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1.  Introduction

Interest in heart rate variability (HRV) and signal processing of cardiovascular dynamics has seen a recent 
resurgence due to the increased availability of devices and wearables that record physiological signals. It has 
been widely reported that metrics which quantify cardiovascular dynamics can be used to estimate basal states 
and detect changes in the autonomic nervous system (Task Force of the European Society of Cardiology the 
North American Society of Pacing Electrophysiology 1996, Clifford 2002, Pan et al 2016) and consequently 
they hold promise as tools that can aid in disease tracking, wellness promotion, and risk stratification. The non-
invasive nature of HRV measurement makes it particularly attractive as a long-term health tracking tool, or as a 
component of a more comprehensive health monitoring framework.
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Abstract
Objective: This work aims to validate a set of data processing methods for variability metrics, which 
hold promise as potential indicators for autonomic function, prediction of adverse cardiovascular 
outcomes, psychophysiological status, and general wellness. Although the investigation of heart 
rate variability (HRV) has been prevalent for several decades, the methods used for preprocessing, 
windowing, and choosing appropriate parameters lacks consensus among academic and clinical 
investigators. Moreover, many of the important steps are omitted from publications, preventing 
reproducibility. Approach: To address this, we have compiled a comprehensive and open-source 
modular toolbox for calculating HRV metrics and other related variability indices, on both raw 
cardiovascular time series and RR intervals. The software, known as the PhysioNet Cardiovascular 
Signal Toolbox, is implemented in the MATLAB programming language, with standard (open) 
input and output formats, and requires no external libraries. The functioning of our software is 
compared with other widely used and referenced HRV toolboxes to identify important differences. 
Main results: Our findings demonstrate how modest differences in the approach to HRV analysis can 
lead to divergent results, a factor that might have contributed to the lack of repeatability of studies 
and clinical applicability of HRV metrics. Significance: Existing HRV toolboxes do not include 
standardized preprocessing, signal quality indices (for noisy segment removal), and abnormal 
rhythm detection and are therefore likely to lead to significant errors in the presence of moderate 
to high noise or arrhythmias. We therefore describe the inclusion of validated tools to address these 
issues. We also make recommendations for default values and testing/reporting.
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Despite its popularity in research and relatively long history, there is still much disagreement and ambiguity 
surrounding the methods employed by researchers to estimate HRV. In particular, peak (event) detection tech-
niques vary (or detectors performances are not detailed), filter choices are variable and ad hoc, noise removal is 
generally undocumented, and detection of non-sinus beats is often poorly described. These issues limit mean-
ingful comparisons between studies and scientific repeatability, especially when in-house, custom, non-public 
software are used. Unfortunately, few HRV software programs are rigorously designed and tested with methods 
that are clear and open to inspection. Additionally, of the open-source HRV programs available, many are poorly 
documented, no longer supported by their original authors, or have broken dependencies that require extensive 
troubleshooting. Regardless, no existing HRV software toolbox, to our knowledge, provides a comprehensive 
suite of validated tools encompassing both raw data and derived beat-to-beat intervals. More specifically, such 
software should undergo a validation process in which the output is rigorously compared with expected values 
based on a standardized input. Traditionally, the expected values for validation are either from a model or a gold 
standard algorithm. Since there is no gold standard in the HRV toolbox landscape and few models of HRV exist, 
a chicken-and-egg situation persists.

To address the issues of validation, standardization, and repeatability, we have developed an open-source car-
diovascular signal and HRV analysis toolbox (The PhysioNet Cardiovascular Signal Toolbox) and have validated 
its component tools in two ways. First, for a subset of algorithms, where a model could be considered acceptable, 
artificial data has been used. Where no realistic and validated model is available, the toolbox is compared to other 
existing toolboxes to identify consistencies. (The assumption here is that the toolboxes, published by reputable 
authors, should converge to similar estimates.) The toolbox described here has been designed to accept a wide 
range of cardiovascular signals and analyze those signals with a variety of classic and modern signal processing 
methods. The toolbox was written in the MATLAB programming language and does not have any dependencies 
on external software or libraries.

Preprocessing and data cleaning is an important aspect of signal processing that often is overlooked or 
poorly documented in HRV-related publications. The PhysioNet Cardiovascular Signal Toolbox presented here 
employs several methods to prepare data for HRV estimation, including assessing signal quality and detecting 
arrhythmias, erroneous data, and noise. These segments of data, which must be excluded from HRV analysis, can 
then be systematically removed based on threshold settings selected by the user or recommended in previously 
validated studies.

The goal of this work was to advance the standardization, reproducibility, and clinical applicability of HRV 
and cardiovascular variability research. This publication has outlined the current HRV analysis tool landscape 
alongside our new suite of open-source tools contained within the PhysioNet Cardiovascular Signal Toolbox. 
We have presented the considerations necessary to invoke the use of these tools in a repeatable and standard-
ized manner. The consequences of divergent approaches to HRV analysis are presented in a series of studies that 
systematically vary methodology and input data. Finally, a standard model by which HRV analysis packages may 
be judged in the future are presented along with a discussion of the recommendations by which HRV analysis 
should be conducted by researchers and clinicians alike.

2.  HRV tool landscape

Publicly available tools for HRV analysis are scattered throughout the internet and have varying levels of 
sophistication. Here, we have reviewed a subset of the most popular toolboxes available and the HRV metrics 
that they generate. Perhaps the most used and trusted HRV toolbox is the PhysioNet HRV Toolkit, written by 
Mietus and Moody, available from PhysioNet.org (Mietus and Goldberger 2014). This toolbox is an open-source 
package that is written in C and performs time domain and spectral HRV statistics. It has the unique feature 
of compatibility with PhysioNet’s Waveform Database (WFDB) Software Library (also written in C). This 
allows the user to leverage PhysioNet’s many QRS detectors, data libraries, and processing and evaluation tools. 
However, installation is nontrivial and the default preprocessing and other variables associated with it are not 
well documented. Nevertheless, it is considered the standard in the field. The proprietary Kubios HRV software 
(Tarvainen et al 2014) is another frequently used and cited HRV analysis tool. At the time of this publication, 
Kubios is available in both a no-cost ‘Standard’ version and a licensed ‘Premium’ version available for $329 per 
seat license. Both versions of the Kubios software offer an extensive user interface and the ability to process RR 
intervals. As with the PhysioNet HRV Toolkit, the Premium version can also process ECG waveform data and 
perform a Lomb-Scargle periodogram (Lomb 1976, Press et al 1992), both of which are essential functions, as we 
explain in this article. Running the Kubios HRV software is strictly through a proprietary user interface which 
is susceptible to human ‘tweaking’ of data and tools, and does not support batch processing of input data. This 
can make analysis time consuming for moderate sized datasets and unfeasible for large datasets and it introduces 
additional opportunities for human error. Two less commonly referenced MATLAB-based toolboxes available 
are Kaplan’s HRV toolbox (Kaplan and Staffin 1998) and Vollmer’s HRV toolbox (Vollmer 2018). Both these 
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toolboxes are open-source and were written for MATLAB. Additionally, Vollmer’s HRV toolbox employs a user 
interface, but does not require it.

All of the aforementioned HRV toolboxes, including the PhysioNet Cardiovascular Signal Toolbox described 
in this publication, compute classic HRV metrics including the mean of normal-to-normal (NN) intervals, the 
standard deviation of NN intervals (SDNN), the square root of the mean squared differences of successive NN 
intervals (RMSSD), the proportion of interval differences of successive NN intervals greater than 50 ms (pNN50), 
or more generally pNNx (where x is a variable between five and 100 ms), the total power of the power spectral 
density across various frequency bands, and the ratio of low frequency to high frequency power. Additional HRV 
metrics are available in the various toolboxes per table 1. See Clifford et al (2006) for a detailed description of 

these statistics.
It is worth noting that the PhysioNet Cardiovascular Signal Toolbox includes both the main established HRV 

metrics (e.g. LF/HF-ratio, pNNx, RMSSD, etc) and more recent HRV metrics which have been shown to be 
highly promising (e.g. multiscale entropy and phase rectified signal averaging) (Norris et al 2008a, 2008b, Lin 
et al 2014, Kantelhardt et al 2007, Campana et al 2010, Kisohara et al 2013, Lobmaier et al 2015). The toolbox also 
includes versions of existing metrics which have been shown to be more computationally efficient than available 
versions (e.g. entropy metrics), an important feature when using an interpreted language, and more accurate 
(e.g. the version of detrended fluctuation analysis provided). We have chosen to omit the less well-founded/more 
ad hoc statistics, such as the TINN (which is just a poor estimate of a moment of a distribution) in favor of more 
acceptable and more descriptive statistics (such as the first four moments of a distribution).

3.  PhysioNet cardiovascular signal toolbox design

3.1.  Overview
The PhysioNet Cardiovascular Signal Toolbox developed by the authors utilizes a standardized approach to 
preprocess data and compute HRV metrics that provides a unique and comprehensive approach:

	1.	�An initialization file (InitializeHRVparams.m) sets up global variables that deal with thresholds, window 
settings, noise limits, and spectral analysis limits (listed in appendix C). The default parameters are as used 
in this article. However, we strongly recommend the user consult an expert to identify a reasonable choice 
of parameters for their population. For example, children or smaller animals will require significantly 
different thresholds on almost all parameters.

	2.	�Data identification and formatting is then the next step. The toolbox does not assume any format of data, 
except that the RR interval data are two equal length vectors (time and RR interval in units of seconds). 
Additionally, the ‘raw’ ECG, blood pressure waveform and photoplethysmographic/pulsatile data 
should be in the standard physical units (mV, mmHg or normalized units respectively). Note that we 
have included native support for loading WFDB-compliant annotation files (often denoted by an ‘atr’ 
file extension on PhysioNet). However, we have deliberately dissociated the toolbox from any library 
dependencies outside of the required MATLAB toolboxes (listed in appendix A).

	3.	�If raw waveforms are to be analyzed, the QRS complex or pulsatile beat onsets must be detected first using 
one of the in-built beat detectors (jqrs.m, wabp.m, qppg). We do supply other ECG beat detectors such as 
sqrs and wqrs for benchmarking and signal quality analysis, but we do not suggest using the results derived 
from their use unless the input data is perfectly clean.

	4.	�Subsequently, the signal quality of the raw waveform data (either windowed or beat-by-beat) must 
be evaluated. A signal quality index (SQI) is calculated on a rolling window (Default is 10 s, with one s 
increment, HRVparam.sqi.windowlength  =  10 and HRVparams.sqi.increment  =  1) for the duration of the 
ECG waveform using bsqi.m, or on a beat by beat basis for blood pressure and pulsatile data using jsqi.m 
and PPG_SQI_buf.m respectively. HRV analysis should not be performed on noisy data (data that drops 
below some predefined threshold–HRVparam.sqi.LowQualityThreshold  =  0.9 by default) that leads to 
false positive beat detections.

