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Abstract—In this paper, we present a detailed analysis of Blue-
tooth Low Energy-based scanning systems wherein the objective
is to successfully scan all items of a group of a prescribed size

within a prescribed scanning period at a prescribed probability
of success, for example, less than one failure in one million. We
show that a design based upon independence among collision
events fails to achieve the target reliability objectives by roughly
an order of magnitude. Our analysis, which is verified through
extensive simulation, shows that correlation among the collision
events has a major impact upon the scanning time required to
successfully scan all the members of a group.

I. INTRODUCTION

This paper discusses optimization of a scanning system

based on Bluetooth Low Energy (BLE) [1]. In the particular,

items to be scanned are organized into fixed-size groups, and

the scanning of each group is called a scanning job (SJ). An

SJ fails if the system fails to successfully scan any item of

the group. Each member of the group is equipped with a BLE

device and broadcasts advertisements at a rate determined by

its interadvertisement time, which is the sum of a relatively

large fixed period and a small random period as described in

[1] and reviewed here. Each fixed-size group is moved into

a scanning area to be scanned. In this paper, an approach

to specifying both the interadvertisement time that minimizes

scanning time, and the required minimum scanning time, while

maintaining an SJ failure (SJF) rate less than a prescribed

target failure probability is presented. For example, for a group

size of 100, which interadvertisement time should be chosen

and how long should the group be scanned so that the system

fails to successfully scan every item in the group in less than

one group out of each 100 thousand groups on average?

An extensive search of the literature has yielded very few

papers that have addressed the specific question addressed

here. So far as we are able to determine, all of the references

in the literature assume that overlap in transmissions result

in collisions that result in failure of both advertisements. In

addition, all references assume Poisson arrivals, or equiva-

lently, that advertisements arrive at random points in time

and that events of successive collisions are independent. The

focus of [2] is to find the optimal value for an advertising

interval to minimize the time in which all surrounding BLE

advertisers are discovered by a scanner, which addresses part

of the issue addressed here. However, [2] does not consider the
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probability of failing to detect all advertisers that are present,

which is the main focus of this paper. Methods for improving

discovery time [3], [4], [5], and decreasing the likelihood of

packet collision have appeared extensively in the literature [6],

[7]. Several other of these papers, including [8], concentrate

on how packet collision affects energy consumption of BLE

systems, especially in applications dealing with smart health-

monitoring devices and devices that provide location services

[9], [10]. Al Kalaa [11] focuses on maximizing aggregate

throughput on the data channels. To the best of our knowledge,

there has not been anything in the literature that directly

addresses optimizing interadvertisement time to minimize the

probability of collision for a given number of advertisers in a

given scan period.

In section II, we provide a brief overview of the scanning

system and develop simple expressions for the optimal inter-

advertisement time and minimum scanning period required to

achieve a target P {SJF} based on independence among col-

lision events. To the best of our knowledge, these expressions

have not previously appeared in the literature. In section III

we analyze the results of a detailed simulation of the system

and find that the results based on the optimal design under

the assumption of independent collision events miss the target

by roughly an order of magnitude. In section IV, we consider

the impact of dependence among advertisement events upon

the collision process and find the impact to be significant. To

the best of our knowledge, the results presented in section IV

are also new. The analytical results presented in section IV

are also examined via simulation. In section V, we reconsider

the design problem using the results of our detailed collision

analysis and show that the new design is effective in achieving

the system design goals. In section VI, we summarize our

results and draw conclusions.

II. PRELIMINARY ANALYSIS

Fig. 1 shows the overall organization of the scanning

process, which is now explained. For BLE, the 2400 MHz

Industrial, Scientific and Medical (ISM) spectrum is organized

as a set of 40 2 MHz channels spaced at 2 MHz intervals with

channels centered at 2401 to 2479 MHz. The channels at 2402,

2426, and 2480 MHz are indexed 37, 38, and 39, respectively,

and are the advertising channels. Scanning is organized into

a sequence of scanning intervals, during each of which the

scanner scans for advertisements during its scanning window

978-1-7281-6607-0/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 15,2021 at 15:05:19 UTC from IEEE Xplore.  Restrictions apply. 



time

scanWindow scanWindow scanWindow scanWindow

index 37 index 38 index 39 index 37

T = scanInterval scanInterval scanInterval scanInterval

Ts

Fig. 1. Illustration of scanning windows and scanning intervals

in one of the advertising channels in sequence. In the general

use case, the scanning window can be less than the scanning

interval, but in the case of a pure scanning system the scanner

scans during the entire scanning window.

