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Abstract—In this paper, we present a detailed analysis of Blue-
tooth Low Energy-based scanning systems wherein the objective
is to successfully scan all items of a group of a prescribed size
within a prescribed scanning period at a prescribed probability
of success, for example, less than one failure in one million. We
show that a design based upon independence among collision
events fails to achieve the target reliability objectives by roughly
an order of magnitude. Our analysis, which is verified through
extensive simulation, shows that correlation among the collision
events has a major impact upon the scanning time required to
successfully scan all the members of a group.

I. INTRODUCTION

This paper discusses optimization of a scanning system
based on Bluetooth Low Energy (BLE) [1]. In the particular,
items to be scanned are organized into fixed-size groups, and
the scanning of each group is called a scanning job (SJ). An
SJ fails if the system fails to successfully scan any item of
the group. Each member of the group is equipped with a BLE
device and broadcasts advertisements at a rate determined by
its interadvertisement time, which is the sum of a relatively
large fixed period and a small random period as described in
[1] and reviewed here. Each fixed-size group is moved into
a scanning area to be scanned. In this paper, an approach
to specifying both the interadvertisement time that minimizes
scanning time, and the required minimum scanning time, while
maintaining an SJ failure (SJF) rate less than a prescribed
target failure probability is presented. For example, for a group
size of 100, which interadvertisement time should be chosen
and how long should the group be scanned so that the system
fails to successfully scan every item in the group in less than
one group out of each 100 thousand groups on average?

An extensive search of the literature has yielded very few
papers that have addressed the specific question addressed
here. So far as we are able to determine, all of the references
in the literature assume that overlap in transmissions result
in collisions that result in failure of both advertisements. In
addition, all references assume Poisson arrivals, or equiva-
lently, that advertisements arrive at random points in time
and that events of successive collisions are independent. The
focus of [2] is to find the optimal value for an advertising
interval to minimize the time in which all surrounding BLE
advertisers are discovered by a scanner, which addresses part
of the issue addressed here. However, [2] does not consider the
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probability of failing to detect all advertisers that are present,
which is the main focus of this paper. Methods for improving
discovery time [3], [4], [5], and decreasing the likelihood of
packet collision have appeared extensively in the literature [6],
[7]. Several other of these papers, including [8], concentrate
on how packet collision affects energy consumption of BLE
systems, especially in applications dealing with smart health-
monitoring devices and devices that provide location services
[9], [10]. Al Kalaa [11] focuses on maximizing aggregate
throughput on the data channels. To the best of our knowledge,
there has not been anything in the literature that directly
addresses optimizing interadvertisement time to minimize the
probability of collision for a given number of advertisers in a
given scan period.

In section II, we provide a brief overview of the scanning
system and develop simple expressions for the optimal inter-
advertisement time and minimum scanning period required to
achieve a target P {SJF} based on independence among col-
lision events. To the best of our knowledge, these expressions
have not previously appeared in the literature. In section III
we analyze the results of a detailed simulation of the system
and find that the results based on the optimal design under
the assumption of independent collision events miss the target
by roughly an order of magnitude. In section IV, we consider
the impact of dependence among advertisement events upon
the collision process and find the impact to be significant. To
the best of our knowledge, the results presented in section IV
are also new. The analytical results presented in section IV
are also examined via simulation. In section V, we reconsider
the design problem using the results of our detailed collision
analysis and show that the new design is effective in achieving
the system design goals. In section VI, we summarize our
results and draw conclusions.

II. PRELIMINARY ANALYSIS

Fig. 1 shows the overall organization of the scanning
process, which is now explained. For BLE, the 2400 MHz
Industrial, Scientific and Medical (ISM) spectrum is organized
as a set of 40 2 MHz channels spaced at 2 MHz intervals with
channels centered at 2401 to 2479 MHz. The channels at 2402,
2426, and 2480 MHz are indexed 37, 38, and 39, respectively,
and are the advertising channels. Scanning is organized into
a sequence of scanning intervals, during each of which the
scanner scans for advertisements during its scanning window
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Fig. 1. Illustration of scanning windows and scanning intervals

time

in one of the advertising channels in sequence. In the general
use case, the scanning window can be less than the scanning
interval, but in the case of a pure scanning system the scanner
scans during the entire scanning window.

