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Abstract

Objective: This work aims to validate a set of data processing methods for variability metrics, which
hold promise as potential indicators for autonomic function, prediction of adverse cardiovascular
outcomes, psychophysiological status, and general wellness. Although the investigation of heart
rate variability (HRV) has been prevalent for several decades, the methods used for preprocessing,
windowing, and choosing appropriate parameters lacks consensus among academic and clinical
investigators. Moreover, many of the important steps are omitted from publications, preventing
reproducibility. Approach: To address this, we have compiled a comprehensive and open-source
modular toolbox for calculating HRV metrics and other related variability indices, on both raw
cardiovascular time series and RR intervals. The software, known as the PhysioNet Cardiovascular
Signal Toolbox, is implemented in the MATLAB programming language, with standard (open)
input and output formats, and requires no external libraries. The functioning of our software is
compared with other widely used and referenced HRV toolboxes to identify important differences.
Main results: Our findings demonstrate how modest differences in the approach to HRV analysis can
lead to divergent results, a factor that might have contributed to the lack of repeatability of studies
and clinical applicability of HRV metrics. Significance: Existing HRV toolboxes do not include
standardized preprocessing, signal quality indices (for noisy segment removal), and abnormal
rhythm detection and are therefore likely to lead to significant errors in the presence of moderate
to high noise or arrhythmias. We therefore describe the inclusion of validated tools to address these
issues. We also make recommendations for default values and testing/reporting.

1. Introduction

Interest in heart rate variability (HRV) and signal processing of cardiovascular dynamics has seen a recent
resurgence due to the increased availability of devices and wearables that record physiological signals. It has
been widely reported that metrics which quantify cardiovascular dynamics can be used to estimate basal states
and detect changes in the autonomic nervous system (Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology 1996, Clifford 2002, Pan et al 2016) and consequently
they hold promise as tools that can aid in disease tracking, wellness promotion, and risk stratification. The non-
invasive nature of HRV measurement makes it particularly attractive as a long-term health tracking tool, or as a
component of a more comprehensive health monitoring framework.

© 2018 Institute of Physics and Engineering in Medicine
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Despite its popularity in research and relatively long history, there is still much disagreement and ambiguity
surrounding the methods employed by researchers to estimate HRV. In particular, peak (event) detection tech-
niques vary (or detectors performances are not detailed), filter choices are variable and ad hoc, noise removal is
generally undocumented, and detection of non-sinus beats is often poorly described. These issues limit mean-
ingful comparisons between studies and scientific repeatability, especially when in-house, custom, non-public
software are used. Unfortunately, few HRV software programs are rigorously designed and tested with methods
that are clear and open to inspection. Additionally, of the open-source HRV programs available, many are poorly
documented, no longer supported by their original authors, or have broken dependencies that require extensive
troubleshooting. Regardless, no existing HRV software toolbox, to our knowledge, provides a comprehensive
suite of validated tools encompassing both raw data and derived beat-to-beat intervals. More specifically, such
software should undergo a validation process in which the output is rigorously compared with expected values
based on a standardized input. Traditionally, the expected values for validation are either from a model or a gold
standard algorithm. Since there is no gold standard in the HRV toolbox landscape and few models of HRV exist,
a chicken-and-egg situation persists.

To address the issues of validation, standardization, and repeatability, we have developed an open-source car-
diovascular signal and HRV analysis toolbox (The PhysioNet Cardiovascular Signal Toolbox) and have validated
its component tools in two ways. First, for a subset of algorithms, where a model could be considered acceptable,
artificial data has been used. Where no realistic and validated model is available, the toolbox is compared to other
existing toolboxes to identify consistencies. (The assumption here is that the toolboxes, published by reputable
authors, should converge to similar estimates.) The toolbox described here has been designed to accept a wide
range of cardiovascular signals and analyze those signals with a variety of classic and modern signal processing
methods. The toolbox was written in the MATLAB programming language and does not have any dependencies
on external software or libraries.

Preprocessing and data cleaning is an important aspect of signal processing that often is overlooked or
poorly documented in HRV-related publications. The PhysioNet Cardiovascular Signal Toolbox presented here
employs several methods to prepare data for HRV estimation, including assessing signal quality and detecting
arrhythmias, erroneous data, and noise. These segments of data, which must be excluded from HRV analysis, can
then be systematically removed based on threshold settings selected by the user or recommended in previously
validated studies.

The goal of this work was to advance the standardization, reproducibility, and clinical applicability of HRV
and cardiovascular variability research. This publication has outlined the current HRV analysis tool landscape
alongside our new suite of open-source tools contained within the PhysioNet Cardiovascular Signal Toolbox.
We have presented the considerations necessary to invoke the use of these tools in a repeatable and standard-
ized manner. The consequences of divergent approaches to HRV analysis are presented in a series of studies that
systematically vary methodology and input data. Finally, a standard model by which HRV analysis packages may
be judged in the future are presented along with a discussion of the recommendations by which HRV analysis
should be conducted by researchers and clinicians alike.

2. HRV toollandscape

Publicly available tools for HRV analysis are scattered throughout the internet and have varying levels of
sophistication. Here, we have reviewed a subset of the most popular toolboxes available and the HRV metrics
that they generate. Perhaps the most used and trusted HRV toolbox is the PhysioNet HRV Toolkit, written by
Mietus and Moody, available from PhysioNet.org (Mietus and Goldberger 2014). This toolbox is an open-source
package that is written in C and performs time domain and spectral HRV statistics. It has the unique feature
of compatibility with PhysioNet’s Waveform Database (WFDB) Software Library (also written in C). This
allows the user to leverage PhysioNet’s many QRS detectors, data libraries, and processing and evaluation tools.
However, installation is nontrivial and the default preprocessing and other variables associated with it are not
well documented. Nevertheless, it is considered the standard in the field. The proprietary Kubios HRV software
(Tarvainen et al 2014) is another frequently used and cited HRV analysis tool. At the time of this publication,
Kubios is available in both a no-cost ‘Standard’ version and a licensed ‘Premium’ version available for $329 per
seat license. Both versions of the Kubios software offer an extensive user interface and the ability to process RR
intervals. As with the PhysioNet HRV Toolkit, the Premium version can also process ECG waveform data and
perform a Lomb-Scargle periodogram (Lomb 1976, Press et al 1992), both of which are essential functions, as we
explain in this article. Running the Kubios HRV software is strictly through a proprietary user interface which
is susceptible to human ‘tweaking’ of data and tools, and does not support batch processing of input data. This
can make analysis time consuming for moderate sized datasets and unfeasible for large datasets and it introduces
additional opportunities for human error. Two less commonly referenced MATLAB-based toolboxes available
are Kaplan’s HRV toolbox (Kaplan and Staffin 1998) and Vollmer’s HRV toolbox (Vollmer 2018). Both these
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toolboxes are open-source and were written for MATLAB. Additionally, Vollmer’s HRV toolbox employs a user
interface, but does not require it.

All of the aforementioned HRV toolboxes, including the PhysioNet Cardiovascular Signal Toolbox described
in this publication, compute classic HRV metrics including the mean of normal-to-normal (NN) intervals, the
standard deviation of NN intervals (SDNN), the square root of the mean squared differences of successive NN
intervals (RMSSD), the proportion of interval differences of successive NN intervals greater than 50 ms (pNN50),
or more generally pPNNx (where x is a variable between five and 100 ms), the total power of the power spectral
density across various frequency bands, and the ratio of low frequency to high frequency power. Additional HRV
metrics are available in the various toolboxes per table 1. See Clifford et al (2006) for a detailed description of
these statistics.

Itis worth noting that the PhysioNet Cardiovascular Signal Toolbox includes both the main established HRV
metrics (e.g. LE/HF-ratio, pPNNx, RMSSD, etc) and more recent HRV metrics which have been shown to be
highly promising (e.g. multiscale entropy and phase rectified signal averaging) (Norris et al 2008a, 2008b, Lin
etal 2014, Kantelhardt et al 2007, Campana et al 2010, Kisohara et al 2013, Lobmaier et al 2015). The toolbox also
includes versions of existing metrics which have been shown to be more computationally efficient than available
versions (e.g. entropy metrics), an important feature when using an interpreted language, and more accurate
(e.g. the version of detrended fluctuation analysis provided). We have chosen to omit the less well-founded/more
ad hoc statistics, such as the TINN (which is just a poor estimate of a moment of a distribution) in favor of more
acceptable and more descriptive statistics (such as the first four moments of a distribution).

3. PhysioNet cardiovascular signal toolbox design

3.1. Overview
The PhysioNet Cardiovascular Signal Toolbox developed by the authors utilizes a standardized approach to
preprocess data and compute HRV metrics that provides a unique and comprehensive approach:

1. Aninitialization file (InitializeHRVparams.m) sets up global variables that deal with thresholds, window
settings, noise limits, and spectral analysis limits (listed in appendix C). The default parameters are as used
in this article. However, we strongly recommend the user consult an expert to identify a reasonable choice
of parameters for their population. For example, children or smaller animals will require significantly
different thresholds on almost all parameters.

2. Dataidentification and formatting is then the next step. The toolbox does not assume any format of data,
except that the RR interval data are two equal length vectors (time and RR interval in units of seconds).
Additionally, the ‘raw’ ECG, blood pressure waveform and photoplethysmographic/pulsatile data
should be in the standard physical units (mV, mmHg or normalized units respectively). Note that we
have included native support for loading WFDB-compliant annotation files (often denoted by an ‘atr’
file extension on PhysioNet). However, we have deliberately dissociated the toolbox from any library
dependencies outside of the required MATLAB toolboxes (listed in appendix A).

3. If raw waveforms are to be analyzed, the QRS complex or pulsatile beat onsets must be detected first using
one of the in-built beat detectors (jgrs.m, wabp.m, gppg). We do supply other ECG beat detectors such as
sqrs and wqrs for benchmarking and signal quality analysis, but we do not suggest using the results derived
from their use unless the input data is perfectly clean.

