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ABSTRACT

Anewtypeofbeamspaceforarrayprocessingisintroduced
calledconvolutionalbeamspace.Itenjoystheadvantages
oftraditionalbeamspacesuchaslowercomputationalcom-
plexity,increasedparallelismofsubbandprocessing,and
improvedresolutionthresholdforDOAestimation.Butun-
liketraditionalbeamspacemethods,itallowsroot-MUSIC
andESPRITtobeperformeddirectlyforULAswithoutany
overheadofpreparation,astheVandermondestructureand
theshift-invariancearepreservedunderthetransformation.
ThemethodproducesmoreaccurateDOAestimatesthan
traditionalbeamspacemethods,andforcorrelatedsourcesit
producesbetterestimatesthanelement-spacemethods.

IndexTerms— Beamspace,Convolution,LargeArrays,
DimensionReduction,MUSIC.

1.INTRODUCTION

Theideaofbeamformingpriortoaccurateestimationofdi-
rectionsofarrival(DOA)hasbeenwell-knowninarraysig-
nalprocessing,andisreferredtoasbeamspaceprocessing
[1],[2],[7],[25],[26]. Thistopiccontinuestobeofcur-
rentresearchinterest[5],[29],[30].GivenaN-sensorarray
withoutputx∈CN,thebeamspacetransformationcomputes
y=Tx∈CB whereB<N,andthesmallervectoryis
usedtoestimateDOAs.Forexample,thecovarianceofy
canbeestimatedfromitssnapshots,anditsnoiseeigenspace
analyzedtoperformDOAestimationasinMUSIC[14]and
ESPRIT[11].

Duetodimensionalityreduction(B <N),theB×B
covarianceofyhassmallersizethanthatofx.Sothecom-
plexityoftheeigenspacecomputationO(B3)ismuchsmaller
thanO(N3)whichisthecomplexitywhenusingelement-
spacedirectly(T=I).Thisisoneofthemajoradvantages
ofbeamspaceprocessing.IfTiscarefullychosen,thenthe
DOAswhichfalloutsideachosensubbandin(−π/2,π/2)
areattenuatedbyT,sotherearetypicallymuchfewerDOAs
representedbyy(comparedtox).Oneoftenusesabankof
transforms{Ti},whichcanbeoperatedinparallel,tocover
allDOAsin(−π/2,π/2).
Besideslowcomputationandparallelism,thereareother

advantagesforbeamspace. Beamspace methodstendto
havesmallerSNRthresholdforresolutionofcloselyspaced
sources[7],[25],[28].Beamspaceestimatestypicallyhave
smallerbias(andaboutthesamemeansquareerror)when
comparedwithelement-spaceestimates[31].
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Howeverwhenperformingroot-MUSICafterthetradi-
tionalbeamspacetransformation,onehastotakeelaborate
stepstomakesurethepolynomialtoberootedhasreduced
degree,asexplainedwithgreatclarityin[31],forthepopu-
larcasewhererowsofTcomefromtheDFTmatrix.The
transformationfromxtoyalsodestroysthegeometrical(or
shift-)invariancestructurerequiredbyESPRIT,andsomeef-
fortisrequiredtorestoreit,asexplainedin[27].

Inthispaperweintroduceanewapproachcalledthecon-
volutionalbeamspacemethod,whichallowsroot-MUSICand
ESPRITtobedirectlyappliedafterdimensionalityreduction.
Thisisanimportantadvantagebesidestheusualcomputa-
tionalbenefitofgoingfromO(N3)toO(B3).Themethod
alsoproducesmoreaccurateDOAestimatesthantraditional
beamspacemethods,andforcorrelatedsourcesitproduces
betterestimatesthanelement-spacemethodsaswell.

Theuseofconvolution(digitalfiltering)priortofre-
quencyestimationfortime-domainsum-of-sinusoidswas
introducedmanyyearsagobySilverstein,etal.[15],and
studiedindetailin[19]. Butthesemethods,andmanyof
thedetailsin[19],arenotdirectlyapplicabletospatialar-
rays.Thepurposeofthispaperistodeveloptheappropriate
formulationforspatialarrays.Crucialtothemethodisthe
extractionofasteady-statecomponentfromtheconvolution
asweshallsee.ThebasicideaisintroducedinSec.2,and
detailsofdimensionreductionusinguniformdecimationare
presentedinSec.3. Noisewhiteninginthereducedspace
usingNyquistfilterdesignisthendiscussed.Simulationsin
Sec.4demonstratetheperformanceofthenewmethod.