Asynchronously from the scanner and independent of all
other advertisers, each advertiser is broadcasting advertise-
ments according to its own schedule as shown in Fig. 2.
During each advertising cycle, the advertiser broadcasts three
advertisements, one in each advertising channel, at fixed time
intervals of 10 ms or less. Each advertising event is followed
by a relatively long fixed period of radio silence, which is then
followed by a random period of silence uniformly distributed
over (0, 10) ms. Also, T is a parameter that can be adjusted
by the user whereas the dead time is typically set to less than
10 ms by the manufacturer, but cannot be set by the user.

The sequence of interadvertisement events is a sequence
of independent, identically distributed (IID) random variables
over (Tar, Tar + Tp), where Tp = 10 ms. Thus, the sequence
of times at which advertising events occur are a renewal
process. Given that the start time of the initial advertising
event occurs at a random point in time, the probability that
the advertiser is transmitting at one of the frequencies at an
arbitrary point in time is given by

pa =TA/E [tia],

where T is the time required to transmit one advertisement
and f1a = Ta1 + tap as illustrated in Fig. 2. For the purposes
of this analysis, 7o = 376 us, which is the time required
to transmit 376 bits at 1 Mb/s as prescribed in [1]. Since
the advertisement times of the advertisers are independent,
the probability that a second advertiser advertises over the
period of advertisement of a tagged advertiser is equal to the
probability that the second advertiser’s advertisement begins
within +7T of the start time of the tagged advertisement. As
is commonly assumed in the literature, it is assumed here that
overlap in transmission times results in a failed advertisement
on the part of both advertisers. Thus, the probability of failure
due to a second advertisement is 2pa.

Advertising Event
t1a = advEvent

Ta1 = advInterval
TH‘/ Advertisement

Fig. 2. Advertising events, intervals, and delays (more to scale)
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Define Saa to be the event of a successful scan for an
arbitrary advertisement. Then, since there are [N, advertisers
and they all transmit independently, the probability that an
arbitrary advertisement is successful is given by

P{San}=(1- QpA)NA—l ~ e 2ea(Na—1), )

where the approximation is based on the definition of the
mathematical constant e and is very good for large N 4.

Recall that a scanning job (SJ) is the activity of scanning a
population of advertisers of a given size over a given period of
time, T's. Each advertiser has its own identity, and the purpose
of the SJ is to determine which specific advertisers are in each
particular job. If all of the advertisers are scanned successfully
at least once during the scanning period, the scanning activity
is considered a success; otherwise the scanning job fails.
Assuming the events of successful scans are independent and
that the advertiser advertises Ng times during an advertising
period, we find

P{sIF} = (1- e—2pA<NA—1>)NS , @)

In practice, the number of times an advertisement is scanned
depends upon the interadevertisement time, tia, which depends
upon the value to which Tis is set and the amount of time
selected for scanning. Since the random part of #15 is very
small compared to Tja, we find that Ng =~ Ts/E [fIA]. For
the purposes of the present analysis, define Ng = Ts/E [fIA}
and so that, in general, Ng turns out to be a mixed number.
The implication is that during the scanning periods, a frac-
tion of the advertisers would have an additional scan above
|Ts/E [tia] |. The resulting scanning job failure probability

is e
2TA(NA—1) B[fa]
B[fa] . (3)

The previous equation has the form

P {SIF} = <1 —e

P{SIF} = (1 —e %)™ )
where a = 274 (Ng — 1) and ¢ = 1/E [fIA], from which
it is clear that the value of z, or equivalently E [fIA}, that
minimizes
e—ax)x

fa) = (1~

also minimizes P {SJF} for any scanning period Ts. Addi-
tionally, we note that the value of x that minimizes f(z) is
the same value that maximizes In f(x), the latter resulting
from the fact that f(z) € (0,1). Thus, we can maximize
In f(z) =zln (1 — e~ **). To simplify the math, define
In(1-
yol—e® g 079 5)
a

We then define

1
9(y) = ——In (1l —y)lny,
where y € (0,1). and we want to find

1
y* = argmax ¢(y) = argmax |——In (1 —y)Iny| .
a
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First, we show that g(y) is convex by examining the sign
of its second derivative. Upon differentiating, we find

d 1 [In(1—y) Iny
e i KR
The second derivative is
d? 1 {ln(l-y) 2 Iny
——9(y) = - + :
dy? ) a[ y? y(1—y)  (1-—y)?