4. Subsequently, the signal quality of the raw waveform data (either windowed or beat-by-beat) must
be evaluated. A signal quality index (SQI) is calculated on a rolling window (Defaultis 10s, with one s
increment, HRVparam.sqi.windowlength = 10 and HRVparams.sqi.increment = 1) for the duration of the
ECG waveform using bsqi.m, or on a beat by beat basis for blood pressure and pulsatile data using jsqi.m
and PPG_SQI_buf.m respectively. HRV analysis should not be performed on noisy data (data that drops
below some predefined threshold—HRVparam.sqi.LowQualityThreshold = 0.9 by default) that leads to
false positive beat detections.

5. If desired, ventricular fibrillation/ventricular tachycardia (VE/VT) can be detected on the waveform based
on the method discussed in section 3.2.3.

6. The time series is next converted to RR intervals by taking the consecutive differences of the beat locations
in contiguous data (where segments have not been removed). If the user desires to use RR interval data
instead of the raw waveforms, the RR interval time series can be loaded into the HRV Toolbox directly,
although signal quality and VF detection cannot then be performed.

7. Before calculating HRV statistics, arrhythmic and noisy periods of data must be removed. Once the time
series is in interval form, atrial fibrillation classification and ectopy (premature ventricular contraction
(PVC)) can be performed on the RR interval time series. Any data that is deemed undesirable for HRV
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Table 1. Summary of functionalities of various HRV toolboxes. See section 3 for definition of HRV metrics.

PhysioNet HRV

toolkit PhysioNet
Software (v 10.5.24) Cardiovascular Signal Kubios Kaplan Vollmer
origin — (last update 4 Toolbox (v3.0.2) (last update 3 (v 0.98 last
|Functionality ~ August 2009) (v 1.0) (premium) February 1998)  update 4 October 2017)

HE LF/HE Total

HE LF/HE, total power,

SDANN, SDNNI, SD1,

HE total power,

Data formats Intervals or Intervals or waveform  Intervals or waveform  Intervals Intervals or waveform

accepted waveforms

Dependencies ~ WFDB Libs None None None WEDB Libs (MATLAB
(C Version) Version)

Waveforms ECG, ABP ECG, ABP, PPG ECG None ECG

analyzed

Can operate Yes Yes No Yes Yes

independent

from GUI

Open-source Yes Yes No Yes Yes

Preprocessing  Intervals that Intervals that vary more Proprietary and Statistical Filter function available
vary by more than 20% from the me- unknown outlier removal  but not integrated in
than 20% of the  dian interval measured and spline HRV metric calculations
average interval  over five interpolation
measured on 20  intervals before and af-
beats before and  ter the current interval
after the and nonphysiological
current interval  intervals are removed
are removed (default RR > 2s or

RR < 0.3755)

Simulator None rrgen.c None makerr.m None

HRYV metrics Mean NN, Mean NN, SDNN, Mean NN, SDNN, Mean NN, Mean HR, SDNN,
SDNN, pNN50,  pNN50, pNNxx, PNN50, pNNxx, SDNN, pNN50,  pNN50, pNNxx, RMSSD,
pNNxx, RMSSD, RMSSD, skewness, RMSSD, VLE LE, HE, pNNxx, RMSSD, VLE LE, HE LF/HE, total
ULE VLE LF, variance, ULF, VLE, LF,  LF/HE, total power, VLE LE HE LF/  power, SD1, SD2,SD2/

SD1, DFA, ApEn,

Power, SDANN, SDANN, SDNNI, SD1, SD2, SD2/SD1, DFA, SDANN, SD1, triangular index, TINN,
SDNNI, MSE, SD2, SD2/SD1, DFA, ApEn, SampEn, MSE, SD2,SD2/SD1,  StDev of successive dif-
DFA ApEn, SampEn, MSE, triangular index, TINN, DFA, ApEn ferences (SDSD),
PRSA (AC and DC), peak frequency, ECG correlation dimension
HRT derived respiration, (CD), euclidean distance

recurrence plot analysis

based on relative RR

intervals

analysis (arrhythmia, low SQI, ectopy, artefact, noise) is excluded from analysis and HRV metrics are
calculated on the remaining data (NN intervals).

A high-quality analysis of HRV starts with a thoughtful selection of data and input parameters. The length of
the data source, the appropriateness of the method and extent of preprocessing, and the metrics to be generated
all must be considered before, during, and after analysis. Poor choice of analysis parameters can result in the gen-
eration of erroneous results that are representative of noise instead of physiology. The following sections address
the most common considerations of any HRV analysis. For a more detailed overview of the signal processing
issues related to HRV, we refer the reader to Clifford et al (2006).

A set of demonstration files (listed in appendix D) are made available to the user for testing the toolbox and
verifying the correct ‘installation’ of required MATLAB packages.

3.2. Waveform preprocessing routines

3.2.1. Peak detection

The toolbox can accept electrocardiogram (ECG), blood pressure (ABP), and photoplethysmogram (PPG) data
and has validated beat detectors for each of these signals. The available beat detectors for ECG include MATLAB
versions of the PhysioNet tools sqrs.c (Engelse and Zeelenberg 1979, Moody 2015b), wqrs.c (Zong et al 2003),
and jgrs (Behar et al 2014, Johnson et al 2014). The performance of these peak detectors has been shown to be
comparable to previously published detectors wqrs.c (Zong et al 2003), sqrs.c (Moody 2015a), and ggrs.c (Moody
2015a), available with the WFDB software package. (The data from the performance comparison is included
in appendix B for convenience (Vest et al 2017).) Interested readers can learn more about how each detector
functions from their respective citations.
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The MATLAB version of wabp.c, wabp.m,is used for pulse detection on ABP waveforms (Sun 2006). This pro-
gram detects the onset of each beat in the ABP signal using the slope sum function which amplifies the rising edge
of the waveform. The same algorithm was also adapted and optimized to be used on PPG waveforms, establishing
qppg.m as the toolbox’s PPG peak detector.

3.2.2. SQI

To determine if the data is of high enough quality to analyze, a quantitative and objective signal quality
measurement should be employed. The toolbox uses bsqi (Li et al 2008) for ECG, jSQI (Sun et al 2005, Sun 2006,
Johnson et al 2015) for ABP, and PPG_SQI_buf.m (Li and Clifford 2012) for PPG. Published by Li et al (2008),
bsqi provides the percentage of beats that match when detected by multiple annotation generators with highly
differing noise responses. The SQI is typically given as a percentage or normalized value, and a threshold below
which datais removed should be chosen (or rather optimized) and reported. jSQI measures the quality of the ABP
waveform on a beat by beat basis, returning a binary signal quality assessment based on a set of measured features
on the ABP pulse, including onset time and pressure values. psqi also measures quality of the PPG waveform on a
beat by beat basis based on beat template correlation. After determining the fit of the current beat to the template,
the beat is assigned an assessment of excellent (‘E’), acceptable (‘A’), or unacceptable (‘Q’).

3.2.3. VF/VT classification

Ventricular tachycardia/fibrillation detection is performed using a state-of-the-art method published by Li e al
(2014), VF_Classification.m. In the published method, a support vector machine (SVM) model was trained
on three annotated public domain ECG databases (the American Heart Association Database, the Creighton
University Ventricular Tachyarrhythmia Database, and the MIT-BIH Malignant Ventricular Arrhythmia
Database) and 14 different VF features. After training, the model was optimized for use of only two features on
5swindows.

3.2.4. PVC classification

Premature ventricular contraction (PVC or VPC) detection is essential to HRV analysis, although PVC detection
is not provided in any of the current open source toolboxes. In our toolbox we provide a new software package for
this which is based on the application of a convolutional neural network (CNN) to the wavelet transform (WT)
of the raw ECG (Li et al 2018). The WT is used to map short segments of a single channel (1D) ECG waveform
into a 2D time-frequency ‘image’. The images are then passed into the CNN to optimize convolutional filters
to improve classification. Using ten-fold cross validation, an overall F1 score of 84.94% and an accuracy of
97.96% was achieved on the MIT BIH Arrhythmia Database. The American Heart Association ECG Database
(AHA 2018) was then used as an out-of-sample validation database. Without retraining, the PVC detector
achieved an F1 score of 84.94% and an accuracy of 97.33% on this second database. We note that the identification
of ectopic beats (as opposed to noise identification or other abnormal beats) is needed for not only for abnormal
RRinterval removal but for the evaluation of heart rate turbulence, for which it is important not to confuse noise
with ectopy. Once an ectopic beat is identified, the researcher has the option to insert a ‘phantom’ beat or remove
the RR intervals corresponding to the ectopic beat (both the preceding and following RR interval).

3.2.5. AF classification

Atrial fibrillation (AF) is detected on the RR interval time series using the method published by Oster et al (Oster
and Clifford 2015). The method uses a support vector machine (SVM) trained on features from the RR interval
time series which reflect the unpredictability of the heartbeat. The classifier has been shown to produce an AUC
of 96.76% on windows containing 60 beats, 95.27% on windows containing 30 beats, and 92.72% on windows
containing 12 beats (Liu et al 2018, Li et al 2016). We recommend 30 s windows with a 10s overlap to minimize
the amount of data removed, and a bias of the data away from high variability.

3.3. RRinterval preprocessing routines
3.3.1. Non-sinus beat identification and removal/replacement
Additional preprocessing steps are taken to address noise and artefact that occur at a scale smaller than the signal
quality index window or in data that has already been translated into RR intervals. Since HRV metrics are meant
to measure the activity of the sinoatrial node, all intervals associated with non-sinus beats must be removed.
Outside of beat classification in the ECG, a notoriously difficult issue which is highly error prone or impossible
in non-ECG or noisy ambulatory conditions, non-sinus beats can be identified with reasonable certainty using
statistics of the RR interval time series itself.

In the absence of waveform data, we may identify non-sinus RR intervals as those that occur prematurely
or late. The most common method to identify such intervals (and the method employed in this work) involves
measuring changes in the current RR interval from the previous RR interval or an average of the last N intervals
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and excluding intervals that change by more than a certain percentage. In this toolbox (and the work presented
here) we chose N to be a default value of five (five beats before and five beats after the current interval) and the
standard threshold of 20%. We note however, that a threshold of 15% balances the need to remove aberrant data
with the desire to keep sinus beats and has shown to exclude at least 80% of ectopic beats and 93% of the noise-
induced (extrabeat) detections at the expense of 2% sinus beats in the MIT NSR database (Clifford 2002, Clifford
et al 2002). If the non-sinus beats are infrequent, the PhysioNet Cardiovascular Signal Toolbox has the ability to
perform interpolation to add a beat where a sinus beat would have been expected to occur. The term ‘interpola-
tion’ is usually referred to the process by which the unevenly sampled RR interval data is resampled to an evenly
sampled time series, usually prior to the use of the FFT. In this article, we follow Clifford ez al (Clifford 2002, Clif-
ford et al 2006) and use resampling to refer to the conversion to an evenly sampled time series (see section 3.3.3).

