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Abstract—Filterbanksongraphsareshowntobeusefulfor
analyzingdatadefinedovernetworks,astheydecomposeagraph
signalintocomponentswithlowvariationandhighvariation.
Basedonrecentnode-asynchronousimplementationofgraph
filters,thisstudyproposesanasynchronousimplementationof
filterbanksongraphs.Intheproposedalgorithmnodesfollowa
randomizedcollect-compute-broadcastscheme:ifanodeisinthe
passivestageitcollectsthedatasentbyitsincomingneighbors
andstoresonlythe mostrecentdata. Whenanodegetsinto
theactivestageatarandomtimeinstance,itdoesthenecessary
filteringcomputationslocally,andbroadcastsastatevectorto
itsoutgoingneighbors. Whentheunderlyingfilters(ofthefilter
bank)arerationalfunctionswiththesamedenominator,the
proposedfilterbankimplementationdoesnotrequireadditional
communicationbetweentheneighboringnodes.However,compu-
tationsdonebyanodeincreaselinearlywiththenumberoffilters
inthebank.Itisalsoproventhattheproposedasynchronous
implementationconvergestothedesiredoutputofthefilterbank
inthemean-squaredsenseundermildstabilityconditions.The
convergenceisverifiedalsowithnumericalexperiments.

I.INTRODUCTION

Oneofthekeyaspectsinthefieldofgraphsignalprocessing
istheuseofgraphfilters,whichprovidesaversatiletoolthat
canbeutilizedinordertosmoothoutgraphsignals(low-pass
filters),ordetectanomalies(high-passfilters)[1]–[3]. More
importantly,graphfiltersareimplicitlyrelatedtodistributed
signalprocessingduetotheirlocalizedstructuresongraphs.
Duetotheirimportance,designandimplementationofgraph
filtershavebeenofinterestinrecentyears.Thepapers[4]–[12]
(andreferencestherein)madeexplicitconnectionsbetween
polynomialgraphfiltersanddistributedcomputation,and
studiedvariousproblemsincludingsmoothing,regularization,
andconsensus.
Althoughgraphfilters(eitherpolynomial,orrational)can
beimplementedinadistributedfashionrequiringonlylo-
calizedcommunicationbetweentheneighboringnodes,most
oftheproposedimplementationsrelyonconsecutiveand
synchronouscommunicationbetweentheneighboringnodes
ofthegraph.Inthecaseoflargescaledistributedgraphpro-
cessingframeworks,e.g.,[13]–[16],synchronizationbecomes
animportantlimitation,asitcancausedelaysinthesystem.
Inordertoeliminatetheneedforsynchronization,thestudy
in[17]recentlyproposedanode-asynchronousimplementa-
tionofagivengraphfilter.Intheproposedalgorithm,neigh-
boringnodescommunicatewitheachotheratrandomtime
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instancesasynchronouslyfromeachother.So,nosynchroniza-
tionisrequiredwhenimplementingthedistributedfiltering
operations.Furthermore,theimplementationwasprovento
convergeundermildconditionsonthegraph,filterandthe
randombehaviorofthenodes.
Wenotethat[17]consideredthenode-asynchronousimple-
mentationofasinglefilter.However,inpractice,itcanbe
moredesirabletoimplementseveralfiltersinparallelsimilar
toafilterbankstructure[18].Inthisregard,here,wewill
extendtheresultsof[17]tothecaseof multipleparallel
filters.Indoingso,wewillpreservethenode-asynchronous
behavioroftheimplementation.Furthermore,wewillkeep
thecommunicationcostbetweentheneighboringnodesthe
same.Onlythelocalcomputationcostwillincreaselinearly
withthenumberoffiltersimplementedinparallel.Basedon
theanalysisin[17],wewillshowthatthenode-asynchronous
implementationpreservesitsconvergencebehaviorevenwhen
implementingseveralfiltersinparallel.
Therestofthepaperisorganizedasfollows:SectionII
presentsgraphfilterbanks,andSectionIIIpresentsanode-
asynchronousimplementationofsuchgraphfilterbanks.Sec-
tionIVprovestheconvergenceoftheproposedimplemen-
tation(Lemma1).SectionVprovidesanumericalexample
thatvisualizestheconvergencebehavioroftherandomized
asynchronousrecursions.