Consider the function h(y) =1 —y+ylny. We find 2/ (y) =
Iny < 0 for y € (0,1). Therefore h(y) is strictly decreasing
over (0, 1). Since h(1) =0, h(y) >0V y € (0, 1). Also, since
y(1—y)? >0V ye(0,1), we can divide by that quantity to
obtain

Iny 1
>0Vye(0,1).
(1—y)? y(l-y) ©.1)
Similarly, it can be shown that
In (1—y)
>0Vye(0,1).
y? y(l-y) 0.1

Therefore g(y) is convex over y € (0, 1).
Given convexity, argmax ¢(y) can be obtained by solving
g'(y) = 0 for y. From

d 1[In(1-y)

Iny
d_yg(y) T Y =

_1—y

0, )

it follows that
1=y )n(l-y") =y Iny"
from which it is clear that y* = 1 — y*, which in turn results in
y* = 0.5. Thus, since a = 2Tx (Na — 1) and z = 1/E [t1a],
we find the optimal value of E [¢14] is given by
2TA(Na —1) 2Ta(Na-—1)
- = .®
In0.5 In2
Upon solving (3) for Ts, we find the minimal value of Tg

required to scan all advertisers while satisfying the target
probability of success is

E* [tia] =

In (target P {SJF})
In0.5 ©)

To the best of our knowledge the results shown in (8) and (9)
have not been previously presented in the literature.

Ts = E [f]

III. PRELIMINARY SIMULATION RESULTS AND ANALYSIS

In this section we present simulation results based on the
parameter settings derived in section II. We developed a
detailed simulation of the scanning system in Simpy, a discrete
event simulation package, using Python 2.7. We simulated
systems having batch sizes of 100, 200, 400, 800 and 1600
with a target P {SJF} < 107°. For each set of parameter
settings we ran 30 different simulation runs, each of which
simulated the scanning process for 1 million advertisers. At a
failure rate less than 1075, there should be less than 10 out
of 1 million SJFs. By doing about 30 samples of 10¢ SJs,
it should be possible to determine the actual P {SJF} to a
reasonable degree of accuracy.
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Fig. 3. Comparison of probability mass functions of number of successes for
a batch size of 800 advertisers with a scanning period of 14.9 s and an average
advertisement cycle of 0.8668 us based on simulation and mixed binomial
distributions.

We now turn to the selection of the values of E [t}A} and
Ts. First we computed E [t14] and T using (8) and (9). For
example, for the case of N4 = 800 and with Ty = 376 us,
E [fia] = 0.8668 and Ts = 14.398. There would then be
an average of Ts/E [fIA] = 16.61 advertising cycles within
a scanning period. Analysis shows that in this case 61 % of
the advertisers would generate 17 advertisements, and 39 %
would generate only 16 advertisements, thus giving those a
lower probability of success. Given that the random period is
uniform over (0,10) ms, a maximum-length advertising cycle
would be 0.8718 s. In order to ensure that all advertisers get
at least 17 advertisements, the scanning period is increased to
17 maximum-length advertising cycles so that T's = 14.82 s,
which we rounded up to 14.9. At this setting, a little over 81.1
% of the advertisers would have 17 advertising cycles and the
other 18.9 % would have 18.

Fig. 3 shows the probability mass function (PMF) for the
number of successful scans over the scanning period for N4 =
800, E [f1a] = 0.8668, T's = 14.90, and fia4 is defined as the
number of successful scans of an arbitrary advertiser over a
scanning period. Analysis of the simulation results shows that
the average number of successes per advertiser, that is E [ia4],
is 8.5923 and P {Saa} = 0.4999, which is exactly according
to the the design specification.

