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Abstract—It has recently been shown that periodicity in
discrete-time data can be analyzed using Ramanujan sums and
associated dictionaries. This paper explores the role of dictionary
learning methods in the context of period estimation and periodic
signal representation using dictionaries. It is shown that a well-
known dictionary learning algorithm, namely K-SVD, is able
to learn Ramanujan and Farey periodicity dictionaries from
the noisy, sparse coefficient data generated from them without
imposing any periodicity structure in the learning stage. This
similarity between the learned dictionary and the underlying
original periodicity dictionary reaffirms the power of the K-
SVD in predicting the right dictionary from data without explicit
application-specific constraints. The paper also examines how the
choice of different parameter values affect the similarity of the
learned dictionary to the underlying dictionary. Two versions of
K-SVD along with different initializations are analyzed for their
effect on representation and denoising error for the data.

Index Terms—Nested periodic dictionaries, dictionary learning,
K-SVD, period estimation, denoising.

I. INTRODUCTION

It is common in many signal processing applications to use
overcomplete dictionaries to represent data [1]-[6]. A good re-
view of different dictionary types can be found in [1]. One way
to construct representation dictionaries is to design them based
on the a-priori knowledge or mathematical model regarding
the signals that are to be represented. Such dictionaries are
called analytical dictionaries. These dictionaries often have
the advantage of fast implicit implementation. Especially if
the m x n dictionary D is designed to be a tight frame, or
equivalently DD”2 = g for all @, then D7 is a possible
analysis operator that produces analysis coefficients. Some
examples of analytical dictionaries are curvelets, countourlets,
and bandlets.

Another way to develop dictionaries is from a set of realiza-
tions of the data. The advantage of such trained dictionaries
that are directly learned from data is that they adapt to the
non-idealities of the data well instead of relying on inaccurate
modeling of these non-idealities. There are many dictionary
learning algorithms such as K-SVD [5], Method of Optimal
Directions [7], Union of Orthonormal Basis [8], and so on.
Overcomplete dictionaries are widely used along with sparse
vector recovery formulation for many applications such as
denoising [6], the direction of arrival estimation [4], and data
compression [3] to name a few. In addition to analytical
and learned dictionaries, there is also a class of parametric
dictionaries [9]. Atoms of these dictionaries are structured
but have a few free parameters that can be optimized by the
training algorithm according to the data.
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It has been shown in recent years that Ramanujan sums
are useful in identifying periodicity structures in signals. The
dictionaries used for this purpose are analytical dictionaries
such as Ramanujan and Farey dictionaries [10], [11]. A com-
prehensive review of Ramanujan sums for detecting periods
in a discrete-time signal can be found in [10], [12], [13]. In
this paper, we propose to use the dictionary learning methods
in the context of period estimation and periodic signal repre-
sentation using dictionaries. We investigate whether K-SVD
can learn the known dictionaries for period estimation from
sparse coefficient periodic data generated from Ramanujan
and Farey dictionaries. We also experimentally analyze the
dependence of the similarity of the learned dictionary and the
true underlying dictionary with different parameters.

A. Preliminaries and Notation
A discrete-time periodic signal 2:(n) is periodic with period
P if P is the smallest possible integer such that

z(n+P)=x(n) Ynel (1)
For all integers ¢ > 0, the g-th Ramanujan sum is defined as
[14] q
cq(n) _ Z ej27rkn/q 2)
K1

Here the notation (k, ¢) denotes the gcd of the integers k and
g, so that (k,q) = 1 means that k& and ¢ are coprime. It is
well known [12] that ¢, (n) is integer valued and periodic with
period q. The ¢-th Ramanujan sum lies in the ¢g-th Ramanujan
subspace defined as [12]

Sy = span{e?*™ /1 (k,q) = 1} 3)

Note that S, is a ¢(g) dimensional subspace. It contains all
the signals of period ¢ that have possibly non-zero DFT value
only at the frequency indices k that are coprime to ¢. S, also
admits an integer basis in terms of the g-th Ramanujan sum
and its first ¢(q) circularly shifted versions [12]

Sy = span{cq(n —1), 0 <1< ¢(q) — 1} “4)

Here, ¢(q) is the Euler’s totient function that denotes the
number of integers k in 1 < k < ¢ satisfying (k,q) = 1.
We define ®(¢q) = >/, #(i) as the sum of Euler’s totient
function from 1 to q.

