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ABSTRACT

In recent years the convergence behavior of random node asyn-
chronous graph communications have been studied for the case
of undirected graphs. This paper extends these results to the case
of graphs having arbitrary directed edges possibly with a non-
diagonalizable adjacency matrix. Assuming that the graph operator
has eigenvalue 1 and the input signal satisfies a certain condition
(which ensures the existence of fixed points), this study presents the
necessary and sufficient condition for the mean-squared convergence
of the graph signal. The presented condition depends on the graph
operator as well as the update probabilities, and the convergence of
the randomized asynchronous updates may be achieved even when
the underlying operator is not stable in the synchronous setting. As
an application, the node-asynchronous updates are combined with
polynomial filtering in order to obtain a spectral clustering for di-
rected networks. The convergence is also verified with numerical
simulations.

Index Terms— Graph signal processing, node-asynchronous it-
erations, autonomous clustering, directed graphs.

1. INTRODUCTION

Graph signal processing provides versatile tools for the analysis of
data defined over irregular domains, which are typically modeled
as networks with the underlying graph representing the dependency
structure [1-5]. This broad model is applicable to the analysis of data
in various different fields such as social, economic, and biological
networks, among others [6, 7].

The analysis in graph signal processing is based on the “graph
operator,” whose eigenvectors serve as the graph Fourier basis. With
the use of this basis, sampling, reconstruction, multirate processing
of graph signals and some uncertainty results have been extended to
the case of graphs [8—16]. Another important notion in this area is
the “graph shift,” which is also based on the graph operator. Since
the operator is assumed to follow the connectivity structure of the
underlying graph, the graph shift has a localized and distributed im-
plementation. That is, nodes on the graph can execute a graph shift
on their own simply by exchanging data with their neighbors and
computing a weighted average. With the use of successive commu-
nications (successive graph shifts), the notion of polynomial and ra-
tional filtering is successfully extended to the case of graphs [17-26].

Although the graph shift can be implemented in a distributed
fashion, it requires simultaneous communication. That is, all the
nodes should send and receive data at the same time instance, or
nodes should wait until all the communications are terminated be-
fore proceeding to the next graph shift. Although a synchronization
mechanism can be integrated into the communication protocol, it be-
comes an important limitation when the size of the network is large,
or the network has autonomous behavior.

In recent years, the studies [27-32] showed that synchronicity is
not necessary for the stability of graph communications in general.
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That is, a node can “wake-up” at a random time instance indepen-
dent of the others, do the necessary computations on its own, and
then broadcast information to its neighbors. It is clear that such a
randomized behavior introduces stochasticity into the signal on the
graph. It is proven under mild conditions that such signals converge
(in stochastic mean-squared sense) even when the nodes communi-
cate with each other randomly and asynchronously.

It is also important to point out that the convergence behavior
depends on the precise assumptions made regarding the stochastic
behavior of the nodes and the underlying graph. In particular, the
studies [27,28] consider the case of zero input (i.e., power iteration)
and prove the convergence of randomized updates assuming that the
graph operator is a normal matrix and the indices are equally likely
to be updated in every iteration. Since graphs with undirected edges
have symmetric (hence, normal) graph operators, convergence re-
sults of [27,28] are applicable mainly to undirected graphs. In fact,
the autonomous clustering example studied in [27] assumes undi-
rected graphs exclusively. When the underlying graph has directed
edges, or nodes are updated with non-equal probabilities the results
of [27,28] do not hold true in general.

In this study, we will extend the convergence results of [27,28]
to the case of arbitrary (possibly non-diagonalizable) matrices with
arbitrary update probabilities. We will also allow the input signal to
be a nonzero constant with an additive zero mean noise. With the re-
moval of the normality assumption on the graph operator, the results
presented here can guarantee the convergence of randomized node-
asynchronous updates even for graphs with arbitrary directed edges.
More importantly, this study will present the necessary and sufficient
condition for the mean-squared convergence of the randomized up-
dates, whereas [27,28] present a sufficiency condition only. Further-
more, this study shows the effect of the input noise precisely. As an
application, we will re-visit the clustering example in [27] and show
that the spectral clustering (based on the graph Laplacian) can be
obtained with randomized asynchronous updates even in the case of
directed graphs.