Additional checks and corrections include flagging and removing non-physiologic data (RR intervals above
2s or below 0.375s, outside of physiologically possible range) and data that is labeled as non-normal per a sup-
plied annotation file (if applicable).

3.3.2. Manual correction

The PhysioNet Cardiovascular Signal Toolbox does not enable manual correction of annotations or R peak
locations. Although automated peak detectors do not always accurately classify the location of QRS complexes,
manual correction of the location is a subjective procedure at best and inter-reader variability is a well-
documented phenomenon that contributes to the inability to reproduce results amongst studies. Statistics on
inter-reader variability have been measured to be greater than 20% (Sparrow et al 1988, Pinedo et al 2010, Zhu
et al 2014). We explicitly advise against ‘expert’ or ‘hand” modification of data, since it invalidates scientific
repeatability of the research.

The question of whether erroneous detections cause significant changes in specific HRV estimates has been
addressed previously (Clifford and Tarassenko 2005), but whether this affects a final downstream classifier is
another issue. The only real way to know is to stress test the classifier or predictor under varying levels of noise.
The toolbox provides robust and repeatable methods for dealing with noise, providing users with a level of trust
in the output. Automatic methods for dealing with erroneous detections and identification of unreliable seg-
ments of data are incorporated in the pre-processing tools and signal quality index stage of our toolbox (see sec-
tion 3.2.2).

3.3.3. Resampling

Resampling the RR interval time series involves interpolating through the signal (such as by linear or cubic spline
interpolation) and resampling at regular intervals specified by the resampling frequency. Most of the papersin the
field of HRV report on the use of resampling rates between 1 Hz and 10 Hz (Malik and Camm 1995, Hilton et al
1998, Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology
1996). Since the human heart rate can sometimes exceed 3 Hz (180 bpm), then a sample rate of at least 6 Hz may
be required to satisfy the Nyquist criterion. However, if one knows that the RR tachogram is unlikely to exceed
120 bpm then a resampling rate of 4 Hz is sufficient. Resampling introduces an implicit assumption about the
form of the underlying variation in the RR tachogram; for example, cubic spline techniques assume that the
variation between beats can be modelled accurately by a cubic polynomial.

3.3.4. Thresholding on data loss

A threshold can be applied for how much data can be thrown out before a segment is rendered unusable, but this
of course depends on the analysis being performed. Molgaard et al (Molgaard 1991) demonstrate how certain
time series metrics (such as RMSSD) are extremely sensitive to missed beats especially in patients with reduced
HRV and therefore it is extremely important to consider whether the data in such cases should be used at all.
There is much variation in how researchers address the issue of removed beats or missing data (due to noise,
missed detections, etc). The calculation of time domain metrics may withstand large losses of data, but the results
will vary based on the length of the segment analyzed.

3.4. Frequency domain analysis

3.4.1. Power spectral density estimation

For frequency domain calculations, the power spectral density (PSD) of the NN interval time series can be
generated using several methods, including: the Lomb periodogram, the Welch PSD estimate, the Burg PSD
estimate, and the discrete fast Fourier transform (FFT). FFT- or wavelet-based PSD estimates require resampling
to an evenly sampled time series, and cubic spline interpolation is often preferred to linear interpolation because
the latter increases LF power (due to flattening) and HF power (due to sharp edges at each beat). Resampling
functionality is provided to users in the toolbox. Error in the PSD estimate and frequency domain metrics
grows linearly with the amount of data removed. Previous studies have shown that losses of data up to 20%
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will not significantly alter results generated with the Lomb periodogram, as long as the data are not missing in
concentrated clusters (Clifford 2002 ). Moreover, Clifford and Tarassenko (Clifford and Tarassenko 2005) showed
that although phantom beat insertion does provide marginal improvements for FFT-based metrics, using more
appropriate techniques that can handle unevenly sampled time series (such as the Lomb periodogram (Lomb
1976, Scargle 1982, Press et al 1992)) are far superior. We therefore do not recommend the use of interpolation,
phantom beat insertion, or techniques that require evenly sampled time series such as the FFT and wavelet
analysis. Thus, we use the Lomb periodogram as the default method for frequency analysis.After the PSD is
calculated, various frequency domain HRV metrics are calculated. The sum of power in the various frequency
bands is calculated as is the total power in the spectrum. These spectral metrics can be normalized to the variance
of the NN interval time series, or to another measure. As stated above, many researchers normalize the sum of
the power spectral density plot to variance because of the mathematical equivalency of the two. The choice of
normalization is up to the user, but explicitly specified in the set-up of the analysis. All PSD estimates calculated
by the HRV Toolbox described here can accept frequency bin size specification, which improves control over the
reproducibility of the resulting analysis.

We note that some researchers work in the ‘beatquency’ domain in order to avoid resampling issues. How-
ever, missing data due to poor QRS detection or data excision due to noise disrupts this sequence and leads to false
peaks in the spectra. Additionally, the axes are then a function of the data itself and causality/stability of the met-
ric becomes an issue. We note that it is unclear whether several ventricular beats could be replaced by estimates
of sinus beats without causing significant issues, but in reality, the baroreflex response due to ectopy (which is
exploited by heart rate turbulence measures) creates a nonstationarity in the time series. Therefore, any analysis
using methods that assume stationarity should be truncated at such a point and restarted after the discontinuity.

In summary, if the incidence of artifact is high within a given segment then it is preferable to eliminate the
segments from the analysis. If the incidence of artifact is low, removal of the artefact without replacement is rec-
ommended (Clifford and Tarassenko 2005). The exact regions of data removed and percentage of removed or
missing data should be reported.

3.4.2. Frequency bands for spectral content estimation
The frequency bands of interest for analyzing HRV are generally defined as

ULF—Ultra Low Frequency: 0.0001 Hz < ULF < 0.003 Hz
VLF—Very Low Frequency:  0.003 Hz < VLF < 0.04 Hz
LF—Low Frequency: 0.04Hz < LF < 0.15Hz
HF—High Frequency: 0.15Hz < HF < 0.4 Hz

The frequency bands are thought to capture different physiological mechanisms, but the bands can be rede-
fined and do not perfectly map to a particular physiological process (Cerutti et al 1995). The bands can also shift
lower in the case of a very fit clinical study population with lower baseline heart rates, or higher in the case of a
pediatric or adolescent clinical study population with higher baseline heartrates. It is generally accepted in the
clinical community that the HF band is mostly a measure of the parasympathetic activity (Cerutti et al 1995) with
some sympathetic activity, while the LF band contains mostly sympathetic activation (Eckberg 1997). Research-
ers may want to measure the power in the HF and LF frequency bands as a measure of sympathovagal balance.
The LF/HF ratio is used often and simplifies the units of the measurement (i.e. it is unitless). However, we note
that this ratio can change depending on whether the power is estimated in the logarithmic domain or not. The
PhysioNet Cardiovascular Signal Toolbox defaults to normal domain and not logarithmic domain.

3.4.3. Normalization method

Common normalization factors used for HRV metrics include the length of the data segment analyzed and the
variance of the NN interval data. Variance is mathematically equal to total power of the NN interval time series,
so many researchers normalize the total power by dividing by variance. No matter the normalization method, itis
important that the chosen method is reported because it can contribute to inter-study differences.

3.5. Length of data

The user needs to decide if a long-term (i.e. ~24 h or longer) or short-term (i.e. ~5min) recording is desired.
(This can be defined by modifying the HRVparams.windowlength and HRVparams.increment parameters in the
initialization file.) However, certain considerations and limits should be kept in mind. The choice depends on
the research being performed and the availability and quality of data. Long-term recordings capture circadian
rhythm variations that have been valued for diagnostic value (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology 1996) and short term metrics have been shown to
be capable of assessing neurological activity (Malik and Camm 1995, Task Force of the European Society of
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Cardiology the North American Society of Pacing Electrophysiology 1996). Confounders for long-term HRV
metrics can include temperature (Malik and Camm 1995), quality of sleep (Cooper et al 2000), and large gaps in
data (Clifford 2002). Moreover, short-term HRV can be influenced by changes in mental, emotional, or physical
state (Bernardi et al 2000). Both long- and short-term recordings can suffer when data quality is low and only a
fraction of the recording is useable, but to different extents. Care should be taken to control for these confounders
when possible, and to assess their influence on the results when not.

The length of data analyzed has implications on the appropriateness of the HRV metrics being employed.
In order to choose the best window size for the given analysis, the researcher must balance the requirement of
stationarity (if required) versus the time required to resolve the information present. For most time domain
HRV statistics, previous researchers have recommended long-term recordings. Haaksma et al’s (1998) study led
to recommendations of 20 h of data be collected to estimate time domain variables or for total power (calculated
between 0.0001 Hz and 0.4 Hz) calculations (Haaksma et al 1998). The Task Force on standards in HRV (Task
Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology 1996) rec-
ommends applying frequency domain methods to recordings at least 10 times the inverse of the lower frequency
bound of the investigated component, but no longer. This is to ensure stability of the signal. During a short-term
period, the data can be considered to be stationary or quasi-stationary and is therefore amenable to estimation
of the power spectral density (PSD). However, it is unlikely that the RR interval time series remains stationary for
more than a few minutes, and this makes the above recommendation rather impractical.

