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Abstract—The convolutional beamspace (CBS) method for
DOA estimation using dictionary-based sparse signal recovery
is introduced. Beamspace methods enjoy lower computational
complexity, increased parallelism of subband processing, and im-
proved DOA resolution. But unlike classical beamspace methods,
CBS allows root-MUSIC and ESPRIT to be performed directly
for ULAs without additional preparation since the Vandermonde
structure for ULAs are preserved in the CBS output. Due to
the same reason, it is shown in this paper that sparse signal
representation problems can also be directly formulated on the
CBS output. Significant reduction in computational complexity
and higher probability of resolution are obtained by using CBS.
It is also shown how the regularization parameter involved in
the method should be chosen.'!

Index Terms—Convolutional beamspace, DOA estimation, lin-
ear sensor arrays, sparse signal recovery, dictionaries.

I. INTRODUCTION

The use of beamforming prior to direction-of-arrival (DOA)
estimation, known as beamspace processing, is a well-known
and still evolving technique in the literature of array signal
processing [1]-[9]. In beamspace processing, given a /N-sensor
array with output x € CV, we compute a transformation y =
Tx € CB, where B < N, and estimate DOAs using y. For
instance, the B x B covariance of y can be estimated from its
snapshots, and DOAs can be estimated via MUSIC [10] after
the signal and noise eigenspaces are analyzed.

A major advantage of beamspace processing is the reduction
in computation complexity since B < N. For instance, the
complexity of the eigenspace computation for beamspace,
O(B?3), is much smaller than O(N?), which is the complexity
when using element-space (T = T) directly. With careful
selection of T, the DOAs which fall outside a chosen subband
in [-m/2,7/2) are attenuated by T, so there are typically
much fewer DOAs represented by y than by x. To cover
all DOAs in [—7/2,7/2), one can use a bank of transfor-
mations {T;}, which can be operated in parallel. Besides the
advantages of low computation and parallelism, beamspace
methods tend to have smaller SNR threshold for resolution of
closely spaced sources [5], [11], [12]. Beamspace estimates
also typically have smaller bias (and similar mean square error)
when compared to element-space estimates [13], [14].

Classical beamspace methods compromise the Vander-
monde structure in the output of a uniform linear array (ULA),
so elaborate steps have to be taken to apply root-MUSIC [13]
or ESPRIT [15]. By contrast, the convolutional beamspace
(CBS) approach [9] allows root-MUSIC and ESPRIT to be
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performed directly for ULAs without additional preparation
since the Vandermonde structure is preserved under the CBS
transformation. CBS achieves this by convolving the ULA
output with an FIR filter H(z) and extracting the steady-
state component. A uniform decimation (downsampling) is
then applied to fulfill complexity reduction.

In this paper, we show how the CBS method can be
integrated with dictionary-based sparse signal recovery. The
use of sparse representation techniques for DOA estimation
can be traced back to [16], where a dictionary of steering
vectors (corresponding to a dense grid of potential DOAs) is
used to represent the array output. An optimization problem
involving the dictionary is then formulated, and the sparse
solution to the problem reveals the DOAs. We will show that
the dimension of the problem is greatly reduced by using the
CBS method. The sparse signal representation problem can
be directly formulated without additional preparation because
the Vandermonde structure of ULAs is preserved in the CBS
output. Besides its significant computational advantage, the
method also produces higher probability of resolution with
closely spaced sources.

This paper is organized as follows. The key operations of
CBS, introduced in [9], are reviewed in Sec. II. The details of
CBS for dictionary-based sparse signal recovery are developed
in Sec. III. Simulations are given in Sec. IV, and Sec. V
concludes the paper.

II. REVIEW OF CONVOLUTIONAL BEAMSPACE

We consider a N-sensor ULA with sensor spacing A/2, and
monochromatic plane waves of wavelength A arriving from D
directions. The array output equation is

x=Ac+e. (D

where c¢ contains source amplitudes c;, e contains additive
noise terms, and A = [agwl) a(wq) -+ a(wp)] with a(w) =
[1 ¥ /2% ... d(N=Dw)T 5o that A is a Vandermonde
matrix. Here w = wsinf, with DOA 6 € [-7/2,7/2)
measured from the normal to the line of array. We assume
Elc] = 0, E[e] = 0, E[ee’] = 021, and E[ce’!] = 0, where
()" denotes Hermitian transpose.