A.PreliminariesandNotation

WewilluseE todenotetheexpectation.ForamatrixX
wewilluseX andXHtodenoteitselement-wiseconjugate
andconjugatetranspose,respectively.Wewilluse todenote
theKroneckerproduct.WewilluseIM todenotetheidentity
matrixofsizeM,andeitodenotethei

thstandardvectorthat
has1attheithindexand0elsewhere.
Whendiscussinggraphs,wewilluseG CN N todenote
agraphoperatorforthegraphwithN nodes.HereGi,j
denotestheweightoftheedgefromnodejtonodei.In
particular,Gi,j 0whennodesiandjarenotneighbors.
Examplesofsuchlocalgraphoperatorsincludetheadjacency
matrix,thegraphLaplacian,etc.Thegraphisallowedtobe
directedpossiblywithanon-diagonalizableadjacencymatrix.
Wewilluse NiniandNoutitodenotetheincomingand
outgoingneighborsofthenodei.Morepreciselywehave:

Nini j Gi,j 0, Nouti j Gj,i 0.(1)

II.RATIONALGRAPHFILTERBANKS

Inthissection,wewilloverviewthenotionofgraphfilters,
whichplayacentralroleingraphsignalprocessing[2].More
specifically,wewilldescribethesetup,whichwillbeuseful
laterinSectionIIIwhendescribingthenode-asynchronous
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implementation. In this regard, we start by assuming that we
are given M filters in the following form:

h0pxq “ p0pxq
qpxq , ¨ ¨ ¨ , hM -1pxq “ pM -1pxq

qpxq , (2)

where it is assumed that filters share the same denominator
polynomial qpxq, but numerators are assumed to be arbitrary
polynomials of order L. More precisely, they are assumed to
be in the following form:

pipxq “
Lÿ

n“0

pi,n xn, qpxq “ 1 `
Lÿ

n“1

qn xn. (3)

The coefficients are allowed to be complex in general, and
polynomial (FIR) graph filters, which correspond to the case
of q1 “ ¨ ¨ ¨ “ qL “ 0, are not excluded.

When implemented as graph filters, having the same denom-
inator polynomial qpxq in (2) brings an advantage in terms of
the communication cost between the neighboring nodes of the
graph. That is, any number of filters can be implemented in
parallel without increasing the communication as long as the
filters share the same denominator. We will elaborate on this
point later in Section III. We also note that the assumption in
(2) is not a restriction in general, as arbitrary rational functions
can be equivalently represented with a common denominator.

A. State-Space Descriptions

Regarding the filters in (2), we will assume that the
quadruple pA, b, C, dq represents an L-dimensional state-
space realization. That is, the filters have the following infinite
order polynomial representation:»

———–
h0pxq
h1pxq

...

hM -1pxq

fi
ffiffiffifl “ d `

8ÿ
n“1

CAn-1 b xn, (4)

where pA, b, C, dq have the following dimensions:

A P C
LˆL, b P C

L, C P C
MˆL, d P C

M . (5)

Given the coefficients of the polynomials of pipxq and qpxq,
the direct form representation of the filters in (2) can be
obtained as follows (see [18, Section 13.4]):

A “

»
—————–

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1
-qL -qL-1 ¨ ¨ ¨ ¨ ¨ ¨ -q1

fi
ffiffiffiffiffifl
, b “

»
—————–

0
0
...