Also shown in Fig. 3 is the PMF for a mixed binomial dis-
tribution with 81.1 % of the advertisers having 17 advertising
cycles, the other 18.9 % having 18 and probability of success
set at 0.5 for which the average number of successes is 8.5945.
Thus, the results from the simulation show P {Saa} and the
average number of successfully read advertisements for an
arbitrary advertiser are exactly as expected. On the other hand,
it is readily seen by observation of Fig. 3 that the probability
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masses obtained from the simulation are significantly larger
than those of the mixed binomial RV in the region niaa < 7
with corresponding lower probability masses in the region
T < naa < 12.

Thus, it is seen that the simulations show that the actual
scanning process is likely to have a higher probability of
having fewer successes than would be indicated under the
assumption of Poisson arrivals, which would result in the
mixed binomial distribution shown. In fact, as illustrated in
Table I, the simulation indicates P {SJF} = 7.45x107° with a
standard deviation of 8.55 x 10~7. Thus, the observed average
P {SJF} is about 7 times the target of 10~ with the standard
deviation indicating a very good estimate. In addition, the
analytical formula yields P {SJF} = 4.54 x 1076 so that the
average P {SJF} observed from simulations is about 16 times
larger than would be expected if collisions were independent.

TABLE I
P {SJF} BASED ON PARAMETER SETTINGS
ASSUMING INDEPENDENT COLLISIONS

Na E [tia] Ts (s) P {SIF} CI [95 %]
100 0.107 1.91 4.04e-05 + 1.377e-06
200 0.216 3.80 5.55¢-05 + 9.119e-07
400 0.433 7.50 6.52¢-05 + 9.485¢-07
800 0.867 14.90 7.45e-05 + 6.555¢-07
1600 1.740 29.60 7.74e-05 + 4.542¢-07

Results for batch sizes of 100 and 1600 are shown in Figures
4 and 5, and it is readily seen from those figures that the
accuracy of the analytical results is approximately the same
for a wide variety of batch sizes. It is also seen that the bias
towards higher probabilities of small numbers of successes is
more pronounced as batch size increases. It is therefore of
interest to examine the nature of the dependence among the
collisions to which we now turn.

IV. DEPENDENCE AMONG COLLISIONS

In this section we address the issue of dependence among
collisions. We first address the issue of correlation of collision
events through direct probabilistic analysis in subsection IV-A.
In that subsection we show, by deriving probabilities, that the
probability of additional collisions of a given advertiser with
the tagged advertiser given an initial collision with the tagged
advertiser is significantly higher than that of an arbitrary
advertisement.

In subsection IV-B, we pursue the issue of correlation of
collision events via simulation. More specifically, we define
events involving strings of collisions of various lengths and
measure the probability of extending the string by one collision
for each of the string lengths. The results of that subsection in-
dicate that the probabilities increase as string length increases,
but then seem to converge as string length increases.

A. Analytical Approach to Collision Dependence

To begin the discussion, it is noted that while initial trans-
missions of advertisements over a scanning interval occur at
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Fig. 4. Comparison of probability mass functions of number of successes
for a batch size of 100 advertisers with a scanning period of 1.91 s and
an average advertisement cycle of 0.107 s based on simulation and mixed
binomial distributions.
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Fig. 5. Comparison of probability mass functions of number of successes
for a batch size of 1600 advertisers with a scanning period of 29.6 s and an
average advertisement cycle of 1.74 s based on simulation and mixed binomial
distributions.

random points in time over an interadvertisement period, the
times of future transmissions are heavily correlated to the
initial transmission times. In this subsection, we examine the
effect that correlation has on collision probabilities. We denote
the tagged advertiser as advertiser A. Suppose advertiser A
begins an advertisement at time ty and an advertisement
from advertiser B overlaps with that of A. It then follows
that the advertisement of B started at a random time, say
tp,0, sometime during the interval (to — Ta,to + T4). The

following transmissions of A and B then occur at times t 4,1 =
to+Tar+tara and tg1 =tp o+ Tar+tar,p, where tar a
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and ¢4 1,5 denote the random parts of the interadvertisement
times. The difference between the next advertisements is then

to+ Tar+tara — [fB,o + Ta1 + fAI,B]
(10)

tag—tp1 =
= to—tpo+tara—tars,

which we note is independent of T4;. A second collision will

occur if =Ty thA,l — fBJ <Thy.

