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Abstract

A remarkable recent discovery in machine learning has been that deep neural networks can achieve
impressive performance (in terms of both lower training error and higher generalization capacity) in
the regime where they are massively over-parameterized. Consequently, over the past year, the com-
munity has devoted growing interest in analyzing optimization and generalization properties of over-
parameterized networks, and several breakthrough works have led to important theoretical progress.
However, the majority of existing work only applies to supervised learning scenarios and hence are lim-
ited to settings such as classification and regression.

In contrast, the role of over-parameterization in the unsupervised setting has gained far less attention.
In this paper, we study the inductive bias of gradient descent for two-layer over-parameterized autoen-
coders with ReLU activation. We first provide theoretical evidence for the memorization phenomena
observed in recent work using the property that infinitely wide neural networks under gradient descent
evolve as linear models. We also analyze the gradient dynamics of the autoencoders in the finite-width
setting. We make very few assumptions about the given training dataset (other than mild non-degeneracy
conditions). Starting from a randomly initialized autoencoder network, we rigorously prove the linear
convergence of gradient descent in two learning regimes, namely:

1. the weakly-trained regime where only the encoder is trained, and

2. the jointly-trained regime where both the encoder and the decoder are trained.

Our results indicate the considerable benefits of joint training over weak training for finding global optima,
achieving a dramatic decrease in the required level of over-parameterization.

We also analyze the case of weight-tied autoencoders (which is a commonly used architectural choice
in practical settings) and prove that in the over-parameterized setting, training such networks from
randomly initialized points leads to certain unexpected degeneracies.

1 Introduction

Deep neural networks have achieved great success in a variety of applications such as image and speech
recognition, natural language processing, and gaming AI. Remarkably, neural networks that achieve the
state-of-the-art performance in each of these tasks are all massively over-parameterized, with far more weight
parameters than the sample size of training data or the input dimension. Such networks can gain impressive
performance in terms of both (near) zero training error and high generalization capacity, which seemingly
contradicts the conventional wisdom of bias-variance tradeoffs. Surprising enough is the fact that (stochas-
tic) gradient descent or its variants can effectively find global and generalizable solutions. Explaining this
phenomenon has arguably become one of the fundamental tasks for demystifying deep learning.

∗TN is with the ECE Department at Iowa State University. RW is with the Statistics Department at Texas A&M University.
CH is with the Tandon School of Engineering at New York University. This work was supported in part by the National
Science Foundation under grants DMS-1612985/1806063, CCF-1934904, CCF-1815101, CAREER CCF-2005804, and a faculty
fellowship from the Black and Veatch Foundation.
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As a consequence, there has been growing interest in understanding the power of the gradient de-
scent for over-parameterized networks. Over the past year, a specific line of research [Li and Liang, 2018,
Allen-Zhu et al., 2018, Zou et al., 2018, Du et al., 2018, Oymak and Soltanolkotabi, 2019, Arora et al., 2019a,
Zou and Gu, 2019] has led to exciting theoretical progress. In particular, the seminal work of Du et al. [2018]
shows that gradient descent on two-layer neural networks with ReLU activation provably converges to some
global minimum at a geometric rate, provided a sufficiently large number of neurons that is of polynomial
order in the sample size. The key idea that leads to this result is the following: once the network is sufficiently
wide, gradient descent does not change the individual weights much, but results in a non-negligible change
in the network output that exponentially reduces the training loss with iteration count. This line of thinking
has been subsequently refined and linked to the stability of a special kernel, called the neural tangent kernel
(NTK) [Jacot et al., 2018]. Arora et al. [2019a] showed that the minimum eigenvalue of the limiting kernel
governs both the algorithmic convergence and the generalization performance.

Despite these exciting results, the majority of existing work has focused on supervised settings and hence
are limited to tasks such as classification and regression. In contrast, the role of over-parameterization in
the unsupervised setting (for tasks such as reconstruction, denoising, and visualization) has gained much
less attention. An early related example in unsupervised learning can be traced back to learning over-
complete dictionaries with sparse codes [Olshausen and Field, 1997]. Another example is the problem of
learning mixtures of k well-separated spherical Gaussians, where Dasgupta and Schulman [2007] showed that
initializing with O(k log k) centers enables expectation-maximization to correctly recover the k components.

Interesting (but limited) progress has been made towards understanding over-parameterization for au-
toencoders, a popular class of unsupervised models based on neural networks. Zhang et al. [2019] provided
an extensive study of training highly over-parameterized autoencoders using a single sample. They empir-
ically showed that when learned by gradient descent, autoencoders with different architectures can exhibit
two inductive biases: memorization (i.e., learning the constant function) and generalization (i.e., learning
the identity mapping) depending on the non-linearity and the network depth. Radhakrishnan et al. [2019]
showed that over-parameterized autoencoder learning is empirically biased towards functions that concen-
trate around the training samples and hence exhibits memorization. Buhai et al. [2019] empirically showed
that over-parameterization benefits learning in recovering generative models with single-layer latent variables
(including the sparse coding model).

However, there has been a lack of theoretical evidence that supports these observations. Zhang et al.
[2019] were able to prove a result for a simple one-layer linear case while Radhakrishnan et al. [2019] also
proved the concentration of outputs near the training examples for a single-layer network under a data-
restrictive setting. Moreover, none of the above papers have rigorously studied the training dynamics of
autoencoder models. The loss surface of autoencoder training was first characterized in [Rangamani et al.,
2017]. Subsequently, Nguyen et al. [2019] proved that under-parameterized (and suitably initialized) autoen-
coders performed (approximate) proper parameter learning in the regime of asymptotically many samples,
building upon techniques in provable dictionary learning; cf. [Arora et al., 2015, Nguyen et al., 2018].

Our contributions. In this paper, we provide the first rigorous analysis of inductive bias of gradient
descent and gradient dynamics of over-parameterized, shallow (two-layer) autoencoders. To examine the
inductive bias, we use an infinite-width approximation to derive the output reconstruction in terms its input.
For the gradient dynamics, we study different training schemes and establish upper bounds on the level of
over-parameterization under which (standard) gradient descent, starting from randomly initialized weights,
can linearly converge to global optima provided the training dataset obeys some mild assumptions. Our
specific contributions are as follows:

1. First, we build upon the results by Lee et al. [2019] to characterize the evolution of autoencoder
output via linearization and infinite-width approximation. Then, we establish the inductive bias of
infinite-width autoencoders trained with gradient descent and provide insights into the memorization
phenomena. While our analysis is asymptotic with respect to the network width, empirical results in
[Lee et al., 2019, Zhang et al., 2019] strongly suggest that similar phenomena are exhibited at finite
widths as well.
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2. Next, we extend the results by Du et al. [2018] to the setting of over-parameterized two-layer autoen-
coders. This involves developing a version of the NTK for multiple outputs, which can be done in a
straightforward manner by lifting the kernel matrix of a single output into a higher-dimensional space
via Kronecker products.

3. Next, we study the gradient dynamics of the weakly-trained1 case where the training is done only over
the weights in the encoder layer. We obtain a bound on the number of hidden neurons (i.e., level of
over-parameterization) required to achieve linear convergence of gradient descent, starting from random
initialization, to global optimality.

4. Next, we study the gradient dynamics of the jointly-trained case where both the encoder and de-
coder are trained with gradient descent. We obtain a bound analogous to the weakly-trained case for
the level of over-parameterization required for global convergence. Interestingly, our bound for over-
parameterization in the jointly trained case is significantly better compared with the weakly-trained
case.

5. Finally, we study a special family of autoencoders for which the encoder and decoder are weight-
tied, i.e., the two layers share the same weights (this is a common architectural choice in practical
applications). For the weight-tied case, we show that even without any training, O(d/ǫ) hidden units
are able to achieve ǫ-test error where d is the input dimension. Indeed, as the number of hidden unit
increases, the autoencoder approximately recovers an identity map. Since the identity map is not
particularly useful in representation learning, we speculate that training of weight-tied autoencoders
under over-parameterization may lead to unexpected degeneracies.

Techniques. Our analysis extends the techniques of Lee et al. [2019] and Du et al. [2018] for analyzing
the global convergence of gradient descent in overparameterized neural networks using the neural tangent
kernel. The special case of autoencoder networks is somewhat more complicated since we now have to deal
with multiple outputs, but the use of Kronecker products enables us to derive concise NTK’s for our setting.

The work of Du et al. [2018] and subsequent papers study the weakly-trained case for the supervised
setting where the second layer is fixed. We derive analogous bounds for the autoencoder setting. Moreover,
we derive a new result for the jointly-trained case and obtain a significantly improved bound on the requisite
level of over-parameterization. Our result is based on three key insights:

(i) the linearization enables us to derive the autoencoder’s reconstruction for a given input as a linear
combination of the training samples weighted by kernel scores;

(ii) thanks to the linear decoder, the corresponding kernel is smooth, and the improved smoothness allows
gradient descent to move greater amount from the initial point; and

(iii) with this improved smoothness, we can derive a sharper characterization of the descent trajectory
length in Frobenius norm instead of column-wise Euclidean norm.

2 Overview of main results

Notation. We use uppercase letters to denote matrices, and lowercase for vectors or scalars. An expectation
is the notation C which represents a generic scalar constant, whose value can change from line to line. A
vector is interpreted as a column vector by default. We denote by xi ∈ R

d the ith-column (or sample) of the
data matrix X , and W = [w1, . . . , wm] ∈ R

d×m denotes a weight matrix. Whenever necessary, we distinguish
between the weight vector wr at different algorithmic steps using an explicit wr(t) indexed by the step t.
For a matrix A = [a1, . . . , am] ∈ R

d×m, vec(A) = [a11, . . . , ad1, . . . , a1m, . . . adm]⊤ vectorizes the matrix A by
stacking its columns. The symbol ⊗ denotes the Kronecker product.

1This distinction of weak- vs. joint-training has been introduced in earlier work such as Arora et al. [2019b].
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We use N (·) and Unif(·) to denote the Gaussian and uniform distributions respectively. We simply write
Ew instead of Ew∼N (0,I) for brevity. Throughout the paper, we refer to an arbitrary δ ∈ (0, 1) as the failure
probability of some event under consideration.

2.1 Two-layer autoencoders

Our goal is to understand the inductive bias and the learning dynamics of learning two-layer autoencoders
with gradient descent. We focus on the two-layer autoencoder architecture with the rectified linear unit
(ReLU), defined by φ(z) = max(z, 0) for any z ∈ R. In below, when φ is applied to a vector or a matrix,
the ReLU function is applied element-wisely. Given an input sample x ∈ R

d, the autoencoder returns a
reconstruction u ∈ R

d of x, given by

u =
1√
md

Aφ(W⊤x) =
1√
md

m∑

r=1

arφ(w
⊤
r x),

where W = [w1, . . . , wm] and A = [a1, . . . , am] are weight matrices of the first (encoder) and second (decoder)
layers respectively. We do not consider bias terms in this work. However, in principle, the bias vector for
the hidden layer can be regarded as the last column of W with the last dimension of x always being 1.

Remark 2.1 (Choice of scaling factor). Notice that we have scaled the output with 1/
√
md, where 1/

√
m

is the factor for the first layer and 1/
√
d for the second layer. Such scaling has been utilized in mathematical

analyses of supervised networks [Jacot et al., 2018] as well as of autoencoders [Li and Nguyen, 2018]. Since
the ReLU is homogeneous to scaling, such factors can technically be absorbed into the corresponding weight
matrices W and A, but we find that keeping such factors explicit is crucial to understand the asymptotic
behavior of neural network training as the network widths (i.e., m in this case) go to infinity.

Let us now set up the problem. Suppose that we are given n training samples X = [x1, x2, . . . , xn]. We
assume that each weight is randomly and independently initialized. Then, we train the autoencoder via
gradient descent over the usual squared-error reconstruction loss:

L(W,A) =
1

2

n∑

i=1

‖xi −
1√
md

Aφ(W⊤xi)‖2 =
1

2

n∑

i=1

‖xi − ui‖2. (2.1)

Throughout the paper, unless otherwise specified, we make the following assumptions:

Assumption 1. All training samples are normalized, i.e., ‖xi‖ = 1 for i = 1, . . . , n.

We gather the training samples into the data matrix X = [x1, x2, . . . , xn] and define λn , ‖X⊤X‖.
Assumption 1 implies that ‖X‖F =

√
n and hence 1 ≤ λn ≤ n. We regard λn as a parameter that

depends on the data geometry. For certain families of matrices (e.g., those with independent Gaussian
entries), λn ∼ O(max(n/d, 1)), which can be o(n) depending on how large n is in terms of d. We note that
throughout our analysis, X is regarded as fixed, and we will focus on the randomness in the weights.

Assumption 2. Consider a random vector w ∼ N (0, I) and define x̃i = 1[w⊤xi ≥ 0]xi for each i ∈ [n]. Let

X̃ =
[
x̃1, . . . , x̃n

]
. Assume min(λmin(Ew[X̃

⊤X̃]), λmin(Ew[φ(X
⊤w)φ(w⊤X)])) = λ0 > 0.

The matrix Ew[X̃
⊤X̃] is the so-called Gram matrix from the kernel induced by the ReLU transforma-

tion and has been extensively studied in [Xie et al., 2016, Tsuchida et al., 2017, Du et al., 2018, Arora et al.,
2019a]. Although this condition is difficult to interpret, one sufficient condition established in [Oymak and Soltanolkotabi,
2019] (Lemma H.1 and Lemma H.2) is that as long as the squared minimum singular value σ2

min(X ⋆X) > 0
where ⋆ denotes the Khatri-Rao product, then Assumption 2 holds. In this sense, our assumption is similar
to that of Oymak and Soltanolkotabi [2019] and slightly weaker than of Du et al. [2018], which only require

λmin(Ew[X̃
⊤X̃ ]) > 0.

The above assumptions about the data are relatively mild, which are in sharp contrast with assuming
a specific generative model for the data (e.g., dictionary models, mixture of Gaussians [Nguyen et al., 2019,
Buhai et al., 2019]) that have so far been employed to analyze autoencoder gradient dynamics.
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2.2 Learning dynamics

Depending on which weight variables are being optimized, we consider three training regimes:

• Weakly-trained case: This corresponds to the regime where the loss function (2.1) is optimized
over the weights W while keeping A fixed. A different form of weak training is to fix the encoder and
optimize (2.1) over A. Indeed, this practice is perhaps a folklore: it corresponds to standard kernel
regression where the global convergence depends on the Hessian associated with random ReLU features.
We do not pursue this case any further since kernel methods are well understood, but note in passing
that the Hessian will eventually show up in our analysis.