0
1

fi
ffiffiffiffiffifl
, d “

»
———–

p0, 0
p1, 0

...

pM -1, 0

fi
ffiffiffifl,

pCqi,j “ pi-1, L-j+1 ´ pi-1, 0 qL-j+1,
1 ď i ď M,

1 ď j ď L.
(6)

We note that state-space realization of the filters will be useful
when considering their node-asynchronous implementations in
Section III. We also note that state-space representations are
not unique, and different (but equivalent) representations of
(2) can be obtained by applying similarity transforms on (6).

B. Filters on Graphs
In the context of graph signal processing a rational graph

filter based on the filters in (2) has the following form:

hipGq “ pipGq qpGq-1, (7)

where G P C
NˆN denotes the operator of the graph at hand,

and it is implicitly assumed that qpGq is an invertible matrix.
For a given graph signal u P C

N , the filtered version of the
signal with the graph filter hipGq is given as follows:

rui “ hipGqu. (8)

We note that when the graph operator G is selected as the
Laplacian matrix and the polynomial coefficients are selected
appropriately, the filtering operation in (8) corresponds to
Laplacian smoothing [4], [19], [20]. In this regard, rational
graph filters can be considered as extensions of the Laplacian
smoothing to arbitrary graph operators.

III. NODE-ASYNCHRONOUS GRAPH FILTER BANKS

Since we consider graphs of finite size N , any rational
graph filter can be written as a polynomial graph filter of
order at most N -1. (See [21, Theorem 6.2.9].) Therefore, one
straightforward way to implement a rational graph filter is to
compute its polynomial representation, and then implement
the polynomial filter through consecutive graph shifts. This
approach has two limitations: 1) A rational graph filter of
order L typically has an order N -1 polynomial representation
even when L ! N . This limits the practicality especially when
the graph is large. 2) As discussed in [22], [23], a graph
shift (multiplication with G) requires a synchronization over
the network, which introduces delays, or it may not be even
possible in the case of autonomous networks.

In order to eliminate these limitations, the study [17] consid-
ered a node-asynchronous implementation of a given rational
graph filter, in which nodes interact with their neighbors
randomly and asynchronously. Here, we will show that it can
be extended to implement different filters in parallel.

The implementation proposed in [17] assumes that each
node has the following four local variables:

1) An input signal: It is assumed that the ith node has an
input signal denoted by ui P C. Collection of all these input
signals, denoted as u P C

N , will be referred to as the input
graph signal.

2) A state-vector: The ith node is assumed to have a local
state vector xi P C

L, which will be updated recursively and
broadcast to outgoing neighbors Noutpiq at random time in-
stances. We note that the size of the state vector is determined
only by the order of the filters L, but not by the number of
filters M .

3) An output signal: The ith node will have a local output
signal yi P C

M , whose size will be determined by the number
of filters M .

4) A buffer: In order to allow asynchronous behavior, each
node is assumed to have a buffer in order to store the state
vectors of its incoming neighbors. So, the ith node is assumed
to have a buffer of size L |Ninpiq|, which will be used to update
the state-vector.

Among these four local variables, only the input signal stays
the same over time, and the remaining variables get updated
randomly. In fact, we will show that the output variable yi
converges to the ith component of all M output graph signals.

The schematic description of the proposed implementation
is presented in Figure 1, in which a node is either in the
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“active,” or “passive” stage. When a node is in the pas-
sive stage, it only receives state vectors from its incoming
neighbors and updates its buffer accordingly. We note that a
node stores only the most recent state vector coming from an
incoming neighbor. When a node gets into the active stage
at a random time instance independently and asynchronously
from the remaining nodes, it updates its state vector and output
signal using the input signal and the data already available in
its buffer. Once the computations are done, the node broadcasts
the new value of its state vector to its outgoing neighbors.

