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ABSTRACT

A new type of beamspace for array processing is introduced
called convolutional beamspace. It enjoys the advantages
of traditional beamspace such as lower computational com-
plexity, increased parallelism of subband processing, and
improved resolution threshold for DOA estimation. But un-
like traditional beamspace methods, it allows root-MUSIC
and ESPRIT to be performed directly for ULAs without any
overhead of preparation, as the Vandermonde structure and
the shift-invariance are preserved under the transformation.
The method produces more accurate DOA estimates than
traditional beamspace methods, and for correlated sources it
produces better estimates than element-space methods.

Index Terms— Beamspace, Convolution, Large Arrays,
Dimension Reduction, MUSIC.

1. INTRODUCTION

The idea of beamforming prior to accurate estimation of di-
rections of arrival (DOA) has been well-known in array sig-
nal processing, and is referred to as beamspace processing
[11, [2], [7], [25], [26]. This topic continues to be of cur-
rent research interest [5], [29], [30]. Given a N-sensor array
with output x € CV, the beamspace transformation computes

y = Tx € CPB where B < N, and the smaller vector y is
used to estimate DOAs. For example, the covariance of y
can be estimated from its snapshots, and its noise eigenspace
analyzed to perform DOA estimation as in MUSIC [14] and
ESPRIT [11].

Due to dimensionality reduction (B < N), the B x B
covariance of y has smaller size than that of x. So the com-

plexity of the eigenspace computation O( B®) is much smaller

than O(N?3) which is the complexity when using element-
space directly (T = I). This is one of the major advantages
of beamspace processing. If T is carefully chosen, then the
DOAs which fall outside a chosen subband in (—n/2,7/2)
are attenuated by T, so there are typically much fewer DOAs
represented by y (compared to x). One often uses a bank of
transforms {T; }, which can be operated in parallel, to cover
all DOAs in (—m /2, m/2).

Besides low computation and parallelism, there are other
advantages for beamspace. Beamspace methods tend to
have smaller SNR threshold for resolution of closely spaced
sources [7], [25], [28]. Beamspace estimates typically have
smaller bias (and about the same mean square error) when
compared with element-space estimates [31].
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However when performing root-MUSIC after the tradi-
tional beamspace transformation, one has to take elaborate
steps to make sure the polynomial to be rooted has reduced
degree, as explained with great clarity in [31], for the popu-
lar case where rows of T come from the DFT matrix. The
transformation from x to y also destroys the geometrical (or
shift-) invariance structure required by ESPRIT, and some ef-
fort is required to restore it, as explained in [27].

In this paper we introduce a new approach called the con-
volutional geamspace method, which allows root-MUSIC and
ESPRIT to be directly applied after dimensionality reduction.
This is an important advantage besides the usual computa-
tional benefit of going from O(N3) to O(B?). The method
also produces more accurate DOA estimates than traditional
beamspace methods, and for correlated sources it produces
better estimates than element-space methods as well.

The use of convolution (digital filtering) prior to fre-
quency estimation for time-domain sum-of-sinusoids was
introduced many years ago by Silverstein, et al. [15], and
studied in detail in [19]. But these methods, and many of
the details in [19], are not directly applicable to spatial ar-
rays. The purpose of this paper is to develog the aEpropriate
formulation for spatial arrays. Crucial to the method is the
extraction of a steady-state component from the convolution
as we shall see. The basic idea is introduced in Sec. 2, and
details of dimension reduction using uniform decimation are
presented in Sec. 3. Noise whitening in the reduced space
using Nyquist filter design is then discussed. Simulations in
Sec. 4 demonstrate the performance of the new method.

Preliminaries. We consider uniform linear arrays (ULA)
with sensor spacing A/2, and monochromatic plane waves ar-
riving from D directions. The array output equation is

x=Ac+e (D)

where ¢ contains source amplitudes ¢;, e contains additive
noise terms, and A = [a(w;) a(ws) a(wp) | with
a(w) = [1 e e/ ... JdWW=D9T 5 that A is a Vander-
monde matrix. Here w = msin#, with  measured from the
normal to the line of array. We assume E[c] = 0, E[e] = 0,

Eleef] = 621, and E[ce] = 0, where superscript H de-
notes transpose conjugation.