• Jointly-trained case: This corresponds to the regime that (2.1) is optimized over both W and A.
This case matches practical neural network training, and performs better than the weakly trained
case. We will show that the contrast between weakly-trained and jointly-trained cases arises due to
the nature of the different NTK’s and our analysis may pave the way to better understanding of
autoencoder training.

• Weight-tied case: Weight-tying is another common practice in training autoencoders. Here, one sets
the encoder and decoder weights to be the same, i.e., A = W , and optimizes (2.1) over the common
variables W . We study this problem from the perspective of over-parameterization and show that this
case leads to somewhat unexpected degeneracies.

We adopt the framework introduced in [Du et al., 2018]. Our proofs proceed generally as follows:

(i) We will consider the continuous flow of the autoencoder outputs U(t) = [u1(t), u2(t), . . . , un(t)] ∈ R
d×n

corresponding to the samples in X at time t. This continuous flow can be morally viewed as the
execution of gradient descent with infinitesimal learning rate. This enables us to write:

dvec(U(t))

dt
= K(t)vec(X − U(t)),

where K(t) is a kernel matrix.

(ii) From this characterization, we can infer that the spectrum of K(t) governs the dynamics of the outputs.
To derive explicit convergence bounds, we will first prove that K(0) has positive minimum eigenvalue
with high probability. This is achieved via using concentration arguments over the random initialization.
Then, we will upper-bound the movement of each individual weight vector from the initial guess and
hence bound the deviation of K(t) from K(0) in terms of spectral norm.

(iii) By discretizing the continuous-time analysis, we will obtain analogous bounds for gradient descent with
a properly chosen step size and show that gradient descent linearly converges to a global solution.

Our convergence results are informally stated in the following theorems:

Theorem 2.1 (Informal version of Theorems 5.1 and 5.2). Consider an autoencoder that computes output
u = 1√

md
Aφ(W⊤x) where the weight vectors are initialized with independent vectors wr ∼ N (0, I) and

ar ∼ Unif({−1, 1}d) for all r ∈ [m]. For any δ ∈ (0, 1) and m ≥ C n5d4λn

λ4

0
δ3

for some large enough constant C,

the gradient descent over W linearly converges to a global minimizer with probability at least 1 − δ over the
randomness in the initialization.

Theorem 2.2 (Informal version of Theorems 6.1 and 6.2). Consider an autoencoder that computes output
u = 1√

md
Aφ(W⊤x) where the weight vectors are initialized with independent vectors wr ∼ N (0, I) and

ar ∼ Unif({−1, 1}d) for all r ∈ [m]. For any δ ∈ (0, 1) and m ≥ C
ndλ3

n

λ4

0
δ2

for some large enough constant C,

the gradient descent jointly over W and A linearly converges to a global minimizer with probability at least
1− δ over the randomness in the initialization.
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Comparisons with existing work. We summarize the quantitative implications of our results in Table 1.
In this table, we compare with Du et al. [2018], Oymak and Soltanolkotabi [2019], Zou and Gu [2019] that
achieve the best known bounds to our knowledge.

We emphasize that the factor d in our bounds arises due to the fact that our network produces high-
dimensional outputs (dimension d in the case of autoencoders) while the previous works have focused on
scalar outputs. Note also that the input dimension d is implicitly hidden in λ0 and λn.

For weakly-trained networks with a single output, we (slightly) improve the order of over-parameterization:

m = Ω
(

n5λn

λ4

0
δ3

)
over the previous bound Ω

(
n6

λ4

0
δ3

)
in Du et al. [2018, Theorem 3.2] by explicitly exposing the

role of the spectral norm λn of the data.
For the jointly-trained regime, we obtain a significantly improved bound over Du et al. [2018, Theorem

3.3]. Our result is consistent with Oymak and Soltanolkotabi [2019, Theorem 6.3], but we have both layers
jointly trained; the proof technique in Oymak and Soltanolkotabi [2019, Theorem 6.3] is different from ours
(bounding Jacobian perturbations), and does not seem to be easily extended to the jointly trained case.

Let us better understand the intuition behind the bounds in Table 1 in terms of the dimension d and the
sample size n. We emphasize that in the fairly typical regime of machine learning where n ≥ d and λn ∼ n/d,
the level of over-parameterization for the single output is moderate (of order n4/d3). Since autoencoders have
an output dimension d, the factor-d in the bounds is natural in the jointly-trained case by characterizing the
trajectory length by Frobenius norm. This is consistent with the result in Zou and Gu [2019]. Our bound
is different from that in Zou and Gu [2019] in that we make assumption on the minimum eigenvalue λ0

while they assume a lower bound on the sample separation ∆. A direct universal comparison between the
two bounds is difficult; however, Oymak and Soltanolkotabi [2019] shows an upper bound λ0 ≥ ∆/100n2.
Finally, we note that initializing A with i.i.d. Rademacher entries keeps our analysis in line with previous
work, and an extension to Gaussian random initialization of A should be straightforward.

Regime Reference Single output Multiple output

Weakly-trained
Du et al. [2018] C n6

λ4

0
δ3

✗

This work C n5λn

λ4

0
δ3

C n5d4λn

λ4

0
δ3

Oymak and Soltanolkotabi [2019] C
nλ3

n

λ4

0

✗

Joint-trained
Du et al. [2018] C n6 log(m/δ)

λ4

0
δ3

✗

Zou and Gu [2019] C n8

∆4 C n8d
∆4

This work C
nλ3

n

λ4

0
δ2

C
ndλ3

n

λ4

0
δ2

Table 1: Comparison of our over-parameterization bounds with the known results in [Du et al., 2018, Theorem 3.2
and Theorem 3.3], [Oymak and Soltanolkotabi, 2019, Theorem 6.3] and [Zou and Gu, 2019, Table 1]. Here, d is
the input dimension, n is the training size, λ0 is the smallest eigenvalue of the Gram matrix, λn is the maximum
eigenvalue of the covariance matrix and C is some sufficiently large constant. ∆ is the smallest distance between any
pair of distinct training points.

2.3 Inductive bias

The following theorem establishes a result on the inductive bias of the infinitely wide autoencoders trained
with gradient descent.

Theorem 2.3. Let K∞ = EW (0),A(0)[K(0)]. Assume λmin(K
∞) > 0 and let ηcritical = 2(λmax(K

∞) +

λmin(K
∞))−1. Under gradient descent with learning rate η < ηcritical, for every normalized x ∈ R

d as the
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width m → ∞, the autoencoder output ft(x) at step t converges to µt(x) + γt(x), with:

µt(x) →
n∑

i=1

Λixi,

γt(x) → f0(x) −
n∑

i=1

Λif0(xi)

where each Λi ∈ R
d×d depends on the kernel score between the input x and each training sample xi and K∞.

f0(x) is the autoencoder reconstruction of x at initialization.

We prove this result in Section 3.2. Essentially, Theorem 2.3 generalizes the simple result in Zhang et al.
[2019, Theorem 1] to non-linear autoencoders and multiple-sample training despite its asymptotic nature.
The closer the new test input x is to the span of training data X , the more its reconstruction concentrates
around these seen points. This coincides with the observation about “memorization” by Radhakrishnan et al.
[2019].

3 The Neural Tangent Kernel and Linearized Autoencoders

3.1 NTK for general autoencoders

Let us first derive the neural tangent kernels for general autoencoders (possibly deep and with more than
2 layers) with multiple outputs in a compact form. Given n i.i.d samples X = [x1, x2, . . . , xn] and the
autoencoder f(θ, x), we consider minimizing the squared-error reconstruction loss:

L(θ) =
1

2

n∑

i=1

‖xi − f(θ, xi)‖2 =
1

2

n∑

i=1

‖xi − ui‖2,

where θ is a vector that stacks all the network parameters (e.g. W and A) and ui = f(θ, xi) ∈ R
d denotes

the corresponding output for every i = 1, 2, . . . ,m. The evolution of gradient descent on L(θ) with an
infinitesimally small learning rate is represented by the following ordinary differential equation (ODE):

dθ(t)

dt
= −∇θL(θ(t)). (3.1)

The time-dependent NTK for autoencoders can be characterized as follows:

Lemma 3.1. Denote by U(t) = [u1(t), u2(t), . . . , un(t)] ∈ R
d×n the corresponding outputs of all the samples

in X, i.e., ui(t) = f(θ(t), xi). The dynamics of U(t) is given by the ODE:

dvec(U(t))

dt
= K(t)vec(X − U(t)),

where K(t) is an nd× nd positive semi-definite kernel matrix whose (i, j)-th block of size d× d is:

(
∂

∂θ
f(θ, xi)

)
·
(

∂

∂θ
f(θ, xj)

)⊤
.

Proof. Note that in the supervised learning setting with a single output, the (i, j)-th block is a single scalar
equal to the inner product of two gradients. We prove this using simple calculus. The gradient of the loss
over the parameters θ is

∇θL(θ) = −
n∑

i=1

∂u⊤
i

∂θ
(xi − ui),

7



where ∂ui/∂θ denotes the Jacobian matrix of the output vector ui with respect to θ. Combining with (3.1),
the continuous-time dynamics of the prediction for each sample i ∈ [n] is specified as

dui

dt
=

∂ui

∂θ
(−∇θL(θ))

=

n∑

j=1

∂ui

∂θ

∂u⊤
j

∂θ
(xj − uj).

Vectorizing dU(t)
dt , we get

dvec(U(t))

dt
= K(t)vec(X − U(t)),

where K(t) (or K) is an nd× nd matrix whose (i, j)-block is of size d× d:

Ki,j =
∂ui

∂θ

∂u⊤
j

∂θ
=

(
∂

∂θ
f(θ, xi)

)
·
(

∂

∂θ
f(θ, xj)

)⊤
.

One can easily verify that K(t) is positive semi-definite.
�

If the parameters θ(0) are assumed to be stochastic, then the (deterministic) neural tangent kernel (NTK)
is defined as:

(K∞)i,j = Eθ(0)

[( ∂

∂θ
f(θ, xi)

∣∣∣∣
θ=θ(0)

)
·
( ∂

∂θ
f(θ, xj)

∣∣∣∣
θ=θ(0)

)⊤
]
. (3.2)

Note that K∞ is time-independent. If the network is randomly initialized and its width is allowed to grow
infinitely large, K(t) converges to K∞, and remains constant during training. Our goal is to show that if
the width is sufficiently large (not necessarily infinite), then K(t) ≈ K(0) ≈ K∞, and the gradient dynamics
are governed by the spectrum of K∞.

3.2 Linearized Autoencoders

While the NTK allows us to analyze the gradient dynamics of autoencoders, it does not provide a straightfor-
ward characterization of the reconstruction given any new input. This makes it difficult to reason about the
inductive bias of the over-parameterization and gradient descent for autoencoders, which were empirically
studied in [Zhang et al., 2019, Radhakrishnan et al., 2019]. Here, we theoretically justify these results by
using linearization and infinite approximation based on the result of Lee et al. [2019].

For the autoencoder f(θ, x), we denote by θ(t) the parameter vector at time t and by θ(0) its initial
value. Let us simplify the notation by denoting ft(x) = f(θ(t), x) and ft(X) = [ft(x1), . . . , ft(xn)]. Recall
the training objective:

L(θ) =
1

2

n∑

i=1

‖xi − f(θ, xi)‖2,

and the gradient flow characterization of the training dynamics:

dθ(t)

dt
= −∇θL(θ(t)). (3.3)

Consider the following linearized autoencoder via the first order Taylor expansion of ft(x) around θ(0):

f lin
t (x) , f0(x) +

∂f0(x)

∂θ
· ω(t).

8



Here, ωt = θ(t)− θ(0) is the parameter movement from its initialization. The first term f0(x) or the initial
reconstruction of x remains unchanged during training over θ whereas the second term captures the dynamics
with respect to the parameters, governed by:

ω̇(t) = −
n∑

i=1

(
∂f0(xi)

∂θ

)⊤
(xi − f lin

t (xi)), (3.4)

ḟ lin
t (x) = −

n∑

i=1

∂f0(x)

∂θ

(
∂f0(xi)

∂θ

)⊤
(xi − f lin

t (xi)).

= −K0(x,X)vec(X − f lin
t (X)). (3.5)

where we denote

∇θf0(X)⊤ ,

[(
∂f0(x1)

∂θ

)⊤
, . . . ,

(
∂f0(xn)

∂θ

)⊤]
,

K0(x,X) ,
∂f0(x)

∂θ
∇θf0(X)⊤ ∈ R

d×nd,

K0 , ∇θf0(X)∇θf0(X)⊤ ∈ R
nd×nd.

The last quantity is known as the neural tangent kernel matrix evaluated at θ(0), which is presented in the
earlier section. Following from Lee et al. [2019], we have the closed form solutions for the ODEs in (3.4) and
(3.5) as follows:

ω(t) = −∇θf0(X)⊤K−1
0 (I − e−K0t)vec(X − f lin

0 (X)), (3.6)

vec(f lin
t (X)) = (I − e−K0t)vec(X) + e−K0tvec(f0(X)). (3.7)

Moreover, given any new input x, the lineared output is f lin
t (x) = µt(x) + γt(x) where the signal and noise

terms are given by

µt(x) = K0(x,X)K−1
0 (I − e−K0t)vec(X), (3.8)

γt(x) = f0(x) −K0(x,X)K−1
0 (I − e−K0t)vec(f0(X)). (3.9)

These equations characterize the dynamics of reconstruction (up to scaling) for the linearized network. Now,
we establish the connection between the infinitely wide autoencoder and its linearized version, and prove
Theorem 2.3.

Proof of Theorem 2.3. We simply invoke Theorem 2.1 in [Lee et al., 2019] for the autoencoder case. Denote
by K∞ = EW (0),A(0)[K(0)] the neural tangent kernel of the two-layer autoencoder. Assume λmin(K

∞) > 0

and let ηcritical , 2(λmax(K
∞) + λmin(K

∞))−1. Lee et al. [2019] shows that under gradient descent with
learning rate η < ηcritical, for every x ∈ R

d such that ‖x‖ ≤ 1, as the width m → ∞, the autoencoder ft(x)
converges in f lin

t (x) given by Equation (3.8) and Equation (3.9). �

3.3 NTK for two-layer autoencoders

Let us now specialize to the case of two-layer autoencoders with ReLU activation. Since we consider the
two training regimes, including the weakly-trained and jontly-trained, we first give the expression of a few
base kernels whose appropriate compositions produce the final kernel for each individual case. The precise
derivation of each regime is given in the next few sections.