Asynchronously from the scanner and independent of all

other advertisers, each advertiser is broadcasting advertise-

ments according to its own schedule as shown in Fig. 2.

During each advertising cycle, the advertiser broadcasts three

advertisements, one in each advertising channel, at fixed time

intervals of 10 ms or less. Each advertising event is followed

by a relatively long fixed period of radio silence, which is then

followed by a random period of silence uniformly distributed

over (0, 10) ms. Also, TAI is a parameter that can be adjusted

by the user whereas the dead time is typically set to less than

10 ms by the manufacturer, but cannot be set by the user.

The sequence of interadvertisement events is a sequence

of independent, identically distributed (IID) random variables

over (TAI, TAI + TD), where TD = 10 ms. Thus, the sequence

of times at which advertising events occur are a renewal

process. Given that the start time of the initial advertising

event occurs at a random point in time, the probability that

the advertiser is transmitting at one of the frequencies at an

arbitrary point in time is given by

ρA = TA/E
[

t̃IA

]

,

where TA is the time required to transmit one advertisement

and t̃IA = TAI + t̃AD as illustrated in Fig. 2. For the purposes

of this analysis, TA = 376 µs, which is the time required

to transmit 376 bits at 1 Mb/s as prescribed in [1]. Since

the advertisement times of the advertisers are independent,

the probability that a second advertiser advertises over the

period of advertisement of a tagged advertiser is equal to the

probability that the second advertiser’s advertisement begins

within ±TA of the start time of the tagged advertisement. As

is commonly assumed in the literature, it is assumed here that

overlap in transmission times results in a failed advertisement

on the part of both advertisers. Thus, the probability of failure

due to a second advertisement is 2ρA.

Advertisement
TAI = advInterval

t̃IA = advEvent

Advertising Event t̃AD = advDelay

Fig. 2. Advertising events, intervals, and delays (more to scale)

Define SAA to be the event of a successful scan for an

arbitrary advertisement. Then, since there are NA advertisers

and they all transmit independently, the probability that an

arbitrary advertisement is successful is given by

P {SAA} = (1− 2ρA)
NA−1 ≈ e−2ρA(NA−1), (1)

where the approximation is based on the definition of the

mathematical constant e and is very good for large NA.

Recall that a scanning job (SJ) is the activity of scanning a

population of advertisers of a given size over a given period of

time, TS . Each advertiser has its own identity, and the purpose

of the SJ is to determine which specific advertisers are in each

particular job. If all of the advertisers are scanned successfully

at least once during the scanning period, the scanning activity

is considered a success; otherwise the scanning job fails.

Assuming the events of successful scans are independent and

that the advertiser advertises NS times during an advertising

period, we find

P {SJF} =
(

1− e−2ρA(NA−1)
)NS

. (2)

In practice, the number of times an advertisement is scanned

depends upon the interadevertisement time, t̃IA, which depends

upon the value to which TIA is set and the amount of time

selected for scanning. Since the random part of t̃IA is very

small compared to TIA, we find that NS ≈ TS/E
[

t̃IA

]

. For

the purposes of the present analysis, define NS = TS/E
[

t̃IA

]

and so that, in general, NS turns out to be a mixed number.

The implication is that during the scanning periods, a frac-

tion of the advertisers would have an additional scan above
⌊

TS/E
[

t̃IA

]⌋

. The resulting scanning job failure probability

is

P {SJF} =

(

1− e
−2

TA(NA−1)
E[t̃IA]

)

TS

E[t̃IA]

. (3)

The previous equation has the form

P {SJF} =
(

1− e−ax
)xTS

, (4)

where a = 2TA (NA − 1) and x = 1/E
[

t̃IA

]

, from which

it is clear that the value of x, or equivalently E
[

t̃IA

]

, that

minimizes

f(x) =
(

1− e−ax
)x

also minimizes P {SJF} for any scanning period TS . Addi-

tionally, we note that the value of x that minimizes f(x) is

the same value that maximizes ln f(x), the latter resulting

from the fact that f(x) ∈ (0, 1). Thus, we can maximize

ln f(x) = x ln (1− e−ax). To simplify the math, define

y = 1− e−ax ⇒ x = −
ln (1− y)

a
, (5)

We then define

g(y) = −
1

a
ln (1− y) ln y,

where y ∈ (0, 1). and we want to find

y∗ = argmax g(y) = argmax

[

−
1

a
ln (1− y) ln y

]

.
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First, we show that g(y) is convex by examining the sign

of its second derivative. Upon differentiating, we find

d

dy
g(y) = −

1

a

[

ln (1− y)

y
−

ln y

1− y

]

. (6)

The second derivative is

d2

dy2
g(y) =

1

a

[

ln (1− y)

y2
+

2

y (1− y)
+

ln y

(1− y)
2

]

.