In Section 2, we consider synchronous state recursions and dis-
cuss the conditions under which the recursions have a fixed point. In
Section 2.2, we present the necessary and sufficient condition for the
mean-squared convergence (Theorem 1). Then, in Section 3 we use
a combination of polynomial graph filters and random asynchronous
updates in order to achieve spectral clustering for directed graphs. In
Section 3.3 we experimentally verify the convergence.

1.1. Preliminaries and Notation

We will use ® to denote the Kronecker product. For a matrix X
we will use tr(X) to denote its trace, and p(X) to denote its spec-
tral radius (the largest eigenvalue in absolute sense). We will use
X* X" and X' to denote its conjugate, conjugate transpose, and
pseudo-inverse, respectively. We will use vec(X) to denote a vector
obtained by cascading the columns of X, and diag(X) to denote the
diagonal masking of X. We define the matrix J as follows:

N
J= Z (eie?)®(eie?)€RN2XN2, oY)
i=1

where e; denotes the it" vector of the standard basis of size N.
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2. ON ASYNCHRONOUS STATE RECURSIONS
Given an arbitrary matrix A € C™V*¥ and an input signal u € C",
we will consider the following type of recursion on a state vector X:

Xl = A X +u+ Wy, 2)

where x( is the initial state vector, and w, denotes noise with the
following statistics:

E[wi] =0, E[wywi]=6(k—-s)T, 3)
where §(-) denotes the discrete Dirac delta function.

When considered from the viewpoint of graph signal process-
ing, an iteration in the form of (2) can be implemented on a graph
(modeled by the matrix A) in a distributed fashion as a data ex-
change between the neighborhood nodes [17-27]. The vector u be-
comes the input signal defined on the graph, where the nodes are the
“domain” analogous to time. The index k denotes the round of com-
munication, so the graph signal u does not have any dependency on
the iteration index k in the model (2), but the value of wy is different
in each update cycle due to it being random.

The mathematical model in (2) requires all the nodes to com-
municate simultaneously, or wait for each other, before starting the
next round of communication. Thus, an implementation of (2) on
a graph needs a synchronization over the network, which becomes
an important limitation when the size of the network is large, or the
network has an autonomous behavior. In order to eliminate the need
for synchronization, the recent works [27-32] consider a randomized
asynchronous variant of the state recursions, in which only a random
subset of indices are updated simultaneously and the remaining ones
stay unchanged in each iteration of (2). More precisely,

) (Axk)i +ui + (W), i€ T,
(ch+1)z = {(Xk)i, ’L¢ 77“ (4)

where u; denotes the i*" index of the input signal, and 7z denotes
the set of randomly selected indices updated at the iteration k.

In the asynchronous model (4), it is assumed that the i*" index
of xy, is updated randomly and independently with probability p; in
every iteration of (4). We will use P to denote the diagonal matrix
consisting of the probability p;’s. More precisely,

P = diag ([p1 p2 pn]) e RVY, )

The studies in [27-32] consider the convergence properties of
the recursions in (4) under different assumptions regarding the ma-
trix A, the input u, and the update probabilities of the indices. More
precisely, the studies [27, 28] work under the following three as-
sumptions: the input is identically zero, A is a normal matrix and has
eigenvalue(s) equal to 1, and all the indices are updated with equal
probabilities. Due to the normality assumption on A, these results
are applicable mainly to undirected graphs, and they are inconclusive
regarding arbitrary directed graphs. Furthermore, the equal update
probabilities may not be practical to obtain in some applications.

The second set of studies in [29,30] allow the graph to have arbi-
trary directed edges and nodes to be updated with arbitrary probabili-
ties. However, their convergence results are based on the assumption
that the matrix A does not have an eigenvalue 1. Although these re-
sults are useful for asynchronous implementation of rational graph
filters, in the absence of eigenvalue 1 of the matrix A the random
asynchronous updates do not converge to eigenvectors of the graph
operator. Thus, applications that require the computation of these
eigenvectors (e.g., autonomous spectral clustering) cannot make use
of the randomized asynchronous updates.