Again, we consider the reconstruction loss:

L(W,A) =
1

2

n∑

i=1

‖xi −
1√
md

Aφ(W⊤xi)‖2 =
1

2

n∑

i=1

‖xi − ui‖2,

9



where the weights are independently initialized such that:

wr(0) ∼ N (0, I), ar(0) ∼ Unif{−1, 1}d, r = 1, . . . ,m.

Here the minimization can be either over the encoder weights W , or the decoder weights A, or both W and
A. Let us denote

X̃r(t) =
[
1[wr(t)

⊤x1 ≥ 0]x1, . . . ,1[wr(t)
⊤xn ≥ 0]xn

]
.

If we fix A and optimize the loss L(W,A) over W , we get

G(t) =
1

md

m∑

r=1

X̃r(t)
⊤X̃r(t)⊗ ara

⊤
r .

If we fix W and optimize the loss L(W,A) over A, we get

H(t) =
1

md

m∑

r=1

φ(X⊤wr(t))φ(wr(t)
⊤X)⊗ I,

Writing these kernels in Kronecker product form allows us to clearly visualize the connection to the supervised
learning case, and enables characterization of their spectrum. Intuitively, in the jointly-trained case, since
both W and A depend on t, an invocation of the chain rule leads to the sum G(t)+H(t) being the “effective”
kernel that governs the dynamics.

In the infinite-width limit where m → ∞, the NTKs in the corresponding training regimes reduce to
compositions of the following fixed deterministic kernels:

G∞ = Ew(0),a(0)

[
X̃(0)⊤X̃(0)⊗ a(0)a(0)⊤

]
= Ew(0)[X̃(0)⊤X̃(0)]⊗ Id,

H∞ = Ew(0)

[
φ(X⊤w(0))φ(w(0)⊤X)

]
⊗ I.

Somewhat curiously, we will show that the crucial component of the time-dependent kernel in the jointly-
trained regime, H(t) (within H(t) + G(t)), is better-behaved than the corresponding kernel in the weakly-
trained regime, G(t), thanks to its better Lipschitz smoothness, even though the respective limiting kernels
are the same. This improved smoothness allows us to derive a much better bound on kernel perturbations with
respect to changing weights, and this results in a significant improvement in the level of over-parameterization
(Theorem 2.2).

4 Inductive Biases of Over-parameterized Autoencoders

In principle, the training dynamics of over-parameterized autoencoders are similar to those of supervised
networks. However, the generalization properties or inductive biases of the over-parameterization are dif-
ferent and underexplored. In this section, we rigorously analyze the observations in [Zhang et al., 2019,
Radhakrishnan et al., 2019] using the results we have developed.

4.1 One-sample training

This training setting was exclusively studied in Zhang et al. [2019] with interesting insights on the memoriza-
tion phenomemnon and the role of the depth and width. They were able to give some theoretical evidence for
their observation in a simple one-layer linear case. Using linearization, we generalize this result for non-linear
networks. We particularly focus on the two-layer architecture, but the results can be extended to networks
of any depth. Although our result is asymptotic, Lee et al. [2019] showed that networks with finite, large
width exhibit the same inductive bias.
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Suppose we have access to only one sample x or the training data X = x. For a test input x′, f lin
t (x′) =

µt(x
′) + γt(x

′) where

µt(x
′) = K0(x

′, x)K−1
0 (I − e−K0t)x, (4.1)

γt(x
′) = f0(x

′)−K0(x
′, x)K−1

0 (I − e−K0t)f0(x). (4.2)

As the learning rate for gradient desent is sufficiently small, the autoencoder output ft(x
′) → f lin

t (x′) as
m → ∞. In the infinite-width limit, the neural tangent kernel at t = 0 converges to:

K0 =
1

md

m∑

r=1

1[wr(0)
⊤x ≥ 0]ar(0)ar(0)

⊤ + φ(wr(0)
⊤x)2I

→ 1

d
E[1[wr(0)

⊤x ≥ 0]ar(0)ar(0)
⊤ + (wr(0)

⊤x)2I] =
I

d
,

since wr(0), ar(0) are independent and wr(0)
⊤x ∼ N (0, 1). Therefore, the reconstruction is governed by the

similarly between x′ and x via the kernel function. Specifically,

µt(x
′) → d ·K0(x

′, x)(1 − e−t/d)x,

γt(x
′) → f0(x

′)− d ·K0(x
′, x)(1 − e−t/d)f0(x).

Moreover, as m → ∞,

K0(x
′, x) =

∂f0(x
′)

∂θ

(
∂f0(x)

∂θ

)⊤

=
1

md

m∑

r=1

1[wr(0)
⊤x′ ≥ 0, wr(0)

⊤x ≥ 0]x′⊤xar(0)ar(0)
⊤ + φ(wr(0)

⊤x′)φ(wr(0)
⊤x)I

→ 1

d
Ew [1[w

⊤x′ ≥ 0, w⊤x ≥ 0]x′⊤x] + Ew[φ(w
⊤x′)φ(w⊤x)I]

= 〈x′, x〉π − arccos(〈x′, x〉)
πd

· I + 1

2πd

√
1− 〈x′, x〉2I.

When x′ is close to x, K0(x
′, x) ∼ I/d, the signal term µt(x

′) ≈ d ·K0(x
′, x)x ≈ x dominates the zero-mean

noise term γt(x
′) ≈ f0(x

′) − f0(x), then the reconstruction is close to x that explains the memorization.
When x′ is far from x, µt(x

′) ∼ 0 while γt(x
′) is a random, so the reconstruction is governed by a random

noise. See [Zhang et al., 2019] for more details on the empirical evidence.

4.2 Multiple-sample training

For the training with many samples, Radhakrishnan et al. [2019] showed that overparameterized autoen-
coders exhibit memorization by learning functions that concentrate near the training examples. They proved
that single-layer autoencoders project data onto the span of the training examples. We provide another in-
tuition based on the reconstruction of the linearized networks. For an arbitrary input x′,

µt(x
′) = K0(x

′, X)K−1
0 (I − e−K0t)vec(X),

γt(x
′) = f0(x

′)−K0(x
′, X)K−1

0 (I − e−K0t)vec(f0(X)).

The signal part of the reconstruction is a linear combination of training samples weighted by the kernel
K0(x

′, xi) and the eigenvalues of the kernel matrix K0. Therefore, as m → ∞ and t is sufficiently large,

µt(x
′) →

n∑

i=1

d ·K0(x
′, xi)xi,

γt(x) → f0(x) −
n∑

i=1

d ·K0(x
′, xi)xif0(xi).
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The closer the new test input x′ is to the span of training data X , the more its reconstruction concentrates
around these seen points. This coincides with the observation about “memorization” by Radhakrishnan et al.
[2019].

5 Weakly-trained Autoencoders

We now analyze various training regimes; these will follow from different compositions of the above NTK’s.
In each of the analyses, we will first set up the corresponding NTK, study the gradient dynamics with
infinitesimal step size (gradient flow), and then appropriately discretize the flow to get our final results.

5.1 Gradient flow

Consider the weakly-trained regime with the objective function:

L(W ) =
1

2

n∑

i=1

‖xi −
1√
md

Aφ(W⊤xi)‖2, (5.1)

where the corresponding minimization is only performed over W . Suppose that the weight matrices W and
A are randomly initialized such that

wij(0) ∼ N (0, 1), aij(0) ∼ Unif({±1})

are drawn independently for each all (i, j). After the initialization, we keep A fixed throughout and apply
gradient descent learning over W with step size η:

W (k + 1) = W (k)− η∇WL(W (k)), k = 0, 1, 2, . . . .

Let us derive the neural tangent kernel for this training regime. We first calculate the gradient of L(W ) with
respect to W . Since Aφ(W⊤x) =

∑m
r=1 arφ(w

⊤
r x) for any x ∈ R

d, it is convenient to compute the gradient
with respect to each column wr. The gradient ∇wr

L(W ) of the loss in (5.1) over wr is given by:

∇wr
L = −

n∑

i=1

Jr(ui)
⊤(xi − ui) = − 1√

md

n∑

i=1

1[wT
r xi ≥ 0]arx

⊤
i (xi − ui), (5.2)

where Jr(ui)
2 denotes the Jacobian matrix of the output vector ui with respect to wr:

Jr(ui) =
1√
md

arx
⊤
i φ

′(w⊤
r x) =

1√
md

1[wT
r xi ≥ 0]arx

⊤
i . (5.3)

Let us consider the gradient flow for the weight vector wr(t) via the following ODE:

dwr(t)

dt
= −∇wr

L(W (t)). (5.4)

Using (5.2) and (5.4), the continuous-time dynamics of the prediction for each sample i ∈ [n] is:

dui

dt
=

n∑

j=1

(
m∑

r=1

Jr(ui)J
⊤
r (uj)

)
(xj − uj).

Vectorizing dU(t)
dt , we get the equation that characterizes the dynamics of U(t):

dvec(U(t))

dt
=

1

d
K(t)vec(X − U(t)), (5.5)

2Note that φ(z) is differentiable everywhere except at z = 0, at which the derivative will be considered as 0.
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where K(t) is the nd× nd matrix whose (i, j)-block is of size d× d and defined as

K(t)i,j = d
m∑

r=1

Jr(ui)J
⊤
r (uj) =

1

m

m∑

r=1

1[wr(t)
Txi ≥ 0, wr(t)

Txj ≥ 0]x⊤
i xjara

⊤
r .

If we denote
X̃r(t) =

[
1[wr(t)

⊤x1 ≥ 0]x1, . . . ,1[wr(t)
⊤xn ≥ 0]xn

]
.

then we can write K(t) in Kronecker form:

K(t) =
1

m

m∑

r=1

X̃r(t)
⊤X̃r(t)⊗ ara

⊤
r .

Since W (0) and A(0) are randomly initialized, in the limit as m → ∞, K(0) converges to the NTK:

K∞ = EW (0),A(0)[K(0)]

= Ew(0),a(0)[X̃(0)⊤X̃(0)⊗ a(0)a(0)⊤]

= Ew[X̃
⊤X̃]⊗ I,

where the last step follows from the independence of w(0) and a(0).

By Assumption 2, λmin(K
∞) = λmin(Ew [X̃

⊤X̃]) = λ0 > 0. In other words, the NTK kernel is strictly
positive definite. We want to bound the minimum eigenvalue of K(0) at the initialization W (0) and prove
K(t) ≈ K(0) ≈ K∞ when m is large enough.

Now, we state the main theorem for the convergence of the gradient flow:

Theorem 5.1 (Linear convergence of gradient flow, weakly-trained regime). Suppose Assumptions 1 and
2 hold. Suppose at initialization that the weights are independently drawn such that wr ∼ N (0, I) and

ar ∼ Unif({±1}d) for all r ∈ [m]. If m ≥ C n5d4λn

λ4

0
δ2

for a constant C > 0, then with probability at least 1− δ

‖X − U(t)‖2F ≤ exp
(
−λ0t

d

)
‖X − U(0)‖2F .

To prove this theorem, we use the auxiliary results from Lemmas 5.1, 5.2 and 5.3.

Lemma 5.1. For any δ ∈ (0, 1), if m ≥ C
λ2

n
d log(nd/δ)

λ2

0

for some large enough constant C, then with probability

at least 1− δ, one obtains ‖K(0)−K∞‖ ≤ λ0/4 and λmin(K(0)) ≥ 3λ0/4 .

The proof of this Lemma is given in Appendix B.

Remark 5.1. Compared with the results in [Du et al., 2018, Song and Yang, 2019], our bound exposes the
dependence on the data X through the spectral norm of X and the dimension d. When λn is much smaller
than n, our bound improves over these aforementioned results. For example, if the training samples are
drawn from certain distributions (e.g., Gaussians, or from sparsely used dictionary models), the bound can

be as low as m ∼ Õ(d).

The next step in our analysis is to upper bound the spectral norm of the kernel perturbation, ‖K(t) −
K(0)‖, with high probability.

Lemma 5.2. Suppose wr ∼ N (0, I) and ar ∼ Unif({±1}d) are drawn independently for all r ∈ [m]. For
any δ ∈ (0, 1) and some R > 0, with probability at least 1− δ:

sup
{w̃=(w̃1,...,w̃m):‖w̃r−wr‖≤R

∀r∈[m]}

‖K(w̃)−K(w)‖ <
2n2dR

δ
, (5.6)

where K(w) = 1
m

∑m
r=1 X̃(wr)

⊤X̃(wr)⊗ ara
⊤
r .
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Remark 5.2. One may ask why not to directly bound K(t)−K(0) for each time t but need the supremum
over the ball near each wr. Basically, since w(t) depends on W (0) and A(0), directly working on K(t)−K(0)
is difficult. The uniform bound (5.6) allows us to overcome this dependence when applied to K(t)−K(0).

Note that in this lemma we use K(w) to indicate that the kernel K is being evaluated at the weight

vectors wr and ignore the time index t. In this Lemma, we use X̃(wr) to denote X̃r evaluated at wr.

Proof. For simplicity of notation, we use supw̃ to represent the supremum in (5.6), and supw̃r
to represent

sup{w̃r:‖w̃r−wr‖≤R}. To prove this lemma, we work on the Frobenius norm instead of the spectral norm. Let
us first write

zijr = 1[w̃⊤
r xi ≥ 0, w̃⊤

r xj ≥ 0]− 1[w⊤
r xi ≥ 0, w⊤

r xj ≥ 0].

Next,

‖K(w̃)−K(w)‖2 ≤ ‖K(w̃)−K(w)‖2F =
1

m2

n∑

i,j=1

‖x⊤
i xj

m∑

r=1

zijrara
⊤
r ‖2F

≤ 1

m2




n∑

i,j=1

∥∥∥
m∑

r=1

zijrara
⊤
r

∥∥∥
F




2

.

The last step follows from the fact that |x⊤
i xj | ≤ 1 due to Cauchy-Schwartz. Therefore,

sup
w̃

‖K(w̃)−K(w)‖ ≤ 1

m
sup
w̃

n∑

i,j=1

∥∥∥
m∑

r=1

zijrara
⊤
r

∥∥∥
F

≤ 1

m
sup
w̃

n∑

i,j=1

m∑

r=1

|zijr |‖ara⊤r ‖F

≤ d

m

n∑

i,j=1

m∑

r=1

sup
w̃r

|zijr |,

since ‖ara⊤r ‖F = ‖ar‖2 = d. Now we take expectation over the random vector wr’s on both sides:

Ew[sup
w̃r

‖K(w̃)−K(w)‖] ≤ d

m

n∑

i,j=1

m∑

r=1

Ew[sup
w̃r

|zijr |].