Consider the function h(y) = 1− y+ y ln y. We find h′(y) =
ln y < 0 for y ∈ (0, 1). Therefore h(y) is strictly decreasing

over (0, 1). Since h(1) = 0, h(y) > 0 ∀ y ∈ (0, 1). Also, since

y(1− y)2 > 0 ∀ y ∈ (0, 1), we can divide by that quantity to

obtain
ln y

(1− y)
2 +

1

y(1− y)
> 0 ∀ y ∈ (0, 1).

Similarly, it can be shown that

ln (1− y)

y2
+

1

y (1− y)
> 0 ∀ y ∈ (0, 1).

Therefore g(y) is convex over y ∈ (0, 1).
Given convexity, argmax g(y) can be obtained by solving

g′(y) = 0 for y. From

d

dy
g(y) = −

1

a

[

ln (1− y)

y
−

ln y

1− y

]

= 0, (7)

it follows that

(1− y∗) ln (1− y∗) = y∗ ln y∗

from which it is clear that y∗ = 1− y∗, which in turn results in

y∗ = 0.5. Thus, since a = 2TA (NA − 1) and x = 1/E
[

t̃IA

]

,

we find the optimal value of E
[

t̃IA

]

is given by

E∗
[

t̃IA

]

= −
2TA(NA − 1)

ln 0.5
=

2TA (NA − 1)

ln 2
. (8)

Upon solving (3) for TS , we find the minimal value of TS

required to scan all advertisers while satisfying the target

probability of success is

TS = E
[

t̃IA

] ln (target P {SJF})

ln 0.5
(9)

To the best of our knowledge the results shown in (8) and (9)

have not been previously presented in the literature.

III. PRELIMINARY SIMULATION RESULTS AND ANALYSIS

In this section we present simulation results based on the

parameter settings derived in section II. We developed a

detailed simulation of the scanning system in Simpy, a discrete

event simulation package, using Python 2.7. We simulated

systems having batch sizes of 100, 200, 400, 800 and 1600

with a target P {SJF} ≤ 10−5. For each set of parameter

settings we ran 30 different simulation runs, each of which

simulated the scanning process for 1 million advertisers. At a

failure rate less than 10−5, there should be less than 10 out

of 1 million SJFs. By doing about 30 samples of 106 SJs,

it should be possible to determine the actual P {SJF} to a

reasonable degree of accuracy.

0 5 10 15 20
0

0.5

1

1.5

2
·10−1

Number of successes over realization, n

P
{ñ

A
A
=

n
}

Simulation

Mixed Binomial

Fig. 3. Comparison of probability mass functions of number of successes for
a batch size of 800 advertisers with a scanning period of 14.9 s and an average
advertisement cycle of 0.8668 µs based on simulation and mixed binomial
distributions.

We now turn to the selection of the values of E
[

t̃IA

]

and

TS . First we computed E
[

t̃IA

]

and TS using (8) and (9). For

example, for the case of NA = 800 and with TA = 376 µs,

E
[

t̃IA

]

= 0.8668 and TS = 14.398. There would then be

an average of TS/E
[

t̃IA

]

= 16.61 advertising cycles within

a scanning period. Analysis shows that in this case 61 % of

the advertisers would generate 17 advertisements, and 39 %

would generate only 16 advertisements, thus giving those a

lower probability of success. Given that the random period is

uniform over (0,10) ms, a maximum-length advertising cycle

would be 0.8718 s. In order to ensure that all advertisers get

at least 17 advertisements, the scanning period is increased to

17 maximum-length advertising cycles so that TS = 14.82 s,

which we rounded up to 14.9. At this setting, a little over 81.1

% of the advertisers would have 17 advertising cycles and the

other 18.9 % would have 18.

Fig. 3 shows the probability mass function (PMF) for the

number of successful scans over the scanning period for NA =
800, E

[

t̃IA

]

= 0.8668, TS = 14.90, and ñAA is defined as the

number of successful scans of an arbitrary advertiser over a

scanning period. Analysis of the simulation results shows that

the average number of successes per advertiser, that is E [ñAA],
is 8.5923 and P {SAA} = 0.4999, which is exactly according

to the the design specification.

