II A and initialized at an exact sample from
the numerical stationary distribution [listed for the jth ring-polymer
mode in Eq. (27)] corresponding to the physical parameters (i.e., Λ,
m, and β) and simulation parameters (i.e., n, Δt, and the function
θ) listed in Sec. III A. Specifically, the statistics reported in Fig. 4
were obtained by partitioning the T-RPMD trajectory into ten dis-
joint blocks, estimating the equilibrium average and autocorrelation
time within each block, and computing the sample mean and stan-
dard error among the resulting block estimates with 1000 bootstrap
resamples.

We now describe the formulas and methods used to obtain
block estimates for the equilibrium mean and integrated autocorre-
lation time. The equilibrium average μOn of observable On within
each block of the partitioned T-RPMD trajectory was estimated
using the standard estimator,67

μ̂On =
1
K

K−1

∑
k=0

O(kΔt)n , (G1)

where K is the number of steps in the block (i.e., the block size) and
O(kΔt)n is the value of On at the kth step within the block. Similarly,
the lag-kΔt autocovariance COn(kΔt) was estimated using67
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ĈOn(kΔt) =
K−k−1

∑
ℓ=0

(O(ℓΔt)n −μ̂On)(O
((ℓ+k)Δt)
n −μ̂On)

K − k

for 0 ≤ kΔt ≤ (K − 1)Δt = 1 ns. The integrated autocorrelation time
was subsequently estimated using58,67

âVarOn

VarOn

(M) = 1 + 2
M

∑
k=1

ĈOn(kΔt)
ĈOn(0)

, (G2)

where 0 < M ≤ K is a suitable cutoff. The choice of M is nontrivial,
as it carries a trade-off between the bias (more pronounced at small
M) and variance (more pronounced at large M) of the estimator.58

To chooseM judiciously, we follow the automatic windowing (AW)
method described in Appendix C of Ref. 68. The AW method dic-
tates that M should correspond to the smallest lag that satisfies the
inequality

M ≥ c
âVarOn

VarOn

(M),

where the parameter c > 0 dictates the variance–bias trade-off in
place of M and is chosen as large as possible to reduce the bias of
the estimator for a given variance threshold.

Figure 9 illustrates the usage of the AW method for integrated
autocorrelation time estimation with trajectory data generated by
the BAOAB-like T-RPMD scheme with θ(x) = 2 arctan(x/2) at
n = 64 beads and Δt = 2.0 fs, focusing on the observables KEpri

n

(black), KEvir
n (red), and KEcla

n (cyan), introduced in Sec. III A. The
estimated integrated autocorrelation times are plotted with solid
lines in Fig. 9(a) for various values of c, and the corresponding cut-
offsM are plotted in Fig. 9(b). Exact integrated autocorrelation times
are plotted with dashed lines in Fig. 9(a). Note that as c (and thus
M) increases, the estimates converge to the corresponding exact val-
ues at the expense of a larger variance, which can nonetheless be
controlled by adjusting the block size K.

2. Room-temperature liquid water
The equilibrium averages and integrated autocorrelation times

reported in Fig. 5 were obtained by averaging over 10-ns T-RPMD
trajectories integrated for each considered bead number n, time step
Δt, and function θ. All trajectories were initialized at an approximate
sample from the corresponding numerical equilibrium distribution,
obtained by thermalizing for 20 ps a classical (i.e., n = 1) config-
uration of the system into the n-bead ring-polymer phase space.
Figure 10 checks that this thermalization protocol indeed leads to
near-equilibrium initialization of the T-RPMD trajectories. The ref-
erence equilibrium averages plotted with dashed lines in Fig. 5 were
obtained by averaging over a one-nanosecond, 256-bead staging
PIMD28 trajectory integrated at a 0.1-fs time step with the mass and
friction parameters recommended in Ref. 30 and initialized with the
same protocol used for the T-RPMD simulations.