Next, we bound Ew[supw̃r
|zijr|]. By definition of zijr ,

|zijr| = |1[w⊤
r xi ≥ 0, w⊤

r xj ≥ 0]− 1[w̃⊤
r xi ≥ 0, w̃⊤

r xj ≥ 0]|
≤ |1[w⊤

r xi ≥ 0]− 1[w̃⊤
r xi ≥ 0]|+ |1[w⊤

r xj ≥ 0]− 1[w̃⊤
r xj ≥ 0]|

≤ 1[|w⊤
r xi| ≤ R] + 1[|w⊤

r xj | ≤ R]. (5.7)

The last step follows from the results in [Du et al., 2018, Lemma 3.2]. So we get

Ew[sup
w̃r

|zijr |] ≤ Ew[1[|w⊤
r xi| ≤ R] + 1[|w⊤

r xj | ≤ R]]

= 2Pz∼N (0,1)[|z| < R] ≤ 4R√
2π

< 2R.

Therefore,
Ew[sup

w̃
‖K(w̃)−K(w)‖] < 2n2dR.
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Finally, by Markov’s inequality, with probability at least 1− δ:

sup
w̃

‖K(w̃)−K(w)‖ <
2n2dR

δ
.

�

Corollary 5.1. Suppose ‖wr(t)−wr(0)‖ ≤ R , λ0δ
8n2d for all r ∈ [m] and t ≥ 0 with probability at least 1− δ.

We have

λmin(K(t)) >
λ0

2

with probability at least 1− 3δ if m ≥ C
λ2

n
d log(nd/δ)

λ2

0

.

Proof. This is the direct consequence of Lemma 5.1 and Lemma 5.2. Since ‖wr(t)−wr(0)‖ ≤ R = λ0δ
8n2d with

probability at least 1− δ for all t ≥ 0, then

‖K(t)−K(0)‖ < 2n2dRδ =
λ0

4

with probability at least 1− 2δ. Using Weyl’s inequality, we can bound:

λmin(K(t)) ≥ λmin(K(0))− ‖K(t)−K(0)‖ > λ0/2

with probability at least 1− 3δ if m ≥ C
λ2

n
d log(nd/δ)

λ2

0

as stated in Lemma 5.1.

�

In what follows, we show that ‖wr(t)− wr(0)‖ ≤ R with high probability if m is sufficiently large.

Lemma 5.3. Fix t > 0. Suppose λmin(K(s)) ≥ λ0/2 for all 0 ≤ s < t. Then,

‖X − U(s)‖2F ≤ exp

(
−λ0s

d

)
‖X − U(0)‖2F .

Also, for each r = 1, 2, . . . ,m:

‖wr(t)− wr(0)‖ ≤ d
√
λn‖X − U(0)‖F√

mλ0
, R′.

Proof. For all s ∈ [0, t), we have

d

ds
‖vec(X − U(s))‖22 = −2vec(X − U(s))⊤

1

d
K(s)vec(X − U(s))

≤ −2

d
λmin(K(s))‖vec(X − U(s))‖2

≤ −λ0

d
‖X − U(s)‖2F

by the assumption λmin(K(s)) ≥ λ0/2. Therefore, the loss at time s is upper-bounded by

‖X − U(s)‖2F = ‖vec(X − U(s))‖2

≤ exp
(
−λ0s

d

)
‖vec(X − U(0))‖2

≤ exp
(
−λ0s

d

)
‖X − U(0)‖2F , (5.8)
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which decays exponentially with time s at rate λ0/d.
To upper bound the movement of the weights ‖wr(t)− wr(0)‖, we use the above result while expanding

the derivative of wr(s) over time 0 ≤ s < t:

∥∥∥∥
d

ds
wr(s)

∥∥∥∥ =

∥∥∥∥−∇wr
L(W (s))

∥∥∥∥

=

∥∥∥∥
1√
md

n∑

i=1

1[w⊤
r xi ≥ 0]xia

⊤
r (xi − ui(s))

∥∥∥∥

=

∥∥∥∥
1√
md

X̃r(X − U(s))⊤ar

∥∥∥∥

≤ ‖X‖‖ar‖√
md

‖X − U(s)‖F

≤
√

λn

m
exp
(
−λ0s/d

)
‖X − U(0)‖F ,

where the last step follows from ‖ar‖2 = d, ‖X‖2 = λn and Eq. (5.8). From the differential equation, wr(s)
is continuous for all s ∈ [0, t), and so is ‖wr(s)− wr(0)‖. Consequently, we can take the limit for t′ → t:

‖wr(t)− wr(0)‖2 = lim
t′→t

‖wr(t
′)− wr(0)‖2 ≤ lim

t′→t

∫ t′

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥ds

≤ lim
t′→t

∫ t′

0

√
λn exp

(
−λ0s/d

)
‖X − U(0)‖F√

m
ds

≤ d
√
λn‖X − U(0)‖F√

mλ0
, R′,

since exp
(
−λ0s/d

)
is continuous at s = t. Therefore, we finish the proof.

�

Lemma 5.4. If R′ < R, then λmin(K(t)) ≥ 1
2λ0 for all t ≥ 0. Moreover, ‖wr(t) − wr(0)‖ ≤ R′ and

‖X − U(t)‖2F ≤ exp(−λ0t
d )‖X − U(0)‖2F for all r ∈ [m].

Proof. We will prove this by contradiction. Assume the conclusion does not hold, meaning there exists t0
such that:

t0 = inf {t > 0 : λmin(H(t)) ≤ λ0/2} .
We will argue that t0 > 0 using the continuity. Since wr(t) is continuous in t, K(t) and λmin(K(t)) are also
continuous. Therefore, there exists t′ > 0 such that for any 0 < ǫ < λ0/4 we have

λmin(K(t′)) > λmin(K(0))− ǫ > λ0/2.

Since t0 > 0, then for any 0 ≤ s < t0, λmin(H(s)) ≥ λ0/2. By Lemma 5.3, we have for all r ∈ [m]:

‖wr(t0)− wr(0)‖ ≤ R′ < R.

Corollary 5.1 implies that λ0(H(t0)) > λ0/2, which is a contradiction.
Therefore, we have proved the first part. For the second part, we have for all t ≥ 0, λmin(K(t)) ≥ 1

2λ0

and it follows from Lemma 5.3 that: ‖wr(t)−wr(0)‖ ≤ R′ for all r ∈ [m] and ‖X−U(t)‖2F ≤ exp(−λ0t
d )‖X−

U(0)‖2F .
�

Now, we bound ‖X − U(0)‖F to upper bound R′.
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Claim 5.1. For any δ ∈ (0, 1), then ‖X − U(0)‖2F ≤ 2n
δ with probability at least 1− δ.

Proof. We prove this using Markov’s inequality. We use the independence between A(0) and W (0) to derive
expressions for the expectation. In this proof, the expectations are evaluated over W (0) and A(0).

E[‖X − U(0)‖2F ] = ‖X‖2F +
1

md
E[‖A(0)φ(W (0)TX‖2F ]

= n+
1

md
E[trace(φ(XTW (0))A(0)φ(W (0)TX ]

= n+
1

md
trace(E[φ(XTW (0))A(0)⊤A(0)φ(W (0)TX ])

= n+
1

m
trace(E[φ(XTW (0))φ(W (0)TX ])

= n+

n∑

i=1

Ew[φ(w
⊤xi)

2]

= n+ nEz∈N (0,1)[z
2
1[z ≥ 0]] =

3n

2
,

where in the fourth step we use E[A(0)⊤A(0)] = dI, and in the last step we use the independence of the
columns of W (0). Using Markov, we get:

‖X − U(0)‖2F ≤ 2n

δ

with probability at least 1− δ. �

Proof of Theorem 5.1. If the following condition holds

R′ =
d
√
λn‖X − U(0)‖F√

mλ0
≤ R =

δλ0

8n2d
,

then Lemma 5.3 follows. Using the condition with the bound ‖X − U(0)‖F ≤
√
2n/δ in Claim 5.1, we

obtain m = Ω
(

n5d4λn

λ4

0
δ3

)
. This bound dominates the order of m required for the concentration of K(0) in the

Corollary 5.1, and therefore Theorem 5.1 follows. �

5.2 Gradient descent

The above result for gradient flow can be viewed as a convergence rate for gradient descent in the weakly-
trained regime with infinitesimally small step size. We now derive a convergence rate for gradient descent
with finite step sizes.

Theorem 5.2. Suppose Assumptions 1 and 2 hold. The initial weights are independently drawn such that

wr ∼ N (0, I) and ar ∼ Unif({±1}d) for all r ∈ [m]. If m ≥ C n5d4λn

λ4

0
δ3

for some large enough constant C,

then with probability at least 1− δ the gradient descent on W with step size η = Θ( λ0

ndλn

),

‖X − U(k)‖2F ≤
(
1− ηλ0

2d

)k

‖X − U(0)‖2F (5.9)

for k = 0, 1, . . .

We will prove Theorem 5.2 by induction. The base case when k = 0 is trivially true. Assume Eq. (5.9)
holds for k′ = 0, 1, . . . , k, then we show it holds for k′ = k+1. To this end, we first prove ‖wr(k+1)−wr(0)‖
is small enough; then we use that property to bound ‖X − U(k + 1)‖2F .
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Lemma 5.5. If (5.9) holds for k′ = 0, 1, . . . k, then we have for all r ∈ [m],

‖wr(k + 1)− wr(0)‖ ≤ 4d
√
λn‖X − U(0)‖F√

mλ0
, R′.

Proof. We use the expression of the gradient in (5.2), which is:

∇wr
L(W (k)) = −

n∑

i=1

1√
md

1[wr(k)
Txi ≥ 0]xia

⊤
r (xi − ui(k))

= − 1√
md

X̃r(k)(X − U(k))⊤ar.

Then, the difference of the weight vector wr is:

‖wr(k + 1)− wr(0)‖ = η
∥∥∥

k∑

k′=0

∇wr
L(wr(k

′))
∥∥∥

= η

∥∥∥∥
k∑

k′=0

1√
md

X̃r(k
′)(X − U(k′))⊤ar

∥∥∥∥

≤ η
‖X‖√
md

k∑

k′=0

‖vec(X − U(k′))‖F ‖ar‖

≤ η

√
λn√
m

k∑

k′=0

(
1− ηλ0

2

)k′/2

‖X − U(0)‖F

≤ η

√
λn√
m

‖X − U(0)‖F
∞∑

k′=0

(
1− ηλ0

2d

)k′/2

= η

√
λn√
m

‖X − U(0)‖F
1

ηλ0/(4d)

=
4d

√
λn‖X − U(0)‖F√

mλ0
,

where the third step and the fourth step follow from the facts that ‖X̃r(k
′)‖ ≤ ‖X‖ =

√
λn and ‖ar‖ =

√
d.

The last step follows because
∑∞

i=0(1− ηλ0/2)
i/2 ≤ 4d

ηλ0

.
�

Now, let us derive the form of X −U(k + 1). First, we compute the difference of the prediction between

two consecutive steps, similar to deriving dui(t)
dt . For each i ∈ [n], we have

ui(k + 1)− ui(k) =
1√
md

m∑

r=1

ar
(
φ(wr(k + 1)⊤xi)− φ(wr(k)

⊤xi)
)

=
1√
md

m∑

r=1

ar

(
φ

((
wr(k)− η∇wr

L(W (k))
)⊤

xi

)
− φ(wr(k)

⊤xi)

)
. (5.10)

We split the right hand side into two parts: v1,i represents the terms that the activation pattern does not
change and v2,i represents the remaining term that pattern may change. Formally speaking, for each i ∈ [n],
we define

Si = {r ∈ [m] : 1[wr(k + 1)⊤xi ≥ 0] = 1[wr(k)
⊤xi ≥ 0]}, and S⊥

i = [m]\Si.
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Then, we can formally define v1,i and v2,i as follows:

v1,i ,
1√
md

∑

r∈Si

ar

(
φ

((
wr(k)− η∇wr

L(W (k))
)⊤

xi

)
− φ(wr(k)

⊤xi)

)
,

v2,i ,
1√
md

∑

r∈S⊥

i

ar

(
φ

((
wr(k)− η∇wr

L(W (k))
)⊤

xi

)
− φ(wr(k)

⊤xi)

)
.

We write v1 = (v⊤1,1, v
⊤
1,2, . . . , v

⊤
1,n)

⊤ and do the same for v2, so

vec(U(k + 1)− U(k)) = v1 + v2.

In order to analyze v1 ∈ R
n, we define K and K⊥ ∈ R

nd×nd as follows:

K(k)i,j =
1

m

m∑

r=1

x⊤
i xj1[wr(k)

⊤xi ≥ 0, wr(k)
⊤xj ≥ 0]ara

⊤
r ,

K(k)⊥i,j =
1

m

∑

r∈S⊥

i

x⊤
i xj1[wr(k)

⊤xi ≥ 0, wr(k)
⊤xj ≥ 0]ara

⊤
r .

Next, we write φ(z) = z1[z ≥ 0] to make use the definition of Si and expand the form of ∇wr
L(W (k)):

v1,i =
1√
md

∑

r∈Si

ar

(
− η∇wr

L(W (k))
)⊤

xi1[wr(k)
⊤xi ≥ 0]

=
η

md

n∑

j=1

x⊤
i xj

∑

r∈Si

1[wr(k)
⊤xi ≥ 0, wr(k)

⊤xj ≥ 0]ara
⊤
r (xj − uj)

=
η

d

n∑

j=1

(Ki,j(k)−K⊥
i,j(k))(xj − uj),

Then, we can write v1 as:

v1 =
η

d
(K(k)−K⊥(k))vec(X − U(k)), (5.11)

and expand ‖X − U(k + 1)‖2F :

‖X − U(k + 1)‖2F = ‖vec(X − U(k + 1))‖2

= ‖vec(X − U(k))− vec(U(k + 1)− U(k))‖2F
= ‖X − U(k)‖2F − 2vec(X − U(k))⊤vec(U(k + 1)− U(k))

+ ‖U(k + 1)− U(k)‖2F .

We can further expand the second term above using (6.19) as below:

vec(X − U(k))⊤vec(U(k + 1)− U(k))

= vec(X − U(k))⊤(v1 + v2)

= vec(X − U(k))⊤v1 + vec(X − U(k))⊤v2

=
η

d
vec(X − U(k))⊤K(k)vec(X − U(k))− η

d
vec(X − U(k))⊤K(k)⊥(X − U(k))

+ vec(X − U(k))⊤v2.
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We define and bound the following quantities and bound them in Claims B.1, B.2, B.3 and B.4.