Preliminaries.Weconsideruniformlineararrays(ULA)
withsensorspacingλ/2,andmonochromaticplanewavesar-
rivingfromDdirections.Thearrayoutputequationis

x=Ac+e (1)

whereccontainssourceamplitudesci,econtainsadditive
noiseterms,andA= a(ω1) a(ω2) ···a(ωD) with

a(ω)=[1ejωej2ω ···ej(N−1)ω]T,sothatAisaVander-
mondematrix.Hereω=πsinθ,withθmeasuredfromthe
normaltothelineofarray. WeassumeE[c]=0,E[e]=0,
E[eeH]=σ2eI,andE[ce

H]=0,wheresuperscriptHde-
notestransposeconjugation.

2.THECONVOLUTIONALSTEADYSTATE

Letx(n),0≤n≤N−1betheoutputsoftheNsensors
oftheULA.SupposeweconvolvethissequencewithanFIR
filterh(n),0≤n≤L−1withL<Ntoobtainthepossibly



nonzerooutputsamplesy(n),0≤n≤N+L−2.Ofthese,
only

y(L−1),y(L),···,y(N−1), (2)

involvealltheLfiltercoefficients,andcanbeconsidered
steadystateoutputsamples:
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whereHisa(N−L+1)×NbandedToeplitzmatrix:
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Forexampley(L−2)doesnotcontainh(L−1)(asx(−1)=
0)andy(N)doesnotcontainh(0)(asx(N)=0).Sothese
arenotpartofthesteadystateoutput(3).Thesteadystate
samplesareobtainedbyslidingtheweightsh(k)fromleft
torightuniformly,asshowninFig.1,toobtainy.Wecall
ytheconvolutionalbeamspacesignal.Comparethiswith
traditionalbeamspacey=TxwhereTisafat(B×N

h(3) h(2) h(1) h(0)

x(0) x(1) x(2) x(3) x(4) x(5)

h(0)h(3) h(2) h(1)
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L =  4 taps

N =  6 sensors

)
matrix,butwithoutanyToeplitzstructure.

Fig.1.Thesteadystateconvolutionalbeamspacesignaly =
[y(3)y(4)y(5)]T generatedbyslidingtheweightsh(k)overthe
sensors.HereN=6andL=4.

NowassumewehaveasignalarrivingfromDOAθsothat
x(n)=ejωn,0≤n≤N−1(uptosomescale,whichwe
ignore)wherethenormalizedDOAω=πsinθ.Thenfrom
thesteadystateequation(3)wehave

y=ej(L−1)ωH(ejω)1 ejω ···ej(N−L)ω
T

(4)

whereH(z) =
L−1
n=0h(n)z

−n. Sotheconvolutional
beamspacesignalyinresponsetoasingleDOAisaVander-
mondevectorjustlikethearrayoutputvectorx=a(ω)=

[1ejωej2ω ···ej(N−1)ω]T.Moreover,yisscaledbythe
filterfrequencyresponseH(ejω).ThusifthereareDsources

withDOAsωk,thensincex(n)=
D
k=1cke

jωkn,wehave

y=
D

k=1

cke
j(L−1)ωkH(ejωk)aL(ωk) (5)

whereaL(ω)= 1 ejω ···ej(N−L)ω
T
.Thearriving

signalswithDOAsωkarethereforefilteredbytheresponse
H(ejω).Thusthearrayequation(1)isreplacedwith

y=ALd+He (6)

whereAL isaVandermondematrixobtainedfromA by
keepingthefirstN −L+1rows,anddhaselements
dk=cke

j(L−1)ωkH(ejωk).Whilethedevelopmentisvalid
foranyULA,forlargearrays(largeN)wecanmakeLlarge
anddesignasharpcutofffilterwithgoodstopband.Theny
containsonlythoseDOAsthatfallinthepassbandofH(ejω),
assumingsignalsinthestopbandarenottoostrong:

y≈

D0

k=1

cke
j(L−1)ωkH(ejωk)aL(ωk)=AL,0d0+He (7)

whereAL,0hasD0columnsofALcorrespondingtotheD0
sourcesthatfallinthepassbandofH(ejω)andd0hasthe
correspondingD0rowsofd.Fig.2showsatypicalfilter
response,withtwooutofsixDOAsfallinginthepassband.
Sinceω=πsinθ,theDOArange−π/2≤θ<π/2cor-
respondsto−π≤ω <π;itcanequivalentlybetakenas
0≤ω<2π,asH(ejω)hasperiod2π.TheFIRfilterH(z)
canbedesignedbyanystandardmethodsuchastheminimax
orequiripplemethod,thewindowmethod,andsoon[9].If
thefilterdoesnothavesharpcutoff,itislikelythataDOA
fallsinthetransitionband,whichrequiresmorecarefulcon-
sideration. Notethatwecanprocessthearrayoutputx(n)
withanentirefilterbankHm(z),0≤m≤M −1tocover
thefullDOArange0≤ω<2π(Fig.3).Theoutputsof
filterscanbeprocessedinparalleltoestimateallDDOAs.

TheDOAestimationprocedurewouldbetofirstesti-
matethenumberofDOAsD0fromy,andidentifythese
D0DOAsusingstandardmethods. Sincethefilteroutput
yisrepresentedintermsoftheVandermondematrixAL
justliketheoriginalarrayoutputx,wecanuseroot-MUSIC
orESPRITwithoutanyfurtheradjustmentorprocessingto
thedata.Thisisanadvantageoftheproposedconvolutional
beamspacemethodcomparedtotraditionalbeamspacemeth-
ods,forwhichroot-MUSICrequiressomepreprocessing[31]
(duetolossofVandermondestructure),andsodoesESPRIT
[27](duetolossofshift-invariance). Themethod,aspre-
sented,worksbestforlargeULAswhicharereceivingmore
attentionthesedays[4],[18],butcanalsobeextendedto
sparsearrayswithrelativelyfewsensorelements[3],which
havedifferencecoarrayswithlargeULAsegments[10],[24].

3. DECIMATINGTHEFILTEROUTPUT

Intraditionalbeamspacemethodsthecomplexityadvantage
isobtainedbecauseB << N.Similarly,therearemany
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waystoachievedimensionalityreductionfortheconvolu-
tionalbeamspaceoutputy.Oneistodecimatey(n)witha
uniformdownsampler.SincethepassbandofH(z)haswidth
≈2π/M(Fig.3)wecandecimatey(n)bytheintegerM.For
largerarrays,Lcanbelarge,andthefilterscanbedesigned
withsharpcutoffandgoodstopbandattenuationtominimize
aliasingduetodecimation[23].Letv(n)=y(n+L−1)so
thaty=[v(0)v(1)···v(N−L)]T.Definethedecimated
versionv0(n)=v(Mn).Thevectoryisthenreplacedwith
thedecimatedvectorv0=[v(0)v(M)v(2M)···]

Twhich
onlyhasJ= (N−L+1)/M elements. Wecanesti-
matetheJ×Jcovarianceofv0fromsnapshotsandestimate
theD0DOAsinthepassband,ifD0<J.Thecomplexity
ofeigenspacecomputationisnowO(J3)<<O(N3).One
mightthinkthatdecimationleadsto“waste”ofhard-earned
data,butwecanmakegooduseofalldatawhileestimating
theJ×Jcovariance.Thusconsidershiftedversionsv(n+l)
for0≤l≤M −1anddefinetheirdecimatedversions

vl(n)=v(Mn+l). (8)

Thesearethepolyphasecomponentsofv(n)[23].Letvl=
[vl(0)vl(1)vl(2)···]

T,thatis,

vl=[v(l)v(l+M)v(l+2M)···]
T. (9)

WewillestimateJ×Jcovariancesofvlandaverageoverall
ltoobtaina“coherent”estimateoftheJ×Jcovarianceof
decimatedconvolutionalbeamspacedata.

