2020 54th Asilomar Conference on Signals, Systems, and Computers | 978-0-7381-3126-9/20/$31.00 ©2020 IEEE | DOI: 10.1109%/[EEECONF51394.2020.9443349

Node-Asynchronous Implementation of
Filter Banks on Graphs

Oguzhan Teke and P. P. Vaidyanathan
Department of Electrical Engineering
California Institute of Technology
oteke@caltech.edu, ppvnath@systems.caltech.edu

Abstract—Filter banks on graphs are shown to be useful for
analyzing data defined over networks, as they decompose a graph
signal into components with low variation and high variation.
Based on recent node-asynchronous implementation of graph
filters, this study proposes an asynchronous implementation of
filter banks on graphs. In the proposed algorithm nodes follow a
randomized collect-compute-broadcast scheme: if a node is in the
passive stage it collects the data sent by its incoming neighbors
and stores only the most recent data. When a node gets into
the active stage at a random time instance, it does the necessary
filtering computations locally, and broadcasts a state vector to
its outgoing neighbors. When the underlying filters (of the filter
bank) are rational functions with the same denominator, the
proposed filter bank implementation does not require additional
communication between the neighboring nodes. However, compu-
tations done by a node increase linearly with the number of filters
in the bank. It is also proven that the proposed asynchronous
implementation converges to the desired output of the filter bank
in the mean-squared sense under mild stability conditions. The
convergence is verified also with numerical experiments.

I. INTRODUCTION

One of the key aspects in the field of graph signal processing
is the use of graph filters, which provides a versatile tool that
can be utilized in order to smooth out graph signals (low-pass
filters), or detect anomalies (high-pass filters) [1]-[3]. More
importantly, graph filters are implicitly related to distributed
signal processing due to their localized structures on graphs.
Due to their importance, design and implementation of graph
filters have been of interest in recent years. The papers [4]-[12]
(and references therein) made explicit connections between
polynomial graph filters and distributed computation, and
studied various problems including smoothing, regularization,
and consensus.

Although graph filters (either polynomial, or rational) can
be implemented in a distributed fashion requiring only lo-
calized communication between the neighboring nodes, most
of the proposed implementations rely on consecutive and
synchronous communication between the neighboring nodes
of the graph. In the case of large scale distributed graph pro-
cessing frameworks, e.g., [13]-[16], synchronization becomes
an important limitation, as it can cause delays in the system.

In order to eliminate the need for synchronization, the study
in [17] recently proposed a node-asynchronous implementa-
tion of a given graph filter. In the proposed algorithm, neigh-
boring nodes communicate with each other at random time

This work was supported in parts by the ONR grant N0O0014-18-1-2390,
the NSF grant CCF-1712633, and the Electrical Engineering Carver Mead
Research Seed Fund of the California Institute of Technology.

978-0-7381-3126-9/20/$31.00 ©2020 IEEE 460

instances asynchronously from each other. So, no synchroniza-
tion is required when implementing the distributed filtering
operations. Furthermore, the implementation was proven to
converge under mild conditions on the graph, filter and the
random behavior of the nodes.

We note that [17] considered the node-asynchronous imple-
mentation of a single filter. However, in practice, it can be
more desirable to implement several filters in parallel similar
to a filter bank structure [18]. In this regard, here, we will
extend the results of [17] to the case of multiple parallel
filters. In doing so, we will preserve the node-asynchronous
behavior of the implementation. Furthermore, we will keep
the communication cost between the neighboring nodes the
same. Only the local computation cost will increase linearly
with the number of filters implemented in parallel. Based on
the analysis in [17], we will show that the node-asynchronous
implementation preserves its convergence behavior even when
implementing several filters in parallel.

The rest of the paper is organized as follows: Section II
presents graph filter banks, and Section III presents a node-
asynchronous implementation of such graph filter banks. Sec-
tion IV proves the convergence of the proposed implemen-
tation (Lemma 1). Section V provides a numerical example
that visualizes the convergence behavior of the randomized
asynchronous recursions.

A. Preliminaries and Notation

We will use E[-] to denote the expectation. For a matrix X
we will use X* and X" to denote its element-wise conjugate
and conjugate transpose, respectively. We will use ® to denote
the Kronecker product. We will use I, to denote the identity
matrix of size M, and e; to denote the it standard vector that
has 1 at the i*" index and 0 elsewhere.