C1 = − 2η

d
vec(X − U(k))⊤K(k)vec(X − U(k)),

C2 =
2η

d
vec(X − U(k))⊤K(k)⊥(X − U(k)),

C3 = − 2vec(X − U(k))⊤v2,

C4 = ‖U(k + 1)− U(k)‖2F .

Proof of Theorem 5.2. We are now ready to prove the induction hypothesis. What we need to is to prove

‖X − U(k′)‖2F ≤ (1− ηλ0

2d
)k

′‖X − U(0)‖2F

holds for k′ = k + 1 with probability at least 1− δ. In fact,

‖X − U(k + 1)‖2F = ‖X − U(k)‖2F + C1 + C2 + C3 + C4

≤ ‖X − U(k)‖2F
(
1− ηλ0

d
+ 8ηnR+ 8ηnR+ η2nλn

)
,

with probability at least 1− δ where the last step follows from Claim B.1, B.2, B.3, and B.4.

Choice of η and R. We need to choose η and R such that

(1− ηλ0

d
+ 8ηnR+ 8ηnR+ η2nλn) ≤ 1− ηλ0

2d
. (5.12)

If we set η = λ0

4ndλn

and R = λ0

64nd , we have

8ηnR+ 8ηnR = 16ηnR ≤ ηλ0

4d
, and η2nλn ≤ ηλ0

4d
.

Finally,

‖X − U(k + 1)‖2F ≤
(
1− ηλ0

2d

)
‖X − U(k)‖2F ·

holds with probability at least 1− δ if 2n exp(−mR) ≤ δ/3.

Lower bound on the level of over-parameterization m. We require for any δ ∈ (0, 1) that

R′ =
4d

√
λn‖X − U(0)‖F√

mλ0
< R = min

{
λ0

64nd
,
λ0δ

2n2d

}
,

where the first bound on R comes from the gradient descent whereas the second is required in Lemma 5.2.

By Claim 5.1 that ‖X − U(0)‖F ≤
√

2n
δ with probability at least 1− δ, then we require

m ≥ C
n5λnd

4

λ4
0δ

3
,

for a sufficiently large constant C > 0 so that the descent holds with probability 1− δ.
�

We give proofs for Claims B.1, B.2, B.3, and B.4 in Appendix B.
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6 Jointly-trained Autoencoders

In the previous section, we analyzed the gradient dynamics of a two-layer autoencoder under the weakly-
trained regime. We now analyze the jointly-trained regime where the loss is optimized over both sets of
layer weights. For consistency of our presentation, we reuse some key notations in this section; for example,
K(t), U(t) have the same interpretation as before but possess a different closed form.

6.1 Gradient flow

The loss function we consider for this jointly-trained regime is the same:

L(W,A) =
1

2

n∑

i=1

‖xi −
1√
md

Aφ(W⊤xi)‖2. (6.1)

The difference is that the optimization is now taken over both weights W and A. To make the comparison
easier, the matrices W and A are randomly initialized in the same way such that

wij(0) ∼ N (0, 1), aij(0) ∼ Unif({−1, 1})

are drawn independently for each pair (i, j). W and A are then updated using gradient descent with step
size η:

W (k + 1) = W (k)− η∇WL(W (k), A(k)), k = 0, 1, . . . (6.2)

A(k + 1) = A(k)− η∇AL(W (k), A(k)), k = 0, 1, . . . (6.3)

Similar to the previous case, we derive the gradients of L(W,A) with respect the column wr of W and ar of
A. The gradient ∇wr

L(W,A) is the same in (5.2) in Section 5.1 whereas ∇ar
L(W,A) is standard:

∇wr
L(W,A) = − 1√

md

n∑

i=1

1[wT
r xi ≥ 0]xia

⊤
r (xi − ui), (6.4)

∇ar
L(W,A) = − 1√

md

n∑

i=1

φ(w⊤
r xi)(xi − ui). (6.5)

Consider two ODEs, one for each weight vector over the continuous time t:

dwr(t)

dt
= −∇wr

L(W (t), A(t)), (6.6)

dar(t)

dt
= −∇ar

L(W (t), A(t)). (6.7)

Using (6.4), (6.5), (6.6) and (6.7), the continuous-time dynamics of the predicted output, ui(t), for sample
xi is given by:

dui(t)

dt
=

d

dt

(
1√
md

m∑

r=1

arφ(w
⊤
r xi)

)

=
1√
md

m∑

r=1

(
Jwr

(arφ(w
⊤
r xi))

dwr

dt
+ Jar

(arφ(w
⊤
r xi))

dar
dt

)

=
1√
md

m∑

r=1

(
1[wT

r xi ≥ 0]a⊤r xi(−∇wr
L(W,A)) + φ(w⊤

r xi)(−∇ar
L(W,A))

)

= − 1√
md

n∑

j=1

m∑

r=1

(
1[wT

r xi ≥ 0, wT
r xj ≥ 0]x⊤

i xjara
⊤
r + φ(w⊤

r xi)φ(w
⊤
r xj)I

)
(xj − uj).
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In these expresssions, we skip the dependence of the weight vectors on time t and simply write them as wr

and ar. Vectorizing dU(t)
dt , we get to the key equation that characterizes the dynamics of U(t):

dvec(U(t))

dt
=

1

d

(
G(t) +H(t)

)
vec(X − U(t). (6.8)

In the above equation, G(t) is a size-nd× nd matrix of the form:

G(t) =
1

m

m∑

r=1

X̃r(t)
⊤X̃r(t)⊗ ar(t)ar(t)

⊤, (6.9)

where X̃r(t) =
[
1[wr(t)

⊤x1 ≥ 0]x1, . . . ,1[wr(t)
⊤xn ≥ 0]xn

]
, while H(t) is a size-nd× nd matrix:

H(t) =
1

m

m∑

r=1

φ(X⊤wr(t))φ(wr(t)
⊤X)⊗ I. (6.10)

Let us emphasize again that G(t) is precisely the kernel that governs the dynamics for the weakly-trained
case. On the other hand, H(t) is a Kronecker form of the Hessian of the loss function derived with respect
to A, using the features produced at the output of the ReLU activations.

As shown in Section 3, assuming randomness and independence of W (0) and A(0), we can prove that as
m → ∞, H(0) and G(0) converge to the corresponding NTKs whose minimum eigenvalues are assumed to
be positive. More specifically, we have

G∞ = EW (0),A(0)[G(0)]

= Ew(0),a(0)[X̃(0)⊤X̃(0)⊗ a(0)a(0)⊤]

= Ew[X̃
⊤X̃]⊗ I. (6.11)

and

H∞ = EW (0),A(0)[H(0)]

= Ew(0),a(0)[φ(X
⊤w(0))φ(w(0)⊤X)]⊗ I. (6.12)

Denote the time-dependent kernel K(t) = G(t) +H(t). Since both G(t) and H(t) are positive semi-definite,
we only focus on H(t) for reasons that will become clear shortly.

Since G(t) is also positive definite with high probability (Section 5.1), the flow convergence can be also
boosted by the positive definiteness of G∞. By Assumption 2,

λmin(K
∞) ≥ λmin(H

∞) ≥ λ0 > 0.

Since G(0) is positive semi-definite, in order to bound the minimum eigenvalue of K(0), all we need is to
bound that of H(0). Importantly, we observe that the smoothness of the kernel H(t) is much better as
a function of the deviation of the weights from the initialization. This allows the weights to change with
a larger amount than merely using G(t), and enables us to significantly reduce the number of parameters
required for the gradient to reach a global optimum.

Our main result for gradient flow of the jointly-trained autoencoder is given by:

Theorem 6.1 (Linear convergence of gradient flow, jointly-trained regime). Suppose Assumptions 1 and 2
hold. The initial weights are independently drawn such that wr ∼ N (0, I) and ar ∼ Unif({−1, 1}d) for all

r ∈ [m]. If m ≥ C
nλ3

n
d

λ4

0
δ2

for some large enough constant C, then with probability at least 1− δ,

‖X − U(t)‖2F ≤ exp
(
−λ0t

d

)
‖X − U(0)‖2F .
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Remark 6.1. We initialize the second-layer weights A with independent Rademacher entries. This is for
convenience of analysis because such A has constant-norm columns. However, similar results should easily
follow for initialization with more practical schemes (for example, i.i.d. Gaussians).

We will first state and prove a few auxiliary results in Lemmas 6.1, 6.2, and 6.6 and then use them to
prove Theorem 6.1.

Lemma 6.1. For any δ ∈ (0, λ0

12dλ2
n

), if m ≥ C ndλn log2(nd/δ)
λ2

0

for some large enough constant C, then with

probability at least 1− 1/(2nd)2 lognd −mδ, one obtains ‖H(0)−H∞‖ ≤ λ0/4 and λmin(H(0)) ≥ 3λ0/4 .

The proof of this Lemma is deferred to Appendix C.

Lemma 6.2. Suppose ‖W (t)−W (0)‖F ≤ Rw. Then,

‖H(t)−H(0)‖ ≤ λn

m
(2‖W (0)‖+Rw)Rw.

Particularly, if λn

m (2‖W (0)‖ + Rw)Rw ≤ λ0

4 , then ‖H(t) − H(0)‖ ≤ λ0

4 . Therefore, λmin(K(t) > λ0

2 if

λmin(H(0)) ≥ 3λ0

4 .

Remark 6.2. Let us compare with Lemma 5.2. Note that compared with that bound, O(n2dRw) on the
kernel perturbation, here the spectral norm bound on H(t)−H(0) is significantly better in two ways:

(i) the bound scales with 1/
√
m, which later determines the over-parameterization and

(ii) the movement is now characterized by the total ‖W (t)−W (0)‖F . This is possible due to the smoothness
of the ReLU activation, which is the reason why we focus on H(t) instead of G(t).

Proof. We apply the triangle inequality and use the Lipschitz property of the rectified linear unit to bound
the difference. Recall that

H(t) =
1

m

m∑

r=1

φ(X⊤wr(t))φ(wr(t)
⊤X) =

1

m
φ(X⊤W (t))φ(W (t)⊤X).

Then, we can upper bound the perturbation as follows:

‖H(t)−H(0)‖ ≤ 1

m

∥∥φ(X⊤W (t))φ(W (t)⊤X)− φ(X⊤W (0))φ(W (0)
⊤
X)
∥∥

≤ 1

m
‖φ(X⊤W (t)‖‖φ(W (t)⊤X)− φ(W (0)⊤X)‖

+
1

m
‖φ(X⊤W (t))− φ(X⊤W (0))‖‖φ(W (0)⊤X)‖

≤ 1

m
‖X‖2 (‖W (t)‖ + ‖W (0)‖) ‖W (t)−W (0)‖F

≤ λn

m
(2‖W (0)‖+ ‖W (t)−W (0)‖) ‖W (t)−W (0)‖F

≤ λn

m
(2‖W (0)‖+Rw)λnRw.

In the third step, we use the fact that the ReLU function is 1-Lipschitz and ‖φ(X⊤W (t)‖ ≤ ‖X‖‖W (t)‖.
The last step follows by ‖W (t)−W (0)‖F ≤ Rw.

Using the condition and Weyl’s inequality, one can easily show that λmin(K(t)) ≥ λmin(H(t)) > λ0/2.
�

We haved proved that as long as the weight matrix W (t) do not change much over t, the minimum
eigenvalue of K(t) stays positive. Next, we show that this implies the exponential decay of the loss with
iteration, and give a condition under which the weights do not change much.
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Lemma 6.3. Fix t > 0. Suppose λmin(K(s)) ≥ λ0

2 for all 0 ≤ s < t. Then

‖X − U(s)‖2F ≤ exp
(
−λ0s

d

)
‖X − U(0)‖2F .

Proof. We have λmin(K(s)) ≥ λ0

2 , then

d

ds

(
‖vec(X − U(s))‖22

)
= −2vec(X − U(s))⊤

K(t)

d
vec(X − U(s))

≤ −2

d
λmin(K(s))‖vec(X − U(s))‖22

≤ −λ0

d
‖X − U(s)‖2F , (6.13)

since λmin(H(s)) ≥ λ0

2 . Therefore,

‖X − U(s)‖2F = ‖vec(X − U(s))‖2 ≤ exp
(
−λ0s

d

)
‖vec(X − U(0))‖2

≤ exp
(
−λ0s

d

)
‖X − U(0)‖2F .

�

Lemma 6.4. Fix t > 0. Suppose λmin(K(s)) ≥ λ0

2 and ‖A(s) − A(0)‖F ≤ Ra for all 0 ≤ s < t. For all
r ∈ [m], we have

‖W (t)−W (0)‖F ≤ 2
√
dλn(‖A(0)‖+Ra)‖X − U(0)‖F√

mλ0
, R′

w.

Proof. For s ∈ [0, t), we have

d

ds
wr(s) = −∇wr

L(W (s), A(s))

=
1√
md

n∑

i=1

1[wT
r xi ≥ 0]xiar(s)

⊤(xi − ui(s))

=
1√
md

X̃r(X − U(s))⊤r ar(s).

Then, one can bound the entire weight matrix as follows:

∥∥∥∥
d

ds
W (s)

∥∥∥∥
F

≤ ‖X‖√
md

∥∥(X − U(s))⊤A(s)
∥∥
F

≤
√
λn√
md

‖X − U(s)‖F ‖A(s)‖

≤
√
λn(‖A(0)‖+Ra)√

md
exp
(
−λ0s

2d

)
‖X − U(0)‖F .
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In the second step, we use the fact ‖CD‖F ≤ ‖C‖F ‖D‖ for any matrices C,D, and ‖X‖2 = λn. The last
step follows from ‖A(s)‖ ≤ ‖A(0)‖ +Ra and Lemma 6.3. Using the same continuity, we have

‖W (t)−W (0)‖F ≤ lim
t′→t

∫ t′

0

∥∥∥∥
d

ds
W (s)

∥∥∥∥
F

≤ lim
t′→t

∫ t′

0

√
λn(‖A(0)‖ +Ra) exp

(
−λ0s

2d

)
‖X − U(0)‖F√

md
ds

≤ 2
√
λn(‖A(0)‖+Ra)‖X − U(0)‖F√

md
lim
t′→t

∫ t′

0

exp
(
−λ0s

2d

)
ds

≤ 2
√
dλn(‖A(0)‖+Ra)‖X − U(0)‖F√

mλ0
, R′

w.

�

Lemma 6.5. Fix t > 0. Suppose λmin(K(s)) ≥ λ0

2 and ‖W (s) −W (0)‖F ≤ Rw for all 0 ≤ s < t, then for
r = 1, 2, . . . ,m

‖A(t)−A(0)‖F ≤ 2
√
dλn(‖W (0)‖+Rw)‖X − U(0)‖F√

mλ0
, R′

a.