As an example, if the research is to determine if the RR interval time series contains a 0.01 Hz oscillation,
at least 100s of data (the length of one period of a 0.01 Hz oscillating signal) is necessary, although in practice
300s or more are needed. The European and North American Task Force on standards in HRV (Task Force of
the European Society of Cardiology the North American Society of Pacing Electrophysiology 1996) suggested
that the shortest time period over which HRV metrics should be assessed is 5 min. This results in a limitation of
the lowest frequency that can be resolved being 1/300 ~ 0.003 Hz (just above the lower limit of the VLF region).
In practice the limit is higher since noise affects the estimation. A 5min segment can therefore only be used to
evaluate higher frequency bands, i.e. LF and HE. The upper frequency limit of the highest band for HRV analysis
is generally quoted as being 0.4 Hz (Malik and Camm 1995), but in reality, frequencies can be estimated (only)
up to the reciprocal of twice the shortest RR interval. In general, we quote the average Nyquist frequency as

fn = 3ar- = 77 where At,, is the mean RR interval, T is the length of the window in seconds and N the number
of RR intervals in the window. Thus, a 5 min window (T = 300) leads to the constraint of N/2 T > 0.4 Hz on the
number of points and hence to a lower limit on N of 240 beats (an average lower heart rate limit of 48 bpm if all
beats in a 5min segment are used) (Clifford 2002, Clifford et al 2006).

Finally, it should be noted that metrics should only be compared between subjects when the data lengths are
the same (Clifford 2002) and they cover the same period of the circadian cycle (Clifford and Tarassenko 2004,
Clifford et al 2006). The latter is particularly important, because diurnal or momentary changes in activity, both
psychophysical (e.g. after lunch, exercise or a stressful event like driving) and consciousness-related (such as

sleep) can be one of the most dominant factors confounding any HRV comparison.

3.6. Longrange scaling metrics: DFA and MSE
3.6.1. Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) is included as a part of this toolbox as a method for quantifying long-term
self-similarities in RR interval time series (Peng et al 1995). Such self-similarity can be described as a 1/f” scaling
in the log—log power-frequency spectrum, where the (s the slope of this spectrum. An alternative method used
to compute the fractal scaling exponent, & = (3 + 1)/2, is by using the DFA, which is briefly summarized in the
following paragraph. For a detailed description see Peng et al (1995).

Given a time series x(n1), the first step of DFA consists of integrating the original time series in order to obtain
a self-similar process y(k), y (k) = ELI (x (i) — X), where X is the mean of x. The next step consists of dividing
the integrated time series into boxes of equal length 7 and for each box performing a least squares line fit to the
data. The time series is then detrended by subtracting the local trend y,,(k) in each box. At this point, for a given
box size m, the characteristic size of the fluctuation F(m) for this integrated and detrended time series is calcu-
lated by

Fm)= [ S0 — (B
k=1

The procedure is repeated over different time scales (box sizes) to provide a relationship between F() and the
box size m.

The code for DFA included in the PhysioNet Cardiovascular Signal Toolbox (i.e. dfaScalingExponent.m), pro-
vided by McSharry (McSharry and Malamud 2005), has been integrated into the toolbox with no significant
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modification. New features introduced in this version include an option for the user to change the minimum and
maximum box sizes and a midBoxSize parameter for the optional computation of scaling exponents «; and «,.
(Default parameters in the code mirror dfa.c and are set to: minBoxSize = 4; maxBoxSize = L/4, where L is the
length of the input series; and midBoxSize = 16.) (Moody 2015a) The scaling exponent, o, reflects power related
to short-term fluctuations (LF and HF) and a, reflects power related to long-term fluctuations (VLF and ULF)
(Willson et al 2002).

3.6.2. Multiscale entropy

Multiscale entropy (MSE) analysis was first introduced by Costa et al (2002, 2005) as a method for analyzing
the dynamic complexity of a system by quantifying its entropy over a range of temporal scales. Traditional
methods use entropy-based algorithms to quantify the degree of regularity of a time series. However, there is no
straightforward correspondence between regularity and complexity. MSE relies on sample entropy (SampEn)
(Richman and Moorman 2000), which quantifies the likelihood that two sequences similar for m points remain
similar at the next point (i.e. match within a tolerance of r), not taking into account self-matches. This metric is
included in the PhysioNet WFDB libraries and therefore is provided in our toolbox.

MSE can be summarized as a two-step procedure. The first step consists of generating a coarse-grained time
series by averaging the data points of the original time series x(#) within non-overlapping windows of increasing
length, 7. For scale one, the coarse-grained time series y(1) corresponds to the original signal. The length of the
coarse-grained time series is M/, where M is the length of x(7). The second step consists of computing the sam-
ple entropy on each coarse-grained time series.

All the parameters used for MSE analysis can be changed in the InitializeHRVparametrs.m file (Default set-
tings include the following: RadiusOfSimilarity = 0.15 (r), patternLength = 2 (m), maxCoarseGrainings = 20
(maxT)).

Two implementations of the SampEn algorithms are provided, a normal speed and a fast speed. The fast
speed version is an implementation of the traditional SampEn (FastSampEn.m) which provides equivalent
results. Currently the program switches automatically to FastSampEn.m when the size of the time series is less
than 34 000 points. This default was chosen based on the memory required for MATLAB R2017a running on an
Intel Core i7 processor equipped with 16 GB memory to execute the function. The user can modify this param-
eter in the function ComputeMultiscaleEntropy.m.

3.7. Phase-rectified signal averaging

Phase-rectified signal averaging (PRSA) is a method used for identifying short-term quasi-periodicities that are
normally masked by non-stationarities and provide information on the deceleration (DC) and acceleration (AC)
capacity of the heart (Bauer et al 2006). The code made available in the PhysioNet Cardiovascular Signal Toolbox
implements the simplest version of the PRSA algorithm, where the anchor points correspond to increases in the
signal (or decreases): x; > x;_1(x; < x;—1).Inordertoavoid anchor pointsatthe positions of artifacts,a threshold
parameter ensures that increases or decreases larger than such a threshold are discarded (Default = HRVparams.
prsa.thresh_per = 20%; as suggested in Campana et al (2010)). The length (L) of the PRSA signal before and after
the anchor points can be changed in the initialization file and should exceed the period of the slowest oscillation
that is of interest (Default = HRVparams.prsa.win_length = 30). Wavelet analysis using Haar mother wavelet
function is employed to derive the AC or DC from the central part of the PRSA signal (with scale parameter s
defined by HRVparams.prsa.scale = 2 by default):

S S

AC(DC):Zprsa(ZLS—i-i) _Zprsa(ZI;—i).

i=1 i=1

For a more detailed description of the algorithm we refer the reader to Bauer et al (2006).

3.8. Heartrate turbulence

Heartrate turbulence (HRT) is a method used to analyze the fluctuations in sinus-rhythm cycle length after PVCs
(Schmidt et al 1999, Bauer et al 2008). Two parameters are used to characterize the response of sinus rhythm to
a PVC: the turbulence onset (TO) and turbulence slope (TS). TO is used as a measure of the initial acceleration
after the PVC, and it is derived by comparing the relative changes of NN intervals immediately after and before a
PVC:

(NN4s 4+ NNij) — (NN_; + NN_,)

TO = 100 %
(NN_; + NN_;)

>

where NN+ is the ith sinus rhythm after the compensatory pause of the PVC and RR-indicates the coupling
interval of the PVC. The TO value is first computed for each single PVC (figure 1) and subsequently averaged to
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Figure 1. Visualization of HRT analysis using the PhysioNet Cardiovascular Signal Toolbox. Left (a) figure shows an example of
145 RR interval sequences (of 20 beats) taken from one patient, all aligned at the PVC (at RR interval three); the TO is computed
for each single PVC and subsequently averaged to obtain the value characterizing the subject. Right (b) figure shows the average
tachogram used to compute the TS. TS is the maximum of regression slopes (solid red line) computed for five consecutive NN
intervals starting at RR interval seven (3rd NN interval after the compensatory pause). In the example, the regression lines for RR
intervals seven through eleven corresponding to maximum slope is shown (red line).

obtain the value characterizing the patient (Bauer and Schmidt 2003). TO can be also calculated on the averaged
tachogram which leads to very similar values (Bauer et al 2008).

The second measure, the TS, quantifies the deceleration rate after a PVC. TS is the maximum positive slope of
aregression line assessed over any sequence of five subsequent sinus rhythm NN intervals within the first 20 sinus
rhythm NN intervals after a PVC (Bauer et al 2008). In figure 1, the red line corresponds to the line of regression
fit to the five consecutive NN intervals that result in the largest gradient.

TO values below zero and TS values above 2.5 are considered normal, and abnormal otherwise (i.e. a healthy
response to PVCs is a strong sinus acceleration followed by a rapid deceleration (Clifford et al 2006). Because the
HRT pattern might be masked by heart rate variability (HRV) of other origins, the TS is computed on the PVC
tachogram, obtained by aligning and averaging the R—R interval sequences surrounding isolated PVCs, for a suf-
ficientnumber of PVCs (i.e. >5) (Bauer et al 2008). Despite this accumulation of data around numerous PVCs, per-
forming HRT analysis on very short ECG recordings may not lead to meaningful results (Berkowitsch et al 2004). It
isimportant to ensure that the sinus rhythm preceding and following a PVCis free of arrhythmia, artifacts, and false
beat classification due to artifact. Thus, a set of exclusion criteria was implemented according to Clifford et al (2006):

Remove all RR intervals <300 ms or >2000 ms.

Removeall RR, where [RR,,_; — RR,| > 200 ms.

Remove all RR intervals that change by more than >20% with respect to the mean of the five previous
sinus intervals (the reference interval) (Alternative: RR intervals that change by more than >20% with
respect to the previous one).

Only use PVCs with a minimum prematurity of 20%.

Exclude extrasystolic pauses greater than 20% longer than the normal interval.

The function HRT_Analysis.m computes the TO and TS value given a time series of RR intervals and related
labels (annotations) following the PhysioNet standard®, the number of NN intervals to consider before the PVC
(BeatsBefore), and after the PVC plus a compensatory pause (BeatsAfter). The function also returns the number
and position of the PVCs used for the analysis, the average tachogram, and the graphical representations of the
HRT analysis shown in figure 1.When computing the average tachogram or the mean TO, the user should aim to
include a minimum of 15-20 tachograms containing a single PVC.

4. Methods

In order to elucidate the consequences of divergent approaches to HRV analysis, a series of benchmarking studies
were performed that systematically vary methodology and input data. The studies were conducted on sample
data using the PhysioNet Cardiovascular Signal Toolbox and the four other HRV toolboxes described in table 1.