	5.	�If desired, ventricular fibrillation/ventricular tachycardia (VF/VT) can be detected on the waveform based 
on the method discussed in section 3.2.3.

	6.	�The time series is next converted to RR intervals by taking the consecutive differences of the beat locations 
in contiguous data (where segments have not been removed). If the user desires to use RR interval data 
instead of the raw waveforms, the RR interval time series can be loaded into the HRV Toolbox directly, 
although signal quality and VF detection cannot then be performed.

	7.	�Before calculating HRV statistics, arrhythmic and noisy periods of data must be removed. Once the time 
series is in interval form, atrial fibrillation classification and ectopy (premature ventricular contraction 
(PVC)) can be performed on the RR interval time series. Any data that is deemed undesirable for HRV 
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analysis (arrhythmia, low SQI, ectopy, artefact, noise) is excluded from analysis and HRV metrics are 
calculated on the remaining data (NN intervals).

A high-quality analysis of HRV starts with a thoughtful selection of data and input parameters. The length of 
the data source, the appropriateness of the method and extent of preprocessing, and the metrics to be generated 
all must be considered before, during, and after analysis. Poor choice of analysis parameters can result in the gen-
eration of erroneous results that are representative of noise instead of physiology. The following sections address 
the most common considerations of any HRV analysis. For a more detailed overview of the signal processing 
issues related to HRV, we refer the reader to Clifford et al (2006).

A set of demonstration files (listed in appendix D) are made available to the user for testing the toolbox and 
verifying the correct ‘installation’ of required MATLAB packages.

3.2.  Waveform preprocessing routines
3.2.1.  Peak detection
The toolbox can accept electrocardiogram (ECG), blood pressure (ABP), and photoplethysmogram (PPG) data 
and has validated beat detectors for each of these signals. The available beat detectors for ECG include MATLAB 
versions of the PhysioNet tools sqrs.c (Engelse and Zeelenberg 1979, Moody 2015b), wqrs.c (Zong et al 2003), 
and jqrs (Behar et al 2014, Johnson et al 2014). The performance of these peak detectors has been shown to be 
comparable to previously published detectors wqrs.c (Zong et al 2003), sqrs.c (Moody 2015a), and gqrs.c (Moody 
2015a), available with the WFDB software package. (The data from the performance comparison is included 
in appendix B for convenience (Vest et al 2017).) Interested readers can learn more about how each detector 
functions from their respective citations.

Table 1.  Summary of functionalities of various HRV toolboxes. See section 3 for definition of HRV metrics.

Software  

origin  →  

↓Functionality

PhysioNet HRV 

toolkit  

(v 10.5.24)  

(last update 4 

August 2009)

PhysioNet  

Cardiovascular Signal 

Toolbox  

(v 1.0)

Kubios  

(v 3.0.2)  

(premium)

Kaplan  

(last update 3 

February 1998)

Vollmer  

(v 0.98 last  

update 4 October 2017)

Data formats 

accepted

Intervals or 

waveforms

Intervals or waveform Intervals or waveform Intervals Intervals or waveform

Dependencies WFDB Libs  

(C Version)

None None None WFDB Libs (MATLAB 

Version)

Waveforms 

analyzed

ECG, ABP ECG, ABP, PPG ECG None ECG

Can operate 

independent 

from GUI

Yes Yes No Yes Yes

Open-source Yes Yes No Yes Yes

Preprocessing Intervals that 

vary by more 

than 20% of the 

average interval 

measured on 20 

beats before and 

after the  

current interval 

are removed

Intervals that vary more 

than 20% from the me-

dian interval measured 

over five  

intervals before and af-

ter the current interval 

and nonphysiological 

intervals are removed 

(default RR  >  2 s or 

RR  <  0.375 s)

Proprietary and  

unknown

Statistical  

outlier removal 

and spline  

interpolation

Filter function available 

but not integrated in 

HRV metric calculations

Simulator None rrgen.c None makerr.m None

HRV metrics Mean NN, 

SDNN, pNN50, 

pNNxx, RMSSD, 

ULF, VLF, LF, 

HF, LF/HF, Total 

Power, SDANN, 

SDNNI, MSE, 

DFA

Mean NN, SDNN, 

pNN50, pNNxx, 

RMSSD, skewness, 

variance, ULF, VLF, LF, 

HF, LF/HF, total power, 

SDANN, SDNNI, SD1, 

SD2, SD2/SD1, DFA, 

ApEn, SampEn, MSE, 

PRSA (AC and DC), 

HRT

Mean NN, SDNN, 

pNN50, pNNxx, 

RMSSD, VLF, LF, HF, 

LF/HF, total power, 

SDANN, SDNNI, SD1, 

SD2, SD2/SD1, DFA, 

ApEn, SampEn, MSE, 

triangular index, TINN, 

peak frequency, ECG 

derived respiration, 

recurrence plot analysis

Mean NN, 

SDNN, pNN50, 

pNNxx, RMSSD, 

VLF, LF, HF, LF/

HF, total power, 

SDANN, SD1, 

SD2, SD2/SD1, 

DFA, ApEn

Mean HR, SDNN, 

pNN50, pNNxx, RMSSD, 

VLF, LF, HF, LF/HF, total 

power, SD1, SD2,SD2/

SD1, DFA, ApEn,  

triangular index, TINN, 

StDev of successive dif-

ferences (SDSD),  

correlation dimension 

(CD), euclidean distance 

based on relative RR 

intervals
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The MATLAB version of wabp.c, wabp.m, is used for pulse detection on ABP waveforms (Sun 2006). This pro-
gram detects the onset of each beat in the ABP signal using the slope sum function which amplifies the rising edge 
of the waveform. The same algorithm was also adapted and optimized to be used on PPG waveforms, establishing 
qppg.m as the toolbox’s PPG peak detector.

3.2.2.  SQI
To determine if the data is of high enough quality to analyze, a quantitative and objective signal quality 
measurement should be employed. The toolbox uses bsqi (Li et al 2008) for ECG, jSQI (Sun et al 2005, Sun 2006, 
Johnson et al 2015) for ABP, and PPG_SQI_buf.m (Li and Clifford 2012) for PPG. Published by Li et al (2008), 
bsqi provides the percentage of beats that match when detected by multiple annotation generators with highly 
differing noise responses. The SQI is typically given as a percentage or normalized value, and a threshold below 
which data is removed should be chosen (or rather optimized) and reported. jSQI measures the quality of the ABP 
waveform on a beat by beat basis, returning a binary signal quality assessment based on a set of measured features 
on the ABP pulse, including onset time and pressure values. psqi also measures quality of the PPG waveform on a 
beat by beat basis based on beat template correlation. After determining the fit of the current beat to the template, 
the beat is assigned an assessment of excellent (‘E’), acceptable (‘A’), or unacceptable (‘Q’).

3.2.3.  VF/VT classification
Ventricular tachycardia/fibrillation detection is performed using a state-of-the-art method published by Li et al 
(2014), VF_Classification.m. In the published method, a support vector machine (SVM) model was trained 
on three annotated public domain ECG databases (the American Heart Association Database, the Creighton 
University Ventricular Tachyarrhythmia Database, and the MIT-BIH Malignant Ventricular Arrhythmia 
Database) and 14 different VF features. After training, the model was optimized for use of only two features on 
5 s windows.

3.2.4.  PVC classification
Premature ventricular contraction (PVC or VPC) detection is essential to HRV analysis, although PVC detection 
is not provided in any of the current open source toolboxes. In our toolbox we provide a new software package for 
this which is based on the application of a convolutional neural network (CNN) to the wavelet transform (WT) 
of the raw ECG (Li et al 2018). The WT is used to map short segments of a single channel (1D) ECG waveform 
into a 2D time-frequency ‘image’. The images are then passed into the CNN to optimize convolutional filters 
to improve classification. Using ten-fold cross validation, an overall F1 score of 84.94% and an accuracy of 
97.96% was achieved on the MIT BIH Arrhythmia Database. The American Heart Association ECG Database 
(AHA 2018) was then used as an out-of-sample validation database. Without retraining, the PVC detector 
achieved an F1 score of 84.94% and an accuracy of 97.33% on this second database. We note that the identification 
of ectopic beats (as opposed to noise identification or other abnormal beats) is needed for not only for abnormal 
RR interval removal but for the evaluation of heart rate turbulence, for which it is important not to confuse noise 
with ectopy. Once an ectopic beat is identified, the researcher has the option to insert a ‘phantom’ beat or remove 
the RR intervals corresponding to the ectopic beat (both the preceding and following RR interval).

3.2.5.  AF classification
Atrial fibrillation (AF) is detected on the RR interval time series using the method published by Oster et al (Oster 
and Clifford 2015). The method uses a support vector machine (SVM) trained on features from the RR interval 
time series which reflect the unpredictability of the heartbeat. The classifier has been shown to produce an AUC 
of 96.76% on windows containing 60 beats, 95.27% on windows containing 30 beats, and 92.72% on windows 
containing 12 beats (Liu et al 2018, Li et al 2016). We recommend 30 s windows with a 10 s overlap to minimize 
the amount of data removed, and a bias of the data away from high variability.

3.3.  RR interval preprocessing routines
3.3.1.  Non-sinus beat identification and removal/replacement
Additional preprocessing steps are taken to address noise and artefact that occur at a scale smaller than the signal 
quality index window or in data that has already been translated into RR intervals. Since HRV metrics are meant 
to measure the activity of the sinoatrial node, all intervals associated with non-sinus beats must be removed. 
Outside of beat classification in the ECG, a notoriously difficult issue which is highly error prone or impossible 
in non-ECG or noisy ambulatory conditions, non-sinus beats can be identified with reasonable certainty using 
statistics of the RR interval time series itself.

In the absence of waveform data, we may identify non-sinus RR intervals as those that occur prematurely 
or late. The most common method to identify such intervals (and the method employed in this work) involves 
measuring changes in the current RR interval from the previous RR interval or an average of the last N intervals 
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and excluding intervals that change by more than a certain percentage. In this toolbox (and the work presented 
here) we chose N to be a default value of five (five beats before and five beats after the current interval) and the 
standard threshold of 20%. We note however, that a threshold of 15% balances the need to remove aberrant data 
with the desire to keep sinus beats and has shown to exclude at least 80% of ectopic beats and 93% of the noise-
induced (extra beat) detections at the expense of 2% sinus beats in the MIT NSR database (Clifford 2002, Clifford 
et al 2002). If the non-sinus beats are infrequent, the PhysioNet Cardiovascular Signal Toolbox has the ability to 
perform interpolation to add a beat where a sinus beat would have been expected to occur. The term ‘interpola-
tion’ is usually referred to the process by which the unevenly sampled RR interval data is resampled to an evenly 
sampled time series, usually prior to the use of the FFT. In this article, we follow Clifford et al (Clifford 2002, Clif-
ford et al 2006) and use resampling to refer to the conversion to an evenly sampled time series (see section 3.3.3).