Proof. For s ∈ [0, t), we use the gradient derived in (6.5) and (6.7) to obtain:

d

dts
ar(s) = −∇ar

L(W (s), A(s))

=
1√
md

n∑

i=1

φ(w⊤
r xi)(xi − ui(s))

=
1√
md

(X − U(s))φ(X⊤wr(s))

Then, one can write

∥∥∥∥
d

dts
A(s)

∥∥∥∥
F

=

∥∥∥∥
1√
md

(X − U(s))φ(X⊤W (s))

∥∥∥∥
F

≤
√
λn√
md

‖X − U(s)‖F ‖W (s)‖

≤
√
λn(‖W (0)‖+Rw)√

md
exp
(
−λ0s

2d

)
‖X − U(0)‖F ,

where we use ‖X‖ ≤ √
λn, ‖W (s)‖ ≤ ‖W (0)‖ + Rw. The last step follows from Lemma 6.3. Now, we

integrate out s:

‖A(t)−A(0)‖F ≤
∫ t

0

∥∥∥∥
d

dts
A(s)

∥∥∥∥
F

≤
∫ t

0

√
λn(‖W (0)‖+Rw) exp

(
−λ0s

2d

)
‖X − U(0)‖F√

m
ds

≤ 2
√
dλn(‖W (0)‖+Rw)‖X − U(0)‖F√

mλ0
= R′

a,

which is what we need.
�

Lemma 6.6. If R′
w < Rw and R′

a < Ra, then for all t ≥ 0, we have
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(i) λmin(K(t)) ≥ λ0

2 ; and for all r ∈ [m], ‖W (t)−W (0)‖F ≤ R′
w, ‖A(t)−A(0)‖F ≤ R′

a;

(ii) If (i) holds, then ‖X − U(t)‖2F ≤ exp
(
−λ0

d

)
‖X − U(0)‖2F .

Proof. Suppose on the contrary that

T =

{
t ≥ 0 : λmin(K(t)) ≤ λ0

2
or ‖W (t)−W (0)‖F > R′

w or ‖A(t) −A(0)‖F > R′
a

}
. (6.14)

is not an empty set. Therefore, t0 , inf T exists. Using the same contuinity argument as in Lemma 5.3,
one can verify that t0 > 0. First, if λmin(K(t0)) ≤ λ0

2 , then by Lemma 6.2, ‖W (t0)−W (0)‖F > Rw > R′
w,

which is a contradiction because it violates the minimality of t0.
The other two cases are similar, so we will prove one of them. If it holds true that

‖W (t)−W (0)‖F > R′
w.

The definitions of t0 and T implies that for any s ∈ [0, t0), λmin(K(s)) ≥ λ0

2 and ‖A(s) − A(0)‖F ≤ R′
a.

Then, Lemma 6.4 leads to:
‖W (t0)−W (0)‖F ≤ R′

w,

which is a contradiction. Therefore, we have finish the proof.
�

Proof of Theorem 6.1. With the results, we can can prove the Theorem. From Lemma 6.6, if R′
w ≤ Rw and

R′
a ≤ Ra, then

‖X − U(t)‖2F ≤ exp
(
−λ0

d

)
‖X − U(0)‖2F .

We only need the conditions R′
w = R′

a ≤ Rw = Ra to satisfy for this to work. The conditions are

λn

m
(2‖W (0)‖+Rw)Rw ≤ λ0

4
;

and Rw < R′
w =

2
√
dλn(‖A(0)‖ +Ra)‖X − U(0)‖F√

mλ0
.

Note that ‖X−U(0)‖2F ≤ 3n/2δ with probability at least 1−δ. Also, using a standard bound on sub-Gaussian

matrices, we have ‖W (0)‖ ≤ 2
√
m+

√
d and ‖A(0)‖ ≤ 2

√
m+

√
d with probability at least 1 − 2 exp(−m).

Then if we have the order of m ≥ Ω
(

ndλ3

n

λ4

0
δ2

)
. Therefore, we finished the proof for the gradient flow Theorem.

�

6.2 Gradient descent

As above, we will now appropriately discretize the gradient flow to obtain a convergence result for gradient
descent with finite step size for the jointly-trained regime.

Theorem 6.2. Suppose Assumptions 1 and 2 hold. At initialization, suppose the weights are independently

drawn from wr ∼ N (0, I) and ar ∼ Unif({−1, 1}d) for all r ∈ [m]. If m ≥ C
nλ3

n
d

λ4

0
δ2

for some large enough

constrant C, then with probability at least 1− δ the gradient descent on W with step size η = Θ( λ0

nλn

),

‖X − U(k)‖2F ≤ (1− ηλ0

2d
)k‖X − U(0)‖2F . (6.15)
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We will prove 6.2 by induction. The base case when k = 0 is trivially true. Assume holds for k′ =
0, 1, . . . , k and we want to show (6.15) for k′ = k + 1. First, we prove that ‖W (k + 1) − W (0)‖F and

‖A(k + 1)−A(0)‖F are small enough, and we then use that to bound ‖X − U(k + 1)‖2F .
In this section, we define and assume that

Rw <
4
√
dλn(‖A(0)‖ +Ra)‖X − U(0)‖F√

mλ0
, R′

w and Ra <
4
√
dλn(‖W (0)‖+Rw)‖X − U(0)‖F√

mλ0
, R′

a.

First, we show the following auxiliary lemma.

Lemma 6.7. If the condition (6.15) holds for k′ = 0, 1, . . . k, then we have

‖W (k + 1)−W (0)‖F ≤ R′
w, and ‖A(k + 1)−A(0)‖F ≤ R′

a

with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We prove this by induction. Clearly, both hold when k′ = 0. Assuming that both hold for k′ ≤ k.
We will prove both hold for k′ = k + 1.

We use the expression of the gradients over wr and ar in (6.4) and (6.5):

∇wr
L(W (k), A(k)) = −

n∑

i=1

1√
md

1[wr(k)
Txi ≥ 0]xiar(k)

⊤(xi − ui(k))

= − 1√
md

X̃r(k)(X − U(k))ar(k),

∇ar
L(W (k), A(k)) = −

n∑

i=1

1√
md

φ(wr(k)
⊤xi)(xi − ui(k))

= − 1√
md

(X − U(k))φ(X⊤wr(k)).

Then, the difference of the weight matrix W is:

‖W (k + 1)−W (0)‖F ≤ η
‖X‖√
md

k∑

k′=0

‖vec(X − U(k′))‖F (‖A(0)‖+Ra)

≤ η

√
λn(‖A(0)‖+Ra)√

m

k∑

k′=0

(
1− ηλ0

2d

)k′/2

‖X − U(0)‖F

≤ η

√
λn(‖A(0)‖+Ra)√

m
‖X − U(0)‖F

∞∑

k′=0

(
1− ηλ0

2d

)k′/2

= η

√
λn(‖A(0)‖+Ra)√

m
‖X − U(0)‖F

4d

ηλ0

=
4
√
dλn(‖A(0)‖ +Ra)‖X − U(0)‖F√

mλ0
= R′

w,

where the third step and fourth step follow from ‖X̃r(k
′)‖ ≤ ‖X‖ =

√
λn and the induction hypothesis

‖A(k′)‖ ≤ ‖A(0)‖ +Ra. The last step follows from

∞∑

i=0

(1− ηλ0/2)
i/2 ≤ 4d

ηλ0
.
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Similarly, we bound the difference of the weight matrix A between time k + 1 and 0:

‖A(k + 1)−A(0)‖F = η

∥∥∥∥
k∑

k′=0

1√
md

(X − U(k′))φ(X⊤W (k′))

∥∥∥∥
F

≤ η
‖X‖√
md

k∑

k′=0

‖X − U(k′)‖F ‖W (k′)‖

≤ η

√
λn√
md

k∑

k′=0

(
1− ηλ0

2d

)k′/2

‖X − U(0)‖F (‖W0‖+Rw)

= η

√
λn(‖W0‖+Rw)‖X − U(0)‖F√

m

4

ηλ0

=
4
√
λn(‖W0‖+Rw)‖X − U(0)‖F√

mλ0
= R′

a

where the third step and fourth step follow from the facts that ‖φ(X⊤W (k′))‖ ≤ ‖X‖‖W (k′)‖ and ‖X‖ =√
λn, and ‖W (k′)‖ ≤ ‖W (0)‖+Rw.

We have therefore shown that ‖W (k′)− w(0)‖F ≤ R′
w and ‖A(k′)−A(0)‖F ≤ R′

a for k′ = k + 1. �

Now, we expand ‖X − U(k + 1)‖2F in terms of the step k. Recall the update rule in (6.2) and (6.3) that

W (k + 1) = W (k)− η∇WL(W (k), A(k)), k = 0, 1, . . . (6.16)

A(k + 1) = A(k)− η∇AL(W (k), A(k)), k = 0, 1, . . . (6.17)

where the gradients is given above. Next, we compute the difference of the prediction between two consecutive

steps, a discrete version of dui(t)
dt . For each i ∈ [n], we have

ui(k + 1)− ui(k) =
1√
md

m∑

r=1

(
ar(k + 1)φ(wr(k + 1)⊤xi)− ar(k)φ(wr(k)

⊤xi)
)

=
1√
md

m∑

r=1

((
ar(k)− η∇ar

L
)
φ
((

wr(k)− η∇wr
L
)⊤

xi

)
− ar(k)φ(wr(k)

⊤xi)
)
. (6.18)

For a particular r, if the activation pattern does not change, we can write the inside term as:

(
ar(k)− η∇ar

L
)
φ
((

wr(k)− η∇wr
L
)⊤

xi

)
− ar(k)φ(wr(k)

⊤xi)

=
(
−ηar(k) (∇wr

L)
⊤ − η(∇ar

L)wr(k)
⊤ + η2(∇ar

L)(∇wr
L)⊤

)
xi1[wr(k)

⊤xi ≥ 0],

where the first part corresponds to kernel G(t) and the second part corresponds to the H(t) shown up in the
gradient flow analysis. With this intuition, we split the right hand side into two parts. v1,i represents the
terms that the pattern does not change and v2,i represents the remaining term that pattern may changes.

For each i ∈ [n], we define Si = {r ∈ [m] : 1[wr(k + 1)⊤xi ≥ 0] = 1[wr(k)
⊤xi ≥ 0], and S⊥

i = [m]\Si.
Then, we write v1,i and v2,i as follows:

v1,i ,
1√
md

∑

r∈Si

(
ar(k + 1)φ(wr(k + 1)⊤xi)− ar(k)φ(wr(k)

⊤xi)
)
,

v2,i ,
1√
md

∑

r∈S⊥

i

(
ar(k + 1)φ(wr(k + 1)⊤xi)− ar(k)φ(wr(k)

⊤xi)
)
.

We further write v1 = (v⊤1,1, v
⊤
1,2, . . . , v

⊤
1,n)

⊤ and do the same for v2. Hence, we write

vec(U(k + 1)− U(k)) = v1 + v2.
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In order to analyze v1 ∈ R
n, we provide definition of G,G⊥ ∈ R

nd×nd and H,H⊥ ∈ R
nd×nd,

G(k)i,j =
1

m

m∑

r=1

x⊤
i xj1[wr(k)

⊤xi ≥ 0, wr(k)
⊤xj ≥ 0]ar(t)ar(t)

⊤,

G(k)⊥i,j =
1

m

∑

r∈S⊥

i

x⊤
i xj1[wr(k)

⊤xi ≥ 0, wr(k)
⊤xj ≥ 0]ar(t)ar(t)

⊤,

H(k)i,j =
1

m

m∑

r=1

φ(wr(t)
⊤xi)φ(wr(t)

⊤xj)I,

H(k)⊥i,j =
1

m

∑

r∈S⊥

i

φ(wr(t)
⊤xi)φ(wr(t)

⊤xj)I.

Using the fact that φ(z) = z1[z ≥ 0] and the definition of Si, we expand the forms of the gradients in 6.4
and 6.5 and get:

v1,i = − 1√
md

∑

r∈Si

ηar(k) (∇wr
L)

⊤
xi1[wr(k)

⊤xi ≥ 0]

− 1√
md

∑

r∈Si

η(∇ar
L)wr(k)

⊤xi1[wr(k)
⊤xi ≥ 0]

+
1√
md

∑

r∈Si

η2(∇ar
L)(∇wr

L)⊤xi1[wr(k)
⊤xi ≥ 0]

=
η

d

n∑

j=1

(
G(k)i,j −G(k)⊥i,j +H(k)i,j −H(k)⊥i,j

)
(xj − uj) + v3,i,

where v3 will be treated as a perturbation:

v3,i =
η2√
md

∑

r∈Si

(∇ar
L)(∇wr

L)⊤xi1[wr(k)
⊤xi ≥ 0].

Then, we can write v1 as:

v1 =
η

d
(K(k)−K⊥(k))vec(X − U(k)) + v3, (6.19)

in which K(k) = G(k) +H(k) — the discrete NTK kernel and K⊥(k) = H⊥(k) +G⊥(k). Lastly, we come
to the main prediction dynamics in discrete time for vec(U(k + 1)− U(k)) as:

vec(U(k + 1)− U(k)) =
η

d
(K(k)−K⊥(k))vec(X − U(k) + v2 + v3.
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Using this equation, we can rewrite ‖X − U(k + 1)‖22 in terms of X − U(k) as follows:

‖X − U(k + 1)‖2F = ‖vec(X − U(k + 1))‖2

= ‖vec(X − U(k))− vec(U(k + 1)− U(k))‖2F
= ‖X − U(k)‖2F − 2vec(X − U(k))⊤vec(U(k + 1)− U(k))

+ ‖U(k + 1)− U(k)‖2F
= ‖X − U(k)‖2F − 2η

d
vec(X − U(k))⊤K(k)vec(X − U(k)

+
2η

d
vec(X − U(k))⊤K(k)⊥vec(X − U(k)

− 2η

d
vec(X − U(k))⊤(v2 + v3)

+ ‖U(k + 1)− U(k)‖2F .

We define and upper bound each of the following terms

C1 = −2η

d
vec(X − U(k))⊤K(k)vec(X − U(k)),

C2 =
2η

d
vec(X − U(k))⊤K(k)⊥vec(X − U(k)),

C3 = −2η

d
vec(X − U(k))⊤v2,

C4 = −2η

d
vec(X − U(k))⊤v3,

C5 = ‖U(k + 1)− U(k)‖2F .