3.1.Thedecimatedcovariancematrix

Wecanwrite vl=DlywhereDlisadecimationmatrix
(containing0sand1s).Itretainstherowsl,l+M,l+2M,···
From(6)wehavevl=Dly=DlALd+DlHe.Itcanbe
verifiedthatthissimplifiesto

vl=AJdl+DlHe (10)

where

AJ= aJ(Mω1) aJ(Mω2) ···aJ(MωD) (11)

withaJ(ω)=[1e
jωej2ω ···ej(J−1)ω]T,anddlisthe

D×1vector

dl= c1e
j(L−1+l)ω1H(ejω1) ···cDe

j(L−1+l)ωDH(ejωD)
T

ThuswithRdl=E[dld
H
l],thecovarianceofvlis

Rvl=E[vlv
H
l]=AJRdlA

H
J+σ

2
eDlHH

HDHl (12)

ThematrixG
∆
=HHHisHermitianandToeplitzwithfirstrow

[g(0)g∗(1)g∗(2)···g∗(N−L)],where

g(k)=
n

h(n)h∗(n−k) (13)

isthedeterministicautocorrelationofh(n).Similarlyitcan
beverifiedthatthe“decimated”matrix

Gdec
∆
=DlHH

HDl (14)

isJ×JHermitianandToeplitzwithfirstrow

[g(0)g∗(M)g∗(2M)···g∗((J−1)M)], (15)

whichisindependentofl.Thus,

Rvl=AJRdlA
H
J+σ

2
eGdec (16)

Thus,whereasGistheautocorrelationmatrixofh(n),the
matrixGdecisconstructedfromthedecimatedautocorrela-
tiong(Mk),anddoesnotdependonl.Thedependencyof
thefirsttermof(16)onlcanbeaveragedout:

Rave=
1

M

M−1

l=0

Rvl=AJR̆dA
H
J+σ

2
eGdec (17)

whereR̆disRdlaveragedoverl.(IfJisnotthesameforall
lwedropsomesamplesattheendofsomevl.)Inpractice
weestimateRvlfromsnapshotsforeachl,andthenestimate
Rave.ThisistheestimatedJ×Jcovariancetobeusedfor
estimatingDOAsinthefilterpassband.Sincevlforalllare
used,alltheN−L+1componentsoftheconvolutional
beamspacesignalyareexploited,andnodataiswasted.

NotethatsincethecolumnsofAJareaJ(Mωi)rather
thanaJ(ωi),wecanonlyestimateMωi,orequivalently

ωi+2πsi/M, (18)

wheretheintegerssiareunknown,creatingambiguity.But
sinceωiareknowntobeinthepassbandofH(e

jω)which
haswidth2π/M,theambiguitiessicanberesolvedinmost
cases.

3.2.SpectralfactorsofNyquistfilterstowhitennoise

Theundecimatedoutputofconvolution(6)hascovariance
Ryy =ALRdA

H
L +σ

2
eGwhereG =HH

H andRd=

E[ddH].Thenoisetermσ2eGcannotbeadiagonalmatrix
unlessthefilterhasthetrivialformH(z)=cz−n0.Butthe
decimatedoutput(10)hascovariance(16)foralll,sothecor-
respondingnoisetermcanbewhitenedbymakingGdec=I,
orequivalently

g(Mk)=δ(k) (19)



whereg(k)isasin(13).Eq.(19)iscalledtheNyquist(M)
propertyofg(k).Since|H(ejω)|2istheFouriertransformof
g(k),wesaythatH(z)isaspectralfactoroftheNyquist(M)
filter|H(ejω)|2.Inshort,bydesigningtheFIRfilterH(z)to
beaspectralfactorofanFIRNyquist(M)filterG(z)with
G(ejω)≥0wecanensurethatthenoisetermsinthedeci-
matedversionsv(Mn+l)arewhiteforalll.SoRavebe-

comesRave=AJR̆dA
H
J +σ

2
eIwhereAJisasin(11).