6 www.physionet.org/physiobank/annotations.shtml
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Table 2. Differences between HRV analysis methods in the five HRV toolboxes benchmarked. Default options were selected (L = data
length; t,,, = last time index in timeseries; f,,,;, = first time index in data series; Fs = sampling frequency; PSD = power spectral density
estimate; FFT = fast Fourier transform, ofac = desired oversampling factor in computing the Lomb periodogram, hifac = multiplier of
the average Nyquist frequency that defines the sequence of frequencies in computing the Lomb periodogram).

PhysioNet Cardiovascular

PhysioNet HRV Toolkit Signal Toolbox Kubios Kaplan Vollmer
QRS gqrs, wqrs, sqrs jqrs, wqrs, sqrs Unknown No QRS (Requires WEDB)
detection QRS detection
detector
Noise and  Identify successive intervals Identify successive intervals Identify ‘Glitches’ None
artifact whose difference exceeds whose difference exceeda  successive identified using AR
identi- threshold (20% of the threshold (20%); intervals model
fication value of adjacent 20 Identify PVCs, AF, VF; whose
method intervals on either side); Identify Non-physiologic difference
identify non-physiologic Intervals (RR < 0.3755) exceed a
intervals (RR < 0.4s) (RR > 25) threshold
(RR > 25s) (20%)
Artifact Remove non-physiologic Remove RR intervals that Interpolate  Spline None
correction  RR intervals and intervals  exceed threshold through RR  Interpolation
method that exceed a threshold (default = 20%), PVCs, intervals through data
suspected AF/VF/VT, that exceed  labeled ‘glitches’
non-physiologic beats, and  a threshold
segments with SQI lower
than 0.9 (when applicable)
no interpolation
Frequency  df :df :df x2x L 053 ¢ To5d 1 05 g1 05 Bo:1: L Bo:1: M 47)
vector (Hz) df = 4(:,,,,,X1— o NFFT = 2Anextpow2(L)
Frequency  PSD PSD FFT FFT FFT
Transfor- Lomb periodogram Lomb periodogram Welch
mation periodogram
Power Squares PSD and sums bins  Squares PSD and sums Sums bins  Squares then Doubles FFT and sums
Calculation  in band bins in band in band doubles FFT and bins in band
sums bins in band
Normaliza- \/% \/% Normalizes ~ Normalizes to Normalizes to length of

ti . . to the total
ron nout = 0.5 % ofac * hifacx  nout = 0.5 * ofac * hifac o the fota

L ofac = 4, hifac =2 L ofac = 4, hifac =2

square of length data segment analyzed

power of data segment

analyzed

These toolboxes were chosen for their popularity, open-source availability, regard amongst experts in the field,
or a combination of these factors. The studies in the benchmarking analysis, their purpose, and their sub-studies
are described here.

4.1. Study A: comparison to aknown standard LF/HF ratio
The aim of Study A was to compare the results generated by each toolbox on one HRV metric, the LF/HF ratio,
using a known standard value. The LF/HF ratio is sensitive to small differences between populations. A time series
with a known LF/HF ratio was generated using an RR interval generator detailed in Clifford (2002), hereafter
called LFHFGEN. The default options for each toolbox were used to simulate the results achieved by a typical
user of the HRV toolboxes, employing the software ‘off the shelf’. (Studies have shown up to 95% of software
users will not alter the default settings (Spool 2011).)

The LE/HF ratio generated from the various toolboxes were compared by calculating the normalized root
mean square error (NRMSE) using the method of mxm.c,a WFDB routine that calculates the root mean squared
error and normalizes it per the equation

E :1:] (xp —x5)?
NRMSE = "V T s

where 1 equals the number of windows considered, Xr is the metric generated by the test toolbox on the ith
window, and Xj is standard compared against. The NRMSE value is reported back as a percentage. Default

parameters and settings for each toolbox (per table 2) were used unless otherwise specified in the Methods.

One hundred synthetic 300s RR interval time series were created with randomly assigned LF/HF ratios
between 0.5 and 10 using the RR interval generator LFHFGEN. This generator produces an RR time series evenly
sampled at 7 Hz composed of two sine waves at specific LF and HF frequencies (here we use the defaults of 0.095 Hz
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and 0.275 Hz respectively). The frequencies are then slowly shifted to smear out the LF and HF frequency bands
to generate a specific known LF/HF ratio. Finally, the time series was unevenly sampled in a realistic manner by
searching for (and keeping only) each consecutive RR interval thatis at least as large as the time from the previously
selected RR interval. The time series were then analyzed with the various toolboxes according to table 2 to estimate
the LF/HF ratio and the NRMSE was calculated using a standard that is found before frequency shifting or down-
sampling. Two standards were used, one generated using the FFT and one generated using the Lomb periodogram.
The PhysioNet toolboxes were compared to the Lomb standard and the Kubios, Kaplan, and Vollmer toolboxes
were compared to the FFT standard. This provides a conservative outcome of the result.

4.2. Study B: the significance of collective processing differences

To expand the comparative analysis performed in Study A, the aim of Study B was to compare the results of the
toolboxes on a wider selection of commonly assessed HRV metrics on both synthetic data and real patient data.
The metrics generated include mean NN interval, PNN50, RMSSD, SDNN, HE, LF, LE/HF ratio, and total power.
The default options for each toolbox were used to simulate the results achieved by a typical user of the HRV
toolboxes. In addition to the default parameters, the artifact correction option (default: off) was also enabled on
the Kubios toolbox analysis in order to determine the effects on HRV metrics. Each subsequent trial performs an
evaluation on data with increasing amounts of noise. Trial 1 compares the HRV metric results from an analysis
of synthetic RR interval data. Trial 2 compares the HRV metric results from an analysis of patient data from the
MIT Normal Sinus Rhythm (NSR) database (Goldberger et al 2000). Trial 3 compares the HRV metric results
from an analysis of patient waveform data from the MIT BIH Arrhythmia database (Moody and Mark 2001). The
standard in all three trials was taken to be the PhysioNet HRV Toolkit, the most well published and validated of
the available toolboxes.

4.2.1. Trial 1: synthetic RR interval data analysis

One hundred segments of synthetic RR interval data were generated using RRGEN (a method developed by
McSharry er al (2002, 2003)) with the probability of ectopy set to 0.03% (Pe = 0.0003) and the probability of
noise set to 0.48% (Pn = 0.0048). The segments were analyzed in full and were 600s long. No segments were
excluded from the analysis.

4.2.2. Trial 2: MIT NSR database RR interval data analysis
All 18 RR interval records from the MIT NSR database were segmented into 5 min windows with 4 min of overlap
between windows, resulting in 23 103 windows. Non-normal annotations were removed.

Windows with possible AF (according to our detector described in section 3.2.5) or with greater than 15% of
the data missing were not analyzed, reducing the dataset to 22 230 segments. An additional 182 segments, con-
taining mostly noise and artifact, were eliminated by the PhysioNet HRV Toolkit as un-analyzable.

To determine the cause of diverging results from the toolboxes, a step by step comparison was performed
using the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal Toolbox. The MIT NSR database
was analyzed and normalized RMS error was calculated after each step of the analysis for each HRV metric. In
the interest of using cleaner data to determine the cause of processing differences, windows with greater than
5% of the data missing were not analyzed. The windows were minimally preprocessed with the PhysioNet HRV
Toolkit and the data was then fed into both the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal
Toolbox.

The first comparison (Comparison 1) involved only varying the toolbox for calculating HRV statistics. This
involved keeping the preprocessing steps and definition of the frequency bins constant. The frequency bins were
assigned by the PhysioNet HRV Toolkit. The mean was removed before calculating spectral metrics. Mean NN
interval, PNN50, RMSSD, SDNN, HE, LE, LE/HF ratio, and total power were calculated on each window over the
entirety of the 24 h recording for each patient (n = 18). The spectral metrics were calculated using the Lomb-
Scargle periodogram and normalized per the method in the C implementation of the function in Numerical
Recipesin C (Press etal 1992).

The second comparison (Comparison 2) involved varying the toolbox for calculating HRV statistics and fre-
quency bin assignment. The third comparison (Comparison 3) involved varying the toolbox for calculating HRV
statistics, frequency bin assignment, and preprocessing algorithm.

4.2.3. Trial 3: waveforms of the MIT BIH arrhythmia database

All 48 records from the MIT BIH Arrhythmia Database (Goldberger et al 2000) were processed using the
waveform analysis methods in the respective toolboxes which possess this functionality (namely the PhysioNet
HRV Toolkit, Kubios, PhysioNet Cardiovascular Signal Toolbox,and Vollmer). Each approximately 30 min record
was broken up into five minute segments with four minutes of overlap between them and then HRV metrics were
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estimated on each segment. Segments from all 48 records were compiled and NRMSE was computed on the
compiled segments.

4.3. Study C:longrange scaling metrics—DFA

The aim of this study was to compare the results from the PhysioNet HRV Toolkit’s detrended fluctuation
analysis (DFA) algorithm, dfa.c, to the remainder of the toolboxes described in table 1. One hundred segments
of synthetic RR interval data were generated using RRGEN (McSharry ef al 2002, 2003) with the probability of
ectopy and noise set to 0% (Pe = 0, Pn = 0). The segments were 24 h long and were analyzed in their entirety.
The same dataset was analyzed for Studies D and E. Default options were used for all the toolboxes. The effect of
different ranges of box size m used for the computation of the scaling exponents a; and «; was assessed as well as
the proprietary detrending option implemented by the Kubios toolbox.

4.4. StudyD:longrange scaling metrics—MSE
The goal of this study was to compare the results of MSE analysis of the PhysioNet Cardiovascular Signal Toolbox
and Kubios to the results generated with the PhysioNet HRV Toolkit. The Kaplan and Vollmer toolboxes do not
provide MSE estimates, so those toolboxes were not analyzed in this study. The effects of detrending options
on the entropy values calculated with Kubios were also compared (Kubios MSE calculations use the default of
detrending).

The MSE implementation from the PhysioNet HRV Toolkit is preset to use a default pattern length of m = 2
and a similarity criterion of r = 0.15, the same defaults as in the PhysioNet Cardiovascular Signal Toolbox. The
maximum number of coarse-grained time series is defined by the parameter 7,,,,, which by default is set to be

equal to 20. The scaling exponents of synthetic RR interval data were also estimated.

At each scale, the relative error, defined as € % ‘Xs\ , where X7 is the metric generated by the test toolbox

and X, is standard compared against, was computed.

