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ABSTRACT: When high-frequency radiation is incident upon
graphene subjected to a perpendicular magnetic field, graphene
absorbs incident photons by allowing transitions between nearest
Landau levels that follow strict selection rules dictated by angular
momentum conservation. Here, we show a qualitative deviation
from this behavior in high-quality graphene devices exposed to
terahertz (THz) radiation. We demonstrate the emergence of a
pronounced THz-driven photoresponse, which exhibits low-field
magnetooscillations governed by the ratio of the frequency of the
incoming radiation and the quasiclassical cyclotron frequency. We
analyze the modifications of generated photovoltage with the
radiation frequency and carrier density and demonstrate that the
observed photoresponse shares a common origin with microwave-induced resistance oscillations discovered in GaAs-based
heterostructures; however, in graphene it appears at much higher frequencies and persists above liquid nitrogen temperatures. Our
observations expand the family of radiation-driven phenomena in graphene, paving the way for future studies of nonequilibrium
electron transport.
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In recent years, graphene has provided access to a rich the range of weak magnetic fields well below those needed for
variety of quantum effects, owing to its nontrivial band the full development of conventional Shubnikov—de Haas
topology, quasi-relativistic energy spectrum, and high electron oscillations, and their fundamental frequency is found to be
mobility." These properties also determine the unique proportional to the frequency of incoming radiation, f. By

response of graphene to external electromagnetic fields: a
host of interestin§ magneto-optical phenomena such as giant
Faraday rotation,” radiation-driven nonlinear transport,3 gate-
tunable magnetoplasmons,®® ratchet® and magnetic quantum
ratchet effects,” as well as colossal magneto-absorption,”” to
name a few, has been discovered in graphene exposed to

analyzing the observed THz-driven photovoltage as a function
of gate-induced carrier density, n, we show that the resonant
condition appears when 2zf is commensurate with the
frequency of the electron’s quasiclassical cyclotron motion,
.. The latter indicates that the observed photovoltage

infrared and terahertz (THz) radiation. At these radiation oscillations have the same physical origin as the microwave-
frequencies, graphene also supports the propagation of long- induced resistance oscillations (MIRO) in high-mobility 2DES
lived gate-tunable plasmon-polaritons'’~"” enabling ultrahigh with parabolic spectrum.”' " However, in graphene they
confinement of electromagnetic energy and offering a platform emerge at higher frequencies and, quite remarkably, persist
for the fundamental studies of radiation—matter interactions at above liquid nitrogen temperatures, T, while their frequency is

the nanoscale.'”'® Furthermore, in addition to fundamental

interest, graphene’s conical band structure together with fast
carrier thermalization has generated much excitement for
practical photonic and optoelectronic applications,'® partic-
ularly for ultralong wavelengths.'”~*°

In this paper, we uncover a different kind of radiation-driven
phenomena in graphene by studying the interplay of THz
absorption with electron transport. We demonstrate that
graphene subjected to a perpendicular magnetic field, B,
exhibits pronounced 1/B magnetooscillations in response to
incident THz-radiation. These magnetooscillations emerge in

tunable by the gate voltage. Our observations expand the
family of radiation-driven phenomena in graphene, paving the
way for future studies of nonequilibrium electron transport.
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Figure 1. (a) Optical photograph of one of our encapsulated devices. Dashed red line highlights the shape of graphene Hall bar. Dashed blue line
contours the graphite bottom gate region. (b) Measurement configuration: a normally incident THz laser radiation is focused on the graphene
device placed in an out-of-plane magnetic field, B. Red and blue arrows show the in-plane polarization of the incident radiation and out-of-plane
magnetic field. (c) Examples of the photovoltage dependence on the magnetic field recorded in response to 0.69 THz laser radiation at T = 4.2 K.