A. Convolutional Beamspace

It is proposed in [9] that we convolve the sequence
xz(n),0 < n < N — 1, which is the N-sensor ULA output,
with an FIR filter H(z) = Zﬁ;é h(n)z~™ with L < N to get

the possibly nonzero output samples y(n),0 <n < N+ L—2.



Of these, only y(L —1),y(L),--- ,y(N —1) involve all the L
filter taps, and can be considered steady-state output samples:

y(L —1) 2(0)
.| v z(1)
o BRI 3 R I - e
y(N 1) #(N 1)
where H is a (N — L + 1) x N banded Toeplitz matrix:
WML—1) - h(0) 0 0
0 RIL-1) h(0) - 0
H = ; : : - :
0 0 h(L —1) h(0)

We call y the convolutional beamspace signal [9].

The banded Toeplitz structure of H results in a Vander-
monde structure in y. When there are D sources with DOAs
wg, 1.e., z(n) = Zszl c,e?“F™ it can be shown that [9]

D
y = Zckej(L_l)‘“’“H(ej‘”"')aL(wk) + He 3)
k=1

where ay(w) = [1 /- ~-ej(N_L>“}T. The arriving signals

with DOAs wy, are therefore filtered by the response H (/).
Thus the array equation (1) is replaced with

y = A;d + He 4)

where A is a Vandermonde matrix obtained from A by
keeping the first N — L + 1 rows, and d has elements
dy, = cpe?(E=Dwk H(eI¥r). Assuming signals in the stopband
are not too strong so that y contains only those DOAs that
fall in the passband of H(e/*), we have

y~= AL70d0 + He. (5)

Here A o has Dy columns of A corresponding to the Dy
sources that fall in the passband of H(e’), and do has
the corresponding Dy rows of d. Since the filter output y
is represented in terms of the Vandermonde matrix Ay just
like the original array output x, we can use root-MUSIC or
ESPRIT without any further adjustment or processing to the
data. This is an advantage of the CBS method [9] compared to
classical beamspace methods, for which some preprocessing
is required for root-MUSIC [13] and ESPRIT [15]. The FIR
filter H(z) can be designed by any standard method such as
the equiripple method and the window method [17].

B. Decimating the filter output

In classical beamspace methods, the complexity advan-
tage is obtained because B < N. However, for CBS,
N —-L+1 = N since L < N in practice. To achieve
the complexity reduction of beamspace methods, we sim-
ply decimate y(n) with a uniform downsampler [9]. If the
passband of H(z) has width ~ 27/M, we can decimate
y(n) by the integer M. Let v(n) = y(n + L — 1) so that
y = [v(0) v(1) --- v(N — L)]T. Define the decimated
version vg(n) = v(Mn). The vector y is then replaced by the
decimated vector ¥ = [v(0) v(M) - --v(JoM)]*, where Jo =
[(N — L+ 1)/M]. We can estimate the Jy x Jy covariance of
Vo from snapshots and estimate the Dy DOAs in the passband,

if Dy < Jp. The complexity of eigenspace computation is
now O(J3) < O(N?). To make good use of all the data, we
estimate a J x J covariance, where J = |(N — L+ 1)/M |,
by using all the polyphase components of v(n) [18]. That is,
we will estimate J x J covariances of

vi =) vl +M) - v+ (J-1)M) " (6)

and average over all [ to obtain a “coherent” estimate of the
J x J covariance of decimated CBS data.

We can write v; = D;y, where D; is a decimation
matrix (containing Os and 1s) such that it retains the rows
LI+ M,...;,l+(J—1)M. It can be verified that [9]

vi = A;d; + D;He, 7
where
Aj=la;(Mw)a;(Mws) -+ aj(Mwp)] (8)
with a(w) = [1 e/ /2 ... I(J=DT and

dl — clej(L—l-‘rl)le(ejwl) . CD€j(L_1+l)wDH(ejWD) T

Eq. (7) has the same Vandermonde structure as in the ULA
output (1), so root-MUSIC and ESPRIT can be applied directly
via formulating the decimated covariance matrix [9]. Also, the
noise term after decimation can be made white if H(z) is a
spectral factor of an FIR Nyquist(M) filter [9]. That is,

g(k) =Y h(n)h*(n — k), 9)

which is the deterministic autocorrelation of h(n), satisfies
g(ME) = 5(k). (10)

Spectral factors of Nyquist filters arise in filter bank theory
[18] and in digital communications [19]. See [18], [20]-[22]
and references therein for design of such filters.