4.5. StudyE: PRSA

The aim of this study was to show equivalency between the PRSA algorithm from the PhysioNet Cardiovascular
Signal Toolbox and code from the original authors of PRSA (Bauer et al 2006). PRSA is not available in any other
toolbox, so no other comparisons are made. One hundred synthetic signals, previously used for Studies C and D,
were used for the comparison of the code included in the PhysioNet Cardiovascular Signal Toolbox to the code
provided by Bauer et al (2006) in order to ensure that the code between the two were consistent and free from
implementation errors.

4.6. StudyF:HRT

The aim of this study was to show equivalency between the HRT algorithm from the PhysioNet Cardiovascular
Signal Toolbox (HRT_Analysis.m) and the HRT code provided by Raphael Schneider (Bauer e al 2008). No other
toolboxes perform this analysis, so no other comparisons were performed. The comparison with Schneider’s
code was performed on data from the MIT NSR database (Goldberger et al 2000). Since the two code bases under
evaluation use different preprocessing methods, both preprocessing methods were used in different tests: (i)
removal of RR intervals that change by more than >20% with respect to the mean of the five last sinus intervals
and, (ii) removal of RR intervals that change by more than >20% with respect to the previous interval.

5. Results

5.1. StudyA

The PhysioNet Cardiovascular Signal Toolbox and Kaplan toolboxes achieved negligible error in the LF/HF ratio,
with errors between 3.5% and 5.7% (table 3). (The rationale to indicate these are negligible here is that the LF-HF
ratio changes by approximately 20%-100% during different activities or between different medical conditions
(Bernardi et al 2000, Otzenberger et al 1998).) Although the Kaplan toolbox exhibited the lowest average error
in the LF/HF ratio estimate on this dataset compared to the known LF/HF ratio, it not possible to say that it has
definitively performed in a superior manner to the Lomb periodogram for two reasons. First, the difference
was only around 2%, which is trivial in terms of the LF/HF ratio. Second, the simulated data was a synthetically
generated combination of a sine waves whereas real HRV data is much more complex with stochastic noise and
nonstationarities that may have been exacerbated by the resampling procedures required by the FFT.

Kubios’s default calculation using FFT results in a 33.6% error. When the option is engaged to use the Lomb
periodogram method the error drops to 6.1%. Vollmer’s toolbox has the highest error at 58.2%. We note that
these errors may be consistent offsets, which, although they prevent comparison between studies, can still pro-
vide valid comparisons within studies. Nevertheless, we strongly suggest using a toolbox with settings that pro-

13



10P Publishing

Physiol. Meas. 39 (2018) 105004 (23pp) AN Vestetal

Table 3. Study A. The normalized RMS error generated among different toolboxes on LF/HF ratio when compared to a known (artificial)
standard.

PhysioNet HRV PhysioNet Cardiovascular ~ Kubios FFT Kubios Lomb
toolkit (%) Signal Toolbox (%) method (%) method (%) Kaplan (%)  Vollmer (%)
LF/HF 25.0 5.7 33.6 6.1 3.5 58.2

Table4. Study B—Trial 1. The normalized RMS error (or discrepancy) generated on various HRV metrics compared to the metric
calculated by the PhysioNet HRV Toolbox on synthetic data.

PhysioNet Kubios: no Kubios: Kubios: no Kubios:

Cardiovascular artifact artifact artifact artifact

Signal Toolbox correction correction correction correction Kaplan  Vollmer
Metric (%) FFT (%) FFT (%) Lomb (%) Lomb (%) (%) (%)
Mean NN 0.4 0.4 0.4 0.4 0.4 0.4 0.4
pNN50 4.2 4.9 4.6 4.9 4.6 4.2 4.2
RMSSD 2.0 1.1 1.0 1.1 1.0 1.9 1.9
SDNN 9.4 34.5 34.5 34.5 34.5 8.3 9.3
VLF 48.7 94.0 94.0 87.5 87.5 26.4 4.3 x 10°
LF 28.5 36.1 36.1 51.4 51.2 39.4 1.1 x 10°
HF 70.8 38.0 38.0 34.1 34.3 45.6 1.6 x 10°
TTLPWR 49.3 65.5 65.5 59.2 59.2 11.4 6.0 x 10°
LF/HF 137.1 102.9 102.9 114.4 114.4 139.7 35.5

vides an error below 5% or 10%, since this may still allow the user ability to distinguish between mental and
physical activities. Note that from here on in this article, all comparisons will be made with the PhysioNet HRV
toolkit (written in C). This is not because this is necessarily correct, but because it is the most well-known open
source HRV toolbox, and one to which we would like to closely map in order to allow the interchange of C and
MATLAB functions when computational efficiency is important.

5.2. StudyB

5.2.1. Trial I: synthetic data

The entire dataset of synthetic data was analyzed with no records eliminated. The calculated error between the
toolboxes when compared to the results from the PhysioNet Cardiovascular Signal Toolbox are shown in table 4.
Note that since the data are synthetic with no artifact, the artifact correction in the Kubios software leads to a
negligible difference to the results calculated with the same software and no artifact correction.

5.2.2. Trial 2: patient data
Of the 23103 segments created from the database, 22994 had annotations marked ‘N’ (normal). A total of
2835 segments were not analyzed because AF was detected (2366 segments) or too little data was present in the
segment (more than 5% of the window was missing or noisy).

The calculated error between the toolboxes when compared to the results from the PhysioNet HRV Toolkit
are shown in table 5. The PhysioNet Cardiovascular Signal Toolbox operates most closely to the PhysioNet HRV

Toolkit, as is seen by its low NRMSE values.

Although table 5 shows large differences exist for all toolboxes, the PhysioNet Cardiovascular Signal Toolbox
provided the closest correspondence to the PhysioNet HRV Toolbox. To determine the origin of the differences,
the PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit were compared side by side on the
MIT NSR database. In Comparison A, the PhysioNet Cardiovascular Signal Toolbox generated results which
were within 3.4% NRMSE of the PhysioNet HRV Toolbox (table 6) on all metrics tested. The metrics with the
highest error were PNN50 and RMSSD. The minor differences in these metrics can be largely attributed to the
fact that the PhysioNet HRV Toolbox removed additional data points on the edge of the windows compared to
the method by the PhysioNet Cardiovascular Signal Toolbox. To a lesser extent, the remainder of the error is due
to round off of constants that can be performed differently in MATLAB and in C (integers can be defined differ-
ently). None of these errors are clinically significant compared to any studies that have leveraged HRV metrics,
and therefore we consider the toolboxes equivalent in this benchmark test.

Frequency binning (Comparison B) added significant error to the calculation of spectral metrics. The LF/HF
ratio was least impacted by this effect, but the error still increased on this metric to almost 2%. Once the preproc-
essing was varied (Comparison C), the errors continued to climb.
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Table5. Study B—Trial 2. The normalized RMS error generated among different toolboxes on standard HRV metrics when compared to
the values of the same metrics calculated by the PhysioNet HRV Toolkit on expert beat-labelled RR interval data taken from the MIT NSR
database.

Kubios: no Kubios: Kubios: no Kubios: with

PhysioNet artifact artifact artifact artifact

Cardiovascular correction correction correction correction

Signal Toolbox FFT FFT Lomb Lomb Kaplan  Vollmer
Metric (%) (%) (%) (%) (%) (%) (%)
Mean NN 1.5 4.2 3.7 4.2 3.7 3.9 4.2
pNNS50 17.1 55.1 38.7 55.1 38.7 443 54.4
RMSSD 31.7 165.7 113.6 165.7 113.6 128.2 171.6
SDNN 18.3 67.1 58.4 67.1 58.4 52.3 71.1
VLF 67.3 158.6 159.5 880.9 157.0 146.9 2.5 x 10°
LF 90.2 298.2 184.0 802.2 200.4 184.8 6.6 x 10°
HF 163.6 1.9 x 10° 1.1 x 10° 961.7 555.9 785.4 1.4 x 10°
TTLPWR 71.0 325.0 217.9 711.5 155.7 186.8 4.6 x 10°
LE/HF 49.2 72.3 67.5 72.8 50.6 50.3 102.8

Table 6. Study B—Trial 2. The calculated differences between the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal
Toolbox as determined by the NRMSE method. Comparison A used identical settings for both toolboxes. Comparison B introduced the
variability due to the different frequency binning methods between the two toolboxes. Comparison C introduced the variability due to
preprocessing differences between the two toolboxes. N/A indicates the fact that trial B affected only spectral metrics.

Comparison — A B C

HRV metric | (%) (%)
Mean NN 0.0 N/A 0.6
pNN50 3.4 N/A 11.8
RMSSD 2.6 N/A 8.3
SDNN 0.0 N/A 10.0
VLF 0.0 8.6% 41.0
LF 0.0 3.8% 27.4
HF 0.0 4.0% 324
LE/HF ratio 0.0 1.8% 42.4
TTLPWR 0.0 4.8% 24.0

Table7. Study B—Trial 3. The NRMSE difference generated among different toolboxes on standard HRV metrics when compared to the
values of the same metrics calculated by the PhysioNet HRV Toolkit.

PhysioNet Kubios: with Kubios: with

Cardiovascular Kubios: no artifact artifact Kubios: no artifact artifact

Signal Toolbox correction FFT correction FFT correction Lomb  correction Lomb  Vollmer
Metric (%) (%) (%) (%) (%) (%)
Mean NN 2.1 8.8 8.5 8.8 8.5 11.7
pNN50 36.4 91.0 76.5 91.0 76.5 86.3
RMSSD 86.6 976.5 189.2 976.5 189.2 299.3
SDNN 74.1 1.3 x 10° 127.6 1.3 x 10° 127.6 166.0
VLF 243.6 8.0 x 10* 507.5 5.8 x 10* 401.7 1.0 x 10°
LF 603.3 4.2 x 10° 1.6 x 10° 2.3 x 10° 467.3 3.1 x 10°
HF 918.7 1.4 x 10* 1.1 x 10° 3.9 x 10° 601.1 5.8 x 10°
TTLPWR  380.9 1.1 x 10° 572.9 1.5 x 10° 352.1 2.1 x 10°
LE/HF 793.1 824.3 793.7 792.4 791.4 797.1

5.2.3. Trial 3: waveform data

The discrepancy between the toolboxes being tested when compared to the results generated by the PhysioNet
HRV Toolkit were calculated and are shown in table 7. Windows that did not meet minimal requirements for
the PhysioNet Cardiovascular Signal Toolbox were not analyzed, resulting in the loss of 92 out of 1248 windows.
Those minimal requirements include greater than 90% SQI and less than 15% of data lost to cleaning. Only the
Kubios software with artifact correction and Lomb frequency domain metrics compared with the PhysioNet

Cardiovascular Signal Toolbox in terms of mapping to the existing PhysioNet HRV Toolbox.
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Table8. Study C. The NRMSE generated among different toolboxes on DFA scaling coefficients v; and a; compared to the values
calculated by the PhysioNet HRV Toolkit.