Different traces, corresponding to given carrier densities, n, are up-shifted for clarity. Dashed vertical lines at Bg/N, N = 1, 2, 3, indicate harmonics
of the cyclotron resonance in graphene, see eq 2.
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Figure 2. (a) Examples of TIMO in V,, as a function of inverse magnetic field for given n. Inset: TIMO extrema indices N = 1,2,...5 (as marked)
against the inverted values 1/By of magnetic field at which they appear. Color-coding is the same as in Figure 1c. Dashed lines: linear fits of the data
used to determine the fundamental frequency B (the slope) and the phase of TIMO, see eq 1. (b) By as a function of n for given f. (c) By versus f
for given n. Dashed lines in (b,c): plots of Bi(n,f) according to eq 2 with vy = 1.06 X 10® m/s. (d) Temperature dependencies of the amplitude of
the first period of TIMO (V™°, blue symbols) and of the SdHO-periodic photovoltage (V5i'©, green symbols) for n = 2.75 X 10'> em™. Solid
black line: Fit of PﬂHO to the Lifshitz-Kosevich formula yielding m_~ 0.03m, where m, is the free electron mass. Dashed black line: fit of VE}I,MO for
T > 10 K with the function exp(—yT?) yielding y = 4.4 X 10~* K2 (e) Incident THz power dependencies of VgﬁMo (blue symbols) and PﬂHO
(green symbols). Dashed black line: linear fit to the data.
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B DEVICES AND MEASUREMENTS

Our samples are multiterminal devices made of monolayer
graphene (MLG) encapsulated between two crystals of
hexagonal boron nitride (hBN) fabricated using a high-
temperature release method.”" The devices were patterned in
a conventional Hall bar geometry and transferred on top of a
graphite flake, Figure lab, see Supporting Information for
details. The latter served as a gate electrode controlling the
concentration, n, and was also used to screen the remote
charged impurities in Si/SiO, substrate.”> The devices had a
width of 12 ym and exhibited high mobility, s, exceeding 3 X
10° cm?/(V's) at T = 42 K.

Experiments were performed in a variable temperature
optical cryostat with polyethylene windows to allow coupling
of the sample with linearly polarized THz radiation. The latter
was generated by a continuous wave molecular gas laser
operating at frequencies f = 0.69 and 1.63 THz with radiation
power up to 20 mW. >3 By using a pyroelectric camera,”” the
laser spot with diameter of about 2.5 mm was guided to the
center of the device. Note that the size of the laser spot largely
exceeding the sample size leaves a possibility of antenna effects
produced by the contact wires. The THz beam was modulated
by an optical chopper operating at a frequency of about 80 Hz.
Photovoltage, V., was recorded as a phase-locked potential
difference between a pair of contacts of the unbiased sample
generated in response to the chopper-modulated THz
radiation, using a standard lock-in technique. For all gate
voltages, the sample resistance was much smaller than 10 MQ
input resistance of the lock-in amplifier (Supporting
Information). All data were obtained in Faraday configuration
(Figure 1b) with both the laser beam and magnetic field
oriented perpendicular to the graphene plane.

The central result of our study is presented in Figure Ic,
which shows the emergence of V,, in response to f = 0.69 THz
radiation when a magnetic field, B, perpendicular to graphene
is applied. Different traces correspond to several representative
values of n. Two kinds of magnetooscillations are clearly
distinct in the data. At B > 1 T, V}, exhibits fast 1/B-periodic
oscillations which display periodicity of conventional Shubni-
kov—de Haas oscillations (SAHO). The presence of SdHO-
periodic signals in the photovoltage is not surprising and is in
line with previous observations.’™” Strikingly, at lower B < 1
T, where the SdHO-periodic oscillations become exponentially
suppressed, another distinct magneto-oscillation pattern
emerges. These low-B oscillations, for brevity denoted THz-
induced magnetooscillations (TIMO), will be explored in the
remainder of this paper.

In Figure 2a, we replot two examples of V;;, from Figure 2a
as a function of inverse magnetic field. Both traces clearly
indicate the 1/B-periodicity of TIMO. This periodicity is
further verified by plotting the indices N = 1, 2,..5 of the
consecutive peaks and dips, see Figure 2a, against the values 1/
By of the inverse magnetic field at which they appear. As
demonstrated in the inset of Figure 2a, for each n in Figure 1c
the positions of all extrema fall onto straight lines. The slope of
these lines yields the fundamental frequency of TIMO, B,
which varies with n and f, as shown in Figure 2b,c (for further
details, see Supporting Information). Moreover, all lines cross
the vertical axis at the same point, —0.25 + 0.1. This behavior
yields the relation N/2 = By/By — 1/4, which translates into
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and thus establishes the TIMO phase, which will be important
for the further analysis.