Also shown in Fig. 3 is the PMF for a mixed binomial dis-

tribution with 81.1 % of the advertisers having 17 advertising

cycles, the other 18.9 % having 18 and probability of success

set at 0.5 for which the average number of successes is 8.5945.

Thus, the results from the simulation show P {SAA} and the

average number of successfully read advertisements for an

arbitrary advertiser are exactly as expected. On the other hand,

it is readily seen by observation of Fig. 3 that the probability
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masses obtained from the simulation are significantly larger

than those of the mixed binomial RV in the region ñAA < 7
with corresponding lower probability masses in the region

7 < ñAA < 12.

Thus, it is seen that the simulations show that the actual

scanning process is likely to have a higher probability of

having fewer successes than would be indicated under the

assumption of Poisson arrivals, which would result in the

mixed binomial distribution shown. In fact, as illustrated in

Table I, the simulation indicates P {SJF} = 7.45×10−5 with a

standard deviation of 8.55×10−7. Thus, the observed average

P {SJF} is about 7 times the target of 10−5 with the standard

deviation indicating a very good estimate. In addition, the

analytical formula yields P {SJF} = 4.54× 10−6 so that the

average P {SJF} observed from simulations is about 16 times

larger than would be expected if collisions were independent.

TABLE I
P {SJF} BASED ON PARAMETER SETTINGS

ASSUMING INDEPENDENT COLLISIONS

NA E
[

t̃IA

]

TS (s) P {SJF} CI [95 %]

100 0.107 1.91 4.04e-05 ± 1.377e-06

200 0.216 3.80 5.55e-05 ± 9.119e-07

400 0.433 7.50 6.52e-05 ± 9.485e-07

800 0.867 14.90 7.45e-05 ± 6.555e-07

1600 1.740 29.60 7.74e-05 ± 4.542e-07

Results for batch sizes of 100 and 1600 are shown in Figures

4 and 5, and it is readily seen from those figures that the

accuracy of the analytical results is approximately the same

for a wide variety of batch sizes. It is also seen that the bias

towards higher probabilities of small numbers of successes is

more pronounced as batch size increases. It is therefore of

interest to examine the nature of the dependence among the

collisions to which we now turn.

IV. DEPENDENCE AMONG COLLISIONS

In this section we address the issue of dependence among

collisions. We first address the issue of correlation of collision

events through direct probabilistic analysis in subsection IV-A.

In that subsection we show, by deriving probabilities, that the

probability of additional collisions of a given advertiser with

the tagged advertiser given an initial collision with the tagged

advertiser is significantly higher than that of an arbitrary

advertisement.

In subsection IV-B, we pursue the issue of correlation of

collision events via simulation. More specifically, we define

events involving strings of collisions of various lengths and

measure the probability of extending the string by one collision

for each of the string lengths. The results of that subsection in-

dicate that the probabilities increase as string length increases,

but then seem to converge as string length increases.

A. Analytical Approach to Collision Dependence

To begin the discussion, it is noted that while initial trans-

missions of advertisements over a scanning interval occur at

0 5 10 15 20
0

5 · 10−2

0.1

0.15

0.2

Number of successes over realization, n

P
{
ñ

A
A
=

n
}

Simulation

Analytical

Fig. 4. Comparison of probability mass functions of number of successes
for a batch size of 100 advertisers with a scanning period of 1.91 s and
an average advertisement cycle of 0.107 s based on simulation and mixed
binomial distributions.
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Fig. 5. Comparison of probability mass functions of number of successes
for a batch size of 1600 advertisers with a scanning period of 29.6 s and an
average advertisement cycle of 1.74 s based on simulation and mixed binomial
distributions.

random points in time over an interadvertisement period, the

times of future transmissions are heavily correlated to the

initial transmission times. In this subsection, we examine the

effect that correlation has on collision probabilities. We denote

the tagged advertiser as advertiser A. Suppose advertiser A

begins an advertisement at time t0 and an advertisement

from advertiser B overlaps with that of A. It then follows

that the advertisement of B started at a random time, say

t̃B,0, sometime during the interval (t0 − TA, t0 + TA). The

following transmissions of A and B then occur at times t̃A,1 =
t0 + TAI + t̃AI,A and t̃B,1 = t̃B,0 + TAI + t̃AI,B, where t̃AI,A
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and t̃AI,B denote the random parts of the interadvertisement

times. The difference between the next advertisements is then

t̃A,1 − t̃B,1 = t0 + TAI + t̃AI,A −
[

t̃B,0 + TAI + t̃AI,B

]

= t0 − t̃B,0 + t̃AI,A − t̃AI,B, (10)

which we note is independent of TAI. A second collision will

occur if −TA ≤˜̃tA,1 − t̃B,1 ≤ TA.