PhysioNet Cardiovascular Kubios Kubios
Signal Toolbox (default settings) (no detrending) Kaplan Vollmer
(%) (%) (%) (%) (%)
o’ 1.5 5.4 0.6 0.7 0.1
a” 3.1 34.6 16.1 18.6 17.4

* Short-term scaling coefficient: all toolboxes 4 < n < 16.
® Long-term scaling coefficient: PhysioNet HRV Toolkit and PhysioNet Cardiovascular Signal Toolbox: 16 < 1 < N/4; Other toolboxes:
16 <n <64,
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Figure 2. Study C—results from DFA generated using Kubios with (a) detrending and smoothness priors (a; = 1.26,a; = 0.79)
and (b) without detrending (ov; = 1.29, v, = 1.12).

5.3. Study C:longrange scaling metrics—DFA

The differences between the toolboxes when compared to the results from the PhysioNet HRV Toolkit are
calculated in table 8. Note that the large difference for the coefficient cv, found for the Kubios software could
be a consequence of the default detrending option using the method called smoothness priors, which basically
corresponds to a time-varying high pass filter with f. = 0.035 Hz using default parameters. Figure 2 highlights
the effect of the detrending option on the estimation of .

5.4. StudyD:longrange scaling metrics—MSE

Figure 3 shows results for MSE computed on 24 h synthetic NN tachograms, which reports the relative error &
for each MSE scale calculated with the PhysioNet Cardiovascular Signal Toolbox and Kubios in comparison to
the MSE scale calculated by the PhysioNet HRV Toolkit. The error was shown to be lower than 0.0004 at all scales
for the PhysioNet Cardiovascular Signal Toolbox whereas the Kubios MSE implementation, with and without
detrending, shows significantly higher error.

5.5. Study E: PRSA

The results of this study show that the code implemented in the PhysioNet Cardiovascular Signal Processing
Toolbox provide the same results as the one provided by Bauer et al (2006). Both DC and AC measures on 100
synthetic signals generated using RRGEN achieve an average NRMSE of 0%.

5.6. Study F:HRT

Comparison of HRT algorithms on the MIT NSR database for the PhysioNet Cardiovascular Signal Toolbox
using the default filtering option against the code provided by Raphael Schneider (Bauer et al 2006) resulted in a
NRMSE value of 9.4% for the TO and 8.5% for the TS. Using the second filtering option (removal of RR intervals
that change by more than >20% with respect to the previous), as implemented in the original code provided by
Raphael Schneider, resulted in an NRMSE value of 6.5% for the TO and of 1.0% for the TS.
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Figure 3. Study D—plot of the mean relative error ¢ at different scales of multiscale entropy using the PhysioNet Cardiovascular

Signal Toolbox and Kubios with respect to results from the PhysioNet HRV Toolkit for 100 synthetic NN interval signals generated
using RRGEN (Pn = 0, Pe = 0). Error bars show standard deviation from the mean.
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Figure4. Study F—example of two consecutive PVCs in signal nsr010. Tachogram related to the second PVC contains the

compensatory pause CP of the preceding PVC and thus is excluded by the HRT algorithm implemented in the PhysioNet
Cardiovascular Signal Toolbox.

We investigated the reason of the larger error for the TO value using the second filtering setting. On the ana-
lyzed dataset, for some recordings, a larger number of NN intervals before and after PVCs have been ‘filtered’ by
the PhysioNet Cardiovascular Signal Toolbox than the Schneider code. When two or more PVCs are separated by
only asmall amount of time the rejection is performed differently. The PhysioNet Cardiovascular Signal Toolbox
excludes PVCs for which one of the two RR-intervals before the current PVC is a compensatory pause of the pre-
vious PVC, while in Schneider’s implementation those RR intervals before or after the PVCs are considered valid.

An example is reported in figure 4, where the intervals related to the second PVC exhibit a compensatory
pause (CP) from the preceding PVC. Since a tachogram is considered valid for HRT analysis if it has sinus rhythm
interval preceding and following a PVC, both sequences of RR intervals are excluded by our implementation. TO

was computed using the two NN intervals preceding the PVC and two NN intervals following the CP, thus includ-
inga CP in the computation of the TO might lead to different results.
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6. Discussion and recommendations

The benchmarking results detailed in this work demonstrated that significant errors result from seemingly small
and inconsequential choices in analysis methods. Moreover, the earlier in the process pipeline that the choices
begin to differ, the larger the overall effects. The differences in analysis methods, parameter choices, and data
preprocessing have yielded a field of HRV results that are impossible to compare between patient populations
and research groups, and perhaps even within research groups. The results have shown that it is imperative that
future studies adhere to a consistent method of reporting how an analysis has been performed, particularly
in terms of the many parameter settings possible. (Although Malik et al (Task Force of the European Society
of Cardiology the North American Society of Pacing Electrophysiology 1996, Clifford 2002, Pan et al 2016)
attempted to encourage this practice, their prescription of what to report was too vague, and did not detail any
requirements on preprocessing, apart from some basics of interval rejection.)

We note that the analysis in this article has some limitations. First, although we have quantified the differences
in each HRV metric, and in some cases, these were enormous, this does not necessarily mean that the use of one
toolbox over another, in classification tasks for example, would result in a significant difference in the algorithm’s
accuracy (or other pertinent metric). This is particularly true for a multivariate or nonlinear classifier. Con-
versely, a small difference may, for some tasks, result in large classification differences. What we can say, however,
is that one should not compare results between articles that have used different toolboxes, let alone home-grown
or unspecified/closed software.

When considering the use of HRV analysis in research, it is important that researchers carefully consider the
data to be analyzed and the assumptions of the analysis. An essential part to that consideration is identifying the
methods and settings used for the analysis and providing this listing in the subsequent publication along with the
data. The PhysioNet Cardiovascular Signal Toolbox initialization file can be used as a template when publishing
this information. Researchers should compare subjects with similar length recordings to minimize the effect of
metrics sensitive to temporal recording length (such as scaling metrics). Moreover, longer recordings can lead to
larger averaging, or the capture of behaviors at different points in the circadian or daily rhythm. Subjects should
also be exposed to similar psychosocial scenarios, where stress, environment, and mental state can be carefully
controlled variables. Sleep is a good normalization approach, as shown in Clifford and Tarassenko (2004).

How a preprocessing algorithm addresses noise, ectopy, or artifact can have either a subtle or a significant
effect on the results of analysis and depends to a large extent on how reliable or corrupt the data is to begin with.
When a comparison was made between data pre-processed with the PhysioNet Cardiovascular Signal Toolbox
and the PhysioNet HRV Toolkit, two toolboxes with markedly similar approaches to HRV analysis, the differ-
ences observed ranged from 0.6% on the Mean NN interval to over 40% on LF/HF ratio (table 6, Comparison C).
When investigating the cause of error in the non-spectral metrics (RMSSD, pNN50, and SDNN), it was observed
that a single window with just one or two removed non-physiologic data points can dramatically affect the esti-
mated value, particularly the NRMSE. More markedly, table 7 shows that even simple time domain statistics can
differ by significant amounts when different QRS detectors or different abnormal interval filters are employed.

The normalization of the PSD estimation is seldom reported, and the method employed can have a very
large influence on spectral results, especially when they are not reported as ratios. It is usually very difficult to
retrospectively determine how an author has normalized data if only a select handful of parameters are reported.
The effect of differing frequency bins on the results of spectral analysis can also be a significant source of error
between two different methods analyzing the same data. When the PhysioNet HRV Toolkit and PhysioNet Car-
diovascular Signal Toolbox were allowed to define the frequency bins separately, the RMS error on LE/HF ratio,
a metric that is buffered from error because of the nature of ratios, was over 2% (table 6, Comparison B). The
error for the identical power calculations with slightly different frequency bands was nearly 4% at best and 8% at
worst. Especially at VLE, where the binning may leave these bands with only one to five bins, changes in can lead to
significant differences in the outcome.

When using frequency domain analysis, the Lomb periodogram has demonstrated to be the superior choice
for RR interval data (Clifford and Tarassenko 2005). Therefore, it should be standard practice to present results
using the Lomb periodogram when referencing a spectral metric. However, it is important to note that the RR
interval time series is not a stationary time series and therefore, sliding a window across data and using a tech-
nique that assumes stationarity is somewhat flawed. Although there has been much attention paid to time-fre-
quency tools over the last two decades, little work has been done on unevenly sampled data and so we do not
currently include such tools in this toolbox (since the effect of resampling on such tools has not been rigorously
tested). Instead we recommend segmenting data into stationary blocks.

We recommend that the PhysioNet Cardiovascular Signal Toolbox be used to perform HRV analysis because
of the following advantages.
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1. A close correspondence to the C code of PhysioNet’s HRV Toolkit. This allows the user to swap between
code bases for embedded applications or fast execution on servers for a subset of the algorithms.

2. Parameters chosen are not arbitrary and have been justified in this publication.

3. Parameters have been refactored into one initialization file so the user can change this as suited and report
the changes efficiently.

4. Extensive benchmarked waveform analysis tools are included.

5. Itis the only software suite that includes signal quality and arrhythmia analysis tools to help remove noisy
and non-sinus periods of data.

Comparison to standard models and other available software demonstrate that the PhysioNet Cardiovas-
cular Signal Toolbox can even be used itself as a benchmarking system for other HRV studies, FDA filings, and
industrial applications (due to the BSD licensing).