We have also studied Vph(B) at different temperatures and
found that the amplitudes of SAHO-periodic oscillations and
TIMO exhibit very different T-dependences as shown in
Figure 2d (for further details, see Supporting Information).
Remarkably, we observe that TIMO, and in particular their
first period, can be well resolved even above liquid nitrogen
temperatures in sharp contrast to the SAHO-periodic signal,
which vanishes completely at T~ 40 K over the entire B- and
n- ranges in which the measurements were performed. The
latter dependence can be well fitted by the conventional
Lifshitz-Kosevich formula®*’ as illustrated by the solid line.

The evolution of TIMO and SdHO-periodic signals with the
power of incident THz radiation, P, is also found to be
different, see Figure 2e. The P-dependence of the TIMO
amplitude is fairly linear with a weak tendency to saturation at
the highest P > 10 mW. This means that much stronger TIMO
can be observed using more powerful THz sources. In contrast
to TIMO, the amplitude of SdHO-periodic photoresponse
clearly displays a sublinear P-dependence, which may reflect
the electron heating caused by the THz irradiation.

B MIRO PHYSICS IN GRAPHENE DEVICES

Below we argue that the above experimental results identify
TIMO as a graphene analogue of microwave-induced
resistance oscillations (MIROQ).”' 7>%?%3%%9=%> The maxima
and minima of MIRO appear around the positions of
harmonics of the cyclotron resonance (CR) given by w
Mw, where @ = 2af, M = 1, 2.., and w. = eB/m is the
cyclotron frequency.* It is thus natural to attribute this effect
to resonant photon-assisted transitions between distant Landau
levels (LLs)."’”>" Such processes require simultaneous
impurity scattering,”’ ™" since in the absence of disorder
only transitions between neighboring LLs (M = 1) are dipole-
allowed. Indeed, MIRO are observed in the range of B where
LLs are strongly broadened by disorder, see Figure 3a. This is
reflected in an exponential decay toward low B that is similar to
the SAHO and other quantum corrections to the classical
Drude-Boltzmann transport coefficients.*””

In order to understand how the above photon-assisted
transitions between broadened LLs lead to magnetooscillations
in static transport observables such as photoconductivity”> and
photovoltage,™ a theoretical framework involving two closely
related mechanisms, referred to as displacement™>® and
inelastic,””>” has been developed (for other theoretical
proposals, see refs 60—63). A hallmark of both mechanisms
is that the effect vanishes at exact positions of the CR
harmonics. We demonstrate this in Figure 3a, which illustrates
the displacement mechanism. Solid lines show the maxima of
the local density of states (DOS) in broadened LLs (shown on
the left) which are tilted in the presence of a static electric field
E. Note that E here represents the local gradient of
electrostatic potential, which can still be present in the absence
of external dc driving due to an asymmetry of contact
configuration or intrinsic inhomogeneities, thus leading to
oscillatory photocurrent and/or photovoltage.”*™****** In a
magnetic field, any impurity scattering is accompanied by a
real-space displacement AX of the center of the electron
cyclotron orbit. In the example of Figure 3a, the photon energy
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Figure 3. (a) Schematic for the displacement mechanism of MIRO. Solid lines show how the energy positions of the centers of broadened LLs
(shown on the left) are shifted in real space in the presence of a static electric field E. The impurity-assisted photon absorption leads to an inter-LL
transition accompanied by a real space displacement of electron’s cyclotron orbit, AX. The preferred direction of AX is sensitive to the final density
of states available for scattering. On the schematic, the photon energy A slightly exceeds the distance Ae between the involved LLs, and the
density of the final states is larger for the spatial shifts in the direction of E. This results in the generation of the photocurrent j,;, in the opposite
direction. (b) Circles: Low-field Vih as a function of Br/B after subtraction of nonoscillating background (obtained by using running average with
the windows size larger than the oscillations period). Solid lines: fits to eq 3. The value of By, for each carrier density is chosen to provide the best fit
for the period of TIMO with the phase fixed by eq 3. (c) B as a function of k; determined by the fixed-phase fits to eq 3 (blue squares) and the
linear fits in Figure 2a (red squares). Dashed line shows the fit of By values obtained via both methods to B = hwkg/evy, yielding vg = (1.06 +
0.06) X 10° m/s. Circles mark the positions Bc of the CR peaks detected in the photoconductivity at small Inl, see panel (d). (d) Examples of
photoconductivity |Acl versus B dependencies demonstrating pronounced quasi-classical CR at given n. Solid lines: Lorentzian fits to the data used
to determine Bcg (arrows) shown in panel (c). The curves are shifted for clarity. T = 4.2 K.