In this study, we will focus on the recursions in (4) as well. How-
ever, we will consider a more general case that extends the scenarios
studied both in [27,28] and [29,30]. So, the setting here reduces to
those in [27-30] when additional assumptions are made. That is, we
will allow the graph to have arbitrary directed edges, the nodes to be
updated with arbitrary probabilities. Moreover the graph operator
is allowed to have unit eigenvalue(s), and the input can be nonzero.
More importantly, this study will present the necessary and sufficient
condition for the mean-squared convergence, whereas both [27, 28]
and [29,30] have sufficiency conditions only.

2.1. Fixed Points of the Recursion

We first point out that fixed points of the state recursions (whether
implemented synchronously or asynchronously) are determined by
the matrix A and input vector u only. More precisely, a fixed point
of the update schemes in (2) and (4) satisfies the following equation:

(I-A)x=u, ©)
which may or may not have a solution depending on the input vector
u and the eigenvalues of the matrix A. Throughout this study we

assume that a fixed point satisfying (6) exists. More precisely, we
always assume that the following holds true regarding the input:

u€ecol(I—A). 7

Let m denote the geometric multiplicity of the eigenvalue 1 of
the matrix A, so the null space of the matrix I — A has dimension
m. We note that the matrix A need not be symmetric (even diago-
nalizable) in general. We also allow the possibility of m = 0, which
corresponds to the case of A not having eigenvalue 1, in which case
(7) is satisfied for any input signal u.

When m > 1, there are infinitely many fixed points correspond-
ing to the solutions of (6). In such case we consider a specific fixed
point, denoted as x*, that corresponds to the fixed point with the
minimum £2-norm. More precisely, we define x* as follows:

x*2(I-A)fu= {arg min [x]2 st (I—-A)x= u} . (®

Then, a fixed point x satisfying (6) can be decomposed as follows:
cenull(I— A). )
In the rest of the paper will use Vi € CV*™ to denote an

orthonormal basis for the null-space of I — A, and we will use

Q e CV*N to denote the projection matrix onto the orthogonal
complement of the null-space of I — A. More precisely:

x=x"4+c where

col(V1) = null(I — A), and Q=I-V, V;. (10)

We note that when A does not have an eigenvalue equal to 1,
i.e., for the case of m = 0, the matrix I — A becomes full-rank, the
projection matrix defined in (10) reduces to Q = I, and x* defined
in (8) becomes the unique fixed point satisfying (6). Thus, the results
(to be presented next) are valid even when the matrix A does not
have an eigenvalue 1, and they extend the results of [29,30].

The case of zero input, i.e., u = 0, is an important special case,
as the range space condition in (7) is readily satisfied irrespective
of the matrix A. Furthermore, the point defined in (8) reduces to
x* =0, and a fixed point x satisfies Ax = x. Thus, fixed points
become the right-eigenvectors of A corresponding to eigenvalue 1
(if eigenvalue 1 exists). The special case of zero input is, in fact,
considered in [27,28] with the additional assumption of A being a
normal matrix. In this study we allow A to be an arbitrary matrix.
We will focus on this special case later in Section 3 when considering
autonomous spectral clustering of directed graphs.

2.2. Convergence in the Mean-Squared Sense

When the matrix A has an eigenvalue equal to 1 the fixed points of
the update scheme are not unique, and they form an affine subspace
of dimension m as described in (9). As a result, the random vector
X}, evolving according to the random asynchronous model (4) does
not necessarily converge to the point x*; rather, the limit of the ran-
dom vector xy, (as k goes to infinity) is a random vector defined over
the affine subspace in (9). We refer to [27, Figure 1] for a visual
representation of this behavior.

In order to quantify the convergence of the random vector x, we
define the error vector as the residual from the orthogonal projection
of x, onto the affine subspace of fixed points. More precisely,

re = Q (xx —x%), (11)

which is a random vector due to the randomness of xi. Then, the
convergence of Xy, to the affine subspace of fixed points is equivalent
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to the convergence of ry to zero. It is important to note that the
projection matrix Q has rank N — m, so the convergence of ry to
zero does not imply the convergence of xj to the point x* in general.