B. Organization of the Paper

In Sec. II we review the two components that are the focus
of this paper, namely, the known dictionaries for period estima-
tion and a popular dictionary learning algorithm, the K-SVD.
In Sec. III we formalize the goals of this paper and describe
the experimental setting. Sec. IV presents experimental results
and discussions. Sec. V concludes the paper.
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II. REVIEW OF KNOWN PERIODICITY DICTIONARIES AND
THE DICTIONARY LEARNING ALGORITHM K-SVD

A. Nested Periodic Dictionaries for Period Estimation

Any length N periodic signal & with period P < N can be
represented as [12] x = Fb , where

Fy = [Gth qu qu] ®)

Here, q1,qo,...q; are the divisors of signal length N. The
matrices G, have the ¢(g;) circularly shifted versions of
the ¢;-th Ramanujan sums as the columns and hence span
the corresponding periodic subspaces S;,. The columns are
periodically repeated to make the number of rows equal to V.
This representation is called the Ramanujan Periodic Trans-
form (RPT). The component or hidden periods can be found
by identifying the set of divisors {¢;} that have corresponding
non-zero entries in the coefficient vector b.

Although the RPT is shown to have some applications, it
is useful only when the component periods of the signal are
the divisors of the signal length /N. Generalizing the transform
matrix for RPT, a framework of nested periodic matrices and
dictionaries was proposed in [11]. Namely, the above matrix
Fy was replaced with full rank matrix A defined as

A= [H(h qu H%] (6)

where H,, can be any N x ¢(g;) matrix containing columns of
period g;. Examples of nested periodic matrices are natural ba-
sis matrices, DFT matrices, and Ramanujan matrices. In order
to identify periods that may not be divisors of signal length,
the use of overcomplete Farey dictionaries was proposed in
[15] and was extended to other periodicity matrices in [11].
Here the matrix A in the above formulation is replaced with
a dictionary:

D =[H, H, Hp . ] (7)

Here each H; contains ¢(7) columns of period ¢, hence all the
periods from 1 to P,,,, are represented in this dictionary. The
last periods of H; are truncated if needed in order to make
their length equal to the signal length /N. The period estimation
problem is formulated as a sparse vector recovery problem in
this setting. Examples of nested periodic dictionaries include
Farey Dictionary which has columns from multiple DFT
matrices, Ramanujan dictionary which has shifted Ramanujan
sums as columns, and natural periodic dictionary which has
columns from different identity matrices.

B. Learning Dictionary via K-SVD

Many researchers over the last two decades have developed
methods to learn dictionaries from the given data samples. The
objective is to represent the data as sparse linear combinations
of the columns of a dictionary. In this paper, we use K-SVD
[5], which is one such popular dictionary learning algorithm.
K-SVD is shown to have numerous applications including
denoising [6], compression [5], and face recognition [16]. It
is a generalization of the k-means clustering algorithm. The
objective function of K-SVD is

rlx)n?HY - DT||% subject to ||villo < Tp Vi.  (8)
Here, Y is the training data matrix, D is a dictionary, and
T is the coefficient matrix of the data with respect to the
dictionary D, and «; denotes the ¢-th column of TI'. In this

sparsity constrained formulation, each coefficient vector =y; is
constrained to have at most 7y non-zero entries.

The K-SVD algorithm alternates between two steps. In the
first stage of sparse coding, the dictionary D is kept fixed and
the coefficients -y; are updated with the solution of /; norm
constrained error minimization problem

Fi = min||Y; - D~;l|3 subject to [|villo < To  (9)
As the [y norm is NP-hard to deal with, approximate sparse
coding algorithms like Orthogonal Matching Pursuit (OMP)
[17] or FOCUSS [18] can be used at this stage. The optimal
solution is recovered with a high probability by OMP if the
sparsity Tp is low [19].

In the second stage, columns of the dictionary D are
updated successively. To update the ¢-th column, the repre-
sentation error matrix without the i-th column is found out

E;, = Y—Zdﬂﬂ (10)
J#i
Here, v/ denotes the j-th row of I'. To the preserve spar-
sity constraint, a reduced error matrix E[ is formed by
keeping those columns of FE; with indices from the set
H; = {j | I';j # 0}. These indices correspond to examples
that use the i-th column in their current representation. With
this, the problem reduces to finding a rank one approximation
of the restricted error matrix EiR, which can be conveniently
found from the SVD: EF = UXV . The superscript R is
used to denote matrices or vectors restricted according to the
set H;, whereas superscript H denotes the conjugate transpose
of the matrix. The dictionary column is updated by the first
left singular vector d; = w1, and the corresponding coefficient
row is updated with the first right singular vector scaled with
the largest singular value ¢ = ovi’.
The K-SVD can also be formulated as an error constrained
objective minimizing the sparsity.

subject to |ly; — Dvill2 <eVi (11)

min [[illo
Fast implementation of K-SVD has been developed in [20]
using batch-OMP. The K-SVD can also be used for complex
dictionary learning as in [21].