Additional checks and corrections include flagging and removing non-physiologic data (RR intervals above 
2 s or below 0.375 s, outside of physiologically possible range) and data that is labeled as non-normal per a sup-
plied annotation file (if applicable).

3.3.2.  Manual correction
The PhysioNet Cardiovascular Signal Toolbox does not enable manual correction of annotations or R peak 
locations. Although automated peak detectors do not always accurately classify the location of QRS complexes, 
manual correction of the location is a subjective procedure at best and inter-reader variability is a well-
documented phenomenon that contributes to the inability to reproduce results amongst studies. Statistics on 
inter-reader variability have been measured to be greater than 20% (Sparrow et al 1988, Pinedo et al 2010, Zhu 
et al 2014). We explicitly advise against ‘expert’ or ‘hand’ modification of data, since it invalidates scientific 
repeatability of the research.

The question of whether erroneous detections cause significant changes in specific HRV estimates has been 
addressed previously (Clifford and Tarassenko 2005), but whether this affects a final downstream classifier is 
another issue. The only real way to know is to stress test the classifier or predictor under varying levels of noise. 
The toolbox provides robust and repeatable methods for dealing with noise, providing users with a level of trust 
in the output. Automatic methods for dealing with erroneous detections and identification of unreliable seg-
ments of data are incorporated in the pre-processing tools and signal quality index stage of our toolbox (see sec-
tion 3.2.2).

3.3.3.  Resampling
Resampling the RR interval time series involves interpolating through the signal (such as by linear or cubic spline 
interpolation) and resampling at regular intervals specified by the resampling frequency. Most of the papers in the 
field of HRV report on the use of resampling rates between 1 Hz and 10 Hz (Malik and Camm 1995, Hilton et al 
1998, Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology 
1996). Since the human heart rate can sometimes exceed 3 Hz (180 bpm), then a sample rate of at least 6 Hz may 
be required to satisfy the Nyquist criterion. However, if one knows that the RR tachogram is unlikely to exceed 
120 bpm then a resampling rate of 4 Hz is sufficient. Resampling introduces an implicit assumption about the 
form of the underlying variation in the RR tachogram; for example, cubic spline techniques assume that the 
variation between beats can be modelled accurately by a cubic polynomial.

3.3.4.  Thresholding on data loss
A threshold can be applied for how much data can be thrown out before a segment is rendered unusable, but this 
of course depends on the analysis being performed. Mølgaard et al (Mølgaard 1991) demonstrate how certain 
time series metrics (such as RMSSD) are extremely sensitive to missed beats especially in patients with reduced 
HRV and therefore it is extremely important to consider whether the data in such cases should be used at all. 
There is much variation in how researchers address the issue of removed beats or missing data (due to noise, 
missed detections, etc). The calculation of time domain metrics may withstand large losses of data, but the results 
will vary based on the length of the segment analyzed.

3.4.  Frequency domain analysis
3.4.1.  Power spectral density estimation
For frequency domain calculations, the power spectral density (PSD) of the NN interval time series can be 
generated using several methods, including: the Lomb periodogram, the Welch PSD estimate, the Burg PSD 
estimate, and the discrete fast Fourier transform (FFT). FFT- or wavelet-based PSD estimates require resampling 
to an evenly sampled time series, and cubic spline interpolation is often preferred to linear interpolation because 
the latter increases LF power (due to flattening) and HF power (due to sharp edges at each beat). Resampling 
functionality is provided to users in the toolbox. Error in the PSD estimate and frequency domain metrics 
grows linearly with the amount of data removed. Previous studies have shown that losses of data up to 20% 
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will not significantly alter results generated with the Lomb periodogram, as long as the data are not missing in 
concentrated clusters (Clifford 2002). Moreover, Clifford and Tarassenko (Clifford and Tarassenko 2005) showed 
that although phantom beat insertion does provide marginal improvements for FFT-based metrics, using more 
appropriate techniques that can handle unevenly sampled time series (such as the Lomb periodogram (Lomb 
1976, Scargle 1982, Press et al 1992)) are far superior. We therefore do not recommend the use of interpolation, 
phantom beat insertion, or techniques that require evenly sampled time series such as the FFT and wavelet 
analysis. Thus, we use the Lomb periodogram as the default method for frequency analysis.After the PSD is 
calculated, various frequency domain HRV metrics are calculated. The sum of power in the various frequency 
bands is calculated as is the total power in the spectrum. These spectral metrics can be normalized to the variance 
of the NN interval time series, or to another measure. As stated above, many researchers normalize the sum of 
the power spectral density plot to variance because of the mathematical equivalency of the two. The choice of 
normalization is up to the user, but explicitly specified in the set-up of the analysis. All PSD estimates calculated 
by the HRV Toolbox described here can accept frequency bin size specification, which improves control over the 
reproducibility of the resulting analysis.

We note that some researchers work in the ‘beatquency’ domain in order to avoid resampling issues. How-
ever, missing data due to poor QRS detection or data excision due to noise disrupts this sequence and leads to false 
peaks in the spectra. Additionally, the axes are then a function of the data itself and causality/stability of the met-
ric becomes an issue. We note that it is unclear whether several ventricular beats could be replaced by estimates 
of sinus beats without causing significant issues, but in reality, the baroreflex response due to ectopy (which is 
exploited by heart rate turbulence measures) creates a nonstationarity in the time series. Therefore, any analysis 
using methods that assume stationarity should be truncated at such a point and restarted after the discontinuity.

In summary, if the incidence of artifact is high within a given segment then it is preferable to eliminate the 
segments from the analysis. If the incidence of artifact is low, removal of the artefact without replacement is rec-
ommended (Clifford and Tarassenko 2005). The exact regions of data removed and percentage of removed or 
missing data should be reported.

3.4.2.  Frequency bands for spectral content estimation
The frequency bands of interest for analyzing HRV are generally defined as

ULF—Ultra Low Frequency : 0.0001Hz � ULF < 0.003Hz

VLF—Very Low Frequency : 0.003Hz � VLF < 0.04Hz

LF—LowFrequency : 0.04Hz � LF < 0.15Hz

HF—High Frequency : 0.15Hz � HF < 0.4Hz

The frequency bands are thought to capture different physiological mechanisms, but the bands can be rede-
fined and do not perfectly map to a particular physiological process (Cerutti et al 1995). The bands can also shift 
lower in the case of a very fit clinical study population with lower baseline heart rates, or higher in the case of a 
pediatric or adolescent clinical study population with higher baseline heartrates. It is generally accepted in the 
clinical community that the HF band is mostly a measure of the parasympathetic activity (Cerutti et al 1995) with 
some sympathetic activity, while the LF band contains mostly sympathetic activation (Eckberg 1997). Research-
ers may want to measure the power in the HF and LF frequency bands as a measure of sympathovagal balance. 
The LF/HF ratio is used often and simplifies the units of the measurement (i.e. it is unitless). However, we note 
that this ratio can change depending on whether the power is estimated in the logarithmic domain or not. The 
PhysioNet Cardiovascular Signal Toolbox defaults to normal domain and not logarithmic domain.

3.4.3.  Normalization method
Common normalization factors used for HRV metrics include the length of the data segment analyzed and the 
variance of the NN interval data. Variance is mathematically equal to total power of the NN interval time series, 
so many researchers normalize the total power by dividing by variance. No matter the normalization method, it is 
important that the chosen method is reported because it can contribute to inter-study differences.

3.5.  Length of data
The user needs to decide if a long-term (i.e. ~24 h or longer) or short-term (i.e. ~5 min) recording is desired. 
(This can be defined by modifying the HRVparams.windowlength and HRVparams.increment parameters in the 
initialization file.) However, certain considerations and limits should be kept in mind. The choice depends on 
the research being performed and the availability and quality of data. Long-term recordings capture circadian 
rhythm variations that have been valued for diagnostic value (Task Force of the European Society of Cardiology 
the North American Society of Pacing Electrophysiology 1996) and short term metrics have been shown to 
be capable of assessing neurological activity (Malik and Camm 1995, Task Force of the European Society of 
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Cardiology the North American Society of Pacing Electrophysiology 1996). Confounders for long-term HRV 
metrics can include temperature (Malik and Camm 1995), quality of sleep (Cooper et al 2000), and large gaps in 
data (Clifford 2002). Moreover, short-term HRV can be influenced by changes in mental, emotional, or physical 
state (Bernardi et al 2000). Both long- and short-term recordings can suffer when data quality is low and only a 
fraction of the recording is useable, but to different extents. Care should be taken to control for these confounders 
when possible, and to assess their influence on the results when not.

The length of data analyzed has implications on the appropriateness of the HRV metrics being employed. 
In order to choose the best window size for the given analysis, the researcher must balance the requirement of 
stationarity (if required) versus the time required to resolve the information present. For most time domain 
HRV statistics, previous researchers have recommended long-term recordings. Haaksma et al’s (1998) study led 
to recommendations of 20 h of data be collected to estimate time domain variables or for total power (calculated 
between 0.0001 Hz and 0.4 Hz) calculations (Haaksma et al 1998). The Task Force on standards in HRV (Task 
Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology 1996) rec-
ommends applying frequency domain methods to recordings at least 10 times the inverse of the lower frequency 
bound of the investigated component, but no longer. This is to ensure stability of the signal. During a short-term 
period, the data can be considered to be stationary or quasi-stationary and is therefore amenable to estimation 
of the power spectral density (PSD). However, it is unlikely that the RR interval time series remains stationary for 
more than a few minutes, and this makes the above recommendation rather impractical.