When discussing graphs, we will use G € CV*¥ to denote
a graph operator for the graph with N nodes. Here G ;
denotes the weight of the edge from node j to node i. In
particular, G; ; = 0 when nodes ¢ and j are not neighbors.
Examples of such local graph operators include the adjacency
matrix, the graph Laplacian, etc. The graph is allowed to be
directed possibly with a non-diagonalizable adjacency matrix.
We will use Miy(7) and Nyy(i) to denote the incoming and
outgoing neighbors of the node ¢. More precisely we have:

Nin(i) ={j | Gij #0}, Now(i) ={j | Gji+#0}. (1)

II. RATIONAL GRAPH FILTER BANKS

In this section, we will overview the notion of graph filters,
which play a central role in graph signal processing [2]. More
specifically, we will describe the setup, which will be useful
later in Section III when describing the node-asynchronous

Asilomar 2020

Authonzed licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY . Downloaded on July 02,2021 at 15:59:08 UTC from IEEE Xplore. Restrictions apply.

implementation. In this regard, we start by assuming that we
are given M filters in the following form:
po(7) para ()
= h M-1 3?) = 7 (2)
o(a) ="
where it is assumed that filters share the same denominator
polynomial g(z), but numerators are assumed to be arbitrary
polynomials of order L. More precisely, they are assumed to
be in the following form:

, BN

ho(ﬂ?)

L
pi@) =Y pina", q@)=1+) gua". ()
n=0

The coefficients are allowed to be complex in general, and
polynomial (FIR) graph filters, which correspond to the case
of g = --- = qr = 0, are not excluded.

When implemented as graph filters, having the same denom-
inator polynomial ¢(z) in (2) brings an advantage in terms of
the communication cost between the neighboring nodes of the
graph. That is, any number of filters can be implemented in
parallel without increasing the communication as long as the
filters share the same denominator. We will elaborate on this
point later in Section III. We also note that the assumption in
(2) is not a restriction in general, as arbitrary rational functions
can be equivalently represented with a common denominator.

A. State-Space Descriptions

Regarding the filters in (2), we will assume that the
quadruple (A, b, C, d) represents an L-dimensional state-
space realization. That is, the filters have the following infinite
order polynomial representation:

ho(x)
hl (CL’) =
, =d+ > CA"'ba", 4)
. n=1
hM_l(.’E)
where (A, b, C, d) have the following dimensions:
AeCtl becCEt cCcecCcMxL decM. (5

Given the coefficients of the polynomials of p;(x) and ¢(x),
the direct form representation of the filters in (2) can be
obtained as follows (see [18, Section 13.4]):

0 1 o --- 0 0
0 0 1 .- 0 0 Po,o
p1,0
A = . . N t. : 9 b = 9 d = . 5
0 0 o --- 1 :
-qr QL1 - - -qu 1 Pm-1,0
1<i< M,
(C)ij = Pi1, Lj+1 — Pi-1,0 qL-j+1 l<j<L (6)

We note that state-space realization of the filters will be useful
when considering their node-asynchronous implementations in
Section III. We also note that state-space representations are
not unique, and different (but equivalent) representations of
(2) can be obtained by applying similarity transforms on (6).

B. Filters on Graphs

In the context of graph signal processing a rational graph
filter based on the filters in (2) has the following form:

hi(G) = pi(G) ¢(G)™, (7

where G € CV*¥ denotes the operator of the graph at hand,
and it is implicitly assumed that ¢(G) is an invertible matrix.

For a given graph signal u e C*", the filtered version of the
signal with the graph filter h;(G) is given as follows:

We note that when the graph operator G is selected as the
Laplacian matrix and the polynomial coefficients are selected
appropriately, the filtering operation in (8) corresponds to
Laplacian smoothing [4], [19], [20]. In this regard, rational
graph filters can be considered as extensions of the Laplacian
smoothing to arbitrary graph operators.

III. NODE-ASYNCHRONOUS GRAPH FILTER BANKS

Since we consider graphs of finite size N, any rational
graph filter can be written as a polynomial graph filter of
order at most N-1. (See [21, Theorem 6.2.9].) Therefore, one
straightforward way to implement a rational graph filter is to
compute its polynomial representation, and then implement
the polynomial filter through consecutive graph shifts. This
approach has two limitations: 1) A rational graph filter of
order L typically has an order N-1 polynomial representation
even when L « N. This limits the practicality especially when
the graph is large. 2) As discussed in [22], [23], a graph
shift (multiplication with G) requires a synchronization over
the network, which introduces delays, or it may not be even
possible in the case of autonomous networks.