To facilitate further discussion, we define the following
events:

C, Event of nth repeated collision of the tagged advertiser.
For example, Cy is the tagged advertiser’s initial colli-
sion and C; is the event of tagged advertiser’s second
consecutive collision, which would occur on its first
advertisement after its first collision.

., Event of a collision that occurs due to an advertiser whose

first collision with the tagged advertiser occurs at the nth

advertisement epoch of the tagged advertiser.

Event of a repeated collision that occurs in the n ad-

vertisement epoch of the tagged advertiser. In particular,

RpB,n, Will denote a repeated collision of advertiser B

at epoch n, n = 1,2, and R¢ 2 will denote a repeated

collision of advertiser C at epoch 2.

Since the initial advertisements occur at random indepen-
dent times, the random variable ¢, — ¢ B,0 can be assumed to
be uniformly distributed over (—7a, Ta), and ta7,4 and ta;
are each uniformly distributed over (0, 7p) so that —t4; p is
uniformly distributed over (—7p,0) . In addition the three
random variables just mentioned are independent so that the
distribution of fAJ — fBJ is the threefold convolution of
uniformly distributed random variables.

By using Laplace-Stieltjes transform techniques, it is readily
found that the part of the probability density function (PDF)
of t41 —tp 1 where the event R 1 can occur, (—Ta, T4), is
given by

1 1,
ffA,l—fBJ(t) = ZT% <2TD - TA - T_At > (11)
Upon integrating over the interval (=T, T4 ), we then find
Ta 2Ta
P{RpilCo}=2—|1— == ) =0.0733 12
(Realeap =27 (1-372) ()

where the given numerical probability is based on the standard
values of Th = 0.376 ms and Tp = 10 ms as specified
earlier. Note that P {R3.1|Co } does not depend upon any other
parameters; with the standard parameter settings, it is always
true that P {Rp,1|Co} = 0.0733.

The distribution of the difference in arrival times given a
second collision is obtained by normalizing (11) using (12).
The result, both in term of symbols and numbers representing
standard parameter values, is as follows:

_ 3TA(2Tp — Ta) — 382 13
N 4T2 (3Tp — 2T4) 13

= 1.338 —0.1814¢% ¢ € (—0.376,0.376)

fZA,l—TZ:B,llRB,l (t)

A careful examination of the above conditional distribution
reveals that it is very close to a uniform distribution over

(=T, Th), but the mass is slightly more concentrated to the
center. Thus, we would expect that the probability of a third
collision given a second would be very nearly the same as, but
slightly larger, than P {Rp1|Co}. A detailed analysis reveals
that P{RB72|'RB’1} = 0.0736 versus P{RB’1|C0} = 0.0733.

To put the above numbers in perspective, the probability of a
collision due to a single independent advertiser is 274 /E [fIA} s
which turns out to be 8.675 x 10~ for a group of N4 = 800
with E [t1a] = 0.8668. The conditional probability of a repeat
collision with the same advertiser is about 85 times as large
as the probability of collision with a single random advertiser.

Since the event Cy|Co/N is certain, upon conditioning on
the occurrence of N7,

P{C|Co} = P{N1|Co} + P {C1|CoN1} P {N:1|Co} (14)

Under the assumption of independence between repeat col-
lision events and those resulting from the general population,
we find P {C1|CoN1} = P{Rp.1/Co}. In addition, for N7,
there are N4 — 2 advertisers in the general population. Thus
with the optimal settings,

2T (Np—1-1)
E[#a]

2T

=1—0.5¢"lml

P{M|Co} =1—¢ (15)

Numerically, for the case of 800 advertisers, P {N1|Co} =
0.4996. Since we have shown that E [fIA] is very close to
linear in the number of advertisers, the result will be very close
for any value of N4. Upon substituting numerical values into
(14), we find

P{C1|Co} = 0.4996 + 0.0733(1 — 0.4996) = 0.5363 (16)

Given Ci, the possible events are RB71./\_/‘1, 7@3;]\/’1, and
RBJN’l, for which the probabilities are obtained by various
multiplications of the previously computed event probabili-
ties as a result of independence. The resulting probabilities
are 0.0367,0.4630, and 0.0366 for Rp1N1, Rp1Ni, and
R B,1N1, respectively, and their conditional probabilities given
C; are 0.0684, 0.8633, and 0.0683.