As an example, if the research is to determine if the RR interval time series contains a 0.01 Hz oscillation, 
at least 100 s of data (the length of one period of a 0.01 Hz oscillating signal) is necessary, although in practice 
300 s or more are needed. The European and North American Task Force on standards in HRV (Task Force of 
the European Society of Cardiology the North American Society of Pacing Electrophysiology 1996) suggested 
that the shortest time period over which HRV metrics should be assessed is 5 min. This results in a limitation of 
the lowest frequency that can be resolved being 1/300 ≈ 0.003Hz (just above the lower limit of the VLF region). 
In practice the limit is higher since noise affects the estimation. A 5 min segment can therefore only be used to 
evaluate higher frequency bands, i.e. LF and HF. The upper frequency limit of the highest band for HRV analysis 
is generally quoted as being 0.4 Hz (Malik and Camm 1995), but in reality, frequencies can be estimated (only) 
up to the reciprocal of twice the shortest RR interval. In general, we quote the average Nyquist frequency as 

fN = 1
2∆tav

= N
2T where ∆tav is the mean RR interval, T is the length of the window in seconds and N the number 

of RR intervals in the window. Thus, a 5 min window (T  =  300) leads to the constraint of N/2 T  ⩾  0.4 Hz on the 
number of points and hence to a lower limit on N of 240 beats (an average lower heart rate limit of 48 bpm if all 
beats in a 5 min segment are used) (Clifford 2002, Clifford et al 2006).

Finally, it should be noted that metrics should only be compared between subjects when the data lengths are 
the same (Clifford 2002) and they cover the same period of the circadian cycle (Clifford and Tarassenko 2004, 
Clifford et al 2006). The latter is particularly important, because diurnal or momentary changes in activity, both 
psychophysical (e.g. after lunch, exercise or a stressful event like driving) and consciousness-related (such as 
sleep) can be one of the most dominant factors confounding any HRV comparison.

3.6.  Long range scaling metrics: DFA and MSE
3.6.1.  Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) is included as a part of this toolbox as a method for quantifying long-term 
self-similarities in RR interval time series (Peng et al 1995). Such self-similarity can be described as a 1/fβ scaling 
in the log–log power-frequency spectrum, where the β is the slope of this spectrum. An alternative method used 
to compute the fractal scaling exponent, α  =  (β  +  1)/2, is by using the DFA, which is briefly summarized in the 
following paragraph. For a detailed description see Peng et al (1995).

Given a time series x(n), the first step of DFA consists of integrating the original time series in order to obtain 

a self-similar process y(k), y (k) =
∑k

i=1 (x (i)− x̄), where x̄ is the mean of x. The next step consists of dividing 
the integrated time series into boxes of equal length m and for each box performing a least squares line fit to the 
data. The time series is then detrended by subtracting the local trend yn(k) in each box. At this point, for a given 
box size m, the characteristic size of the fluctuation F(m) for this integrated and detrended time series is calcu-
lated by

F (m) =

Ã
1

N

N∑
k=1

[y (k)− ym(k)]
2.

The procedure is repeated over different time scales (box sizes) to provide a relationship between F(m) and the 
box size m.

The code for DFA included in the PhysioNet Cardiovascular Signal Toolbox (i.e. dfaScalingExponent.m), pro-
vided by McSharry (McSharry and Malamud 2005), has been integrated into the toolbox with no significant 
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modification. New features introduced in this version include an option for the user to change the minimum and 
maximum box sizes and a midBoxSize parameter for the optional computation of scaling exponents α1 and α2. 
(Default parameters in the code mirror dfa.c and are set to: minBoxSize  =  4; maxBoxSize  =  L/4, where L is the 
length of the input series; and midBoxSize  =  16.) (Moody 2015a) The scaling exponent, α1 reflects power related 
to short-term fluctuations (LF and HF) and α2 reflects power related to long-term fluctuations (VLF and ULF) 
(Willson et al 2002).

3.6.2.  Multiscale entropy
Multiscale entropy (MSE) analysis was first introduced by Costa et al (2002, 2005) as a method for analyzing 
the dynamic complexity of a system by quantifying its entropy over a range of temporal scales. Traditional 
methods use entropy-based algorithms to quantify the degree of regularity of a time series. However, there is no 
straightforward correspondence between regularity and complexity. MSE relies on sample entropy (SampEn) 
(Richman and Moorman 2000), which quantifies the likelihood that two sequences similar for m points remain 
similar at the next point (i.e. match within a tolerance of r), not taking into account self-matches. This metric is 
included in the PhysioNet WFDB libraries and therefore is provided in our toolbox.

MSE can be summarized as a two-step procedure. The first step consists of generating a coarse-grained time 
series by averaging the data points of the original time series x(n) within non-overlapping windows of increasing 
length, τ. For scale one, the coarse-grained time series y(1) corresponds to the original signal. The length of the 
coarse-grained time series is M/τ, where M is the length of x(n). The second step consists of computing the sam-
ple entropy on each coarse-grained time series.

All the parameters used for MSE analysis can be changed in the InitializeHRVparametrs.m file (Default set-
tings include the following: RadiusOfSimilarity  =  0.15 (r), patternLength  =  2 (m), maxCoarseGrainings  =  20 
(max τ)).

Two implementations of the SampEn algorithms are provided, a normal speed and a fast speed. The fast 
speed version is an implementation of the traditional SampEn (FastSampEn.m) which provides equivalent 
results. Currently the program switches automatically to FastSampEn.m when the size of the time series is less 
than 34 000 points. This default was chosen based on the memory required for MATLAB R2017a running on an 
Intel Core i7 processor equipped with 16 GB memory to execute the function. The user can modify this param
eter in the function ComputeMultiscaleEntropy.m.

3.7.  Phase-rectified signal averaging
Phase-rectified signal averaging (PRSA) is a method used for identifying short-term quasi-periodicities that are 
normally masked by non-stationarities and provide information on the deceleration (DC) and acceleration (AC) 
capacity of the heart (Bauer et al 2006). The code made available in the PhysioNet Cardiovascular Signal Toolbox 
implements the simplest version of the PRSA algorithm, where the anchor points correspond to increases in the 
signal (or decreases): xi > xi−1(xi < xi−1). In order to avoid anchor points at the positions of artifacts, a threshold 
parameter ensures that increases or decreases larger than such a threshold are discarded (Default  =  HRVparams.
prsa.thresh_per  =  20%; as suggested in Campana et al (2010)). The length (L) of the PRSA signal before and after 
the anchor points can be changed in the initialization file and should exceed the period of the slowest oscillation 
that is of interest (Default  =  HRVparams.prsa.win_length  =  30). Wavelet analysis using Haar mother wavelet 
function is employed to derive the AC or DC from the central part of the PRSA signal (with scale parameter s 
defined by HRVparams.prsa.scale  =  2 by default):

AC (DC) =
s∑

i=1

prsa (L+ i)

2s
−

s∑
i=1

prsa (L− i)

2s
.

For a more detailed description of the algorithm we refer the reader to Bauer et al (2006).

3.8.  Heart rate turbulence
Heart rate turbulence (HRT) is a method used to analyze the fluctuations in sinus-rhythm cycle length after PVCs 
(Schmidt et al 1999, Bauer et al 2008). Two parameters are used to characterize the response of sinus rhythm to 
a PVC: the turbulence onset (TO) and turbulence slope (TS). TO is used as a measure of the initial acceleration 
after the PVC, and it is derived by comparing the relative changes of NN intervals immediately after and before a 
PVC:

TO = 100 ∗ (NN+2 + NN+1)− (NN−1 + NN−2)

(NN−1 + NN−2)
,

where NN+  is the ith sinus rhythm after the compensatory pause of the PVC and RR-indicates the coupling 
interval of the PVC. The TO value is first computed for each single PVC (figure 1) and subsequently averaged to 
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obtain the value characterizing the patient (Bauer and Schmidt 2003). TO can be also calculated on the averaged 
tachogram which leads to very similar values (Bauer et al 2008).

The second measure, the TS, quantifies the deceleration rate after a PVC. TS is the maximum positive slope of 
a regression line assessed over any sequence of five subsequent sinus rhythm NN intervals within the first 20 sinus 
rhythm NN intervals after a PVC (Bauer et al 2008). In figure 1, the red line corresponds to the line of regression 
fit to the five consecutive NN intervals that result in the largest gradient.

TO values below zero and TS values above 2.5 are considered normal, and abnormal otherwise (i.e. a healthy 
response to PVCs is a strong sinus acceleration followed by a rapid deceleration (Clifford et al 2006). Because the 
HRT pattern might be masked by heart rate variability (HRV) of other origins, the TS is computed on the PVC 
tachogram, obtained by aligning and averaging the R–R interval sequences surrounding isolated PVCs, for a suf-
ficient number of PVCs (i.e.  >5) (Bauer et al 2008). Despite this accumulation of data around numerous PVCs, per-
forming HRT analysis on very short ECG recordings may not lead to meaningful results (Berkowitsch et al 2004). It 
is important to ensure that the sinus rhythm preceding and following a PVC is free of arrhythmia, artifacts, and false 
beat classification due to artifact. Thus, a set of exclusion criteria was implemented according to Clifford et al (2006):

	 •	� Remove all RR intervals  <300 ms or  >2000 ms.
	 •	� Remove all RRn where |RRn−1  −  RRn|  >  200 ms.
	 •	� Remove all RR intervals that change by more than  >20% with respect to the mean of the five previous 

sinus intervals (the reference interval) (Alternative: RR intervals that change by more than  >20% with 
respect to the previous one).

	 •	� Only use PVCs with a minimum prematurity of 20%.
	 •	� Exclude extrasystolic pauses greater than 20% longer than the normal interval.

The function HRT_Analysis.m computes the TO and TS value given a time series of RR intervals and related 
labels (annotations) following the PhysioNet standard6, the number of NN intervals to consider before the PVC 
(BeatsBefore), and after the PVC plus a compensatory pause (BeatsAfter). The function also returns the number 
and position of the PVCs used for the analysis, the average tachogram, and the graphical representations of the 
HRT analysis shown in figure 1.When computing the average tachogram or the mean TO, the user should aim to 
include a minimum of 15–20 tachograms containing a single PVC.

4.  Methods

In order to elucidate the consequences of divergent approaches to HRV analysis, a series of benchmarking studies 
were performed that systematically vary methodology and input data. The studies were conducted on sample 
data using the PhysioNet Cardiovascular Signal Toolbox and the four other HRV toolboxes described in table 1. 

Figure 1.  Visualization of HRT analysis using the PhysioNet Cardiovascular Signal Toolbox. Left (a) figure shows an example of  
145 RR interval sequences (of 20 beats) taken from one patient, all aligned at the PVC (at RR interval three); the TO is computed 
for each single PVC and subsequently averaged to obtain the value characterizing the subject. Right (b) figure shows the average 
tachogram used to compute the TS. TS is the maximum of regression slopes (solid red line) computed for five consecutive NN 
intervals starting at RR interval seven (3rd NN interval after the compensatory pause). In the example, the regression lines for RR 
intervals seven through eleven corresponding to maximum slope is shown (red line).

6 www.physionet.org/physiobank/annotations.shtml
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These toolboxes were chosen for their popularity, open-source availability, regard amongst experts in the field, 
or a combination of these factors. The studies in the benchmarking analysis, their purpose, and their sub-studies 
are described here.