In order to eliminate these limitations, the study [17] consid-
ered a node-asynchronous implementation of a given rational
graph filter, in which nodes interact with their neighbors
randomly and asynchronously. Here, we will show that it can
be extended to implement different filters in parallel.

The implementation proposed in [17] assumes that each
node has the following four local variables:

1) An input signal: Tt is assumed that the i*” node has an
input signal denoted by u; € C. Collection of all these input
signals, denoted as u e CV, will be referred to as the input
graph signal.

2) A state-vector: The i'" node is assumed to have a local
state vector x; € CL, which will be updated recursively and
broadcast to outgoing neighbors Ny (i) at random time in-
stances. We note that the size of the state vector is determined
only by the order of the filters L, but not by the number of
filters M.

3) An output signal: The i*" node will have a local output
signal y; € CM, whose size will be determined by the number
of filters M.

4) A buffer: In order to allow asynchronous behavior, each
node is assumed to have a buffer in order to store the state
vectors of its incoming neighbors. So, the i*" node is assumed
to have a buffer of size L |\, (7)], which will be used to update
the state-vector.

Among these four local variables, only the input signal stays
the same over time, and the remaining variables get updated
randomly. In fact, we will show that the output variable y,
converges to the i*" component of all M output graph signals.

The schematic description of the proposed implementation
is presented in Figure 1, in which a node is either in the

461

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 02,2021 at 15:59:08 UTC from IEEE Xplore. Restrictions apply.

“active,” or “passive” stage. When a node is in the pas-
sive stage, it only receives state vectors from its incoming
neighbors and updates its buffer accordingly. We note that a
node stores only the most recent state vector coming from an
incoming neighbor. When a node gets into the active stage
at a random time instance independently and asynchronously
from the remaining nodes, it updates its state vector and output
signal using the input signal and the data already available in
its buffer. Once the computations are done, the node broadcasts
the new value of its state vector to its outgoing neighbors.

© (d)

Fig. 1. Visual illustration of the proposed asynchronous implementation of a
given graph filter [17]. Edges can be directed in the network. (a) The node ¢
waits and listens in the passive stage. (b) When the node % receives a message,
it updates its buffer. (c) When the node ¢ gets into the active stage at a random
time instance, it first updates its state vector. (d) After the update, the node ¢
broadcasts its state vector to its outgoing neighbors.

During the active stage, the node updates its state-vector in
a two-step procedure. The node first updates its state vector
using a local graph shift using the data already available in
its buffer according to the graph operator G. More precisely,
when the i node is updating its state vector, the node does
the following computation first:

X; <« Z Gi’j Xj, (9)
JENin (1)

where x; € CL denotes the “graph shifted version” of the state
vector x;. It is important to note that the computation in (9)
can be done locally and asynchronously by the i node, as the
node is assumed to have all the state vectors of its incoming
neighbors already available in its buffer.

After the graph shift step, the state vector is updated
one more time using the input signal and the state-space
representation of the graph filters. More precisely, the i*” node
executes the following updates locally in the filtering step:

y; < Cx, +du,
x; < A X, + b u,, (10)

where x/ € CL is as in (9), and the quadruple (A, b, C, d)

is a state-space representation of the filters as in (6). We note
that the output signal y; is also updated in the filtering stage.

When the filtering stage described in (10) is completed,
the node broadcasts its most recent state vector x; to its
outgoing neighbors Nyy (7). We note that (9) and (10) describe
the behavior of a single node in the active stage. The graph
consists of N nodes, and we note that each node follows these
procedures asynchronously from each other at random time
instances. The proposed implementation is presented formally
in Algorithm 1.

Algorithm 1 Node-Asynchronous Graph Filter Bank

1: procedure INITIALIZATION(%)

2 Initialize the state vector x; € CF as x; = 0.

3: procedure PASSIVE STAGE(%)

4 if x; is received from the node j € Mi,(i) then
5: Store the most recent value of x;.
6
7
8
9

: procedure ACTIVE STAGE(%)
PX e Djen) G X5

vy, — Cx; +du;.

X; — AX, +bu;.

Broadcast x; to all j € Noy(4).