Due to its randomness, convergence properties of ri depend on
how exactly the convergence is defined in the statistical setting. Sim-
ilar to the previous works [27-32], this study will consider the con-
vergence in the mean-squared sense. More precisely, we will focus
on the correlation matrix of the error term:

Ri = E[r, ry], (12)

which is a deterministic matrix possibly with complex entries (the
matrix A is never assumed to be real valued). Furthermore, the con-
vergence of Ry to zero (as k goes to infinity) implies the conver-
gence of the random vector rj, to zero in the mean-squared sense.
When there is noise in the system, i.e., I' # 0, the error corre-
lation matrix does not converge to zero. Depending on the stability
of the randomized asynchronous updates the error correlation matrix
either increases unboundedly, or it reaches an error floor (the limit
of Ry) depending on the amount of noise. The following theorem
(whose proof is provided in the supplementary document in [33])
presents the precise condition for the stability of the randomized
asynchronous updates together with the exact value of the error floor:

Theorem 1. The limit of the vectorized error correlation matrix is
given as follows irrespective of the initial point Xo:

lim vec(Ry) = (I-©5S)" © 5 (13)
if and only if the following holds true:
p(®S) <1, (14)

2 2 2 2
where the matrices S € CV N and ® € CN"*N" are as follows:

S=A*®A+ ((I—P)@P)J ((A* —I)®(A—I)>, (15)

A=TI+P(A-T1), 0 =Q"*®Q, (16)
and the vector v € CV *isas follows:
~ = vec (PI‘P—i—diag(PI‘(I—P))). (17

It is important to note that the stability condition given in (14)
depends on both A and P. So, a random asynchronous system may
be stable for some set of probabilities, but it may not be stable for
some other set of probabilities. We also note that the stability of the
matrix A is not necessary to satisfy the condition (14) in general.
That is, a system may be unstable in the synchronous world, but it
may get stable when the state variables are updated randomly and
asynchronously. This remarkable property has been observed (and
proven) in earlier studies as well [27,28,31].

We also note that the main difference between the result of [27]
and Theorem 1 of this study is the additional assumptions in [27]
on the matrix A and the probabilities, and their corresponding con-
sequences. More precisely, [27] assumes A to be a normal matrix
(unitarily diagonalizable) and the update probabilities to be equal,
i.e., P = pI for some p, then it shows that the convergence region
for the eigenvalues can get only larger with the randomized asyn-
chronicity. See [27, Figure 2] for a visual representation. As a re-
sult, randomized asynchronous updates are guaranteed to converge
in the mean-squared sense whenever the synchronous counter-part
converges [27, Corollary 3]. However, if the indices are updated
with non-equal probabilities, or the matrix A is not unitarily diago-
nalizable, then random asynchronous updates may not convergence
while its synchronous counter-part does. Theorem 1 of this paper
considers the case of arbitrary A and arbitrary probabilities, and it
presents the necessary and sufficient condition for the convergence.

It is also worth noting that the matrix S given in (15) is first
defined in [31], where it is shown that the stability of S determines
the mean-squared stability of the randomized recursions when A

does not have an eigenvalue 1. When the matrix A has an eigenvalue
equal to 1, the following can be verified:

S(VI®V)=VieV,. (18)

So, the matrix S is not stable by construction. However, the stability
of the recursions in the presence of eigenvalue 1 is determined by
the matrix © S, which can still be stable depending on the update
probabilities. It is also worth noting that when eigenvalue 1 does not
exist we get @ = I, and Theorem 1 reduces to the result in [31].

As a final remark, we observe that the error floor given in (13)
depends on the matrices A and P as well as the noise covariance
matrix I'. Therefore, the noise statistics (the matrix I') affects the
error floor, but it does not affect the stability of the randomized asyn-
chronous system. Furthermore, the error floor depends linearly on
the noise covariance matrix I', whereas the dependence on A and
P is non-linear. In the noise-free case, i.e., I' = 0, the error floor
in (13) becomes zero. Thus, condition in (14) is both necessary and
sufficient for the mean-squared convergence of the error vector ry.

3. SPECTRAL CLUSTERING FOR DIRECTED GRAPHS

As an application of the randomized asynchronous recursions in the
context of graph signal processing, this section will consider spec-
tral clustering for directed graphs. We note that this application is
considered also in [27], where the underlying graph was assumed
to be undirected. The purpose of this section is to show that an au-
tonomous clustering can be achieved even in the case of directed
graphs.