4.1.  Study A: comparison to a known standard LF/HF ratio
The aim of Study A was to compare the results generated by each toolbox on one HRV metric, the LF/HF ratio, 
using a known standard value. The LF/HF ratio is sensitive to small differences between populations. A time series 
with a known LF/HF ratio was generated using an RR interval generator detailed in Clifford (2002), hereafter 
called LFHFGEN. The default options for each toolbox were used to simulate the results achieved by a typical 
user of the HRV toolboxes, employing the software ‘off the shelf’. (Studies have shown up to 95% of software 
users will not alter the default settings (Spool 2011).)

The LF/HF ratio generated from the various toolboxes were compared by calculating the normalized root 
mean square error (NRMSE) using the method of mxm.c, a WFDB routine that calculates the root mean squared 
error and normalizes it per the equation

NRMSE = 100∗

»∑n

i=1
(XT −XS)

2

n � 1
n

∑n

i=1
XS

where n equals the number of windows considered, XT is the metric generated by the test toolbox on the ith 
window, and XS is standard compared against. The NRMSE value is reported back as a percentage. Default 

parameters and settings for each toolbox (per table 2) were used unless otherwise specified in the Methods.
One hundred synthetic 300 s RR interval time series were created with randomly assigned LF/HF ratios 

between 0.5 and 10 using the RR interval generator LFHFGEN. This generator produces an RR time series evenly 
sampled at 7 Hz composed of two sine waves at specific LF and HF frequencies (here we use the defaults of 0.095 Hz 

Table 2.  Differences between HRV analysis methods in the five HRV toolboxes benchmarked. Default options were selected (L  =  data 
length; tmax  =  last time index in timeseries; tmin  =  first time index in data series; Fs  =  sampling frequency; PSD  =  power spectral density 
estimate; FFT  =  fast Fourier transform, ofac  =  desired oversampling factor in computing the Lomb periodogram, hifac  =  multiplier of 
the average Nyquist frequency that defines the sequence of frequencies in computing the Lomb periodogram).

PhysioNet HRV Toolkit

PhysioNet Cardiovascular 

Signal Toolbox Kubios Kaplan Vollmer

QRS  

detection

gqrs, wqrs, sqrs jqrs, wqrs, sqrs Unknown 

QRS  

detector

No QRS  

detection

(Requires WFDB)

Noise and 

artifact 

identi-

fication 

method

Identify successive intervals 

whose difference exceeds 

threshold (20% of the 

value of adjacent 20  

intervals on either side); 

identify non-physiologic 

intervals (RR  <  0.4 s) 

(RR  >  2 s)

Identify successive intervals 

whose difference exceed a 

threshold (20%);  

Identify PVCs, AF, VF; 

Identify Non-physiologic 

Intervals (RR  <  0.375 s) 

(RR  >  2 s)

Identify  

successive 

intervals 

whose  

difference 

exceed a 

threshold 

(20%)

‘Glitches’  
identified using AR 

model

None

Artifact 

correction 

method

Remove non-physiologic 

RR intervals and intervals 

that exceed a threshold

Remove RR intervals that 

exceed threshold  

(default  =  20%), PVCs, 

suspected AF/VF/VT, 

non-physiologic beats, and 

segments with SQI lower 

than 0.9 (when applicable) 

no interpolation

Interpolate 

through RR 

intervals 

that exceed 

a threshold

Spline  

Interpolation 

through data 

labeled ‘glitches’

None

Frequency 

vector (Hz)

df : df : df × 2× L 1
1024 : 1

1024 : 0.5 1
300 : 1

300 : 0.5 Fs
L (0 : 1 : L

2 ) 
Fs
2 (0 : 1 : NFFT

2 + 1)

df = 1
4(tmax−tmin)

NFFT  =  2^nextpow2(L)

Frequency 

Transfor-

mation

PSD PSD FFT FFT FFT

Lomb periodogram Lomb periodogram Welch  

periodogram

Power 

Calculation

Squares PSD and sums bins 

in band

Squares PSD and sums 

bins in band

Sums bins  

in band

Squares then  

doubles FFT and 

sums bins in band

Doubles FFT and sums 

bins in band

Normaliza-

tion

»
PSD
nout

»
PSD
nout

Normalizes 

to the total 

power

Normalizes to  

square of length 

of data segment 

analyzed

Normalizes to length of 

data segment analyzed
nout  =  0.5 * ofac * hifac * 

L ofac  =  4, hifac  =  2

nout  =  0.5 * ofac * hifac * 

L ofac  =  4, hifac  =  2
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and 0.275 Hz respectively). The frequencies are then slowly shifted to smear out the LF and HF frequency bands 
to generate a specific known LF/HF ratio. Finally, the time series was unevenly sampled in a realistic manner by 
searching for (and keeping only) each consecutive RR interval that is at least as large as the time from the previously 
selected RR interval. The time series were then analyzed with the various toolboxes according to table 2 to estimate 
the LF/HF ratio and the NRMSE was calculated using a standard that is found before frequency shifting or down-
sampling. Two standards were used, one generated using the FFT and one generated using the Lomb periodogram. 
The PhysioNet toolboxes were compared to the Lomb standard and the Kubios, Kaplan, and Vollmer toolboxes 
were compared to the FFT standard. This provides a conservative outcome of the result.

4.2.  Study B: the significance of collective processing differences
To expand the comparative analysis performed in Study A, the aim of Study B was to compare the results of the 
toolboxes on a wider selection of commonly assessed HRV metrics on both synthetic data and real patient data. 
The metrics generated include mean NN interval, PNN50, RMSSD, SDNN, HF, LF, LF/HF ratio, and total power. 
The default options for each toolbox were used to simulate the results achieved by a typical user of the HRV 
toolboxes. In addition to the default parameters, the artifact correction option (default: off) was also enabled on 
the Kubios toolbox analysis in order to determine the effects on HRV metrics. Each subsequent trial performs an 
evaluation on data with increasing amounts of noise. Trial 1 compares the HRV metric results from an analysis 
of synthetic RR interval data. Trial 2 compares the HRV metric results from an analysis of patient data from the 
MIT Normal Sinus Rhythm (NSR) database (Goldberger et al 2000). Trial 3 compares the HRV metric results 
from an analysis of patient waveform data from the MIT BIH Arrhythmia database (Moody and Mark 2001). The 
standard in all three trials was taken to be the PhysioNet HRV Toolkit, the most well published and validated of 
the available toolboxes.

4.2.1.  Trial 1: synthetic RR interval data analysis
One hundred segments of synthetic RR interval data were generated using RRGEN (a method developed by 
McSharry et al (2002, 2003)) with the probability of ectopy set to 0.03% (Pe  =  0.0003) and the probability of 
noise set to 0.48% (Pn  =  0.0048). The segments were analyzed in full and were 600 s long. No segments were 
excluded from the analysis.

4.2.2.  Trial 2: MIT NSR database RR interval data analysis
All 18 RR interval records from the MIT NSR database were segmented into 5 min windows with 4 min of overlap 
between windows, resulting in 23 103 windows. Non-normal annotations were removed.

Windows with possible AF (according to our detector described in section 3.2.5) or with greater than 15% of 
the data missing were not analyzed, reducing the dataset to 22 230 segments. An additional 182 segments, con-
taining mostly noise and artifact, were eliminated by the PhysioNet HRV Toolkit as un-analyzable.

To determine the cause of diverging results from the toolboxes, a step by step comparison was performed 
using the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal Toolbox. The MIT NSR database 
was analyzed and normalized RMS error was calculated after each step of the analysis for each HRV metric. In 
the interest of using cleaner data to determine the cause of processing differences, windows with greater than 
5% of the data missing were not analyzed. The windows were minimally preprocessed with the PhysioNet HRV 
Toolkit and the data was then fed into both the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal 
Toolbox.

The first comparison (Comparison 1) involved only varying the toolbox for calculating HRV statistics. This 
involved keeping the preprocessing steps and definition of the frequency bins constant. The frequency bins were 
assigned by the PhysioNet HRV Toolkit. The mean was removed before calculating spectral metrics. Mean NN 
interval, PNN50, RMSSD, SDNN, HF, LF, LF/HF ratio, and total power were calculated on each window over the 
entirety of the 24 h recording for each patient (n  =  18). The spectral metrics were calculated using the Lomb-
Scargle periodogram and normalized per the method in the C implementation of the function in Numerical 
Recipes in C (Press et al 1992).

The second comparison (Comparison 2) involved varying the toolbox for calculating HRV statistics and fre-
quency bin assignment. The third comparison (Comparison 3) involved varying the toolbox for calculating HRV 
statistics, frequency bin assignment, and preprocessing algorithm.

4.2.3.  Trial 3: waveforms of the MIT BIH arrhythmia database
All 48 records from the MIT BIH Arrhythmia Database (Goldberger et  al 2000) were processed using the 
waveform analysis methods in the respective toolboxes which possess this functionality (namely the PhysioNet 
HRV Toolkit, Kubios, PhysioNet Cardiovascular Signal Toolbox, and Vollmer). Each approximately 30 min record 
was broken up into five minute segments with four minutes of overlap between them and then HRV metrics were 
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estimated on each segment. Segments from all 48 records were compiled and NRMSE was computed on the 
compiled segments.

4.3.  Study C: long range scaling metrics—DFA
The aim of this study was to compare the results from the PhysioNet HRV Toolkit’s detrended fluctuation 
analysis (DFA) algorithm, dfa.c, to the remainder of the toolboxes described in table 1. One hundred segments 
of synthetic RR interval data were generated using RRGEN (McSharry et al 2002, 2003) with the probability of 
ectopy and noise set to 0% (Pe  =  0, Pn  =  0). The segments were 24 h long and were analyzed in their entirety. 
The same dataset was analyzed for Studies D and E. Default options were used for all the toolboxes. The effect of 
different ranges of box size m used for the computation of the scaling exponents α1 and α2 was assessed as well as 
the proprietary detrending option implemented by the Kubios toolbox.

4.4.  Study D: long range scaling metrics—MSE
The goal of this study was to compare the results of MSE analysis of the PhysioNet Cardiovascular Signal Toolbox 
and Kubios to the results generated with the PhysioNet HRV Toolkit. The Kaplan and Vollmer toolboxes do not 
provide MSE estimates, so those toolboxes were not analyzed in this study. The effects of detrending options 
on the entropy values calculated with Kubios were also compared (Kubios MSE calculations use the default of 
detrending).