To facilitate further discussion, we define the following

events:

Cn Event of nth repeated collision of the tagged advertiser.

For example, C0 is the tagged advertiser’s initial colli-

sion and C1 is the event of tagged advertiser’s second

consecutive collision, which would occur on its first

advertisement after its first collision.

Nn Event of a collision that occurs due to an advertiser whose

first collision with the tagged advertiser occurs at the nth

advertisement epoch of the tagged advertiser.

Rn Event of a repeated collision that occurs in the n ad-

vertisement epoch of the tagged advertiser. In particular,

RB,n, will denote a repeated collision of advertiser B

at epoch n, n = 1, 2, and RC,2 will denote a repeated

collision of advertiser C at epoch 2.

Since the initial advertisements occur at random indepen-

dent times, the random variable t0 − t̃B,0 can be assumed to

be uniformly distributed over (−TA, TA), and t̃AI,A and t̃AI,B

are each uniformly distributed over (0, TD) so that −t̃AI,B is

uniformly distributed over (−TD, 0) . In addition the three

random variables just mentioned are independent so that the

distribution of t̃A,1 − t̃B,1 is the threefold convolution of

uniformly distributed random variables.

By using Laplace-Stieltjes transform techniques, it is readily

found that the part of the probability density function (PDF)

of t̃A,1 − t̃B,1 where the event RB,1 can occur, (−TA, TA), is

given by

ft̃A,1−t̃B,1
(t) =

1

2T 2
D

(

2TD − TA −
1

TA

t2
)

(11)

Upon integrating over the interval (−TA, TA), we then find

P {RB,1|C0} = 2
TA

TD

(

1−
2

3

TA

TD

)

= 0.0733, (12)

where the given numerical probability is based on the standard

values of TA = 0.376 ms and TD = 10 ms as specified

earlier. Note that P {RB,1|C0} does not depend upon any other

parameters; with the standard parameter settings, it is always

true that P {RB,1|C0} = 0.0733.

The distribution of the difference in arrival times given a

second collision is obtained by normalizing (11) using (12).

The result, both in term of symbols and numbers representing

standard parameter values, is as follows:

ft̃A,1−t̃B,1|RB,1
(t) =

3TA (2TD − TA)− 3t2

4T 2
A (3TD − 2TA)

(13)

= 1.338− 0.1814t2, t ∈ (−0.376, 0.376)

A careful examination of the above conditional distribution

reveals that it is very close to a uniform distribution over

(−TA, TA), but the mass is slightly more concentrated to the

center. Thus, we would expect that the probability of a third

collision given a second would be very nearly the same as, but

slightly larger, than P {RB,1|C0}. A detailed analysis reveals

that P {RB,2|RB,1} = 0.0736 versus P {RB,1|C0} = 0.0733.

To put the above numbers in perspective, the probability of a

collision due to a single independent advertiser is 2TA/E
[

t̃IA

]

,

which turns out to be 8.675× 10−4 for a group of NA = 800
with E

[

t̃IA

]

= 0.8668. The conditional probability of a repeat

collision with the same advertiser is about 85 times as large

as the probability of collision with a single random advertiser.

Since the event C1|C0N1 is certain, upon conditioning on

the occurrence of N1,

P {C1|C0} = P {N1|C0}+ P
{

C1|C0N̄1

}

P
{

N̄1|C0
}

(14)

Under the assumption of independence between repeat col-

lision events and those resulting from the general population,

we find P
{

C1|C0N̄1

}

= P {RB,1|C0}. In addition, for N1,

there are NA − 2 advertisers in the general population. Thus

with the optimal settings,

P {N1|C0} = 1− e
−

2TA(NA−1−1)
E[t̃IA] = 1− 0.5e

2TA

E[t̃IA] (15)

Numerically, for the case of 800 advertisers, P {N1|C0} =
0.4996. Since we have shown that E

[

t̃IA

]

is very close to

linear in the number of advertisers, the result will be very close

for any value of NA. Upon substituting numerical values into

(14), we find

P {C1|C0} = 0.4996 + 0.0733(1− 0.4996) = 0.5363 (16)

Given C1, the possible events are RB,1N̄1, R̄B,1N1, and

RB,1N1, for which the probabilities are obtained by various

multiplications of the previously computed event probabili-

ties as a result of independence. The resulting probabilities

are 0.0367, 0.4630, and 0.0366 for RB,1N̄1, R̄B,1N1, and

RB,1N1, respectively, and their conditional probabilities given

C1 are 0.0684, 0.8633, and 0.0683.