hw slightly exceeds the energy separation Ae between the mechanisms lead to a violation of the Einstein relation between
involved LLs. This defines the preferred direction of the diffusion coeflicient and conductivity thus producing similar
displacement AX due to the photon-assisted impurity contributions to the photoconductivity and photocurrent.”>**

scattering and, consequently, the oppositely directed contri-
bution to the photocurrent j,,. As one would expect from
golden rule arguments,””** the statistically averaged displace-
ment vector points to the right, toward the maximum in the
local DOS associated with the K + 2LL. The direction of AX
would reverse for the opposite sign of iw — Ae and, therefore,

In 2DES with a parabolic energy dispersion, the LL
spectrum is equidistant, and MIRO display 2z-periodicity
with the ratio w/@. = mw/eB. The fundamental frequency of
MIRO, Bp = mw/e, is thus insensitive to variations of the
electron density, neglecting small changes of the effective mass

the nonequilibrium current j,;, can flow both along and against m due to density-dependent géerélormalization induced by
E, depending on the sign of Aiw — Ag, and vanishes at the electron—electron interactions.”*®” This property should
positions of CR harmonics. clearly change in graphene, which features a nonequidistant

In addition to j,, associated with such displacements of spectrum of LLs, Ey & VK, K = 0, 1, 2..%* In a narrow energy

orbits, the resonant inter-LL transitions lead to an unusual
modification of the Fermi—Dirac energy distribution of
electrons, which acquires a nonequilibrium correction propor-
tional to the oscillatory DOS.*>®® Since the amplitude of
oscillations in the energy distribution is controlled by inelastic

window of max{fw,kzT} < Eg around the chemical potential
Eg, which is available for impurity-assisted emission and
absorption of photons, the spacing between LLs at relevant K
> 1 can be still approximated as hw, = fieB/m_ but with the

; 69
scattering processes, the corresponding contribution to density-dependent cyclotron mass m,_ = fi/an /vg.” There-
MIRO® is termed inelastic. Both displacement and inelastic fore, the fundamental frequency of TIMO
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is expected to scale with +/n. These expectations are in
excellent agreement with our findings; dashed lines in Figure
2b,c demonstrate that the fundamental frequency of TIMO
accurately follows eq 2 as a function of n and w if one uses vy =
1.06 x 10° m/s typical for the relevant range of densities in
graphene.” ™"

TIMO also displays other common features with MIRO,
including the vanishing photoresponse at integer Bp/B (see
vertical dashed lines in Figure 1c) and an exponential damping
toward low B. These further manifestations of the MIRO
phenomenon are evident from Figure 3b, which compares the
TIMO data with the conventional MIRO waveform

v ( aBF)' (anF)
= —A € —— |sin
ph Xp B (3)

typical for weak oscillations in the regime of strongly
overlapping LLs and small radiation intensity.’>’> The solid
lines in Figure 3b are fits to eq 3 with constants A, B¢y, and o
used as fitting parameters. This treatment complements the
procedure presented in Figure 2a, where the phase of TIMO
was not fixed as in eq 3 but rather emerged as a result of the
analysis, see eq 1. The values of By, obtained using either of the
two fitting procedures, nearly coincide. They are plotted
together as a function of the Fermi momentum k; = /7n in
Figure 3¢ and exhibit the proportionality to kg in accordance
with eq 2. A fit for the slope yields the value v = (1.06 + 0.06)
X 10° m/s which is in good agreement with previous studies."

Our observations establish that despite their resonant
character, TIMO vanish at the exact position B = Bg of the
cyclotron resonance (CR). This makes them markedly
different from more conventional effects in the photoresponse,
which are related to the resonant heating of electrons due to
enhanced Drude absorption near the CR.”” Such CR-enhanced
photoresponse was also detected in our devices but at small Inl
where TIMO were not observed. Two examples of the
photoconductivity, Ao, traces featuring the CR-centered peaks
are shown in Figure 3d. The positions B¢y of these CR peaks
are included in Figure 3c. They fall onto the dashed line
representing Bp(kz) dependence extracted from TIMO and
further substantiate the previous analysis.