The MSE implementation from the PhysioNet HRV Toolkit is preset to use a default pattern length of m  =  2 
and a similarity criterion of r  =  0.15, the same defaults as in the PhysioNet Cardiovascular Signal Toolbox. The 
maximum number of coarse-grained time series is defined by the parameter τmax, which by default is set to be 
equal to 20. The scaling exponents of synthetic RR interval data were also estimated.

At each scale, the relative error, defined as ε = |XT− XS|
|XS| , where XT is the metric generated by the test toolbox 

and XS is standard compared against, was computed.

4.5.  Study E: PRSA
The aim of this study was to show equivalency between the PRSA algorithm from the PhysioNet Cardiovascular 
Signal Toolbox and code from the original authors of PRSA (Bauer et al 2006). PRSA is not available in any other 
toolbox, so no other comparisons are made. One hundred synthetic signals, previously used for Studies C and D, 
were used for the comparison of the code included in the PhysioNet Cardiovascular Signal Toolbox to the code 
provided by Bauer et al (2006) in order to ensure that the code between the two were consistent and free from 
implementation errors.

4.6.  Study F: HRT
The aim of this study was to show equivalency between the HRT algorithm from the PhysioNet Cardiovascular 
Signal Toolbox (HRT_Analysis.m) and the HRT code provided by Raphael Schneider (Bauer et al 2008). No other 
toolboxes perform this analysis, so no other comparisons were performed. The comparison with Schneider’s 
code was performed on data from the MIT NSR database (Goldberger et al 2000). Since the two code bases under 
evaluation use different preprocessing methods, both preprocessing methods were used in different tests: (i) 
removal of RR intervals that change by more than  >20% with respect to the mean of the five last sinus intervals 
and, (ii) removal of RR intervals that change by more than  >20% with respect to the previous interval.

5.  Results

5.1.  Study A
The PhysioNet Cardiovascular Signal Toolbox and Kaplan toolboxes achieved negligible error in the LF/HF ratio, 
with errors between 3.5% and 5.7% (table 3). (The rationale to indicate these are negligible here is that the LF–HF 
ratio changes by approximately 20%–100% during different activities or between different medical conditions 
(Bernardi et al 2000, Otzenberger et al 1998).) Although the Kaplan toolbox exhibited the lowest average error 
in the LF/HF ratio estimate on this dataset compared to the known LF/HF ratio, it not possible to say that it has 
definitively performed in a superior manner to the Lomb periodogram for two reasons. First, the difference 
was only around 2%, which is trivial in terms of the LF/HF ratio. Second, the simulated data was a synthetically 
generated combination of a sine waves whereas real HRV data is much more complex with stochastic noise and 
nonstationarities that may have been exacerbated by the resampling procedures required by the FFT.

Kubios’s default calculation using FFT results in a 33.6% error. When the option is engaged to use the Lomb 
periodogram method the error drops to 6.1%. Vollmer’s toolbox has the highest error at 58.2%. We note that 
these errors may be consistent offsets, which, although they prevent comparison between studies, can still pro-
vide valid comparisons within studies. Nevertheless, we strongly suggest using a toolbox with settings that pro-
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vides an error below 5% or 10%, since this may still allow the user ability to distinguish between mental and 
physical activities. Note that from here on in this article, all comparisons will be made with the PhysioNet HRV 
toolkit (written in C). This is not because this is necessarily correct, but because it is the most well-known open 
source HRV toolbox, and one to which we would like to closely map in order to allow the interchange of C and 
MATLAB functions when computational efficiency is important.

5.2.  Study B
5.2.1.  Trial 1: synthetic data
The entire dataset of synthetic data was analyzed with no records eliminated. The calculated error between the 
toolboxes when compared to the results from the PhysioNet Cardiovascular Signal Toolbox are shown in table 4. 
Note that since the data are synthetic with no artifact, the artifact correction in the Kubios software leads to a 
negligible difference to the results calculated with the same software and no artifact correction.

5.2.2.  Trial 2: patient data
Of the 23 103 segments created from the database, 22 994 had annotations marked ‘N’ (normal). A total of 
2835 segments were not analyzed because AF was detected (2366 segments) or too little data was present in the 
segment (more than 5% of the window was missing or noisy).

The calculated error between the toolboxes when compared to the results from the PhysioNet HRV Toolkit 
are shown in table 5. The PhysioNet Cardiovascular Signal Toolbox operates most closely to the PhysioNet HRV 

Toolkit, as is seen by its low NRMSE values.
Although table 5 shows large differences exist for all toolboxes, the PhysioNet Cardiovascular Signal Toolbox 

provided the closest correspondence to the PhysioNet HRV Toolbox. To determine the origin of the differences, 
the PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit were compared side by side on the 
MIT NSR database. In Comparison A, the PhysioNet Cardiovascular Signal Toolbox generated results which 
were within 3.4% NRMSE of the PhysioNet HRV Toolbox (table 6) on all metrics tested. The metrics with the 
highest error were PNN50 and RMSSD. The minor differences in these metrics can be largely attributed to the 
fact that the PhysioNet HRV Toolbox removed additional data points on the edge of the windows compared to 
the method by the PhysioNet Cardiovascular Signal Toolbox. To a lesser extent, the remainder of the error is due 
to round off of constants that can be performed differently in MATLAB and in C (integers can be defined differ-
ently). None of these errors are clinically significant compared to any studies that have leveraged HRV metrics, 
and therefore we consider the toolboxes equivalent in this benchmark test.

Frequency binning (Comparison B) added significant error to the calculation of spectral metrics. The LF/HF 
ratio was least impacted by this effect, but the error still increased on this metric to almost 2%. Once the preproc-
essing was varied (Comparison C), the errors continued to climb.

Table 3.  Study A. The normalized RMS error generated among different toolboxes on LF/HF ratio when compared to a known (artificial) 
standard.

PhysioNet HRV 

toolkit (%)

PhysioNet Cardiovascular 

Signal Toolbox (%)

Kubios FFT 

method (%)

Kubios Lomb 

method (%) Kaplan (%) Vollmer (%)

LF/HF 25.0 5.7 33.6 6.1 3.5 58.2

Table 4.  Study B—Trial 1. The normalized RMS error (or discrepancy) generated on various HRV metrics compared to the metric 
calculated by the PhysioNet HRV Toolbox on synthetic data.

Metric

PhysioNet  

Cardiovascular 

Signal Toolbox 

(%)

Kubios: no 

artifact  

correction  

FFT (%)

Kubios:  

artifact  

correction 

FFT (%)

Kubios: no 

artifact  

correction 

Lomb (%)

Kubios:  

artifact  

correction 

Lomb (%)

Kaplan 

(%)

Vollmer 

(%)

Mean NN 0.4 0.4 0.4 0.4 0.4 0.4 0.4

pNN50 4.2 4.9 4.6 4.9 4.6 4.2 4.2

RMSSD 2.0 1.1 1.0 1.1 1.0 1.9 1.9

SDNN 9.4 34.5 34.5 34.5 34.5 8.3 9.3

VLF 48.7 94.0 94.0 87.5 87.5 26.4 4.3  ×  105

LF 28.5 36.1 36.1 51.4 51.2 39.4 1.1  ×  106

HF 70.8 38.0 38.0 34.1 34.3 45.6 1.6  ×  106

TTLPWR 49.3 65.5 65.5 59.2 59.2 11.4 6.0  ×  105

LF/HF 137.1 102.9 102.9 114.4 114.4 139.7 35.5
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5.2.3.  Trial 3: waveform data
The discrepancy between the toolboxes being tested when compared to the results generated by the PhysioNet 
HRV Toolkit were calculated and are shown in table 7. Windows that did not meet minimal requirements for 
the PhysioNet Cardiovascular Signal Toolbox were not analyzed, resulting in the loss of 92 out of 1248 windows. 
Those minimal requirements include greater than 90% SQI and less than 15% of data lost to cleaning. Only the 
Kubios software with artifact correction and Lomb frequency domain metrics compared with the PhysioNet 

Cardiovascular Signal Toolbox in terms of mapping to the existing PhysioNet HRV Toolbox.

Table 5.  Study B—Trial 2. The normalized RMS error generated among different toolboxes on standard HRV metrics when compared to 
the values of the same metrics calculated by the PhysioNet HRV Toolkit on expert beat-labelled RR interval data taken from the MIT NSR 
database.

Metric

PhysioNet  

Cardiovascular 

Signal Toolbox 

(%)

Kubios: no 

artifact  

correction 

FFT  

(%)

Kubios:  

artifact  

correction  

FFT  

(%)

Kubios: no 

artifact  

correction 

Lomb  

(%)

Kubios: with 

artifact  

correction 

Lomb  

(%)

Kaplan 

(%)

Vollmer 

(%)

Mean NN 1.5 4.2 3.7 4.2 3.7 3.9 4.2

pNN50 17.1 55.1 38.7 55.1 38.7 44.3 54.4

RMSSD 31.7 165.7 113.6 165.7 113.6 128.2 171.6

SDNN 18.3 67.1 58.4 67.1 58.4 52.3 71.1

VLF 67.3 158.6 159.5 880.9 157.0 146.9 2.5  ×  105

LF 90.2 298.2 184.0 802.2 200.4 184.8 6.6  ×  105

HF 163.6 1.9  ×  103 1.1  ×  103 961.7 555.9 785.4 1.4  ×  106

TTLPWR 71.0 325.0 217.9 711.5 155.7 186.8 4.6  ×  105

LF/HF 49.2 72.3 67.5 72.8 50.6 50.3 102.8

Table 6.  Study B—Trial 2. The calculated differences between the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal 
Toolbox as determined by the NRMSE method. Comparison A used identical settings for both toolboxes. Comparison B introduced the 
variability due to the different frequency binning methods between the two toolboxes. Comparison C introduced the variability due to 
preprocessing differences between the two toolboxes. N/A indicates the fact that trial B affected only spectral metrics.

Comparison  → A  

(%)

B C  

(%)HRV metric  ↓

Mean NN 0.0 N/A 0.6

pNN50 3.4 N/A 11.8

RMSSD 2.6 N/A 8.3

SDNN 0.0 N/A 10.0

VLF 0.0 8.6% 41.0

LF 0.0 3.8% 27.4

HF 0.0 4.0% 32.4

LF/HF ratio 0.0 1.8% 42.4

TTLPWR 0.0 4.8% 24.0

Table 7.  Study B—Trial 3. The NRMSE difference generated among different toolboxes on standard HRV metrics when compared to the 
values of the same metrics calculated by the PhysioNet HRV Toolkit.