= graph shift
> filtering
> filtering

—
@ C

In the presented algorithm we emphasize that a node getting
into the active stage is independent of the values in its buffer.
In general, a node does not wait until it receives state vectors
from all of its neighbors. In between two activations (i.e., in
the passive stage), some values in the buffer may be updated
more than once, and some may not be updated at all. Nodes
use the most recent update only.

IV. CONVERGENCE OF THE ALGORITHM

In this section we will show that Algorithm 1 is indeed a
valid implementation of the rational graph filters given in (2).
We note that in the case of a single rational filter, M = 1, the
study [17] proved that the output variables in Algorithm 1
converges to the filtered graph signal in the mean-squared
sense under some mild conditions on the graph, the filter
matrix and the random behavior of the nodes. Based on the
result of [17], this section will show that the same convergence
behavior holds true even when implementing several filters in
parallel.

In this regard, we start by assuming a stochastic model for
the random behavior of the nodes in Algorithm 1. In particular,
whenever a node gets updated we will assume that an iteration
has passed. We note that more than one node may get updated
in a single iteration. Furthermore, we will assume that the ith
node gets into the active stage randomly with probability p;
independently at any iteration, and we will use the following
diagonal matrix to denote the update probabilities of all nodes:

P = diag ([pl D2 pN]) e RVXN, (11)

In the case of a single rational filter, M = 1, let Y € cN
denote the combined output of all the nodes after % iterations
of the algorithm. More precisely,

Yooy = v1 we yn]", (12)

where we note that the index k is a global counter that we use
to enumerate the iterations. In general, nodes are unaware of

462

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 02,2021 at 15:59:08 UTC from IEEE Xplore. Restrictions apply.

the value of k, which is why the variables corresponding to
individual nodes are not indexed by k.

When the node update probability matrix P, the state
transition matrix A of the filter, and the operator G of the
graph satisfy the following:

IA2GHr PG <P, (13)
it is shown in [17, Theorem 3] that
. ~12
lim Eflyq - @3] = o. (14)

That is, the output variables in Algorithm 1 converges to the
desired output graph signal in the mean-square sense as the
iterations progress.

In the case of multiple filters, M > 1, we will show that the
condition (17) is still sufficient to ensure the convergence of
the algorithm. In this regard, we first define Y ;) as follows:

Y = [y1 Yo YN]T e CVM, 15)

which denotes the combined output vectors of all nodes of the
graph. Furthermore, we will use U to denote the filtered graph
signals by the filters in (2). More precisely,

~

U=[a, @ e CNxM

Uz (16)

where 1;’s are as in (8). Then, we present the following:

Lemma 1. In Algorithm 1, let P denote the node update
probability matrix. If the state transition matrix A of the filter,
and the operator G of the graph satisfy the following:

JA|2GHP G <P, (17)

then 5
Jim E[[Y~ U[2] =0 (1s)
Proof: Since it is assumed that the filters in (2) share
the same denominator polynomial, the state vector x; of each
node is updated the same irrespective of the number of filters.
On the other hand, entries of the output vector y; are updated
according to the corresponding numerator polynomials. More
precisely, consider the j** entry of the output vector of the
i*" node in Line 8 of the algorithm:

Pj1,1 — Pi1,0 ¢1] X,
(19)

(yi)j < [pja, L —pj1,04L
+Dj-1,0 Ui,
which follows from the direct form representations of C and
d given in (6).
Since the ;" entry of the output vector is updated according
to the 5 filter only, we can consider each entry of the output

seEarately. More precisely, let the following be the combined
4" entry of all the output vectors:

Yy = [01); (v2); (yn)i]" e CY. (20)
Under the condition in (17), [17, Theorem 3] shows that

fim B[y, 2] = 0. a1

k—0

We also note that definitions of Y ;) and U imply that

which shows that the condition (17) is sufficient to ensure the
mean-square convergence in (18). [|

Two remarks are in order regarding Lemma 1:

1) The implementation presented in Algorithm 1 considers
the noise-free case. Hence, Lemma 1 shows that the combined
output vector converges to the desired output of graph filters
in the mean-square sense. In the presence of noise, we note
that the combined output vector Y () does not converge to the
desired output exactly. Instead, the difference between Y ()

and U reaches an error floor, whose value is determined by
the input noise statistics, update probabilities, state-transition
matrix of the filter, and the graph operator. In fact, [17,
Theorem 3] provides an upper bound on the error floor. Similar
bounds can also be obtained for the case of multiple filters.
2) We note that condition (17) in Lemma 1 is only sufficient
to ensure the convergence. So, the algorithm may still converge
even when the condition (17) is not satisfied. Additionally, the
study [17] also demonstrated that it is possible to construct
examples in which Algorithm 1 converges only when it has
sufficient amount of asynchronicity. (So, it may diverge in the
synchronous mode of operation.) Although Lemma 1 does not
explain these phenomenas, the study [24] presented the neces-
sary and sufficient condition for the mean-square convergence
of the algorithm in the case of a single filter. More precisely,
consider the following matrix S of size (NL)? x (NL)%:

S=A"Q@A + (23)
(IL ® (P* —1y) ®INL) J ((A* —InL)® (A — INL))»

where * denotes element-wise conjugation, and J is a diagonal
matrix as follows:

N
I=> L ®(e;e) @I ® (e ell) e RVEXIND (24
=1

and the matrix A is given as follows:
A= Ing + (IL®P) (A@G —INL).

Then, it is shown in [24] that Algorithm 1 converges in the
mean-square sense if and only if the spectral radius of matrix
S in (23) is strictly less than unity. Additionally, we can argue
that stability of the matrix S determines the convergence of the
algorithm even when implementing several filters in parallel.

(25)

V. NUMERICAL SIMULATIONS

In this section, we will numerically demonstrate the conver-
gence of the algorithm for the case of multiple filters running
in parallel on the graph demonstrated in Figure 2, which is an
undirected random geometric graph on N = 150 nodes. We
also note that we will use the graph Laplacian as the graph
operator in this section.

In order to demonstrate the convergence behavior of node-
asynchronous filtering operations, we consider M = 2 poly-
nomial (FIR) graph filters running in parallel. So, we take
g(z) =1 in (2), and select the numerators as follows:

po(z) = —0.0002 2% + 0.0091 22 — 0.1650 = + 1,
p1(x) = 0.0002 2% + 0.0003 z* + 0.0009 .

On the graph visualized in Figure 2, the response (with

(26)
27)

M respect to the graph Laplacian) of the filters in (26) and
~ 9 , 9 R LT
Y. —Ul: = VRN o 22y (27) are visualized in Figure 3(a). So, ho(z) has a low-
H (k) HF]; Hy(k) o H2 @2) pass behavior, and hq(x) has a high-pass behavior. When the
463

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 02,2021 at 15:59:08 UTC from IEEE Xplore. Restrictions apply.

o & o e) o
[] OO Q %8b.g>8§ [} OO \g (%8%O§ ? OCO O6DO 0§8
o] % &s O a5 o hye) &5 &
o@o@QOéP © o§0@0§ © § 6@0& o
%(.bgoo.o O O.O@ Q;)@OOOO O. O.O@ 8 o OO@
Q o
O%) 090.%0 SO O%j &890?8%0 %Cg. %b O@ ° QJ%
?90@0(0 :)o E;;O@@@ 830 e C’Géoo
ce T 0 hoe celah o %se ool gl g bpo
o-900C) Q000 @ © 0-Q00-C ¥ o
(@) (b) (©

Fig. 2. Visualization of the signals on the graph. Colors black and pink
represent positive and negative values, respectively. Intensity of a color
represents the magnitude. (a) The input graph signal u that has nonzero values
on 30 nodes. (b) The filtered signal tip with the filter in (26). (c) The filtered
signal u; with the filter in (27).

signal visualized in Figure 2(a) is used as the input to these
filters, the corresponding output graph signals are presented in
Figures 2(b) and 2(c), respectively.

10°
— 102
D 10*
|
= 10°
2 108
T
1072
— IO 10714
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25
Y Normalized Iteration Index (k/N)
(a) (b)

Fig. 3. (a) Response of the FIR filters in (26) and (27). (b) The average error
in Algorithm 1 throughout the iterations when implementing the filters in (26)
and (27). The average behavior is obtained by empirically averaging over 103
independent realizations.

In Figure 3(b), we demonstrate the convergence behavior of
Algorithm 1 throughout the iterations when implementing the
filters in (26) and (27). As the iterations progress, the figure
clearly shows the convergence of the algorithm, which can also
be theoretically verified by checking the stability of the matrix
S in (23). We also note that a visualization of the iterations
of the algorithm is provided as a supplementary file in [25].