K-SVD is susceptible to local minima and its performance
depends on initialization. Thus as we will see in Sec. IV we
average the performance over many Monte-Carlo runs and also
study the effect of random initialization as against knowledge-
based initialization.

III. GOALS AND EXPERIMENTAL SETTING

In this paper, we use the dictionary learning methods in the
context of period estimation and periodic signal representation
using dictionaries. In particular, we seek answers to two
questions.

1) Can K-SVD learn the periodicity dictionaries like Ra-
manujan and Farey from the data without explicit peri-
odicity constraints? If so, under what conditions?

2) What are the advantages of K-SVD learned dictionaries
over known periodicity dictionaries? Does it offer better
representation in case of noisy data?

In the remainder of this section, we describe the evaluation
metrics and experimental setting.
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A. Evaluation Metrics

In order to compare the learned dictionaries under different
settings, we use two evaluation metrics. The dictionary similar-
ity metric p(D, D) measures how well the columns from the
original dictionary D are recovered by the learned dictionary
D. To compute this, for each column in the original dictionary
we find a column from the learned dictionary that has the
maximum normalized inner product with it. We then take an
average of this maximum inner product over all columns of
the dictionary. Thus,

oD, D) (12)

=2 - Z max |dH dy,|

A value of p(D, D) close to 1 indicates that most of the
columns from the original dictionary are close to some column
of the reconstructed dictionary.

We also define two error metrics e1(X,Y,D) and
e2(Y, D) that capture how well the learned dictionary can
represent the training data.

wsz
[EAE

Z |[Dyi — zill3
es(Y Z 1Dvi — willz

Here, Y is the noisy data matrix, X is the noiseless data
matrix, and D is the learned dictionary. Note that in order to
calculate these metrics, we first need to compute the coefficient
vectors ~y; from the given noisy data Y adhering to sparsity
or error constraints. With the coefficients =; calculated, e is
the relative mean squared error (MSE) of the representation
DT with respect to the noiseless data X. Note that even
if Y does not appear directly in the Eq. (13), it is required
to find the coefficients =;. Since error e; captures how well
the representation based on the learned dictionary is able to
match the noiseless data, it can be regarded as denoising error.
Similarly, eo is relative MSE with respect to noisy data Y.
This indicates how well the dictionary can represent noisy
data. Note that if the training data does not have any noise
then X =Y, and thus ¢; = es.

e1(X,Y,D) (13)

y1H2

(14)
[lwill3

B. Experimental Setting

For all our experiments, we first create either a Ramanujan
or a Farey dictionary that can represent component periods
up to some integer P,,,,. We then generate 7-sparse data
from the dictionary and learn a dictionary using K-SVD from
this data. The standard (real-valued) K-SVD is used for the
real data generated from the Ramanujan dictionary whereas the
complex-valued K-SVD is used for the complex data generated
from the Farey dictionary.

With the following default values of parameters, we vary
one or two parameters at a time and see how the performance
varies. The maximum component period P, is 15 and the
signal length or the number of rows of the dictionary is 60.
Thus, the number of dictionary columns is ®(15) = 72,
so that the true underlying dictionary is overcomplete. We
set the sparsity of 5, and 500 data points are used for
dictionary learning. 100 Monte Carlo simulations are run for
each parameter set, each with 100 K-SVD iterations.

IV. EXPERIMENTAL RESULTS

Our experiments show that the K-SVD algorithm is indeed
able to learn the well-known periodicity dictionaries from
data. The accuracy with which this learning takes place (i.e.,
dictionary similarity and representation errors) depends on a
number of parameters in the experiments, as explained in the
following subsections.

A. Variation with SNR and Datapoints

Fig. 1 shows the variation of dictionary similarity with
SNR of the training data and the number of datapoints for
the Ramanujan dictionary. We see that the K-SVD is able to
recover the underlying dictionary when SNR is high, and more
data helps recover the dictionary columns even at relatively
lower SNR values. Fig. 2 shows similar trends observed for
the Farey dictionary. Thus, we see that the complex K-SVD
can also learn dictionaries with similar performance.

Figs. 3 and 4 show representation errors e; and ey for the
case of learning the Ramanujan dictionary. Note that both
representation errors reduce with higher SNR and more data.
However, it is interesting to note that for very few data points,
es in fact does not reduce with increasing SNR. Exactly similar
trends were also observed for complex K-SVD hence we have
skipped those graphs here.