2. THE CONVOLUTIONAL STEADY STATE

Let z(n),0 < n < N — 1 be the outputs of the N sensors
of the ULA. Suppose we convolve this sequence with an FIR
filter h(n),0 <n < L —1 with L < N to obtain the possibly



nonzero output samples y(n),0 < n < N + L — 2. Of these,
only

y(L—1),y(L),---,y(N — 1), 2)

involve all the L filter coefficients, and can be considered
steady state output samples:

Y’ A0
Y (1
: o : 3)
y(N—1) z(N - 1)
call this y call this x
where His a (N — L + 1) x N banded Toeplitz matrix:
h(L—1) . h(0) 0 e 0
0 h(L —1) h(0) e 0
H= : : : : :
0 0 h(L —1) h(0)

For example y(L — 2) does not contain A(L — 1) (as z(—1) =
0) and y(NN') does not contain h(0) (as =(N) = 0). So these
are not part of the steady state output (3). The steady state
samples are obtained by sliding the weights k(k) from left
to right uniformly, as shown in Fig. 1, to obtain y. We call
y the convolutional beamspace signal. Compare this with
traditional beamspace y = Tx where T is a fat (B x N)
matrix, but without any Toeplitz structure.
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Fig. 1. The steady state convolutional beamspace signal y =

[¥(3) y(4) y(5)]" generated by sliding the weights (k) over the
sensors. Here N = 6and L = 4.

Now assume we have a signal arriving from DOA @ so that
z(n) = &9“",0 < n < N — 1 (up to some scale, which we
ignore) where the normalized DOA w = wsinf. Then from
the steady state equation (3) we have

y = ej(L—l)wH(ejw) [1 edw

where H(z) = Zi é h(r)z~™. So the convolutional
beamspace signal y in response to a single DOA is a Vander-
monde vector just like the array output vector X = a(w) =

SN0 ]T (@)

[1 e/ 2 ... dN=D2T Moreover, y is scaled by the
filter frequency response H(e’“). Thus if there are D sources
with DOASs wy,, then since z(n) = Y. o, cxe’*", we have

D
y =) exed ETV H(e/%)ay, (wy) 5)
k=1

where az(w) = [1 e® eJ(N—L)w]T. The arriving
signals with DOAs wy, are therefore filtered by the response
H (e?¥). Thus the array equation (1) is replaced with

y=A;d+ He (6)

where Ay is a Vandermonde matrix obtained from A by
keeping the first N — L + 1 rows, and d has elements
dp = cpedT—1wk (H(eJ“r), While the development is valid
for any ULA, for large arrays (large V) we can make L large
and design a sharp cutoff filter with good stop band. Then y
contains only those DOAs that fall in the passband of H (e?*),
assuming signals in the stopband are not too strong:

Dy
y &Y e FTVRH (% )ag (wi) = Apodo + He  (7)

k=1

where Ay o has Dy columns of Ay, corresponding to the Dy

sources that fall in the passband of H (e7*) and dg has the
corresponding Dy rows of d. Fig. 2 shows a typical filter
response, with two out of six DOAs falling in the passband.
Since w = wsinf, the DOA range —7/2 < 6 < w/2 cor-
responds to —m < w < m; it can equivalently be taken as
0 < w < 2m, as H(e’) has period 2. The FIR filter H(z)
can be designed by any standard method such as the minimax
or equiripple method, the window method, and so on [9]. If
the filter does not have sharp cutoff, it is likely that a DOA
falls in the transition band, which requires more careful con-
sideration. Note that we can process the array output z(n)
with an entire filter bank H,,,(z),0 < m < M — 1 to cover
the full DOA range 0 < w < 27 (Fig. 3). The outputs of
filters can be processed in parallel to estimate all D DOAs.

The DOA estimation procedure would be to first esti-
mate the number of DOAs Dy from y, and identify these
Dy DOAs using standard methods. Since the filter ouxm
y is represented in terms of the Vandermonde matrix

just like the original array output x, we can use root-MUSIC

or ESPRIT without any further adjustment or processing to
the data. This is an advantage of the proposed convolutional
beamspace method compared to traditional beamspace meth-
ods, for which root-MUSIC requires some preprocessing [31]
(due to loss of Vandermonde structure), and so does ESPRIT
[27] (due to loss of shift-invariance). The method, as pre-
sented, works best for large ULAs which are receiving more
attention these days [4], [18], but can also be extended to
sparse arrays with relatively few sensor elements [3], which
have difference coarrays with large ULA segments [10], [24].