Other toolboxes that are characterized in this paper may produce adequate analysis. In particular we found
that, with certain potential clinically significant differences in long range metrics, Kubios software was similar to
our toolbox and the PhysioNet C toolbox and is sufficient for clinicians to use if they are willing to hand oper-
ate the software on a per-file basis (since no scripting facility is available in Kubios at this time) and as long as
the default parameters are not selected. However, due to the dangers of hand-processing data, we could only
really reccommend Kubios if a batch scripting version were made available. We recommend that when using other
toolboxes, users report the differences between their code and other HRV tools to avoid erroneous conclusions
when comparing with the literature. Also, by comparing to our toolbox, it will persuade others to report the
many thresholds that are swept under the carpet in other studies, but which have such an enormous effect on the
output. We also note that none of the toolboxes presented are as comprehensive as the PhysioNet Cardiovascular
Signal Toolbox.

Finally, the full potential of HRV analysis, the subject of so many studies over the last 40 years or more, will not
be realized without further contributions to the open source tools. We encourage benchmarked contributions to
our toolbox, which is freely available from PhysioNet and Github (Vesteral 2018).

7. Conclusions

This article presents evidence in support of standardizing HRV analysis methods and demonstrates how the
PhysioNet Cardiovascular Signal Toolbox makes advances towards such standardization. Using in-house code
that has not been thoroughly benchmarked and failing to report all parameter settings will continue to hold the
field back. We caution against the use of default parameters, particularly when dealing with raw ECG or other
pulsatile data. We recommend that researchers use our MATLAB toolbox except where fast implementation
is needed, and then to use the PhysioNet C implementation where code is available. Rigorously applying the
standards described in this article and working with common, benchmarked code such as that provided with
this publication, will improve the science of HRV analysis and, we hope, should provide a significant boost to its
clinical utility.
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AppendixA. Softwarerequirements to Use the PhysioNet Cardiovascular Signal Toolbox
The current version (1.0) of the HRV toolbox was tested with the following MATLAB configuration: MATLAB

(v9.3), Signal Processing Toolbox (v 7.3), Neural Network Toolbox (v 7.0), and Statistics and Machine Learning
Toolbox (v 11.0). The Toolbox has been tested using Windows, OSX, and Unix systems.
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TableAl. Performance of peak detectors when tested on the MIT BIH Arrhythmia Database (taken from Vest etal (2017)).

Peak detector Recommended application F1 Stdev

wqrs.c Low-noise scenarios or as a comparator to detect noise 99.00 1.89

wqrs.m Low-noise scenarios or as a comparator to detect noise 99.04 1.84

sqrs.c Low-noise scenarios or as a comparator to detect noise 98.19 4.22

sqrs.m Low-noise scenarios or as a comparator to detect noise 96.33 6.38

jqrs.m Long-term moderate to high noise recordings, such as in ICU Holter or exercise. 93.02 12.27

gqrs.c Moderate-noise ICU or Holter recordings 95.72 14.84

Table A2. Default parameters in the PhysioNet Cardiovascualr Signal Toolbox. au indicates arbitrary units.

Parameter Value Unit Description

data_confidence_level 1 au NOT YET IN USE

Windowlength 300 s HRV statistics analysis window length

Increment 60 s HRYV statistics sliding window increment

Numsegs 5 au Number of segments to collect with lowest HR

RejectionThreshold 0.2 au Amount of data that can be rejected before a window is consid-
ered too low quality for analysis. 0.2 = 20%

MissingDataThreshold 0.15 au Maximum percentage of data allowable to be missing from a
window. 0.15 = 15%

sqi.LowQualityThreshold 0.9 au Threshold for which SQI represents good data

sqi.windowlength 10 s SQI analysis window length

sqi.increment 1 s SQI sliding window increment

sqi. TimeThreshold 0.1 s Maximum absolute difference in annotation times that is per-
mitted for matching annotations.

sqi.margin 2 s Margin time not include in comparison

preprocessg.aplimit 2 s Maximum believable gap in RR intervals

preprocess.per_limit 0.2 au Percent limit of change from one interval to the next. 0.2 = 20%

preprocess.forward_gap 3 s Maximum tolerable gap at beginning of timeseries in seconds

preprocess.method_outliers ‘rem’ — Method of dealing with outliers

preprocess.lowerphysiolim 0.375 s Lower physiological limit, minimum RR interval

preprocess.upperphysiolim 2 s Upper physiological limit, maximum RR interval

preprocess.method_unphysio ‘rem’ Method of dealing with unphysiologically low beats.
‘rem’ = removal

Preprocess.threshold1 0.9 au Threshold for which SQI represents good data

preprocess.minlength 30 s The minimum length of a good data segment in seconds

af.windowlength 30 s AFib analysis window length, set to include ~30 beats in each
window

af.increment 30 s AFib sliding window increment

timedomain.alpha 50 ms Alpha value for PNN analysis method

timedomain.win_tol 0.15 au Maximum percentage of data allowable to be missing from a
window. 0.15 = 15%

prsa.thresh_per 20 % Percent difference that one beat can differ from the next in the
PRSA code

prsa.win_length 30 s The length of the PRSA signal before and after the anchor points

pPrsa.scale 2 au Scale parameter for wavelet analysis (to compute AC and DC)

ulf 0-0.0033 Hz ULF band, requires window > 300 s

vIf 0.0033-0.04 Hz VLF band, requires at least 300 s window

If 0.04-0.15 Hz LF band, requires at least 25s window

hf 0.15-0.4 Hz HF band, requires at least 7s window

freq.zero_mean 1 — Option for subtracting the mean from the input data

freq.method ‘lomb’ — Frequency estimation method, Options: ‘lomb’, ‘burg’, “ft’,
‘welch’

freq.normalize_lomb 0 — When selected, adds a normalization step to frequency domain

analysis

(Continued)
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Table A2. (Continued)

Parameter Value Unit Description

freq.burg_poles 15 au Number of coefficients for spectral estimation using the Burg
method (not recommended)

freq.resampling_freq 7 Hz Resampling frequency for ‘welch’, ‘fft’, or ‘burg’

freq.resample_interp_method ~ ‘cub’ — Resampling interpolation method for ‘welch’, ‘fft’, or ‘burg’

freq.resampled_burg_poles 100 au Number of poles for burg method

sd,segmentlength 300 s Windows length for SDANN and SDNNI analysis

PeakDetect, REF_PERIOD 0.25 s Assumed refractory period after a natural sinus beat

PeakDetect. THRES 0.6 au Energy threshold of the peak detector

PeakDetect.fid_vec [] — If some subsegments should not be used for finding the optimal

threshold of the P&T then input the indices of the corre-
sponding points here

PeakDetect.SIGN_FORCE [] — Force sign of peaks (positive value/negative value). Particularly
useful in a window by window detection with uncertain peak
polarity. Could be used to build an Fetal ECG template.

PeakDetect.ecgType ‘MECG’ — Use QRS detector for Adult ECG analysis

PeakDetect.windows 15 s Size of the window onto which to perform QRS detection

MSE.windowlength [ s Window size in seconds. Default [] performs MSE on the entire
signal

MSE.increment [] s MSE window increment. Default [] performs MSE on the entire
signal

MSE.RadiusOfSimilarity 0.15 au Radius of similarity (% of std)

MSE.patternLength 2 au Pattern length for SampEn computation

MSE.maxCoarseGrainings 20 au Maximum number of coarse-grainings

Entropy.RadiusOfSimilarity 0.15 au Radius of similarity (% of standard deviation)

Entropy.patternLength 2 au Pattern length for SampEn computation

DFA.windowlength [] s Windows size for DFA analysis

Default [] performs DFA on entire signal
DFA.increment [ s Sliding window increment for DFA analysis

Default [] uses no sliding window

DFA.minBoxSize 4 au Smallest box width for DFA analysis
DFA.maxBoxSize [ au Largest box width for DFA analysis
Default [] uses the signal length/4
DFA.midBoxSize 16 au Medium time scale box width for DFA analysis
HRT.BeatsBefore 2 au Number of beats before PVC
HRT.BeatsAfter 16 au Number of beats after PVC and CP
HRT.windowlength 24 h Window size for HRT analysis. Default 24 h
HRT.increment 24 h Sliding window increment or HRT analysis
Default 24 h
HRT.filterMethod ‘mean5before’ — HRT analysis filtering option

AppendixB. QRS detection benchmark testing for PhysioNet Cardiovascular Signal
Toolbox and PhysioNet HRV Toolkit

Appendix table A1 provides results detailed in Vest et al (2017) for a comparison of the standard QRS detectors
available in the PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit when tested on the MIT
BIH Arrhythmia Database. Note that the database on which they are tested is largely free from noise and artifact.
The F1 scores therefore reflect how well they perform in ideal circumstances. When noise is present, only jgrs
and ggrs are able to maintain accuracy.

Appendix C. Default parameters in the PhysioNet Cardiovascular Signal Toolbox

Appendix table A2 provides the default parameters utilized in the PhysioNet Cardiocascular Signal Toolbox.
Note that parameters related to file extension, demo visualization, and saving options are not reported. Only

analysis related parameters are summarized below.
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AppendixD. Demonstration code available in the PhysioNet Cardiovascular Signal
Toolbox

D.1. Atrialfibrillation detection demo: DemoRawDataAF.m
This demonstration analyzes a segment of raw (or filtered) ECG signal with known atrial fibrillation to show the
operation of the AF detection algorithm and its use in removing segments of arrhythmia during HRV analysis.

D.2. Annotated data demo: DemoAnnotatedData.m

This demonstration uses the PhysioNet Cardiovascular Signal Toolbox on RR intervals with annotations.
After pre-processing the RR intervals—taking into account the beat annotations—and removal of windows
containing AF, the HRV analysis is performed on the clean NN (normal-to-normal) time series and the resulting
outputis saved in a.csv file.

D.3. ECG,ABP,and PPG data demo: DemoRawDataICU.m

This demonstration analyzes a segment of data collected in the intensive care unit (ICU) which contains ECG,
ABP, and PPG signals. This demo will perform HRV analysis on the raw ECG signals as well as detection of fiducial
points of PPG and ABP signals. It will also display the pulse transit time (PPT) graph (Blood Pressure versus PTT).

D.4. RRGEN data demo: DemoStandardizedData.m
This function demonstrates the function of the synthetic RR interval generator RRGEN and the calculation of
HRYV metrics.
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