(a) (b)

(c) (d)

Fig. 1. Visual illustration of the proposed asynchronous implementation of a
given graph filter [17]. Edges can be directed in the network. (a) The node i
waits and listens in the passive stage. (b) When the node i receives a message,
it updates its buffer. (c) When the node i gets into the active stage at a random
time instance, it first updates its state vector. (d) After the update, the node i
broadcasts its state vector to its outgoing neighbors.

During the active stage, the node updates its state-vector in
a two-step procedure. The node first updates its state vector
using a local graph shift using the data already available in
its buffer according to the graph operator G. More precisely,
when the ith node is updating its state vector, the node does
the following computation first:

x1
i Ð

ÿ
jPNinpiq

Gi,j xj , (9)

where x1
i P C

L denotes the “graph shifted version” of the state
vector xi. It is important to note that the computation in (9)
can be done locally and asynchronously by the ith node, as the
node is assumed to have all the state vectors of its incoming
neighbors already available in its buffer.

After the graph shift step, the state vector is updated
one more time using the input signal and the state-space
representation of the graph filters. More precisely, the ith node
executes the following updates locally in the filtering step:

yi Ð C x1
i ` d ui,

xi Ð A x1
i ` b ui, (10)

where x1
i P C

L is as in (9), and the quadruple pA, b, C, dq

is a state-space representation of the filters as in (6). We note
that the output signal yi is also updated in the filtering stage.

When the filtering stage described in (10) is completed,
the node broadcasts its most recent state vector xi to its
outgoing neighbors Noutpiq. We note that (9) and (10) describe
the behavior of a single node in the active stage. The graph
consists of N nodes, and we note that each node follows these
procedures asynchronously from each other at random time
instances. The proposed implementation is presented formally
in Algorithm 1.

Algorithm 1 Node-Asynchronous Graph Filter Bank

1: procedure INITIALIZATION(i)
2: Initialize the state vector xi P C

L as xi “ 0.

3: procedure PASSIVE STAGE(i)
4: if xj is received from the node j P Ninpiq then
5: Store the most recent value of xj .

6: procedure ACTIVE STAGE(i)
7: x1

i Ð ř
jPNinpiq Gi,j xj . Ź graph shift

8: yi Ð C x1
i ` dui. Ź filtering

9: xi Ð Ax1
i ` bui. Ź filtering

10: Broadcast xi to all j P Noutpiq.

In the presented algorithm we emphasize that a node getting
into the active stage is independent of the values in its buffer.
In general, a node does not wait until it receives state vectors
from all of its neighbors. In between two activations (i.e., in
the passive stage), some values in the buffer may be updated
more than once, and some may not be updated at all. Nodes
use the most recent update only.

IV. CONVERGENCE OF THE ALGORITHM

In this section we will show that Algorithm 1 is indeed a
valid implementation of the rational graph filters given in (2).
We note that in the case of a single rational filter, M “ 1, the
study [17] proved that the output variables in Algorithm 1
converges to the filtered graph signal in the mean-squared
sense under some mild conditions on the graph, the filter
matrix and the random behavior of the nodes. Based on the
result of [17], this section will show that the same convergence
behavior holds true even when implementing several filters in
parallel.

In this regard, we start by assuming a stochastic model for
the random behavior of the nodes in Algorithm 1. In particular,
whenever a node gets updated we will assume that an iteration
has passed. We note that more than one node may get updated
in a single iteration. Furthermore, we will assume that the ith

node gets into the active stage randomly with probability pi
independently at any iteration, and we will use the following
diagonal matrix to denote the update probabilities of all nodes:

P “ diag
´

rp1 p2 ¨ ¨ ¨ pN s
¯

P R
NˆN . (11)

In the case of a single rational filter, M “ 1, let ypkq P C
N

denote the combined output of all the nodes after k iterations
of the algorithm. More precisely,

ypkq “ ry1 y2 ¨ ¨ ¨ yN sT, (12)

where we note that the index k is a global counter that we use
to enumerate the iterations. In general, nodes are unaware of

'



the value of k, which is why the variables corresponding to
individual nodes are not indexed by k.