Spectral clustering is well-understood for undirected graphs
[34], and there are various different ways to extend it to the case
of directed graphs [35-38]. In this study, we will consider the
following Laplacian matrix of a given directed graph:

L=D-A, (19)
where D is the diagonal matrix with i*" entry being d; = 3’ ; Aij,
and A denotes the adjacency matrix of the underlying graph. The
matrix A is not symmetric, it may even be non-diagonalizable.

When the underlying graph is directed, the Laplacian matrix L
is no longer symmetric, and it has complex eigenvalues in general.
Nevertheless, the constant vector is still an eigenvector of L corre-
sponding to eigenvalue zero, and the eigenvector that corresponds to
the smallest (in magnitude) non-zero eigenvalue can be used to clus-
ter the graph into two partitions [39]. This is visualized in Figure 1.

We note that studying the second dominant eigenvector of the
graph Laplacian in (19) is not necessarily the best way for obtain-
ing spectral clustering. Some other graph operators considered in
[35-38] may perform better in specific examples, and we are not fa-
voring the use of L in general. The matrix L in (19) is considered
as an example to demonstrate the use of randomized asynchronous
updates for spectral clustering.

@)
ORI OI0
— 3 “.,g’.

(@ (b)

Fig. 1: (a) A directed graph (with binary edge weights) on N = 100
nodes with 2 clusters. The edges directed from left to right are col-
ored in blue, and the edges directed from right to left are colored in
red. Bidirectional edges are colored in gray. (b) The result of the
spectral clustering based on the sign pattern of the eigenvector of L.
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3.1. Random Asynchronous Recursions on Polynomials

Without loss of generality, we can assume that the eigenvalues of
the matrix L are ordered as follows: 0 = A1 < Ao < -+ < |An].
Then, the spectral clustering is based on the eigenvector v (corre-
sponding to eigenvalue A2) of L, which can be computed via ran-
domized asynchronous recursions as follows. We first construct a
polynomial h(-) such that h(A2) = 1 is satisfied, in which case the
vector vy becomes an eigenvector of the matrix polynomial h(L)
corresponding to eigenvalue 1. More precisely,

LV2 = )\2 Vo = h(L) Vo = Va. (20)

Then, we use the randomized updates in (4) with the transition ma-
trix being h(L) and the input signal being u = 0. As a result, the
iterant xy, in (4) converges to an eigenvector of i (L) corresponding
to eigenvalue 1, which happens to be the vector va. This approach is
considered also in [27], but the graph there was assumed undirected.
The importance of polynomials follows from their distributed
implementation in the graph setting [3,4,8], and polynomials are still
practical when the communications are assumed to be asynchronous.
However, it should be noted that the convergence of the vector xj
to va is achieved with random updates only when the polynomial
h(-) is selected in such a way that the matrix h(L) and the update
probabilities P satisfy the stability condition (14) of Theorem 1. An
approach for designing such polynomials will be considered next.

3.2. Design of the Polynomial Filters

Although the condition (14) is both necessary and sufficient for the
convergence of the randomized updates, the condition itself is dif-
ficult to manipulate since S defined in (15) is a not a symmetric
matrix even when the underlying graph is undirected. Instead of
working with (14) directly, we will follow the approach considered
in [27] and focus on the convergence of the synchronous case. More
precisely, we select a polynomial h(-) that satisfies the following:

h(A2) = 1, IO <1 Vi#2 @1

When the underlying graph is undirected and nodes are updated
with equal probabilities, the specification in (21) is sufficient to en-
sure the convergence even with asynchronous updates [27]. How-
ever, when the underlying graph is directed, (21) does not ensure the
convergence of the randomized updates in general. Nevertheless, we
will keep using (21) because of the following two reasons: 1) In
practice, polynomials designed according to (21) can provide con-
vergence even in the random asynchronous case. (See Section 3.3)
2 ) The search for a polynomial satisfying (21) can be cast as the
following optimization problem, which can be solved numerically:

¢)2 h = 17 (22)
max c S.t. =
¢, h |<I’2h|$(1—c) 1,
where h is a row vector of length L+1 corresponding to the coeffi-
cients of the polynomial h(-) of order L. Here @ is constructed with
the eigenvalues of L as follows:

(D VD T D ¥ 4
d=|: : ol ecNxEFD (23
1 Ay AL, - 2%

a_nd ¢, denotes the second row of the Vandermonde matrix ®, and

&, denotes the remaining rows (all except the second) of ®.