Notice that C1 can be upper bounded in terms of λmin(K(k)) ≥ λmin(H(k)), which is ensured as long as the
movement in the weight is sufficiently small (shown in Lemma 6.7.) C2 can be upper bounded also using the
kernel with bound on its spectral norm.

Proof of Theorem 6.2. We will prove Theorem 6.2 by induction. The base case when k = 0 is trivially true.
Assume that the claim holds for k′ = 0, 1, . . . , k and we want to show that (6.15) also holds for k′ = k + 1.
For k′ = k + 1, we have

‖X − U(k + 1)‖2F = ‖X − U(k)‖2F + C1 + C2 + C3 + C4 + C5

Now, we invoke the bound for each of these terms from Claims C.4, C.5, C.6, C.7 and C.8 in Appendix C
and Lemma6.7. Then, we want to choose η and Rw such that

(
1− ηλ0

d
+

8ηλn

d
+

16η2
√
nλn

d
+

8η2
√

nλ2
n

d
‖X − U(0)‖F +

64η2λ2
n

md

)
≤
(
1− ηλ0

2d

)
. (6.20)

If we set η = λ0

64nλn

and use ‖X − U(0)‖F ≤ C
√
n, we have the two dominating terms are

8ηλn

d
≤ ηλ0

8d
, and

8η2
√
nλ2

n‖X − U(0)‖F
d

≤ ηλ0

8d
.

This implies that

‖X − U(k + 1)‖2F ≤ (1− ηλ0

2d
)‖X − U(k)‖2F .

30



Lower bound on m. We require for any δ ∈ (0, 1) that

λn

m
(4‖W (0)‖+Rw)Rw ≤ λ0

4
,

Rw ≤ 4
√
dλn(‖A(0)‖+Ra)‖X − U(0)‖F√

mλ0

and
2 exp(−m) ≤ δ

where the first bound on Rw comes from the result on gradient descent and the condition in Lemma 6.2,

whereas the second bound is required by the above Claims. By Claim 5.1 that ‖X − U(0)‖F ≤
√

2n
δ for

arbitrary δ ∈ (0, 1), then we require

m ≥ C
ndλ3

n

λ4
0δ

2

for a sufficiently large constant C > 0 so that the claim holds with probability 1− δ.
�

7 Weight-tied Autoencoders

We conclude with the case of training two-layer autoencoders whose weights are shared (i.e., A = W ).
This is a common architectural choice in practice, and indeed previous theoretical analysis for autoen-
coders [Rangamani et al., 2017, Nguyen et al., 2019, Li and Phan-Minh, 2019] have focused on this setting.
We will show that somewhat surprisingly, allowing the network to be over-parameterized in this setting leads
to certain degeneracies. First, we prove:

Lemma 7.1. Let x be any fixed sample. The weight W is randomly initialized such that wr ∼ N (0, σ2I)
independently for r = 1, 2, . . . ,m, then

Ewr∼N (0,σ2I),∀r[‖x− 1

m
Wφ(W⊤x)‖2] =

(
σ2

2
− 1

)2

‖x‖2 + (2d+ 3)‖σ2x‖2
4m

.

Particularly, when ‖x‖ = 1, σ2 = 2, then

Ewr∼N (0,σ2I),∀r[‖x− 1

m
Wφ(W⊤x)‖2] = 2d+ 3

m
.

For an arbitrary small ǫ > 0, the expected reconstruction loss is at most ǫ if m ≥ Ω(d/ǫ).

Remark 7.1. This Lemma has a few interesting implications. First, when σ2 = 2 , then

Ewr∼N (0,2I),∀r[‖x− u‖2] = (2d+ 3)‖x‖2
m

,

which does not exceed ǫ if m ≥ 3d/ǫ for ǫ > 0. Provided that the data samples are normalized, if m is
sufficiently large, even with random initialization the reconstruction loss is very close to zero without any
need for training. Therefore, mere over-parameterization already gets us to near-zero loss; the autoencoder
mapping 1

mWφ(W⊤x) ≈ x for any unit-norm x. It suggests that training of weight-tied autoencoders under
high levels of over-parameterization may be degenerated.
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Proof. We will use Ewr
as a shorthand for Ewr∼N (0,σ2I). We expand the reconstruction loss:

‖x− 1

m
Wφ(W⊤x)‖2 = ‖x− 1

m
Wφ(W⊤x)‖2 = ‖x− 1

m

m∑

r=1

φ(w⊤
r x)wr‖2

= ‖x‖2 − 2

m

m∑

r=1

xTφ(w⊤
r x)wr +

1

m2

∑

r,s∈[m]

φ(w⊤
r x)w

⊤
r φ(w⊤

s x)ws. (7.1)

Because φ is ReLU and the distribution of wr is symmetric, we have:

Ew [φ(w
⊤x)w] =

1

2
Ew[ww

⊤]x =
σ2x

2
,

since Ew[ww
⊤] = I. Then, by the independence of the columns in W (more details or split up, one more

step),

Ewr

[
‖x− u‖2

]
= ‖x‖2 − 2

m

m∑

r=1

‖x‖2
2

+
1

m2

∑

r,s∈[m],r 6=s

‖σ2x‖2
4

+mEw[φ(w
T x)2‖w‖2]

= (1− σ2)‖x‖2 + m− 1

4m
‖σ2x‖2 + 1

m
Ew[φ(w

T x)2‖w‖2]. (7.2)

Now, we compute the last term:

Ew [φ(w
Tx)2‖w‖2] = d+ 2

2
‖σ2x‖2. (7.3)

Due to the normalization ‖x‖ = 1, we can also write 1
σw = ux+ v such that xT v = 0, then u = 〈w, x〉 ∼

N (0, 1) and v ∼ N (0, I − xxT ) are conditionally independent given x. Note that since the conditional
distribution of u is unchanged with respect to x, this implies that u is independent of x; as a result, u and
v are (unconditionally) independent.

Also, denote αq = Ez∼N (0,1)[z
q
1(z ≥ 0)] for the exact value . Using Stein’s Lemma, we can compute the

exact values: α = Ew[u1(u ≥ 0)] = Ez∼N (0,1)[z1(z ≥ 0)] = 1√
2π

, β = Ew[u
2
1(u ≥ 0)] = 1

2 , γ = Ew[u
4
1(u ≥

0)] = 3
2 , which are all positive. Write φ(z) = max(0, z) = 1(z ≥ 0)z, and

Ew∼N (0,I)[φ(w
T x)2‖w‖2] = Ew[1(〈w, x〉 ≥ 0)〈w, x〉2‖w‖2]

= Ew[1(u ≥ 0)u2(u2 + ‖v‖2)] (‖x‖ = 1)

= Ew[1(u ≥ 0)u4] + Ew [1(u ≥ 0)u2]Ew[‖v‖2] (cond. independence of u and v.)

=
d+ 2

2
. (7.4)

Changing variables by scaling the variance:

Ew∼N (0,σ2I)[φ(w
T x)2‖w‖2] = σ4

Ew∼N (0,I)[φ(w
Tx)2‖w‖2] = (2d+ 4)‖σ2x‖2.

Combining with (7.2):

Ewr∼N (0,σ2I)

[
‖x− u‖2

]
=

(
σ2

2
− 1

)2

‖x‖2 + (2d+ 3)‖σ2x‖2
4m

. (7.5)

The second result directly follows from the Lemma with the specific values of ‖x‖, σ plugged in.
�
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A Useful Facts

Lemma A.1 (Stein’s Lemma). For a random vector w ∈ Rd such that w ∼ N (0, I) and function h(w) :
R

d → R
k is weakly differentiable with Jacobian Dwh, we have

Ew∼N (0,I)

[
wh(w)⊤

]
= Ew∼N (0,I)

[
(Dwh)

⊤].

Lemma A.2. Denote Si = {r ∈ [m] : 1[wr(k + 1)⊤xi ≥ 0] = 1[wr(k)
⊤xi ≥ 0], and S⊥

i = [m]\Si. If
‖wr(k)− wr(0)‖ ≤ R, then

m∑

r=1

1[r ∈ S⊥
i ] ≤ 4mR

with probability at least 1− n exp(−mR).

This result is borrowed from the proof of [Song and Yang, 2019, Claim 4.10].

B Weakly-trained Autoencoders

B.1 Concentration of K(0) – Proof of Lemma 5.1

Proof. Recall that K(0) = 1
m

∑m
r=1 X̃r(0)

⊤X̃r(0) ⊗ ara
⊤
r . In this proof, we omit the argument t = 0 in

X̃r(0), and simply write X̃r for clarity.

Consider the random matrix Zr = X̃⊤
r X̃r ⊗ ara

⊤
r and Z̄r = Ewr

[X̃⊤X̃ ] ⊗ I. Note that Zr is positive
semi-definite. One can easily show two facts:

‖Zr‖ = ‖X̃⊤
r X̃r ⊗ ara

⊤
r ‖ = ‖X̃⊤

r X̃r‖‖ara⊤r ‖ = ‖ar‖2‖X̃⊤
r X̃r‖ ≤ dλn,
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in which we use ‖ar‖2 = d; and

‖X̃⊤
r X̃r‖ = sup

‖b‖=1

‖X̃rb‖2 ≤ sup
‖b‖=1

‖
∑

i

bixi‖2 = ‖X⊤X‖ = λn. (B.1)

Similarly, ‖Z̄r‖ ≤ λn, and hence ‖Zr − Z̄r‖ ≤ (d+ 1)λn. Moreover,

Ewr,ar
[(Zr − Z̄r)

2] = Ewr ,ar
[(Zr − Z̄r)(Zr − Z̄r)

⊤]

= Ewr ,ar
[ZrZ

⊤
r ]− Z̄2

r

= Ewr ,ar
[(X̃⊤

r X̃r)
2 ⊗ ‖ar‖2ara⊤r ]− (Ew [X̃

⊤X̃])2 ⊗ I

� dEwr
[(X̃⊤

r X̃r)
2]⊗ I.

By the above argument, ‖Ewr
[(X̃⊤

r X̃r)
2]‖ ≤ λ2

n, so ‖∑r E((Zr − Z̄r)
2)‖ ≤ mdλ2

n.
From matrix Bernstein’s inequality [Tropp, 2012, Theorem 1.4 of],

P [‖mK(0)−mK∞‖ ≥ ǫ] ≤ nd exp

(
− ǫ2/2

(d+ 1)λnǫ/3 +mdλ2
n

)
.

Since the second term in the denominator of the exponent dominates (λ0 ≤ λn), we get

m ≥ C
λ2
nd log(nd/δ)

λ2
0

where we pick ǫ = mλ0/4. Therefore,
‖K(0)−K∞‖ ≤ λ0/4

with probability at least 1− δ for any δ ∈ (0, 1). By Weyl’s inequality, we have with the same probability:

λmin(K(0)) ≥ 3λ0/4.

�

B.2 Proof of supporting claims

To prove the bounds in Claims B.1, B.2, B.3, and B.4, we use the bound ‖wr(k + 1) − wr(0)‖ ≤ R′ for all
r ∈ [m] in Lemma 5.5. In what follows, we assume R′ < R, which is the weight movement allowed to achieve
Lemma 5.2. This assumption holds with high probility as long as m is large enough.

Claim B.1. Let C1 = − 2η
d vec(X − U(k))⊤K(k)vec(X − U(k)). Then we have

C1 ≤ −ηλ0

d
‖X − U(k)‖2F .

with probability at least 1− δ.

Proof. Using Lemma 5.5, we have ‖wr(k)− wr(0)‖ ≤ R′ < R for all r ∈ [m]. By Lemma 5.2, we have

‖K(k)−K(0)‖ <
λ0

4
.

Therefore, λmin(K(k)) ≥ λ0/2 with probability at least 1− δ. As a result,

vec(X − U(k))⊤K(k)vec(X − U(k)) ≥ λ0

2
‖X − U(k)‖2 =

λ0

2
‖X − U(k)‖2F ,

and C1 ≤ − ηλ0

d ‖X − U(k)‖2F with probability at least 1− δ.
�
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Claim B.2. Let C2 = 2η
d vec(X − U(k))⊤K(k)⊥(X − U(k)). We have

C2 ≤ 8ηnR‖X − U(k)‖2F .

with probability at least 1− n exp(−mR).

Proof. All we need is to bound K(k)⊥. A simple upper bound is

‖K(k)⊥‖2 ≤
n∑

i,j=1

‖K(k)⊥i,j‖2F

≤
n∑

i,j=1

∥∥∥
1

m

∑

r∈S⊥

i

x⊤
i xj1[wr(k)

⊤xi ≥ 0, wr(k)
⊤xj ≥ 0]ara

⊤
r

∥∥∥
2

F

≤ d2
n∑

i,j=1


 1

m

∑

r∈S⊥

i

1[wr(k)
⊤xi ≥ 0, wr(k)

⊤xj ≥ 0]




2

≤ d2
n∑

i,j=1

(
1

m

m∑

r=1

1[r ∈ S⊥
i ]

)2

≤ 16n2d2R2

with probability 1 − n exp(−mR) where the last step follows from Lemma A.2. Then, with that same
probability ‖K(k)⊥‖ ≤ ‖K(k)⊥‖F ≤ 4ndR, and

C2 =
2η

d
vec(X − U(k))⊤K(k)⊥(X − U(k))

≤ 2η

d
‖K(k)⊥‖‖X − U(k)‖2F

≤ 8ηnR‖X − U(k)‖2F .

�

Claim B.3. Let C3 = −2vec(X − U(k))⊤v2, then with probability at least 1− n exp(−mR)

C3 ≤ 8ηnR‖X − U(k)‖2F .
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Proof. We have C3 ≤ 2‖X − U(k)‖F ‖v2‖. Using the Lipschitz property of φ, we have

‖v2‖2 =
n∑

i=1

‖v2,i‖2

≤
n∑

i=1

∥∥∥∥
1√
md

∑

r∈S⊥

i

ar
(
φ
(
wr(k + 1)⊤xi

)
− φ(wr(k)

⊤xi)
)∥∥∥∥

2

≤ η2

m

n∑

i=1




∑

r∈S⊥

i

∣∣∣∣
(
∇wr

L(W (k))
)⊤

xi

∣∣∣∣




2

≤ η2

m

n∑

i=1

(
m∑

r=1

1[r ∈ S⊥
i ]

∣∣∣∣
(
∇wr

L(W (k))
)⊤

xi

∣∣∣∣

)2

≤ η2

m
max

r

∥∥∥∇wr
L(W (k))

)⊤∥∥∥
2 n∑

i=1

(
m∑

r=1

1[r ∈ S⊥
i ]

)2

≤ η2λn

m2
‖X − U(k)‖2F

n∑

i=1

(
m∑

r=1

1[r ∈ S⊥
i ]

)2

≤ η2λn

m2
‖X − U(k)‖2F

n∑

i=1

(4mR)2

≤ 16nλnR
2η2‖X − U(k)‖2F

≤ 16n2R2η2‖X − U(k)‖2F .

with probability 1− n exp(−mR). The sixth step we use

‖∇wr
L(W (k))‖ =

∥∥∥
1√
md

X̃r(k)(X − U(k))⊤ar
∥∥∥

≤
√
λn√
m

‖X − U(k)‖F ,

and the last step follows from from Lemma A.2 that
∑m

r=1 1[r ∈ S⊥
i ] ≤ 4mR with probability at least

1− n exp(−mR). Substitute the bound into C3, then we finish the proof. �

Claim B.4. Let C4 = ‖U(k + 1)− U(k)‖2F . Then we have

C4 ≤ η2nλn‖X − U(k)‖2F .