We now begin the development of P {C2|C;}, which we
will accomplish by conditioning on the 3 outcomes of C;.
First we note that the event C|C1 N> is certain. In addition,
N is dependent upon N7 but not R 1 so that

P{Co|RpaN1} = P{N2|N1}+P{Rp2|Rp1} P {N2|N:}

(17)
But, P {N3|N1} = P{Ni|Co}, which is given by (15), and
P{Rp2Rp,1} is specified above as 0.0736. Thus, we have
numerically, P {C2|RB,1./\71} = 0.53643.

Next, we consider 7?3,1./\[1. In this case, Co occurs if the
event Ny U Rp 2 U R occurs. Again, the event Ca|C1 N2
is certain. N> is dependent upon N; but not Rp ;. The
events Rpo and R are not independent because they
are both dependent upon {A’Q. In fact, P{Rp2Rc2} >
P{Rp2} P{Rcz2} due to the positive correlation of the
events. On the other hand, an exact analysis shows the
impact of assuming independence of these particular events
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has minute effects on the overall result. Thus, under the
independence assumption, we have

P{Co|Rp N1} = P{N2|N1}
+ P{Rp2URc2|Re N1} P{N2|N1} (18)

and

P{Rp2URc2RpiN1} = P{Rp2[Rp1}+
P{Rc2Ni} — P{Rp2|Rp1} P{Rc2Ni} (19)

At this point, we have P {R¢2|N1} = P{Rp,1|Co} and all
probabilities except P {Rp,2|R,1} and P {N2|\;}. By pro-
ceeding along the same lines as before, we find the difference
in the advertisement times of the second advertisement after
the initial collision is the sum of two independent U (—1'p,0),
two independent U (0,7p) and one U (—Ta,Ta) random
variables. The part of the PDF over the interval in Rp 2 is
found to be

Jtnn—in,(t) =

[a4t4 + a2t2 + ao} ,

TaAT}
1 373 — 4TuTp
a = — Qo = ——
4 ]’ 2 4 )
2T3Ty — TpT3 T4
a = “PAEA (20)

Upon integrating the above PDF over (—Ta,Ta), we find

1 1 (Ta\> 1(/Ta\’
3 3 (TD> + 5 <TD)
Numerically, P {Rp2|Co} = 0.0501. Thus, it is seen again
that conditional probabilities of collision given past collisions
are significantly higher than would be expected from indepen-
dent trials.

Now, since we know P {Rpg2|Rp,1} and P{Rp1|Co}, we
can find P {Rp2|Rp,1} from

4T
P{Rp2|Co} = T—;‘

P{Rpz2|Co} = P{Rp2|RB1} P{Rz,1|Co}
+ P{Rp2/Rp1} P{Rs1lCo} (1)
Numerically, P {Rp.2|Rp,1} = 0.0482. Proceeding as in (15)
gives

2T (Np—1-2) 4T

Bl =1—0.5¢"lMal

P{NMoMi}=1—-¢

Numerically, P {N2|N1} = 0.4991. Thus, from (18), (19),
and (21) we have numerically

(22)

P {C2|Rp,1N1} = 0.5582. (23)

Finally, we consider the case of R 1Ni. In this case Ca
also occurs if the event N5 U Rp,2URc,2 occurs. A detailed
analysis of this case has been carried out including that of
dependent events. The analysis parallels that of R 17, the
primary difference being that the event Rp2|Rp,1 has a
higher probability than the event Rp2|Rp 1. The analysis
showed that the dependence again has very minor impact upon

the results. The result based on the assumption of indepen-
dence is then P {C2|R g 1N1} = 0.5699. Upon combining the
conditional probabilities, the result is

P{Cy|C1} = 0.5575, (24)

which will be slightly higher than the actual value due to the
independence assumption.