III. CONVOLUTIONAL BEAMSPACE AND SPARSE
RECOVERY

We now show how CBS can be used in conjunction with
sparse signal recovery. Sparse signal representation techniques
for DOA estimation have been studied in the literature [16].
In this context, a dictionary D of steering vectors a(w;) on a
grid of potential DOAs {w; }&_, is considered, and the goal is
to find a sparse signal q = [q1 g2 - - - 4] that well represents
the ULA output x:

x = [a(w1) a(ws) -+ a(wq)]q+ e, (11)

dictionary D

where the error term e should be “small". The number of
dictionary atoms d is typically much larger than D, the number
of sources. A popular technique to obtain the sparse vector q
is the Lasso method [23] that solves the following problem:

min  lq (12a)
qeCd
subject to ||x — Dql|2 < 8, (12b)

where 5 > 0 is a parameter. The [;-norm objective (12a)
serves as a surrogate for sparsity, and the [o-norm constraint
(12b) limits the search space to where the noise term is small.



A. Convolutional Beamspace and Dictionaries

As in (2), we convolve the sequence z(n),0 <n < N —1
with an FIR filter A(n),0 < n < L —1 with L < N, and
extract the steady-state samples:

y = Hx. (13)

As in (3), the response to a single DOA is (ignoring noise)

y = Ha(w) = ¢/ E"DY H(eI)ay (w). (14)
Thus, (11) and (13) yield
y = [ar(wi) ap(w2) -+ ar(wa)] Apg+He, (15)

where A is a diagonal matrix with ith diagonal element
(Ap)ii = e/E=DwiH (%), In other words, the diagonal
elements are the frequency responses of h(n) evaluated at the
dictionary frequencies (with some phase shift). If H(e’“) is a
good narrowband lowpass filter, then

(16)

y =~ [ar(w1) ar(w2) -+ ap(wa,)] o + He,

dictionary D,

where wy,wa, ..., wq, are the frequencies within the passband
of H(e’*), and qo € C% is a much shorter vector than q.
Suppose H(e“) has passband width ~ 27 /M. Then, dy ~
d/M (if w; is a uniform grid of frequencies in [0, 27)). Thus,
a Lasso problem can be formulated for the CBS signal y as

(17a)

min - [|qollx

subject to [ly — Drqoll3 < 8. (17b)
Here, the original dictionary D in (12b) is replaced by the
dictionary Dj, for CBS. The complexity reduction is signifi-
cant because the number of optimization variables is reduced
by about M times.

B. Decimation for Dictionaries

To further reduce computational complexity, we can deci-
mate the CBS signal y by M if H(e/*) is a good filter with
passband width =~ 27/M. Let v(n) = y(n + L — 1) so that
y = [v(0) v(1)---v(N—L)]T. Let vg(n) = v(Mn) and vo =
[UQ(O) ’Uo(l) s Uo(Jo—l)]T, where JO = |—(N — L+ 1)/M-‘,
so the decimated version

vo = [0(0) v(M) - v((Jo—1)M)]". (18)

Then, we obtain the complexity-reduced problem
min — ||qox (19a)
subject to [[vo — Dz ,oqol3 < 5, (19b)

where Dy o is the matrix obtained by retaining the rows
0,M,...,(Jo — 1)M of Dy. The computational complexity
of Problem (19) is much lower than the original problem (12).

C. Multiple Snapshots

The previous formulation is for a single snapshot. For multi-
ple snapshots, we adopt the ¢;-SVD method proposed in [16].
Suppose we have K snapshots, X = [x(1) x(2) - --x(K)]. To
reduce dimensionality, we take the SVD X = UXVH and
retain a N x k matrix containing most of the signal power:
Xsy = UXJ, = XVJy, where J;, = [I;, 0]7. We often take
k < K to be roughly the number of sources, and the original
formulation of the ¢;-SVD method is then [16]

Qgggk 1Ql1.2 (202)
subject to | Xgy — DQJ|% < 8, (20b)

where ||Qll12 = >, vV 2on |Qmn|?. That is, the ¢5-norm

across singular vector samples is first computed for each
spatial index, and then the ¢;-norm is computed across spatial
samples for sparsity.