Metric

PhysioNet  

Cardiovascular 

Signal Toolbox 

(%)

Kubios: no artifact  

correction FFT  

(%)

Kubios: with  

artifact  

correction FFT  

(%)

Kubios: no artifact  

correction Lomb 

(%)

Kubios: with 

artifact  

correction Lomb 

(%)

Vollmer  

(%)

Mean NN 2.1 8.8 8.5 8.8 8.5 11.7

pNN50 36.4 91.0 76.5 91.0 76.5 86.3

RMSSD 86.6 976.5 189.2 976.5 189.2 299.3

SDNN 74.1 1.3  ×  103 127.6 1.3  ×  103 127.6 166.0

VLF 243.6 8.0  ×  104 507.5 5.8  ×  104 401.7 1.0  ×  105

LF 603.3 4.2  ×  105 1.6  ×  103 2.3  ×  105 467.3 3.1  ×  105

HF 918.7 1.4  ×  104 1.1  ×  103 3.9  ×  105 601.1 5.8  ×  105

TTLPWR 380.9 1.1  ×  105 572.9 1.5  ×  105 352.1 2.1  ×  105

LF/HF 793.1 824.3 793.7 792.4 791.4 797.1
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5.3.  Study C: long range scaling metrics—DFA
The differences between the toolboxes when compared to the results from the PhysioNet HRV Toolkit are 
calculated in table 8. Note that the large difference for the coefficient α2 found for the Kubios software could 
be a consequence of the default detrending option using the method called smoothness priors, which basically 
corresponds to a time-varying high pass filter with fc  =  0.035 Hz using default parameters. Figure 2 highlights 
the effect of the detrending option on the estimation of α2.

5.4.  Study D: long range scaling metrics—MSE
Figure 3 shows results for MSE computed on 24 h synthetic NN tachograms, which reports the relative error ε 
for each MSE scale calculated with the PhysioNet Cardiovascular Signal Toolbox and Kubios in comparison to 
the MSE scale calculated by the PhysioNet HRV Toolkit. The error was shown to be lower than 0.0004 at all scales 
for the PhysioNet Cardiovascular Signal Toolbox whereas the Kubios MSE implementation, with and without 
detrending, shows significantly higher error.

5.5.  Study E: PRSA
The results of this study show that the code implemented in the PhysioNet Cardiovascular Signal Processing 
Toolbox provide the same results as the one provided by Bauer et al (2006). Both DC and AC measures on 100 
synthetic signals generated using RRGEN achieve an average NRMSE of 0%.

5.6.  Study F: HRT
Comparison of HRT algorithms on the MIT NSR database for the PhysioNet Cardiovascular Signal Toolbox 
using the default filtering option against the code provided by Raphael Schneider (Bauer et al 2006) resulted in a 
NRMSE value of 9.4% for the TO and 8.5% for the TS. Using the second filtering option (removal of RR intervals 
that change by more than  >20% with respect to the previous), as implemented in the original code provided by 
Raphael Schneider, resulted in an NRMSE value of 6.5% for the TO and of 1.0% for the TS.

Table 8.  Study C. The NRMSE generated among different toolboxes on DFA scaling coefficients α1 and α2 compared to the values 
calculated by the PhysioNet HRV Toolkit.

PhysioNet Cardiovascular  

Signal Toolbox  

(%)

Kubios  

(default settings)  

(%)

Kubios  

(no detrending)  

(%)

Kaplan  

(%)

Vollmer  

(%)

α1
a 1.5 5.4 0.6 0.7 0.1

α2
b 3.1 34.6 16.1 18.6 17.4

a Short-term scaling coefficient: all toolboxes 4  ⩽  n  ⩽  16.
b Long-term scaling coefficient: PhysioNet HRV Toolkit and PhysioNet Cardiovascular Signal Toolbox: 16  ⩽  n  ⩽  N/4; Other toolboxes: 

16  ⩽  n  ⩽  64.

Figure 2.  Study C—results from DFA generated using Kubios with (a) detrending and smoothness priors (α1  =  1.26, α2  =  0.79) 
and (b) without detrending (α1  =  1.29, α2  =  1.12).
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We investigated the reason of the larger error for the TO value using the second filtering setting. On the ana-
lyzed dataset, for some recordings, a larger number of NN intervals before and after PVCs have been ‘filtered’ by 
the PhysioNet Cardiovascular Signal Toolbox than the Schneider code. When two or more PVCs are separated by 
only a small amount of time the rejection is performed differently. The PhysioNet Cardiovascular Signal Toolbox 
excludes PVCs for which one of the two RR-intervals before the current PVC is a compensatory pause of the pre-
vious PVC, while in Schneider’s implementation those RR intervals before or after the PVCs are considered valid.

An example is reported in figure 4, where the intervals related to the second PVC exhibit a compensatory 
pause (CP) from the preceding PVC. Since a tachogram is considered valid for HRT analysis if it has sinus rhythm 
interval preceding and following a PVC, both sequences of RR intervals are excluded by our implementation. TO 
was computed using the two NN intervals preceding the PVC and two NN intervals following the CP, thus includ-
ing a CP in the computation of the TO might lead to different results.

Figure 3.  Study D—plot of the mean relative error ε at different scales of multiscale entropy using the PhysioNet Cardiovascular 
Signal Toolbox and Kubios with respect to results from the PhysioNet HRV Toolkit for 100 synthetic NN interval signals generated 
using RRGEN (Pn  =  0, Pe  =  0). Error bars show standard deviation from the mean.

Figure 4.  Study F—example of two consecutive PVCs in signal nsr010. Tachogram related to the second PVC contains the 
compensatory pause CP of the preceding PVC and thus is excluded by the HRT algorithm implemented in the PhysioNet 
Cardiovascular Signal Toolbox.
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6.  Discussion and recommendations

The benchmarking results detailed in this work demonstrated that significant errors result from seemingly small 
and inconsequential choices in analysis methods. Moreover, the earlier in the process pipeline that the choices 
begin to differ, the larger the overall effects. The differences in analysis methods, parameter choices, and data 
preprocessing have yielded a field of HRV results that are impossible to compare between patient populations 
and research groups, and perhaps even within research groups. The results have shown that it is imperative that 
future studies adhere to a consistent method of reporting how an analysis has been performed, particularly 
in terms of the many parameter settings possible. (Although Malik et al (Task Force of the European Society 
of Cardiology the North American Society of Pacing Electrophysiology 1996, Clifford 2002, Pan et al 2016) 
attempted to encourage this practice, their prescription of what to report was too vague, and did not detail any 
requirements on preprocessing, apart from some basics of interval rejection.)

We note that the analysis in this article has some limitations. First, although we have quantified the differences 
in each HRV metric, and in some cases, these were enormous, this does not necessarily mean that the use of one 
toolbox over another, in classification tasks for example, would result in a significant difference in the algorithm’s 
accuracy (or other pertinent metric). This is particularly true for a multivariate or nonlinear classifier. Con-
versely, a small difference may, for some tasks, result in large classification differences. What we can say, however, 
is that one should not compare results between articles that have used different toolboxes, let alone home-grown 
or unspecified/closed software.

When considering the use of HRV analysis in research, it is important that researchers carefully consider the 
data to be analyzed and the assumptions of the analysis. An essential part to that consideration is identifying the 
methods and settings used for the analysis and providing this listing in the subsequent publication along with the 
data. The PhysioNet Cardiovascular Signal Toolbox initialization file can be used as a template when publishing 
this information. Researchers should compare subjects with similar length recordings to minimize the effect of 
metrics sensitive to temporal recording length (such as scaling metrics). Moreover, longer recordings can lead to 
larger averaging, or the capture of behaviors at different points in the circadian or daily rhythm. Subjects should 
also be exposed to similar psychosocial scenarios, where stress, environment, and mental state can be carefully 
controlled variables. Sleep is a good normalization approach, as shown in Clifford and Tarassenko (2004).

How a preprocessing algorithm addresses noise, ectopy, or artifact can have either a subtle or a significant 
effect on the results of analysis and depends to a large extent on how reliable or corrupt the data is to begin with. 
When a comparison was made between data pre-processed with the PhysioNet Cardiovascular Signal Toolbox 
and the PhysioNet HRV Toolkit, two toolboxes with markedly similar approaches to HRV analysis, the differ-
ences observed ranged from 0.6% on the Mean NN interval to over 40% on LF/HF ratio (table 6, Comparison C). 
When investigating the cause of error in the non-spectral metrics (RMSSD, pNN50, and SDNN), it was observed 
that a single window with just one or two removed non-physiologic data points can dramatically affect the esti-
mated value, particularly the NRMSE. More markedly, table 7 shows that even simple time domain statistics can 
differ by significant amounts when different QRS detectors or different abnormal interval filters are employed.

The normalization of the PSD estimation is seldom reported, and the method employed can have a very 
large influence on spectral results, especially when they are not reported as ratios. It is usually very difficult to 
retrospectively determine how an author has normalized data if only a select handful of parameters are reported. 
The effect of differing frequency bins on the results of spectral analysis can also be a significant source of error 
between two different methods analyzing the same data. When the PhysioNet HRV Toolkit and PhysioNet Car-
diovascular Signal Toolbox were allowed to define the frequency bins separately, the RMS error on LF/HF ratio, 
a metric that is buffered from error because of the nature of ratios, was over 2% (table 6, Comparison B). The 
error for the identical power calculations with slightly different frequency bands was nearly 4% at best and 8% at 
worst. Especially at VLF, where the binning may leave these bands with only one to five bins, changes in can lead to 
significant differences in the outcome.

When using frequency domain analysis, the Lomb periodogram has demonstrated to be the superior choice 
for RR interval data (Clifford and Tarassenko 2005). Therefore, it should be standard practice to present results 
using the Lomb periodogram when referencing a spectral metric. However, it is important to note that the RR 
interval time series is not a stationary time series and therefore, sliding a window across data and using a tech-
nique that assumes stationarity is somewhat flawed. Although there has been much attention paid to time-fre-
quency tools over the last two decades, little work has been done on unevenly sampled data and so we do not 
currently include such tools in this toolbox (since the effect of resampling on such tools has not been rigorously 
tested). Instead we recommend segmenting data into stationary blocks.

We recommend that the PhysioNet Cardiovascular Signal Toolbox be used to perform HRV analysis because 
of the following advantages.
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	1.	�A close correspondence to the C code of PhysioNet’s HRV Toolkit. This allows the user to swap between 
code bases for embedded applications or fast execution on servers for a subset of the algorithms.

	2.	�Parameters chosen are not arbitrary and have been justified in this publication.
	3.	�Parameters have been refactored into one initialization file so the user can change this as suited and report 

the changes efficiently.
	4.	�Extensive benchmarked waveform analysis tools are included.
	5.	�It is the only software suite that includes signal quality and arrhythmia analysis tools to help remove noisy 

and non-sinus periods of data.