Thus, it is seen that P {C2|C1} > P {C1|Co}. In addition,
comparing P {Rp1|Co} = 0.0733 to P{Rp2|Co} = 0.0501,
we see that the unconditional probability of repeated collisions
decreases significantly as the number advertisements beyond
the first collision increases. Thus, it would be expected that
the impact of a specific advertiser on the overall probability
of continued collisions would decrease over time with the
result that the P {C,|C,—1} would tend to converge with
increasing n. The nature of the convergence process is still
under study, but the observation is used in the next section to
design systems. Meanwhile it is noted that all of the formulas
involving the probabilities of repeated collisions were checked
using specialized Python simulations. We now turn to the
examination of repeated collisions via simulation analysis.

B. Simulation Approach to Collision Dependence

In this section, we discuss our approach to investigating
dependence among successive collisions via simulation. In
our detailed simulation program, we collected traces of the
results of each advertisement for each advertiser in the form
[r1,72,73,...], o € {s, f}, where f (s) represents a collision
(no collision). We then did a simple analysis of the resulting
lists to determine the proportion of collision events that follow
collision events; for example, if 7, = f and r, 1 = f, this
counts as one collision event that follows a collision event. The
count obtained was normalized to the number of transitions
from collision events. We used the result as an approximation
of P{Rp.1|Co}. Note that what is being reported is the
probability that an arbitrary collision event is followed by a
collision event, whereas P {Rp,1|Co} is the probability that
the initial collision event is followed by a collision event.

Similarly, we compute the probability that two colli-
sion events are followed by a collision event. For exam-
ple, if [rn,mny1] = [f, f] and [rpy1,7m042] = [f, f], this
counts as one event. This is used as an approximation of
P{Rp2Rp.1}. In the case we look for repeated collisions
based only on 7, or only on [r,,r,+1], we say the memory
length is 1 or 2, respectively. The results of 600 replications of
180,000 s simulations of only two advertisers gave the mean
and 95 % confidence intervals of the two conditional events as
0.0730 £ 0.007 and 0.0714 £ 0.0214, respectively, where the
large confidence interval of the latter is the result of scarcity
of events. Note that the 95 % confidence intervals (CI), which
are based on the mean + 1.96 standard deviations, cover the
theoretical values of P{Rp1|Co} and P{Rp2|Rp,1}, but
the confidence intervals are quite large even though the runs
are fairly long because the events are fairly rare when only
two advertisers are present. Nonetheless, the results do support
the result that repeated collisions of the same two advertisers
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are much more likely than arbitrary random collisions. Notice
that the standard deviations increase as the memory length
increases; this is a result of the fact that for any given
simulation period, the number of events upon which the mean
value is based decreases with memory length.

TABLE II
CONDITIONAL PROBABILITIES OF COLLISION FOR A RANGE
OF GROUP SIZES AND MEMORY LENGTHS

Memory Mean Collision Return Probability
Length Number of Advertisers
100 200 400 800 1600
1 0.525 0.525 0.525 0.526 0.527
2 0.538 0.540 0.541 0.542 0.543
3 0.547 0.552 0.554 0.555 0.556
4 0.554 0.563 0.565 0.566 0.567
5 0.559 0.572 0.574 0.575 0.577
6 0.565 0.580 0.582 0.584 0.586
7 0.571 0.587 0.590 0.592 0.593
8 0.571 0.593 0.597 0.599 0.600

Continuing on, we examine the rates of repeated collisions
via detailed simulations for N4 € {100,200, 400, 800, 1600}
with E [fIA] set optimally and memory length as a parameter.
The results, shown in Table II, are used as a proxy for
P{C,|Cp-1,Cn—2,...,Co} as defined in the previous section.
Discussion of specific confidence intervals is omitted here
as they are all sufficiently small that they would affect the
accuracy of the estimates only in the third decimal point and
do not have any direct effect on the substance of this particular
discussion.

As can be seen from the table, P {C,|C;,—1,Cr—2,...,Co}
is, in fact, increasing as the memory length grows as conjec-
tured in the previous subsection. It is also again seen that the
standard deviations increase with memory length for reasons
explained above.