When the node update probability matrix P, the state
transition matrix A of the filter, and the operator G of the
graph satisfy the following:

}A}22 GH P G ă P, (13)

it is shown in [17, Theorem 3] that

lim
kÑ8 E

“››ypkq ´ ru››2
2

‰ “ 0. (14)

That is, the output variables in Algorithm 1 converges to the
desired output graph signal in the mean-square sense as the
iterations progress.

In the case of multiple filters, M ě 1, we will show that the
condition (17) is still sufficient to ensure the convergence of
the algorithm. In this regard, we first define Ypkq as follows:

Ypkq “ ry1 y2 ¨ ¨ ¨ yN sT P C
NˆM , (15)

which denotes the combined output vectors of all nodes of the

graph. Furthermore, we will use rU to denote the filtered graph
signals by the filters in (2). More precisely,

rU “ “ru0 ru1 ¨ ¨ ¨ ruM -1

‰ P C
NˆM , (16)

where rui’s are as in (8). Then, we present the following:

Lemma 1. In Algorithm 1, let P denote the node update
probability matrix. If the state transition matrix A of the filter,
and the operator G of the graph satisfy the following:

}A}22 GH P G ă P, (17)

then
lim
kÑ8 E

“››Ypkq ´ rU››2
F

‰ “ 0. (18)

Proof: Since it is assumed that the filters in (2) share
the same denominator polynomial, the state vector xi of each
node is updated the same irrespective of the number of filters.
On the other hand, entries of the output vector yi are updated
according to the corresponding numerator polynomials. More
precisely, consider the jth entry of the output vector of the
ith node in Line 8 of the algorithm:

pyiqj Ð rpj-1, L ´ pj-1, 0 qL ¨ ¨ ¨ pj-1, 1 ´ pj-1, 0 q1s x1
i

` pj-1, 0 ui, (19)

which follows from the direct form representations of C and
d given in (6).

Since the jth entry of the output vector is updated according
to the jth filter only, we can consider each entry of the output
separately. More precisely, let the following be the combined
jth entry of all the output vectors:

yj
pkq “ rpy1qj py2qj ¨ ¨ ¨ pyN qjsT P C

N . (20)

Under the condition in (17), [17, Theorem 3] shows that

lim
kÑ8 E

“››yj
pkq ´ ruj-1

››2
2

‰ “ 0. (21)

We also note that definitions of Ypkq and rU imply that

››Ypkq ´ rU››2
F

“
Mÿ
j“1

››yj
pkq ´ ruj-1

››2
2
, (22)

which shows that the condition (17) is sufficient to ensure the
mean-square convergence in (18).

Two remarks are in order regarding Lemma 1:
1) The implementation presented in Algorithm 1 considers

the noise-free case. Hence, Lemma 1 shows that the combined
output vector converges to the desired output of graph filters
in the mean-square sense. In the presence of noise, we note
that the combined output vector Ypkq does not converge to the
desired output exactly. Instead, the difference between Ypkq
and rU reaches an error floor, whose value is determined by
the input noise statistics, update probabilities, state-transition
matrix of the filter, and the graph operator. In fact, [17,
Theorem 3] provides an upper bound on the error floor. Similar
bounds can also be obtained for the case of multiple filters.

2) We note that condition (17) in Lemma 1 is only sufficient
to ensure the convergence. So, the algorithm may still converge
even when the condition (17) is not satisfied. Additionally, the
study [17] also demonstrated that it is possible to construct
examples in which Algorithm 1 converges only when it has
sufficient amount of asynchronicity. (So, it may diverge in the
synchronous mode of operation.) Although Lemma 1 does not
explain these phenomenas, the study [24] presented the neces-
sary and sufficient condition for the mean-square convergence
of the algorithm in the case of a single filter. More precisely,
consider the following matrix S of size pNLq2 ˆ pNLq2:

S “ sA˚ b sA ` (23)´
IL b pP-1 ´ IN q b INL

¯
J

´
p sA˚ ´ INLq b p sA ´ INLq

¯
,

where ˚ denotes element-wise conjugation, and J is a diagonal
matrix as follows:

J “
Nÿ
i“1

IL b pei eH
i q b IL b pei eH

i q P R
pNLq2ˆpNLq2 , (24)

and the matrix sA is given as follows:

sA “ INL ` pIL b Pq pA b G ´ INLq. (25)

Then, it is shown in [24] that Algorithm 1 converges in the
mean-square sense if and only if the spectral radius of matrix
S in (23) is strictly less than unity. Additionally, we can argue
that stability of the matrix S determines the convergence of the
algorithm even when implementing several filters in parallel.

V. NUMERICAL SIMULATIONS

In this section, we will numerically demonstrate the conver-
gence of the algorithm for the case of multiple filters running
in parallel on the graph demonstrated in Figure 2, which is an
undirected random geometric graph on N “ 150 nodes. We
also note that we will use the graph Laplacian as the graph
operator in this section.

In order to demonstrate the convergence behavior of node-
asynchronous filtering operations, we consider M “ 2 poly-
nomial (FIR) graph filters running in parallel. So, we take
qpxq “ 1 in (2), and select the numerators as follows:

p0pxq “ ´0.0002x3 ` 0.0091x2 ´ 0.1650x ` 1, (26)

p1pxq “ 0.0002x3 ` 0.0003x2 ` 0.0009x. (27)

On the graph visualized in Figure 2, the response (with
respect to the graph Laplacian) of the filters in (26) and
(27) are visualized in Figure 3(a). So, h0pxq has a low-
pass behavior, and h1pxq has a high-pass behavior. When the
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(a) (b) (c)

Fig. 2. Visualization of the signals on the graph. Colors black and pink
represent positive and negative values, respectively. Intensity of a color
represents the magnitude. (a) The input graph signal u that has nonzero values
on 30 nodes. (b) The filtered signal ru0 with the filter in (26). (c) The filtered
signal ru1 with the filter in (27).

signal visualized in Figure 2(a) is used as the input to these
filters, the corresponding output graph signals are presented in
Figures 2(b) and 2(c), respectively.

λi

h
(λ

i
)

(a)

Normalized Iteration Index (k/N)

E
[ ‖Y

(k
)
−
Ũ
‖2 F

]

(b)

Fig. 3. (a) Response of the FIR filters in (26) and (27). (b) The average error
in Algorithm 1 throughout the iterations when implementing the filters in (26)
and (27). The average behavior is obtained by empirically averaging over 103

independent realizations.

In Figure 3(b), we demonstrate the convergence behavior of
Algorithm 1 throughout the iterations when implementing the
filters in (26) and (27). As the iterations progress, the figure
clearly shows the convergence of the algorithm, which can also
be theoretically verified by checking the stability of the matrix
S in (23). We also note that a visualization of the iterations
of the algorithm is provided as a supplementary file in [25].

VI. CONCLUSIONS

In this paper, we extended the node-asynchronous imple-
mentation of a single graph filter to the case of multiple graph
filters running in parallel. By assuming that all the filters share
the same denominator polynomial, we kept the communication
cost between the neighboring nodes the same irrespective of
the number of filters implemented. Only the local computation
cost increases linearly with the number of filters. Following
the analysis done for the case of a single filter, we proved
that the node-asynchronous implementation converges to the
desired output of the filter bank in the mean-squared sense
under mild stability conditions involving the graph, the filter,
and the update probabilities of the nodes. We also provided
numerical examples in order to verify the convergence of the
implementation.

Although the filters are assumed to share the same denomi-
nator polynomial, it is, in fact, possible to implement arbitrary
rational filters within the node-asynchronous framework con-
sidered in this paper. This extension is left as a future direction.
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