When the optimal solution of (22) satisfies ¢* > 0, the corre-
sponding polynomial h(-) satisfies the specification in (21). In the
case of undirected graphs, [27] showed that second order polynomi-
als, i.e., L = 2, are sufficient to satisfy (21). However, this result
is no longer valid in the case of directed graphs. Nevertheless, a
quadratic polynomial with the following coefficients can be shown
to satisfy (21) for the graph example in Figure 1(a):

ho =~ 0.9972,

h1 ~ 0.0127, ha =~ —0.0063. (24)

Then, we can use Algorithm 1 in [27], which implements the asyn-
chronous updates running on a second order polynomial, in order to
obtain the spectral clustering in Figure 1(b) in an autonomous way.

3.3. Simulation Results

In this section, we numerically demonstrate the convergence of the
randomized asynchronous updates for the spectral clustering of the
directed graph visualized in Figure 1(a). For this purpose, we con-
sider the updates running on the matrix polynomial h(L), where the
Laplacian matrix L is constructed as in (19), and the polynomial co-
efficients are selected as in (24). For simplicity, we consider the case
of nodes being updated with equal probabilities, i.e., P = pI for the
values of p € {0.1, 0.5, 0.9, 1}, and setT" = 10%1.

It is clear that A (L) ensures the convergence in the synchronous
case since its coefficients are designed according to (21). One can
also verify that the stability condition in (14) is met in the asyn-
chronous case with the tested probabilities. Figure 2(a) verifies this
convergence numerically as well. We also note that the convergence
is not exact due to the presence of the input noise, and the expected
norm of the error vector reaches an error floor as given in (13).

0.5
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0.1

Fraction of Incorrect Labels

0 il i
10° 100 102 10°  10* 10°
Iteration Index (k)

o b
g

10° 10" 102 10° 10t
Tteration Index (k)

(2) (b)

Fig. 2: (a) Mean squared ¢>-norm of the error, i.e., tr(Ry). Dotted
lines correspond to the theoretical error floor given by (13). (b) Av-
eraged error in clustering based on the sign pattern of the iterant xy.
Results are obtained by averaging over 10° independent realizations.

Since the spectral clustering in Figure 1(b) uses the sign pattern
of the eigenvector, the sign pattern of the most recent value of x; can
be used to estimate the clustering at iteration k. That is, the node ¢
can determine the cluster it belongs to on its own simply by the sign
of the value of (xx); it holds. As xj converges to the eigenvector,
estimations get better and converge to the result of the spectral clus-
tering. This behavior is demonstrated in Figure 2(b), which shows
that the exact convergence of X, to v is not necessary to obtain the
exact spectral clustering. Figure 2(b) shows that the sign pattern of
X}, provides the correct clustering on average when the error vector

has squared £>-norm less than approximately 10™*.

4. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this study we considered the convergence behavior of the node-
asynchronous updates where the underlying graph is allowed to have
directed edges possibly with a non-diagonalizable adjacency matrix.
The graph signal has a stochastic behavior due to the random behav-
ior of the nodes. We presented the necessary and sufficient condition
that ensures the mean-squared convergence of the graph signal to a
fixed point of the update scheme under the assumption that the graph
operator has an eigenvalue equal to 1 and the input signal is selected
such that fixed points exist. We also considered the use of random
asynchronous updates in polynomial filtering in order to compute the
eigenvectors of the underlying graph operator, which allowed us to
obtain spectral clustering even in the case of directed networks.

In future we will analyze the relation between the presented
mean-squared stability condition and the graph operator as well as
the node update probabilities. We will consider the optimal selection
of the node update probabilities that provide the highest rate of con-
vergence. We will also consider different approaches for the design
of polynomial filters that ensure the convergence of the updates.
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