3. DECIMATING THE FILTER OUTPUT

In traditional beamspace methods the complexity advantage
is obtained because B << N. Similarly, there are many
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Fig. 2. Typical magnitude response | H(e’*)|, and example of DOA
locations (red arrows). Two of the six DOAs are in passband.

2
Fig. 3. Typical beamspace filter bank (magnitude responses).

ways to achieve dimensionality reduction for the convolu-
tional beamspace output y. One is to decimate y(n) with a
uniform downsampler. Since the passband of H (z) has width
~ 2w /M (Fig. 3) we can decimate y(n) by the integer M. For
larger arrays, L can be large, and the filters can be designed
with sharp cutoff and good stopband attenuation to minimize
aliasing due to decimation [23]. Letv(n) =y(rn+ L — 1) so
that y = [v(0) v(1) --- v(N — L)]T. Define the decimated
version vg(n) = v(Mn). The vector y is then replaced with
the decimated vector vo = [v(0) v(M) v(2M) ---]T which
only has J = [(N — L+1)/M] elements. We can esti-
mate the J x J covariance of vy from snapshots and estimate
the Dy DOAs in the passband, if Dy < J. The complexity
of eigenspace computation is now O(J3) << O(N?3). One
might think that decimation leads to “waste” of hard-earned
data, but we can make good use of all data while estimating
the J x J covariance. Thus consider shifted versions v(n +1)
for 0 <1 < M — 1 and define their decimated versions

v(n) =v(Mn+1). (8)

These are the polyphase components of v(n) [23]. Let v; =
[v7(0) v (1) v(2) ---]7, that s,

vi = [v(l) v(l+ M) v(l +2M) --]T. %)

We will estimate J x J covariances of v; and average over all
[ to obtain a “coherent” estimate of the J x J covariance of
decimated convolutional beamspace data.

3.1. The decimated covariance matrix

We can write v; = D;y where D; is a decimation matrix
(containing Os and 1s). It retains the rows [, [+ M, [4+2M, - - -
From (6) we have v; = D;y = D;A;d + D;He. It can be
verified that this simplifies to

vi = A;d; + D;He (10)
where

AJ = [aJ(Mwl) aJ(ng) aJ(MwD)] (11)

with ay(w) = [1 e &2 ... dU-D9T and d; is the

D x 1 vector

d; = [ E1HDw1 fr(gion) cped L=1HDwD F(39D) ]T

Thus with R4, = E[d;d}?], the covariance of v; is
R, = E[vivi'] = AjR4,AY + 2DHHPD?  (12)

The matrix GEHHY is Hermitian and Toeplitz with first row
[9(0) g7(1) g%(2) -+ g*(N — L)], where

g(k) = 3 h(n)h* (n — k) (13)

is the deterministic autocorrelation of h(n). Similarly it can
be verified that the “decimated” matrix

Gaee = D;HHY D, (14)
is J x J Hermitian and Toeplitz with first row
[9(0) g*(M) g"(2M) --- g*((J = 1)M))], (15)
which is independent of I. Thus,
R,, = AjRy AT + 067G, (16)

Thus, whereas G is the autocorrelation matrix of h(n), the
matrix Gge. 18 constructed from the decimated autocorrela-
tion g(ME), and does not depend on . The dependency of
the first term of (16) on [ can be averaged out:

M-1

> Ry =ARAT +02Gaee  (17)

=0

1

RGTI&:E

where Ry is Rg, averaged over [. (If J is not the same for all
[ we drop some samples at the end of some v;.) In practice
we estimate R,,, from snapshots for each [, and then estimate
Rve. This is the estimated J x J covariance to be used for
estimating DOAs in the filter passband. Since v; for all [ are
used, all the N — L + 1 components of the convolutional
beamspace signal y are exploited, and no data is wasted.
Note that since the columns of A ; are aj(Mw;) rather
than a;(w;), we can only estimate M w;, or equivalently

w; + 2ms; /M, (18)

where the integers s; are unknown, creating ambiguity. But
since w; are known to be in the passband of H(e*) which
has width 2w /M, the ambiguities s; can be resolved in most
cases.