CBS can also be applied to the multiple snapshot scheme
based on the ¢1-SVD method. We first convolve the spatial
samples of each snapshot with a filter h(n) of length L
and extract the steady-state samples: Y = HX, similar to
(13). Then, we take the SVD Y = UyEny/I and retain a
(N — L+1) x ko matrix containing most of the signal power:
Ysv = UyXyJi, = YVyJg,. A multiple-snapshot version
of Problem (17) can then be formulated as

min ||Q0||1’2 (218.)
Qoecdnxko
subject to [[Ysy —D1Qol|% < B, (21b)

where we again assume H (e/“) has passband width ~ 27 /M
so that dy ~ d/M. According to [16], to get adequate
performance, we have to take k to be roughly the number
of sources D in Problem (20). As only the Dg sources in the
passband are effective after filtering, we can take kg ~ Dy in
Problem (21). If the sources are roughly uniformly distributed,
then Dy ~ D/M, and doky =~ dk/M?, so the number of
optimization variables is reduced by about M? when we go
from (20) to (21). This can be a very significant complexity
reduction.

Likewise, a decimated version can be considered. Let Vj =
[Vo(1) vo(2)---vo(K)] be the multiple-snapshot counterpart
of (18). Then, we take the SVD V, = UVEVV{f and retain

a Jy X ko matrix containing most of the signal power:
Vsy = Uy Xydg, = VoVydy,. (22)

Then, a multiple-snapshot version of Problem (19) can be
formulated as

min  [[Qoll1,2 (23a)
Qoe(cdoxko
subject to ||[Vsy — Dz oQoll% < B. (23b)

Besides reducing computation, Problem (23) can also yield a
higher probability of resolution than Problem (20). See Sec.
IV for numerical examples.

D. Selection of Parameter [3

We follow the method in [16] to select the parameter .
Specifically, 8 is chosen large enough so that the probability



that the constraint in each optimization problem is not satisfied
is small. For example, consider Problem (23). The error term

E 2 Vgy — D1 0Qo = D)HEVJy, (24)

where E = [e(1) e(2) ---e(K)] is the noise of K snapshots,
Dy is a decimation matrix (containing Os and 1s) such that
it retains the rows 0, M, ..., (Jo —1)M, and Vy,, Jy, are as
defined in (22). If the noise e is i.i.d. circularly symmetric
complex Gaussian, and the filter H(z) is a spectral factor of
a Nyquist(M) filter, i.e., (10) is satisfied, then the entries of
DoHE are also i.i.d. circularly symmetric complex Gaussian.
Hence, for moderate to high SNR, ||E||% is approximately x?
distributed with 2.Jyk degrees of freedom upon normalization
by the variance of e. This holds only approximately because
the SVD V, = UVEVV‘I;I depends on the noise, so DoHE
and Vy are dependent. Yet when noise is small, the signal
term dominates, so the approximate x? distribution is obtained.
With this, we can select 3 large enough so that P[||E||% > f] is
small. However, we should also keep /3 not too large to prevent
failures in detecting the DOAs. This will be demonstrated in
the next section.