V. ACCOUNTING FOR CORRELATION OF COLLISIONS

Given the observations of the previous section, it is clear
that correlation in the collision process has a major impact
upon P {SJF}. Bearing in mind that a SJF occurs only if all
of an advertiser’s advertisements collide, it is clear that SJFs
are the result of a continuous string of collisions, including
the first advertisement of the scanning period. In addition, at
the time scanning begins, the number of collisions that have
already occurred in the current string is not known. Given that

P{Cn;cn—lv ce 7CO} =

P{Cu|Cr-1Cp—2y...,Co} P{Cp—1,Cp—2,...,Co}

it is clear that the scan time to achieve a given P {SJF}
target must be determined based on the probability of repeated
collisions because SJFs are the result of repeated collisions.
Based on the numerical results of the previous section, it
appears that P {C,,| C,,—_1} converges to approximately 0.6 as
n increases, thus we assume the value of 0.6 to illustrate the
idea. We revisit the analysis of P {SJF} as illustrated in (3) and
suppose that there is a negative bias of B in the probability of

(25)

0.2 T T
—— Simulation
—6— Analytical
0.15 |- -
-~
IS
Il
b 0.1 -
S
-
A
5-1072 -
08—4——— ‘ ‘ ——9—¢
5 10 15 20

Number of successes over realization, n

Fig. 6. Comparison of probability mass functions of number of successes
for a batch size of 100 advertisers with a scanning period of 2.59 s and
an average advertisement cycle of 0.1245 s based on simulation and mixed
binomial distributions.

success that future advertisements from an advertiser whose
first advertisement of the observation period collides. Then
from (1), we find

P {Sggs} ~ e—QPA(NA—l) — B. (26)
Thus
Ts
A _pTa(Na-1) ol
p {SJFblas} —l1-1e Elfia] _ B (27)

Then upon following the same analysis approach as was
followed in section II, we find yx = 12 so that

2Ty (Na—1)  2T4(Ns—1)

sbias] __
E [fi] = In (52) In (.55)

(28)

and
In (target P {SJF})

In0.55

Table III shows the resulting P {SJF}s for Ny €
{100,200, 400, 800, 1600} with E [t1a]s set optimally and
required scan periods based on independent collisions with
the target P {SJF} set at 107°. Confidence intervals for
the dependent case are looser than those obtained for the

TH > E [fi] (29)

TABLE III
P {SJF} BASED ON PARAMETER SETTINGS
ASSUMING DEPENDENT COLLISIONS

Na E [ta] Ts (s) P {SIF} CI [95 %]
100 0.125 2.59 1.83¢-06 + 2.064¢-06
200 0.250 5.11 3.77¢-06 + 4.358¢-06
400 0.502 10.14 3.50e-06 + 4.045¢-06
800 1.005 20.20 4.73¢-06 + 3.951e-06
1600 2.011 40.32 4.87¢-06 + 3.481e-06
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Fig. 7. Comparison of probability mass functions of number of successes
for a batch size of 1600 advertisers with a scanning period of 40.32 s and
an average advertisement cycle of 2.011 s based on simulation and mixed
binomial distributions.

independent case due to the lower number of failure events.
The upper end of the 95 % confidence interval, labeled UCI,
which is given by the mean plus 1.96 standard deviations, for
the case of dependent collisions is also given in the table.

From Table I it is seen that when the scanning period
is designed under the assumption of independent collisions,
the target P {SJF} is missed by at least a factor of 4 even
without considering confidence intervals. On the other hand,
from Table III shows that if dependence among collisions is
taken into account the resulting P {SJF} always meets the
target at the 95 % confidence level.

Figures 6 and 7 show comparisons probability mass func-
tions of number of successes for batch sizes 100 and 1600
advertisers with interadvertisement times and scanning periods
based on dependent collisions. From these graphs it can be
seen that the simulation curves track much more closely with
the analytical curves at the low end of the distribution so that
the accuracy of the prediction of the probability of scanning
job failure is greatly improved. Indeed rather than under
predicting the probability of failure the modified approach
tends to overpredict the probability of failure thereby resulting

in a conservative estimate, which is the desired result.

VI. CONCLUSIONS

We have presented here a detailed analysis and design of
a BLE scanning system wherein the objective is to choose
optimal interadvertisement times and minimum scanning times
required to meet a prescribed target probability of failing to
successfully scan all advertisers within the scanning period.
To the best of our knowledge, this is the first work to
do a detailed analysis of the impact of dependence in the
advertising process upon the collision probability and to show
how this dependence affects the probability of successfully
scanning all members of a group.
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