VI. CONCLUSIONS

In this paper, we extended the node-asynchronous imple-
mentation of a single graph filter to the case of multiple graph
filters running in parallel. By assuming that all the filters share
the same denominator polynomial, we kept the communication
cost between the neighboring nodes the same irrespective of
the number of filters implemented. Only the local computation
cost increases linearly with the number of filters. Following
the analysis done for the case of a single filter, we proved
that the node-asynchronous implementation converges to the
desired output of the filter bank in the mean-squared sense
under mild stability conditions involving the graph, the filter,
and the update probabilities of the nodes. We also provided
numerical examples in order to verify the convergence of the
implementation.

Although the filters are assumed to share the same denomi-
nator polynomial, it is, in fact, possible to implement arbitrary
rational filters within the node-asynchronous framework con-
sidered in this paper. This extension is left as a future direction.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

464

REFERENCES

A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80-90, Sept. 2014.

D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May
2018.

D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, “Dis-
tributed signal processing via chebyshev polynomial approximation,”
IEEE Trans. on Sig. and Inf. Process. Net., vol. 4, no. 4, pp. 736-751,
Dec. 2018.

S. Safavi and U. A. Khan, “Revisiting finite-time distributed algorithms
via successive nulling of eigenvalues,” IEEE Sig. Process. Letters,
vol. 22, no. 1, pp. 54-57, Jan. 2015.

A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time distributed
consensus through graph filters,” in Proc. Int. Conf. Acoust. Speech,
Signal Process. (ICASSP), May 2014, pp. 1080-1084.

S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed implementation
of linear network operators using graph filters,” in Allerton Conference
on Communication, Control, and Computing, Sept. 2015, pp. 1406—
1413.

X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite impulse response
graph filters in wireless sensor networks,” IEEE Sig. Process. Letters,
vol. 22, no. 8, pp. 1113-1117, Aug. 2015.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. on Sig. Process., vol. 65, no. 2,
pp. 274-288, Jan. 2017.

——, “Filtering random graph processes over random time-varying
graphs,” IEEE Trans. Signal Process., vol. 65, no. 16, pp. 4406-4421,
Aug. 2017.

A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregressive
moving average graph filters,” IEEE Sig. Process. Letters, vol. 22, no. 11,
pp. 19311935, Nov. 2015.

A. Loukas, “Distributed graph filters,”
sity of Technology, March 2015.
(2019) Giraph. [Online]. Available: https://giraph.apache.org
(2019) Spark. [Online]. Available: https://spark.apache.org
(2019) Dgraph. [Online]. Available: https://dgraph.io

B. Awerbuch, “Complexity of network synchronization,”
vol. 32, no. 4, p. 804-823, Oct. 1985.

O. Teke and P. P. Vaidyanathan, “IIR filtering on graphs with random
node-asynchronous updates,” IEEE Transactions on Signal Processing,
vol. 68, pp. 3945-3960, 2020.

P. P. Vaidyanathan, Multirate Systems and Filter Banks.
Cliffs, N.J. Prentice Hall, 1993.

X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
gaussian fields and harmonic functions,” in International Conference on
Machine Learning (ICML), 2003, pp. 912-919.

K. Avrachenkov, A. Mishenin, P. Gongalves, and M. Sokol, “Generalized
optimization framework for graph-based semi-supervised learning,” in
SIAM International Conf. Data Mining, 2012, pp. 966-974.
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis.
University Press, 1994.

O. Teke and P. P. Vaidyanathan, “Random node-asynchronous updates
on graphs,” IEEE Transactions on Signal Processing, vol. 67, no. 11,
pp. 2794-2809, June 2019.

——, “Random node-asynchronous graph computations,” IEEE Signal
Processing Magazine, vol. 37, no. 6, pp. 64-73, November 2020.

, “Joint vertex-time filtering on graphs with random node-
asynchronous updates,” Submitted to IEEE Transactions on Signal
Processing, 2020.

. (2020) Real-time visualization of node-asynchronous graph
filtering. [Online]. Available: http://systems.caltech.edu/dsp/students/
oteke/files/asyncPoly.mp4

Ph.D. dissertation, Delft Univer-

J. ACM,

Englewood

Cambridge

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 02,2021 at 15:59:08 UTC from IEEE Xplore. Restrictions apply.