We now begin the development of P {C2|C1}, which we

will accomplish by conditioning on the 3 outcomes of C1.

First we note that the event C2|C1N2 is certain. In addition,

N2 is dependent upon N1 but not RB,1 so that

P
{

C2|RB,1N̄1

}

= P
{

N2|N̄1

}

+P {RB,2|RB,1}P
{

N̄2|N̄1

}

(17)

But, P
{

N2|N̄1

}

= P {N1|C0}, which is given by (15), and

P {RB,2|RB,1} is specified above as 0.0736. Thus, we have

numerically, P
{

C2|RB,1N̄1

}

= 0.53643.

Next, we consider R̄B,1N1. In this case, C2 occurs if the

event N2 ∪ RB,2 ∪ RC,2 occurs. Again, the event C2|C1N2

is certain. N2 is dependent upon N1 but not RB,1. The

events RB,2 and RC,2 are not independent because they

are both dependent upon t̃A,2. In fact, P {RB,2RC,2} >
P {RB,2}P {RC,2} due to the positive correlation of the

events. On the other hand, an exact analysis shows the

impact of assuming independence of these particular events
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has minute effects on the overall result. Thus, under the

independence assumption, we have

P
{

C2|R̄B,1N1

}

= P {N2|N1}

+ P
{

RB,2 ∪RC,2|R̄B,1N1

}

P
{

N̄2|N1

}

(18)

and

P
{

RB,2 ∪RC,2|R̄B,1N1

}

= P
{

RB,2|R̄B,1

}

+

P {RC,2|N1} − P
{

RB,2|R̄B,1

}

P {RC,2|N1} (19)

At this point, we have P {RC,2|N1} = P {RB,1|C0} and all

probabilities except P
{

RB,2|R̄B,1

}

and P {N2|N1}. By pro-

ceeding along the same lines as before, we find the difference

in the advertisement times of the second advertisement after

the initial collision is the sum of two independent U (−TD, 0),
two independent U (0, TD) and one U (−TA, TA) random

variables. The part of the PDF over the interval in RB,2 is

found to be

ft̃A,2−t̃B,2
(t) =

1

TAT 4
D

[

a4t
4 + a2t

2 + a0
]

,

a4 =
1

8
, a2 =

3T 2
A − 4TATD

4
,

a0 =
2T 3

DTA − TDT 3
A

3
+

T 4
A

8
(20)

Upon integrating the above PDF over (−TA, TA), we find

P {RB,2|C0} =
4TA

TD

[

1

3
−

1

3

(

TA

TD

)2

+
1

5

(

TA

TD

)3
]

Numerically, P {RB,2|C0} = 0.0501. Thus, it is seen again

that conditional probabilities of collision given past collisions

are significantly higher than would be expected from indepen-

dent trials.

Now, since we know P {RB,2|RB,1} and P {RB,1|C0}, we

can find P
{

RB,2|R̄B,1

}

from

P {RB,2|C0} = P {RB,2|RB,1}P {RB,1|C0}

+ P
{

RB,2|R̄B,1

}

P
{

R̄B,1|C0
}

(21)

Numerically, P
{

RB,2|R̄B,1

}

= 0.0482. Proceeding as in (15)

gives

P {N2|N1} = 1− e
−

2TA(NA−1−2)
E[t̃IA] = 1− 0.5e

4TA

E[t̃IA] (22)

Numerically, P {N2|N1} = 0.4991. Thus, from (18), (19),

and (21) we have numerically

P
{

C2|R̄B,1N1

}

= 0.5582. (23)

Finally, we consider the case of RB,1N1. In this case C2
also occurs if the event N2 ∪RB,2 ∪RC,2 occurs. A detailed

analysis of this case has been carried out including that of

dependent events. The analysis parallels that of R̄B,1N1, the

primary difference being that the event RB,2|RB,1 has a

higher probability than the event RB,2|R̄B,1. The analysis

showed that the dependence again has very minor impact upon

the results. The result based on the assumption of indepen-

dence is then P {C2|RB,1N1} = 0.5699. Upon combining the

conditional probabilities, the result is

P {C2|C1} = 0.5575, (24)

which will be slightly higher than the actual value due to the

independence assumption.