Proof. Previously in Lemma 5.5, we proved that

‖∇wr
L(W (k))‖ =

∥∥∥
1√
md

X̃r(k)(X − U(k))⊤ar
∥∥∥

≤
√
λn√
m

‖X − U(k)‖F .
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Expand the form of U(k + 1)− U(k) and use the Lipschitz of ReLU to get

C4 =
n∑

i=1

‖ui(k + 1)− ui(k)‖2

=
1

md

n∑

i=1

∥∥∥
m∑

r=1

ar
(
φ(wr(k + 1)⊤xi)− φ(wr(k)

⊤xi)
)∥∥∥

2

≤ η2
n∑

i=1

1

m

(
m∑

r=1

∥∥∥∇wr
L(W (k))

∥∥∥
)2

≤ η2
n∑

i=1

1

m

(
m∑

r=1

√
λn√
m

‖X − U(k)‖F

)2

= η2nλn‖X − U(k)‖2F
≤ n2η2‖X − U(k)‖2F .

Therefore, we finish the proof. �

C Jointly-trained Autoencoders

C.1 Concentration of H(0)

We re-state and prove the concentration of H(0) in Lemma 6.1.

Lemma C.1. For any δ ∈ (0, λ0

12dλ2
n

), if m ≥ Cmax(n,d)λn log2(nd/δ)
λ2

0

for some large enough constant C, then

with probability at least 1− 1/(2nd)2 log nd −mδ, one obtains ‖H(0)−H∞‖ ≤ λ0/4 and λmin(H(0)) ≥ 3λ0/4
.

Proof. Recall that

H(0) =
1

m

m∑

r=1

φ(X⊤wr(0))φ(wr(0)
⊤X)⊗ I, (C.1)

and H∞ = EW (0),A(0)[H(0)]. Our goal is to show the concentration of
∑m

r=1 φ(X
⊤wr(0))φ(wr(0)

⊤X). Let

us use wr to mean wr(0) and denote the rth-random matrix as

Zr = φ(X⊤wr)φ(w
⊤
r X).

We use Lemma B.7 of Zhong et al. [2017] and verify the required conditions by the next results.

Claim C.1 (Condition I for H(0)). The following are true:

(i). ‖Zr‖ ≤ λn‖wr‖2.

(ii). Pwr
[‖wr‖2 ≤ 4d

√
log(2/δ)] ≥ 1− δ for any δ ∈ (0, 1).

Proof. (i) We have

‖Zr‖ = ‖φ(X⊤wr)φ(w
⊤
r X)‖ = ‖φ(X⊤wr)‖2 ≤ ‖X⊤X‖‖wr‖2 ≤ λn‖wr‖2,

which gives the first part (i). For the second part, we use the fact ‖wr‖2 is a chi-squared random variable
with d degrees of freedom, and sub-exponential with sub-exponential norm 2

√
d, meaning that:

Pwr
[|‖wr‖2 − d| ≥ ǫ] ≤ 2 exp

(
− ǫ2

8d

)

38



For any δ ∈ (0, 1) and ǫ2 = 9d log(2/δ) ≥ 8d log(2/δ), we have

|‖wr‖2 − d| ≤ 3
√
d log(2/δ)

with probability at least 1 − δ. Then, ‖wr‖2 ≤ d + 3
√
d log(2/δ) ≤ 4d

√
log(2/δ) with probability at least

1− δ. �

Claim C.2 (Condition II for H(0)). ‖E[ZrZ
⊤
r ]‖ ≤ 3nλn.

Proof. We have

ZrZ
⊤
r = φ(X⊤wr)φ(w

⊤
r X)φ(X⊤wr)φ(w

⊤
r X)

� ‖φ(XTwr)‖2‖wr‖2X⊤X �
n∑

l=1

φ(w⊤xl)
2‖wr‖2X⊤X.

We need is to compute Ewr
[φ(w⊤xl)

2‖wr‖2], which is already done in (7.3), Section 7. To be precise, we
have

E[φ(w⊤
r xl)

2‖wr‖2] =
d+ 2

2
≤ d

where x̃i = xi1[w
⊤
r xi ≥ 0] for each i ∈ n. Then, we can write

‖Ewr
[ZrZ

⊤
r ]‖ ≤ ndλn.

�

Claim C.3 (Condition IV for H(0)). sup{b:‖b‖=1}(E[(b
⊤Zrb)

2])1/2 ≤
√
3dλn.

Proof. Recall Zr = φ(X⊤wr)φ(w
⊤
r X), and for any unit-norm vector b ∈ R

n

(b⊤Zrb)
2 = ‖b⊤φ(X⊤wr)‖4 ≤ ‖φ(X⊤wr)‖4 ≤ λ2

n‖wr‖4.

Moreover, ‖wr‖2 is a chi-squared random variable with d degree of freedom, so

E[‖wr‖4] = 3d2.

Therefore, sup{b:‖b‖=1}(E[(b
⊤Z⊤

r b)2])1/2 ≤
√
3dλn. �

Proof of Lemma 6.1. With the conditions fulfilled in Claims C.1, C.2 and C.3, we can now apply [Zhong et al.,
2017, Lemma B.7] to show the concentration of K(0):

∥∥ 1

m

m∑

r=1

Zr − E[Zr]
∥∥ ≤ ǫ‖E[Zr]‖

with probability 1− 1/n2t − nδ for any t ≥ 1, ǫ ∈ (0, 1) and δ < ǫ‖E[Zr]‖/(2
√
3dλn)

2.
For the target bound, we choose ǫ‖E[Zr]‖ = λ0/4, t = log(2nd) and note that λ0 ≤ ‖E[Zr]‖ = ‖K∞‖ ≤ λn.

Therefore, with probability 1− 1/(2nd)2 log nd −mδ for any δ ∈ (0, λ0

12d2λ2
n

), then

‖H(0)−H∞‖ ≤ λ0

4

if m satisfies

m ≥ 18 log2(2nd)
ndλn + λ2

n + (4d
√
log(2/δ))λnλ0/4

λ2
0

,

which means m = C ndλn log2(nd) log(1/δ)
λ2

0

. �
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C.2 Proof of supporting claims

In the proof of the next claims, we assume that ‖W (0)‖ ≥ R′
w > Rw and ‖A(0)‖ ≥ R′

a > Ra. Also, assume
d ≪ m. These conditions will hold with high probability when m is large enough.

Claim C.4. Let C1 = − 2η
d vec(X − U(k))⊤K(k)vec(X − U(k)) . We have

C1 ≤ −ηλ0

d
‖X − U(k)‖2F .

Proof. Since we have proved that ‖W (k) −W (0)‖F ≤ R′
w, using Lemma 6.2 with the choice of Rw < R′

w,
we have

‖H(k)−H(0)‖ ≤ λ0

4
.

Moreover, G(k) is p.s.d, therefore λmin(K(k)) ≥ λmin(H(k)) ≥ λ0/2, and as a result,

vec(X − U(k))⊤K(k)vec(X − U(k)) ≥ λ0

2
‖X − U(k)‖2 =

λ0

2
‖X − U(k)‖2F .

and C1 ≤ − ηλ0

d ‖X − U(k)‖2F . �

Claim C.5. Let C2 = 2η
d vec(X − U(k))⊤K(k)⊥vec(X − U(k)). We have

C2 ≤ 8ηλn

d
‖X − U(k)‖2F

with probability at least 1− 2 exp(−m).

Proof. We need to bound the spectral norm of K(k)⊥, defined as K(k)⊥ = G(k)⊥ +H(k)⊥. We will bound
their spectral norms. We have

‖G(k)⊥‖ =
∥∥∥
1

m

m∑

r=1

diag(1[r ∈ S⊥
i ])X̃⊤

r X̃r ⊗ ar(k)ar(k)
⊤
∥∥∥

≤ 1

m
‖X‖2‖

m∑

r=1

ar(k)ar(k)
⊤
1[r ∈ S⊥

i ]‖

≤ λn

m
‖A(k)‖2

≤ 4λn‖A(0)‖2
m

,

where we use the assumption Ra ≤ ‖A(0)‖. Similarly, using Rw ≤ ‖W (0)‖ we have

‖H(k)⊥‖ =
∥∥∥
1

m

m∑

r=1

diag(1[r ∈ S⊥
i ])φ(X⊤wr(k))φ(wr(k)

⊤X)⊗ I
∥∥∥

≤ 1

m
‖X‖2‖W (k)‖2

≤ 4λn‖W (0)‖2
m

.

Moreover, using a standard boun on sub-Gaussian matrices, we have ‖W (0)‖ ≤ 2
√
m +

√
d and ‖A(0)‖ ≤

2
√
m+

√
d with probability at least 1− 2 exp(−m). Then,

C2 =
2η

d
vec(X − U(k))⊤K(k)⊥vec(X − U(k))

≤ 8ηλn

d
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with probability at least 1− 2 exp(−m).
�

We re-state the results in the proof in Lemma 6.4 and Lemma 6.5 to bound the remaining terms C3, C4, C5:

‖∇WL(W (k), A(k))‖F ≤
√
λn√
md

‖X − U(k)‖F ‖A(k)‖. (C.2)

‖∇AL(W (k), A(k))‖F ≤
√
λn√
md

‖X − U(k)‖F ‖W (k)‖. (C.3)

Claim C.6. Let C3 = − 2η
d vec(X − U(k))⊤v2. We have

C3 ≤ 16η2

d

√
nλn‖X − U(k)‖2F

with probability at least 1− 3 exp(−m).

Proof. We have vec(X − U(k))⊤v2 ≤ ‖v2‖‖X − U(k)‖F , so we need to bound ‖v2‖. Let Di = diag(1[1 ∈
S⊥
i ], . . . ,1[m ∈ S⊥

i ]), then:

‖v2‖2 =
n∑

i=1

‖v2,i‖2

=

n∑

i=1

∥∥∥
1√
md

∑

r∈S⊥

i

(
ar(k + 1)φ(wr(k + 1)⊤xi)− ar(k)φ(wr(k)

⊤xi)
)∥∥∥

2

=
1

md

n∑

i=1

∥∥∥A(k + 1)Diφ(W (k + 1)⊤xi)−A(k)Diφ(W (k)⊤xi)
∥∥∥
2

≤ 2η2

md

n∑

i=1

∥∥∥(∇AL)Diφ(W (k + 1)⊤xi)
∥∥∥
2

+
∥∥∥A(k)Di(∇WL)⊤xi)

∥∥∥
2

≤ 2nη2

md

(
‖∇AL‖2F ‖W (k + 1)‖2 + ‖A(k)‖2‖∇WL‖2F

)

≤ 2nλnη
2

m2d2
‖X − U(k)‖2F

(
‖W (k + 1)‖2‖W (k)‖2 + ‖A(k)‖4

)

≤ 64nλnη
2

d2
‖X − U(k)‖2F

with probability at least 1−3 exp(−m). Since ‖W (k+1)‖ ≤ 2‖W (0)‖ and ‖A(k+1)‖ ≤ 2‖A(0)‖. Therefore,
with that probability

C3 ≤ 16η2

d

√
nλn‖X − U(k)‖2F .

�

Claim C.7. Let C4 = − 2η
d vec(X − U(k))⊤v3. We have

C3 ≤ 8η2

d

√
nλ2

n‖X − U(k)‖2F ‖X − U(0)‖F

with probability at least 1− 2 exp(−m).
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Proof. We have vec(X−U(k))⊤v3 ≤ ‖v3‖‖X−U(k)‖F . We want to bound ‖v3‖. Let D′
i = diag(1[w1(k)

⊤xi ≥
0], . . . ,1[wm(k)⊤xi ≥ 0])

‖v3‖2 =

n∑

i=1

‖v3,i‖2

=
n∑

i=1

∥∥∥
η2√
md

∑

r∈Si

(∇ar
L)(∇wr

L)⊤xi1[wr(k)
⊤xi ≥ 0]

∥∥∥
2

≤ η4

md

∥∥∥(∇AL)((∇WL)D′
i)

⊤xi

∥∥∥
2

=
η4n

md
‖∇AL‖2F ‖∇WL‖2F

≤ η4nλ2
n

m2d2
‖X − U(k)‖4F ‖A(k)‖

2‖W (k)‖2

≤ 16η4nλ2
n

d2
‖X − U(k)‖4F

with probability at least 1− 2 exp(−m). Therefore,

C3 ≤ 8η2
√
nλ2

n

d
‖X − U(k)‖3F ≤ 8η2

√
nλ2

n

d
‖X − U(k)‖2F ‖X − U(0)‖F

since ‖X − U(k)‖F ≤ ‖X − U(0)‖F by the induction hypothesis.
�

Claim C.8. Let C5 = ‖U(k + 1)− U(k)‖2F . Then we have

C5 ≤ 64η2λ2
n

md
‖X − U(k)‖2F .

with probability at least 1− 3 exp(−m).

Proof. We bound this by re-iterating the proof of Claim C.6:

‖U(k + 1)− U(k)‖2F =
1

m2
‖A(k + 1)φ(W (k + 1)⊤X)−A(k)φ(W (k)⊤X)‖2F

≤ 2η2

m2

(∥∥∥(∇AL)φ(W (k + 1)⊤X)
∥∥∥
2

+ ‖A(k)‖2
∥∥∥(∇WL)⊤X)

∥∥∥
2
)

≤ 2η2‖X‖2
m2

(
‖∇AL‖2F ‖W (k + 1)‖2 + ‖A(k)‖2‖∇WL‖2F

)

≤ 2η2λ2
n

m3d
‖X − U(k)‖2F

(
‖W (k + 1)‖2‖W (k)‖2 + ‖A(k)‖4

)

≤ 64η2λ2
n

md
‖X − U(k)‖2F

with probability at least 1− 3 exp(−m).
�
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