Comparison to standard models and other available software demonstrate that the PhysioNet Cardiovas-
cular Signal Toolbox can even be used itself as a benchmarking system for other HRV studies, FDA filings, and 
industrial applications (due to the BSD licensing).

Other toolboxes that are characterized in this paper may produce adequate analysis. In particular we found 
that, with certain potential clinically significant differences in long range metrics, Kubios software was similar to 
our toolbox and the PhysioNet C toolbox and is sufficient for clinicians to use if they are willing to hand oper-
ate the software on a per-file basis (since no scripting facility is available in Kubios at this time) and as long as 
the default parameters are not selected. However, due to the dangers of hand-processing data, we could only 
really recommend Kubios if a batch scripting version were made available. We recommend that when using other 
toolboxes, users report the differences between their code and other HRV tools to avoid erroneous conclusions 
when comparing with the literature. Also, by comparing to our toolbox, it will persuade others to report the 
many thresholds that are swept under the carpet in other studies, but which have such an enormous effect on the 
output. We also note that none of the toolboxes presented are as comprehensive as the PhysioNet Cardiovascular 
Signal Toolbox.

Finally, the full potential of HRV analysis, the subject of so many studies over the last 40 years or more, will not 
be realized without further contributions to the open source tools. We encourage benchmarked contributions to 
our toolbox, which is freely available from PhysioNet and Github (Vest et al 2018).

7.  Conclusions

This article presents evidence in support of standardizing HRV analysis methods and demonstrates how the 
PhysioNet Cardiovascular Signal Toolbox makes advances towards such standardization. Using in-house code 
that has not been thoroughly benchmarked and failing to report all parameter settings will continue to hold the 
field back. We caution against the use of default parameters, particularly when dealing with raw ECG or other 
pulsatile data. We recommend that researchers use our MATLAB toolbox except where fast implementation 
is needed, and then to use the PhysioNet C implementation where code is available. Rigorously applying the 
standards described in this article and working with common, benchmarked code such as that provided with 
this publication, will improve the science of HRV analysis and, we hope, should provide a significant boost to its 
clinical utility.
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Appendix A.  Software requirements to Use the PhysioNet Cardiovascular Signal Toolbox

The current version (1.0) of the HRV toolbox was tested with the following MATLAB configuration: MATLAB 
(v 9.3), Signal Processing Toolbox (v 7.3), Neural Network Toolbox (v 7.0), and Statistics and Machine Learning 
Toolbox (v 11.0). The Toolbox has been tested using Windows, OSX, and Unix systems.
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Table A2.  Default parameters in the PhysioNet Cardiovascualr Signal Toolbox. au indicates arbitrary units.

Parameter Value Unit Description

data_confidence_level 1 au NOT YET IN USE

Windowlength 300 s HRV statistics analysis window length

Increment 60 s HRV statistics sliding window increment

Numsegs 5 au Number of segments to collect with lowest HR

RejectionThreshold 0.2 au Amount of data that can be rejected before a window is consid-

ered too low quality for analysis. 0.2  =  20%

MissingDataThreshold 0.15 au Maximum percentage of data allowable to be missing from a 

window. 0.15  =  15%

sqi.LowQualityThreshold 0.9 au Threshold for which SQI represents good data

sqi.windowlength 10 s SQI analysis window length

sqi.increment 1 s SQI sliding window increment

sqi.TimeThreshold 0.1 s Maximum absolute difference in annotation times that is per-

mitted for matching annotations.

sqi.margin 2 s Margin time not include in comparison

preprocessg.aplimit 2 s Maximum believable gap in RR intervals

preprocess.per_limit 0.2 au Percent limit of change from one interval to the next. 0.2  =  20%

preprocess.forward_gap 3 s Maximum tolerable gap at beginning of timeseries in seconds

preprocess.method_outliers ‘rem’ — Method of dealing with outliers

preprocess.lowerphysiolim 0.375 s Lower physiological limit, minimum RR interval

preprocess.upperphysiolim 2 s Upper physiological limit, maximum RR interval

preprocess.method_unphysio ‘rem’ Method of dealing with unphysiologically low beats.  

‘rem’  =  removal

Preprocess.threshold1 0.9 au Threshold for which SQI represents good data

preprocess.minlength 30 s The minimum length of a good data segment in seconds

af.windowlength 30 s AFib analysis window length, set to include ~30 beats in each 

window

af.increment 30 s AFib sliding window increment

timedomain.alpha 50 ms Alpha value for PNN analysis method

timedomain.win_tol 0.15 au Maximum percentage of data allowable to be missing from a 

window. 0.15  =  15%

prsa.thresh_per 20 % Percent difference that one beat can differ from the next in the 

PRSA code

prsa.win_length 30 s The length of the PRSA signal before and after the anchor points

pPrsa.scale 2 au Scale parameter for wavelet analysis (to compute AC and DC)

ulf 0–0.0033 Hz ULF band, requires window  >  300 s

vlf 0.0033–0.04 Hz VLF band, requires at least 300 s window

lf 0.04–0.15 Hz LF band, requires at least 25 s window

hf 0.15–0.4 Hz HF band, requires at least 7 s window

freq.zero_mean 1 — Option for subtracting the mean from the input data

freq.method ‘lomb’ — Frequency estimation method, Options: ‘lomb’, ‘burg’, ‘fft’, 
‘welch’

freq.normalize_lomb 0 — When selected, adds a normalization step to frequency domain 

analysis

(Continued)

Table A1.  Performance of peak detectors when tested on the MIT BIH Arrhythmia Database (taken from Vest et al (2017)).

Peak detector Recommended application F1 St dev

wqrs.c Low-noise scenarios or as a comparator to detect noise 99.00 1.89

wqrs.m Low-noise scenarios or as a comparator to detect noise 99.04 1.84

sqrs.c Low-noise scenarios or as a comparator to detect noise 98.19 4.22

sqrs.m Low-noise scenarios or as a comparator to detect noise 96.33 6.38

jqrs.m Long-term moderate to high noise recordings, such as in ICU Holter or exercise. 93.02 12.27

gqrs.c Moderate-noise ICU or Holter recordings 95.72 14.84
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Appendix B.  QRS detection benchmark testing for PhysioNet Cardiovascular Signal 
Toolbox and PhysioNet HRV Toolkit

Appendix table A1 provides results detailed in Vest et al (2017) for a comparison of the standard QRS detectors 
available in the PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit when tested on the MIT 
BIH Arrhythmia Database. Note that the database on which they are tested is largely free from noise and artifact. 
The F1 scores therefore reflect how well they perform in ideal circumstances. When noise is present, only jqrs  
and gqrs are able to maintain accuracy.

Appendix C.  Default parameters in the PhysioNet Cardiovascular Signal Toolbox

Appendix table A2 provides the default parameters utilized in the PhysioNet Cardiocascular Signal Toolbox. 
Note that parameters related to file extension, demo visualization, and saving options are not reported. Only 

analysis related parameters are summarized below.

freq.burg_poles 15 au Number of coefficients for spectral estimation using the Burg 

method (not recommended)

freq.resampling_freq 7 Hz Resampling frequency for ‘welch’, ‘fft’, or ‘burg’
freq.resample_interp_method ‘cub’ — Resampling interpolation method for ‘welch’, ‘fft’, or ‘burg’
freq.resampled_burg_poles 100 au Number of poles for burg method

sd,segmentlength 300 s Windows length for SDANN and SDNNI analysis 

PeakDetect,REF_PERIOD 0.25 s Assumed refractory period after a natural sinus beat

PeakDetect.THRES 0.6 au Energy threshold of the peak detector 

PeakDetect.fid_vec [] — If some subsegments should not be used for finding the optimal 

threshold of the P&T then input the indices of the corre

sponding points here

PeakDetect.SIGN_FORCE [] — Force sign of peaks (positive value/negative value). Particularly 

useful in a window by window detection with uncertain peak 

polarity. Could be used to build an Fetal ECG template.

PeakDetect.ecgType ‘MECG’ — Use QRS detector for Adult ECG analysis

PeakDetect.windows 15 s Size of the window onto which to perform QRS detection

MSE.windowlength [] s Window size in seconds. Default [] performs MSE on the entire 

signal 

MSE.increment [] s MSE window increment. Default [] performs MSE on the entire 

signal

MSE.RadiusOfSimilarity 0.15 au Radius of similarity (% of std)

MSE.patternLength 2 au Pattern length for SampEn computation

MSE.maxCoarseGrainings 20 au Maximum number of coarse-grainings

Entropy.RadiusOfSimilarity 0.15 au Radius of similarity (% of standard deviation)

Entropy.patternLength 2 au Pattern length for SampEn computation

DFA.windowlength [] s Windows size for DFA analysis

Default [] performs DFA on entire signal

DFA.increment [] s Sliding window increment for DFA analysis

Default [] uses no sliding window

DFA.minBoxSize 4 au Smallest box width for DFA analysis

DFA.maxBoxSize [] au Largest box width for DFA analysis

Default [] uses the signal length/4

DFA.midBoxSize 16 au Medium time scale box width for DFA analysis

HRT.BeatsBefore 2 au Number of beats before PVC 

HRT.BeatsAfter 16 au Number of beats after PVC and CP

HRT.windowlength 24 h Window size for HRT analysis. Default 24 h

HRT.increment 24 h Sliding window increment or HRT analysis

Default 24 h

HRT.filterMethod ‘mean5before’ — HRT analysis filtering option

Table A2.  (Continued)

Parameter Value Unit Description
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Appendix D.  Demonstration code available in the PhysioNet Cardiovascular Signal 
Toolbox

D.1.  Atrial fibrillation detection demo: DemoRawDataAF.m
This demonstration analyzes a segment of raw (or filtered) ECG signal with known atrial fibrillation to show the 
operation of the AF detection algorithm and its use in removing segments of arrhythmia during HRV analysis.

D.2.  Annotated data demo: DemoAnnotatedData.m
This demonstration uses the PhysioNet Cardiovascular Signal Toolbox on RR intervals with annotations. 
After pre-processing the RR intervals—taking into account the beat annotations—and removal of windows 
containing AF, the HRV analysis is performed on the clean NN (normal-to-normal) time series and the resulting 
output is saved in a.csv file.

D.3.  ECG, ABP, and PPG data demo: DemoRawDataICU.m
This demonstration analyzes a segment of data collected in the intensive care unit (ICU) which contains ECG, 
ABP, and PPG signals. This demo will perform HRV analysis on the raw ECG signals as well as detection of fiducial 
points of PPG and ABP signals. It will also display the pulse transit time (PPT) graph (Blood Pressure versus PTT).

D.4.  RRGEN data demo: DemoStandardizedData.m
This function demonstrates the function of the synthetic RR interval generator RRGEN and the calculation of 
HRV metrics.
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