Thus, it is seen that P {C2|C1} > P {C1|C0}. In addition,

comparing P {RB,1|C0} = 0.0733 to P {RB,2|C0} = 0.0501,

we see that the unconditional probability of repeated collisions

decreases significantly as the number advertisements beyond

the first collision increases. Thus, it would be expected that

the impact of a specific advertiser on the overall probability

of continued collisions would decrease over time with the

result that the P {Cn|Cn−1} would tend to converge with

increasing n. The nature of the convergence process is still

under study, but the observation is used in the next section to

design systems. Meanwhile it is noted that all of the formulas

involving the probabilities of repeated collisions were checked

using specialized Python simulations. We now turn to the

examination of repeated collisions via simulation analysis.

B. Simulation Approach to Collision Dependence

In this section, we discuss our approach to investigating

dependence among successive collisions via simulation. In

our detailed simulation program, we collected traces of the

results of each advertisement for each advertiser in the form

[r1, r2, r3, . . . ], rn ∈ {s, f}, where f (s) represents a collision

(no collision). We then did a simple analysis of the resulting

lists to determine the proportion of collision events that follow

collision events; for example, if rn = f and rn+1 = f , this

counts as one collision event that follows a collision event. The

count obtained was normalized to the number of transitions

from collision events. We used the result as an approximation

of P {RB,1|C0}. Note that what is being reported is the

probability that an arbitrary collision event is followed by a

collision event, whereas P {RB,1|C0} is the probability that

the initial collision event is followed by a collision event.

Similarly, we compute the probability that two colli-

sion events are followed by a collision event. For exam-

ple, if [rn, rn+1] = [f, f ] and [rn+1, rn+2] = [f, f ], this

counts as one event. This is used as an approximation of

P {RB,2|RB,1}. In the case we look for repeated collisions

based only on rn or only on [rn, rn+1], we say the memory

length is 1 or 2, respectively. The results of 600 replications of

180,000 s simulations of only two advertisers gave the mean

and 95 % confidence intervals of the two conditional events as

0.0730± 0.007 and 0.0714± 0.0214, respectively, where the

large confidence interval of the latter is the result of scarcity

of events. Note that the 95 % confidence intervals (CI), which

are based on the mean ± 1.96 standard deviations, cover the

theoretical values of P {RB,1|C0} and P {RB,2|RB,1}, but

the confidence intervals are quite large even though the runs

are fairly long because the events are fairly rare when only

two advertisers are present. Nonetheless, the results do support

the result that repeated collisions of the same two advertisers
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are much more likely than arbitrary random collisions. Notice

that the standard deviations increase as the memory length

increases; this is a result of the fact that for any given

simulation period, the number of events upon which the mean

value is based decreases with memory length.

TABLE II
CONDITIONAL PROBABILITIES OF COLLISION FOR A RANGE

OF GROUP SIZES AND MEMORY LENGTHS

Memory Mean Collision Return Probability
Length Number of Advertisers

100 200 400 800 1600

1 0.525 0.525 0.525 0.526 0.527
2 0.538 0.540 0.541 0.542 0.543
3 0.547 0.552 0.554 0.555 0.556
4 0.554 0.563 0.565 0.566 0.567
5 0.559 0.572 0.574 0.575 0.577
6 0.565 0.580 0.582 0.584 0.586
7 0.571 0.587 0.590 0.592 0.593
8 0.571 0.593 0.597 0.599 0.600

Continuing on, we examine the rates of repeated collisions

via detailed simulations for NA ∈ {100, 200, 400, 800, 1600}
with E

[

t̃IA

]

set optimally and memory length as a parameter.

The results, shown in Table II, are used as a proxy for

P {Cn|Cn−1, Cn−2, . . . , C0} as defined in the previous section.

Discussion of specific confidence intervals is omitted here

as they are all sufficiently small that they would affect the

accuracy of the estimates only in the third decimal point and

do not have any direct effect on the substance of this particular

discussion.

As can be seen from the table, P {Cn|Cn−1, Cn−2, . . . , C0}
is, in fact, increasing as the memory length grows as conjec-

tured in the previous subsection. It is also again seen that the

standard deviations increase with memory length for reasons

explained above.