B. Variation with Sparsity - Fixed and Variable

To see the effect of sparsity, we perform two kinds of experi-
ments. In one experiment, all the training datapoints have fixed
sparsity, and in another experiment, different datapoints can
have different sparsity - which we call variable sparse data.
For example, 20 variable sparse data means that the sparsity
of different datapoints can be anything between 1 and 20.

Based on Figs. 5 and 6, for both real and complex K-
SVD we see that K-SVD learned dictionary has a lower
representation error when sparsity is very low or high. On the
other hand, the dictionary similarity decreases monotonically
as sparsity increases. This suggests that even when we have
low similarity to the underlying dictionary, the representation
error can be small. Also, note that K-SVD is able to learn a
good dictionary even when sparsity is not fixed. In fact, the
representation error and dictionary similarity improve in this
case. Intuitively, this can be attributed to the fraction of the
data which has lesser sparsity as it reveals more information
about the columns of the underlying dictionary.

C. Variation with Number of Allowed Dictionary Columns

Figs. 7 and 8 show the variation with the number of columns
the learned dictionary is allowed to have. Note that when the
allowed number of columns exceeds 72, we recover all atoms
of the underlying dictionary. Also interesting is that if more
than 72 columns are allowed, representation error does not
reduce but in fact increases.

D. Variation with Maximum Component Period

From Figs. 9 and 10 we note that with the length fixed,
a better dictionary is learned when the data has a lower
component period. This means that there needs to be at least a
certain number of periods of the periodic components included
in the data length. Also, note that the complex-valued K-SVD
is much more robust to larger component periods than the
real-valued K-SVD. The similarity is relatively higher even
for larger periods.
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Fig. 1. Variation of Ramanujan dictionary similar-

ity with SNR and datapoints. SNR and datapoints.
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E. Variation with Signal Length

Figs. 11 and 12 demonstrate results of similar nature as the
signal length is varied. Here, with the maximum period fixed,
a longer signal length is preferred, which again emphasizes
that there needs to be at least a certain number of periods of
the periodic components included in the data length. Here too
the complex K-SVD is more robust to smaller signal lengths.

F. Different Versions and Initializations of K-SVD

Fig. 13 compares two different versions of K-SVD, namely,
sparsity constrained formulation (Eq. 8) and error constrained
formulation (Eq. 11). For both versions, we consider two
initializations - random initialization and Ramanujan initial-
ization. At high SNR, both versions and random as well
as knowledge-based initialization of K-SVD perform equally
well. Also, notice that for random initialization, error based
optimization gives marginally better dictionary similarity than
sparsity-based optimization.

Now in pursuit of seeking whether there is any advantage
of learned dictionaries over the known analytic dictionaries,

Number of Allowed Dictionary Columns
Fig. 8. Variation of representation error with the
allowed number of dictionary columns.
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Fig. 9. Variation of dictionary similarity with max-
imum period.

we study the variations of representation error for known and
trained dictionaries and with different initializations. From Fig.
14 we see that for denoising type error e;, Ramanujan dictio-
nary without any further optimization gives better performance
than the learned dictionaries. However, with regards to the
representation error ey (Fig. 15), the learned dictionaries adapt
better to the noisy data. Here too, all the trends were similar
for the Farey dictionary as well and hence we have skipped
those graphs.

Within the learned dictionaries with two different initial-
izations, we see that Ramanujan initialization has both errors
smaller than random initialization. Thus the knowledge-based
initialization is better than the random initialization for repre-
senting noisy data through a learned dictionary.

V. CONCLUSION

In this paper, we studied the role of a popular dictio-
nary learning algorithm, K-SVD, in the context of dictionar-
ies for period estimation and periodic signal representation.
The experiments demonstrate that K-SVD has the ability to
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Fig. 13. Variation of Ramanujan dictionary similar-
ity for different K-SVD versions and initializations.

learn dictionaries for specialized applications without explicit
application-specific constraints. We did not explicitly constrain
the dictionary columns to be periodic with different periods,
and still, the dictionary could be recovered under favorable
circumstances. In some situations, it was also seen that the
learned dictionary not being close to ground truth may not
imply poor representation and vice versa. The learning algo-
rithm may find an equally good and sparse representation of
the data through some other dictionary.

In the future, taking motivation from the results here, we
would like to develop a new denoising framework for periodic
signals using a hybrid analysis filter bank and synthesis

diction approach.
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