IV. SIMULATIONS

We compare the most complexity-reduced version of CBS
(23) with element-space (20) under multiple snapshots. Con-
sider a ULA with N = 99 sensors. For CBS, the filter
H(z) is designed to be lowpass using the Parks-McClellan
algorithm [17], with passband edge 7/2M and stopband edge
3w/2M, where M = 4 is the decimation ratio. This filter
is a spectral factor of a nearly Nyquist filter, i.e., the deter-
ministic autocorrelation (9) satisfies >, [g(Mn)| < g(0).
A dictionary of 200 points uniform in w is used. There are
two in-band sources (sources in the passband) with DOAs
0 = —0.573°, 0.573° with power 1, and one out-of-band
source (source in the stopband) with DOA 6 = 39.94° with
power varied. Here all the DOAs are exactly on the dictionary
grid for simplicity. Noise variance o2 = 1 is used. The reduced
dimensions for the /1-SVD method in (20) and (23) are chosen
as k = ko = 3. Following the method in Sec. III-D, we
choose 3 = p + 200 = 221.7 in (23b), where ;1 and o are
the mean and standard deviation of ||E[/%. In a similar way,
we choose 5 = 641.7 in (20b). (The effect of choice of
will be discussed in Fig. 2.) The dictionary power spectrum
serves as a performance measure for the method. For element-
space, it is defined as P(w;) = Y, |Qin|? for 1 < i < d,
where Q is the optimal solution of Problem (20). For CBS,
it is similarly defined for Problem (23). We declare that there
is a source at w; if there is a peak (local maximum) that is
larger than a particular threshold: P(w;) > e. Here ¢ = 0.1
is used (with the spectrum normalized to have a maximum
value 1). To compare CBS with element-space, we focus on
in-band DOAs and ignore out-of-band DOAs. Fig. 1(a) shows
the probability of resolving the correct number of in-band
DOAs as a function of out-of-band source power. We use
K = 100 snapshots and 100 Monte Carlo runs to get the plot.
Due to good stopband attenuation, CBS uniformly has a higher
probability of resolution than element-space. Fig. 1(b) shows a
typical dictionary power spectrum of element-space when the
out-of-band source power is 30 dB. The out-of-band source
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Fig. 1. Performance of CBS and element-space dictionaries when there

are powerful out-of-band sources. (a) Probability of resolution. (b) Typical
dictionary power spectrum of element-space for 30-dB out-of-band source
power.

yields many false peaks, some of which have magnitudes
comparable to the in-band peaks. This makes us unable to
identify the in-band DOAs while rejecting the false peaks.
MSE plots are not shown since the MSEs are all zero whenever
the correct number of in-band DOAs are resolved for both CBS
and element-space. The running time per Monte Carlo run is
0.61 seconds for CBS and 4.14 seconds for element-space. So,
CBS offers a complexity reduction of 6.8.

Next, we give an example to show how to implement the
idea in Sec. III-D for parameter selection of 3. Problem (23)
for CBS is considered. The same ULA, filter H(z), decimation
ratio, and dictionary grid are used. There are two in-band
sources with DOAs 6 = —1.146°, 1.146° and one out-of-
band source with DOA 6 = 39.94°, all with power 1. Here
all the DOAs are also on the dictionary grid. Noise variance
is af = 1, the reduced dimension for the ¢;-SVD method
in (23) is kg = 2, and the peak threshold for dictionary
power spectra is € = 0.1. Fig. 2(a) shows the probability of
resolving the correct number of in-band DOAs as a function
of 5. We use K = 100 snapshots and 500 Monte Carlo
runs to get the plot. To understand the behavior of the plot,
we show in Fig. 2(b)-(d) typical dictionary power spectra
for 8 = p + ro for r = —3,20,1228, where ;1 and o
are the mean and standard deviation of || E||%. The selection
B = pu — 30 = 22.56 is too small and may yield some false
peaks. But interestingly, these false peaks have magnitudes
smaller than €, so the probability of resolution can still be
1. The selection 8 = pu + 200 = 171.6 is proper and yields
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Fig. 2. Performance of CBS dictionaries for various (3. (a) Probability of
resolution. (b) Typical dictionary power spectrum when 8 = p—30 = 22.56.
(c) Typical dictionary power spectrum when 3 = p + 200 = 171.6. (d)
Typical dictionary power spectrum when 8 = p + 12280 = 8000.

exactly the two true peaks, so the probability of resolution is
1. The selection = p + 12280 = 8000 is too large and
may reveal only one of the true DOAs, so the probability of
resolution is lowered to 0.34. In the examples presented, we
have noticed that 20 < r < 200 is a good choice, although

we do not have general guidelines at this time.
V. CONCLUSION

We showed how to apply the convolutional beamspace
(CBS) method in the context of sparse signal representation
based on dictionaries. Due to dimension reduction and effec-
tive filtering of out-of-band sources, CBS achieves much lower
computational complexity and higher probability of resolution.
We also addressed how to select the regularization parameter
involved in the method.
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