V. ACCOUNTING FOR CORRELATION OF COLLISIONS

Given the observations of the previous section, it is clear

that correlation in the collision process has a major impact

upon P {SJF}. Bearing in mind that a SJF occurs only if all

of an advertiser’s advertisements collide, it is clear that SJFs

are the result of a continuous string of collisions, including

the first advertisement of the scanning period. In addition, at

the time scanning begins, the number of collisions that have

already occurred in the current string is not known. Given that

P {Cn, Cn−1, . . . , C0} =

P {Cn|Cn−1Cn−2, . . . , C0}P {Cn−1, Cn−2, . . . , C0} (25)

it is clear that the scan time to achieve a given P {SJF}
target must be determined based on the probability of repeated

collisions because SJFs are the result of repeated collisions.

Based on the numerical results of the previous section, it

appears that P {Cn| Cn−1} converges to approximately 0.6 as

n increases, thus we assume the value of 0.6 to illustrate the

idea. We revisit the analysis of P {SJF} as illustrated in (3) and

suppose that there is a negative bias of B in the probability of
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Fig. 6. Comparison of probability mass functions of number of successes
for a batch size of 100 advertisers with a scanning period of 2.59 s and
an average advertisement cycle of 0.1245 s based on simulation and mixed
binomial distributions.

success that future advertisements from an advertiser whose

first advertisement of the observation period collides. Then

from (1), we find

P
{

Sbias
AA

}

≈ e−2ρA(NA−1) −B. (26)

Thus

P
{

SJFbias
}

=

[

1−

(

e
−2

TA(NA−1)
E[t̃IA] −B

)]

TS

E[t̃IA]

. (27)

Then upon following the same analysis approach as was

followed in section II, we find y∗ = 1+B
2 so that

E
[

t̃bias
IA

]

= −
2TA (NA − 1)

ln
(

1+B
2

) = −
2TA (NA − 1)

ln (.55)
(28)

and

T bias
S ≥ E

[

t̃IA

] ln (target P {SJF})

ln 0.55
(29)

Table III shows the resulting P {SJF}s for NA ∈
{100, 200, 400, 800, 1600} with E

[

t̃IA

]

s set optimally and

required scan periods based on independent collisions with

the target P {SJF} set at 10−5. Confidence intervals for

the dependent case are looser than those obtained for the

TABLE III
P {SJF} BASED ON PARAMETER SETTINGS

ASSUMING DEPENDENT COLLISIONS

NA E
[

t̃IA

]

TS (s) P {SJF} CI [95 %]

100 0.125 2.59 1.83e-06 ± 2.064e-06

200 0.250 5.11 3.77e-06 ± 4.358e-06

400 0.502 10.14 3.50e-06 ± 4.045e-06

800 1.005 20.20 4.73e-06 ± 3.951e-06

1600 2.011 40.32 4.87e-06 ± 3.481e-06
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Fig. 7. Comparison of probability mass functions of number of successes
for a batch size of 1600 advertisers with a scanning period of 40.32 s and
an average advertisement cycle of 2.011 s based on simulation and mixed
binomial distributions.

independent case due to the lower number of failure events.

The upper end of the 95 % confidence interval, labeled UCI,

which is given by the mean plus 1.96 standard deviations, for

the case of dependent collisions is also given in the table.

From Table I it is seen that when the scanning period

is designed under the assumption of independent collisions,

the target P {SJF} is missed by at least a factor of 4 even

without considering confidence intervals. On the other hand,

from Table III shows that if dependence among collisions is

taken into account the resulting P {SJF} always meets the

target at the 95 % confidence level.

Figures 6 and 7 show comparisons probability mass func-

tions of number of successes for batch sizes 100 and 1600

advertisers with interadvertisement times and scanning periods

based on dependent collisions. From these graphs it can be

seen that the simulation curves track much more closely with

the analytical curves at the low end of the distribution so that

the accuracy of the prediction of the probability of scanning

job failure is greatly improved. Indeed rather than under

predicting the probability of failure the modified approach

tends to overpredict the probability of failure thereby resulting

in a conservative estimate, which is the desired result.

VI. CONCLUSIONS

We have presented here a detailed analysis and design of

a BLE scanning system wherein the objective is to choose

optimal interadvertisement times and minimum scanning times

required to meet a prescribed target probability of failing to

successfully scan all advertisers within the scanning period.

To the best of our knowledge, this is the first work to

do a detailed analysis of the impact of dependence in the

advertising process upon the collision probability and to show

how this dependence affects the probability of successfully

scanning all members of a group.
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