Thismakesiteasytofindthenoiseeigenspacebycomputing
eigenvectorsofRave,whichiswhatwedointhenextsec-
tiononsimulations.SpectralfactorsofNyquistfiltersarisein
digitalcommunicationsandinfilterbanktheory[23].There
aremanywaystodesignsuchfilters[12],[13],[20],[22].In
factanyfilterHk(e

jω)inanorthonormal(equivalentlypa-
raunitary)filterbankisautomaticallyaspectralfactorofa
Nyquistfilter[23].ManyexamplesofgoodFIRdesignswith
thispropertycanbefoundintheliterature[6],[8],[21],[22],
[23].Infact,ifH(ejω)isa“good”filterwithtotalpassband
width≈2π/Mandripplesproperlyconstrained,thisNyquist
property(19)isapproximatelysatisfied,thatis,

n=0

|g(Mn)|<<g(0) (nearly-Nyquistproperty) (20)

Forsimplicity,thisiswhatweuseinthenextsection.

4.SIMULATIONS

ConsideraULAwithN =96sensorsreceiving6sources
withequalpowerspk=1atangles−3

◦,1.5◦,3◦,40◦,60◦,
and80◦.Letnoisevarianceσ2e=1.Weusea24thorderlow-
passFIRH(z)(L=25)designedusingtheParks-McClellan
algorithm[9],withcutoffπ/MforvariousM (wherecut-
off=averageofpassandstopbandedges).M isalsothe
decimationratio.FilterresponsesforsomeM areshownin
Fig.4(a),andsatisfy(20).Forallfiltersused,therearethree
sourcesinthepassband(−3◦,1.5◦and3◦)andthreeinthe
stopband(40◦,60◦,and80◦).Fig.4(b)showstheRMSerror
indetectedsourceanglesinthepassbandusingroot-MUSIC,
forvariousvaluesof1/M(cutoffnormalizedbyπ). The
sourcesareassumeduncorrelated,200snapshotswereused
forcovarianceestimates,and500MonteCarlorunsaveraged
togetplots.Theproposedconvolutionalbeamspacemethod
outperformsthetraditionalbeamspacemethod[31],thepoor
performanceofthelatterbeingconsistentwithnumericalsen-
sitivityissuesmentionedin[31]asthenumberof“beams”
B(i.e.,passbandwidthinournotion)increases. Notethat
element-spaceroot-MUSICperformsslightlybetter:itiswell
knownthatbeamspacemethodsreducecomplexity,increase
parallelism,andimproveresolutionthresholds[7],butdonot
alwaysimprovemeansquareerrors(comparedtoelement-
space),foruncorrelatedsources[17].
Fig.4(c)showstheperformanceforcorrelatedsources:

sourcesnandn+3haveacorrelationcoefficientρ=0.85for
n=1,2,3.
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Inthiscasetheperformancewiththeproposed
convolutionalbeamspaceismuchbetterthaninelement-
space. Thisdoesnotcontradict[17]becausethereinthe
signalsubspacedimensioninthebeamspaceisassumedtobe
thesameasthatintheelement-space,butforconvolutional
beamspace,signalsubspacedimensionafterfilteringcanbe
smaller.Thatis,in[17],allsources,includingthoseinthe
stopbandifany,stillhavetobeestimatedinthebeamspace,
whileweonlyhavetoestimatein-bandones.

Fig.4.Simulationexample.(a)Responsesoftypicalfiltersused.
(b)-(c)RMSEforuncorrelatedandcorrelatedsources.Forcorrelated
sources,theproposedmethodissignificantlybetter.

5. CONCLUDINGREMARKS

Weintroducedanewbeamspacemethodbasedonconvolu-
tionoftheULAoutputwithafilter.Thisallowstheuseof
root-MUSICandESPRITinbeamspacewithoutadditional
preparation(whichisamajorinconvenienceintraditional
beamspace).Forcorrelatedsources,inadditiontotheusual
advantagesofbeamspace,thenewmethodproducessignifi-
cantlybetterDOAestimatescomparedtoelement-spaceand
traditionalbeamspacemethods.Thisisduetoeffectivefil-
teringofout-of-bandsourcesthatmightbecorrelatedwith
in-bandsources. WhiletheresultswerepresentedforULAs,
theycanbeextendedtosparsearrayslikenestedorcoprime
arrays[10],[24]withrelativelyfewersensorelements[3].
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