B DAMPING OF THZ-INDUCED
MAGNETOOSCILLATIONS IN GRAPHENE

We now focus our attention on the low-B damping and T-
dependence of TIMO, which turn out to be closely
interrelated. Fitting the low-T TIMO data using eq 3, see
Figure 3b, we find that the low-B damping of TIMO is well
reproduced by the factor exp(—aBg/B) with & ~ 1. This factor
describes an increasing overlap of the broadened LLs upon
lowering B> and can be rewritten as the square, &% of the
conventional Dingle factor 6 = exp(—7/®,7,). Remarkably, the
corresponding value of the quantum scattering time, 7, = 1/af
~ 1.5 ps, significantly exceeds the values 7, ~ 0.3 ps extracted
from the SdOHO measurements in graphene samples of similar
quality” yet is a few times smaller than typical low-T values 7,
~ 5—10 ps of the transport scattering time in our samples. The
obtained scattering times are at least an order of magnitude
shorter than those of the GaAs-based heterostructures used to
study MIRO.” In view of the relation a = 1/ fry this
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necessitates the use of higher (THz) frequencies in graphene
to observe nonequilibrium phenomena of this type. On the
other hand, calculations show that an increase of the radiation
frequency causes a very fast f * decay in MIRO amplitude 4, as
opposed to a slower f* decay of the Drude absorption and
associated electron heating.”® The observation of the MIRO-
like oscillations in conventional 2DES thus proved challenging
for f above 1 THz.”*”®> Our samples, in contrast, revealed clear
signatures of TIMO at elevated THz frequencies (see Figure
2c and Supporting Information), which points to an excep-
tional stability of TIMO against heating effects.

The anomalously slow T-decay of TIMO is also not less
intriguing. At elevated T, electron—electron (e-e) collisions can
provide an additional contribution 1/fr,, = yT* to the damping
parameter @ in eq 3.°”7°7’% The relevant lifetime 7
responsible for the effective broadening of LLs, is given by
the Fermi-liquid e-e scattering rate,””* 72! = ¢T%/egh, where
ep denotes the Fermi energy, and constant ¢ of order unity
includes the logarithmic and numerical factors.””*” Our data
presented in Figure 2d reveal that this effect dominates the T-
dependence of TIMO in the majority of the studied interval of
T.Indeed, at T ~ 10 K the amplitude of TIMO around B = Bg
precisely follows the exponential fit exp(—yT?). Moreover, the
value of 7., ~ (57 K/T)* ps extracted from this fit conforms
with both experimental values reported for graphene®'
(Supporting Information) and the above theoretical estimate
(with a reasonable value of ¢ ~ 5.6).°**> The above analysis
suggests that the parameter A in eq 3 remains approximately
independent of T in the range T > 10 K. Such behavior,
consistent with the exp(—yT?) decay, is characteristic for the
displacement mechanism described above’®”” (Supporting
Information). We also note that recently observed magneto-
phonon oscillations (resonant phonon-assisted inter-LL
transitions) in graphene’"** also exhibited similarly slow T-
decay; these can potentially be accounted for by e-e scattering
as well.*

It is instructive to point out that the relevant Fermi energy
&x ~ 200 meV in graphene is ~20 times larger than the
standard values in GaAs-based heterostructures used for
measurements of MIRO. Together with the ~10 times larger
frequency f = 0.69 THz, this explains why the decay parameter
y o« 1/feg is more than 100 times smaller in graphene.

To conclude, we have demonstrated the emergence of
strong magnetooscillations in graphene exposed to THz
radiation. The oscillations were found to have a common
origin with MIRO phenomena observed in 2DES with
parabolic spectrum, but they emerge at much higher f, persist
above liquid nitrogen temperatures, and their fundamental
frequency is tunable by the gate voltage. The anomalously slow
T-decay of the observed oscillations compared to other 2DES
was demonstrated to be due to a slower rate of e-e scattering
responsible for the broadening of LLs. As an outlook, we note
that the linear growth of the oscillation amplitude with
increasing power can offer an intriguing opportunity to explore
further radiation-driven effects. In particular, the observation of
zero resistance states””*** in THz-driven graphene together
with nonlinear response of Dirac fermions®’ may pave the way
for a deeper understanding of the rich spectra of non-
equilibrium phenomena in 2DES and help to resolve the
remaining open questions.30’40’43”74’88
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