3.2. Spectral factors of Nyquist filters to whiten noise

The undecimated output of convolution (6) has covariance
Ryy = ALR4AY + 062G where G = HHY and R, =
E[dd"]. The noise term ¢2G cannot be a diagonal matrix

unless the filter has the trivial form H(z) = ¢z~ "°. But the
decimated output (10) has covariance (16) for all [, so the cor-
responding noise term can be whitened by making Gge. = 1,
or equivalently

9(Mk) = 4(k) (19)



where g(k) is as in (13). Eq. (19) is called the Nyquist(M)
property of g(k). Since |H (e7*)|? is the Fourier transform of
g(k), we say that H(z) is a spectral factor of the Nyquist(M)
filter |H (e7%)|2. In short, by designing the FIR filter H(z) to
be a spectral factor of an FIR Nyquist(M) filter G(z) with

G(e’¥) > 0 we can ensure that the noise terms in the deci-
mated versions v(Mn + 1) are white for all I. So R, be-

comes Rgye = AjRZAH + 021 where A is as in (11).
This makes it eai{ to find the noise eigenspace by computing
eigenvectors of Rgye, wWhich is what we do in the next sec-
tion on simulations. Spectral factors of Nyquist filters arise in
digital communications and in filter bank theory [23]. There
are many ways to design such filters [12], [13], [20], [22]. In
fact any filter Hy(e/*) in an orthonormal (equivalently pa-
raunitary) filter bank is automatically a spectral factor of a
Nyquist filter [23]. Many examples of good FIR designs with
this property can be found in the literature [6], [8], [21], [22],
[23]. In fact, if H (e/%) is a “good” filter with total passband
width & 27 /M and ripples properly constrained, this Nyquist
property (19) is approximately satisfied, that is,

Z |g(Mn)| << g(0) (nearly-Nyquist property) (20)
n#0

For simplicity, this is what we use in the next section.

4. SIMULATIONS

Consider a ULA with N = 96 sensors receiving 6 sources
with equal powers p = 1 at angles —3°,1.5°, 3°,40°, 60°,
and 80°. Let noise variance o2 = 1. We use a 24th order low-
pass FIR H(z) (L = 25) designed using the Parks-McClellan
algorithm [9], with cutoff w/M for various M (where cut-
gﬁ: average of pass and stop band edges). M is also the

lecimation ratio. Filter responses for some M are shown in
Fig. 4(a), and satisfy (20). For all filters used, there are three
sources in the passband (—3°,1.5° and 3°) and three in the
stopband (40°, 60°, and 80°). Fig. 4(b) shows the RMS error
in detected source angles in the passband using root-MUSIC,
for various values of 1/M (cutoff normalized by 7). The
sources are assumed uncorrelated, 200 snapshots were used
for covariance estimates, and 500 Monte Carlo runs averaged
to get plots. The proposed convolutional beamspace method
outperforms the traditional beamspace method [31], the poor
performance of the latter being consistent with numerical sen-
sitivity issues mentioned in [31] as the number of “beams”
B (i.e., passband width in our notion) increases. Note that
element-space root-MUSIC performs slightly better: it is well
known that beamspace methods reduce complexity, increase
parallelism, and improve resolution thresholds [7], but do not
always improve mean square errors (compared to element-
space), for uncorrelated sources [17].

Fig. 4(c) shows the performance for correlated sources:
sources 1 and n+3 have a correlation coefficient p = 0.85 for
n = 1,2, 3. In this case the performance with the proposed
convolutional beamspace is much better than in element-
space. This does not contradict [17] because therein the
signal subspace dimension in the beamspace is assumed to be
the same as that in the element-space, but for convolutional
beamspace, signal subspace dimension after filtering can be
smaller. That is, in [17], all sources, including those in the
stopband if any, still have to be estimated in the beamspace,
while we only have to estimate in-band ones.
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Fig. 4. Simulation example. (a) Responses of typical filters used.
(b)-(c) RMSE for uncorrelated and correlated sources. For correlated
sources, the proposed method is significantly better.

5. CONCLUDING REMARKS

We introduced a new beamspace method based on convolu-
tion of the ULA output with a filter. This allows the use of
root-MUSIC and ESPRIT in beamspace without additional
Egeparation (which is a major inconvenience in traditional
amspace). For correlated sources, in addition to the usual
advantages of beamspace, the new method produces signifi-
cantly better DOA estimates compared to element-space and
traditional beamspace methods. This is due to effective fil-
tering of out-of-band sources that might be correlated with
in-band sources. While the results were presented for ULAs,
they can be extended to sparse arrays like nested or coprime
arrays [10], [24] with relatively fewer sensor elements [3].
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