The observables considered in Fig. 5 measure properties per
H atom or per H2O molecule, and thus, the reported values are

FIG. 9. Integrated autocorrelation times of several observables of the one-
dimensional harmonic oscillator in Sec. III A, estimated with the AW method.
Trajectory data for the estimates were generated using the T-RPMD scheme
with θ(x) = 2 arctan(x/2) at n = 64 beads and Δt = 2.0 fs and processed as
described in the current section. Estimated (respectively, exact) integrated auto-
correlation times for observables, KEpri

n (black), KEvir
n (red), and KEcla

n (cyan),
are shown in solid (respectively, dashed) lines in panel (a) as a function of the
windowing parameter c. Panel (b) plots the cutoffs determined by the choice
of c for the three observables, where the linear relation between MΔt and c at
large values of the latter corroborates the convergence of the autocorrelation time
estimates.

averages over estimates obtained for each simulated moiety. The
equilibriummean and integrated autocorrelation time of observable
On for each moiety were estimated by partitioning the trajectory
of the moiety into ten disjoint 1-ns blocks, evaluating Eqs. (G1)
and (G2) within each block, and determining the sample mean and
standard error among the block estimates with 1000 bootstrap
resamples. The AW method68 was applied to choose a cutoff lag M
≤ 1 ns in Eq. (G2), as illustrated in Fig. 9 for the harmonic oscillator
application.

The T-RPMD trajectories used to generate Fig. 5 also yielded
Fig. 6, where panels (a) and (c) plot autocovariance functions of the
form 1

NH2O
∑

NH2O

i=1 E(Ōi(0) ⋅ Ōi(kΔt)), where NH2O = 32 is the num-

ber of simulated H2O molecules and Ōi(kΔt) is the bead-averaged
value of observableO (e.g., the molecular dipole moment or center-
of-mass velocity) on the ith molecule at time kΔt along a station-
ary T-RPMD trajectory. The autocovariance E(Ōi(0) ⋅ Ōi(t)) was
estimated for the lags kΔt shown in Figs. 6(a) and 6(c) by

E(Ōi(0) ⋅ Ōi(kΔt)) ≈
K−k−1

∑
ℓ=0

Ō(ℓΔt)i ⋅ Ō((ℓ+k)Δt)i

K − k
,
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FIG. 10. Convergence to equilibrium of the BAOAB-like schemes considered in
Sec. III B with n = 64 ring-polymer beads and a Δt = 1.4 fs time step. With
respect to the non-equilibrium 64-bead configurational distribution evolved from
a point mass at a classical (i.e., n = 1) configuration, panels (a) and (c) plot
the mean kinetic energy per H atom for the n-bead system as per the primi-
tive and virial estimators, respectively, for times up to 1.0 ps. Panels (b) and (d),
respectively, plot the non-equilibrium mean O–H-bond and H–O–H-angle potential
energy per q-TIP4P/F water molecule56 for times up to 10 ps. The lightly shaded
interval around each curve corresponds to the standard error of the estimated non-
equilibrium mean, computed with 1000 bootstrap resamples from a sample of 1000
independent trajectories.

where KΔt = 1 ns is the length of each block in a partitioned 10-ns
T-RPMD trajectory. As with the results in Fig. 5, statistics for each
molecule were obtained from block estimates via bootstrapping, and
Figs. 6(a) and 6(c) report molecule-averaged statistics.

Figure 10 validates the 20-ps thermalization interval used to
initialize the trajectories that generated Figs. 5 and 6. In detail,
Figs. 10(a) and 10(c) [respectively, Figs. 10(b) and 10(d)] plot the
non-equilibrium mean of the primitive and virial quantum kinetic
energy per H atom (respectively, the mean O–H bond and H–O–
H angle potential energy per water molecule) as it approaches the
equilibrium value in Figs. 5(a) and 5(c) [respectively, Figs. 5(e) and
5(g)] for a 64-bead ring polymer at a 1.4 fs time step with the
considered choices of θ. At each time kΔt within the 20-ps inter-
val, the non-equilibrium mean is estimated by averaging across
1000 independent trajectories initialized at a point-mass distri-
bution on the n-bead ring-polymer phase space centered at the
classical (i.e., n = 1) sample used to initialize the reported simu-
lations. Within statistical uncertainty, the non-equilibrium mean
for each observable converges to its equilibrium value within the
20-ps interval at visually indistinguishable rates across the tested
choices of θ.
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