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ABSTRACT

Ramanujan filter banks (RFB) have in the past been used to
identify periodicities in data. These are analysis filter banks
with no synthesis counterpart for perfect reconstruction of the
ori ginal signal, so they have not been useful for denoising pe-
riodic signals. This paper proposes to use a hybrid analysis-
synthesis framework for denoising discrete-time periodic sig-
nals. The synthesis occurs via a pruned dictionary designed
based on the output energies of the RFB analysis filters. A
unique property of the framework is that the denoised out-
put signal is guaranteed to be periodic unlike any of the other
methods. For a large range of iput noise levels, the proposed
approach achieves a stable and high SNR gain outperforming
many traditional denoising techniques.

Index Terms— Periodicity, denoising, Ramanujan filter
banks, pruned synthesis dictionary, hidden periods.

1. INTRODUCTION

Denoising a measurement to get a better estimate of the true
signal is important in signal and image processing and has
been researched widely [1-6]. Some of the traditional trans-
form domain denoising methods include Discrete Fourier
Transform (DFT) denoising and wavelet denoising. DFT
denoising works well for harmonic signals when the number
of available samples is large. The transform domain methods
usually incorporate the a-priori knowledge about the underly-
ing signal and involve thresholding in the transform domain
followed by inverse transformation. For example, the hard
and soft thresholding methods of wavelet denoising [2] for
natural images are based on the fact that most of the energy
for natural images is concentrated in only a few dominant
wavelet coefficients.

Instead of using square matrices, overcomplete dictionar-
ies can be used for signal representation. If the dictionary
is chosen appropriately, signal denoising can be framed as a
sparse vector recovery problem. A denoising method based
on OMP (Orthogonal Matching Pursuit) is one such method
[3]. Further, to avoid ex'%licit handcrafting of the dictionaries
that lead to sparse coefficients for the desired class of sig-
nals, the dictionaries can either be learned beforehand from
clean data or directly from the patches of the noisy signal to
be denoised. A denoising method based on the well-known
K-SVD [7] has demonstrated good results for images [4].

Many real-world signals like ECG and gravitational wave
signals can be closely approximated by periodic signals [8,9].
Discrete-time periodic sequences also occur naturally in pro-
teins and DNA [10,11]. Accurately estimating the component
periods and denoising such signals is an important task when
the received signal is noisy. Although there exist many de-
noising methods, we will demonstrate in the paper that these
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methods usually do not respect the periodicities in the signal
and produce a non-periodic signal as denoised output. Only
a few methods available in the literature are particularly de-
signed for denoising periodic signals. Non-harmonic analy-
sis (NHA) [5] is one such method that poses denoising as a
mean squared error minimization problem. Thus developing
periodicity-aware denoising methods is essential.

Scope and Outline. 1In this paper we propose a novel
analysis-synthesis framework for denoising discrete-time pe-
riodic signals based on Ramanujan analysis filter banks and
synthesis dictionaries. The method produces a truly periodic
signal as the denoised output. To our knowledge, none of the
existing methods have this property. Our method outperforms
many traditional denoising techniques in terms of SNR gain
achieved. In Sec. 2, we review Ramanujan filter banks and
Ramanujan dictionaries. Then in Sec. 3, we describe our new
ana]ysis—gynthesis framework and different versions of the as-
sociated denoising method in detail. We compare our method
with some of the well-known denoising algorithms in Sec. 4.
Sec. 5 presents conclusions and future directions.

Notations. A discrete-time signal =(n) is said to be peri-
odic with period P if P is the smallest positive integer such
that z(n) = z(n+ P) for all n. The notation (%, g) represents
the ged of the integers k and g. So (k,q) = 1 means that &
and q are coprime. lem{qi,qq, - ,qx} denotes the least
common multiple of the integers g1, ¢2,- - ,gx. The nota-
tion g;|g means that g; is a divisor of g. Finally, ¢(q) is the
Euler totient (number of integers k in 1 < k < ¢ satisfying

(k,q) =1). ®(q) = 3°9_, é(k). and W, = e=927/9,

2. REVIEW OF RAMANUJAN FILTER BANKS AND
RAMANUJAN DICTIONARIES

Ramanujan sums are particularly useful in identifying com-
ponent periods of a discrete-time periodic signal [12-14]. For
an integer g > 0, the ¢g-th Ramanujan sum is defined as [15]:

q q

q
cq(n)z Z e’,‘2?rkn/q: Z Wq—kn: Z Wé‘cn
k=1

k=1 = k=1
(k,g)=1 (k,g)=1 (k,g)=1

1
It is well-known that the g-th Ramanujan sum is integer v{al2
ued for all n and is periodic with period ¢. A review of Ra-
manujan sums and their properties can be found in [12]. The
g-th Ramanujan sum lies in the g-th Ramanujan subspace de-

fined as [12] S; = span{W}™;(k,q) = 1}. S, is a ¢(q)-
dimensional space containing signals x(n) with period g that
have non-zero DFT value only at the frequency indices & that
are coprime to g. Sq also admits an integer basis, namely [12]
Sq = span{cg(n —1); 0 <1< ¢(q) — 1}.

A signal x € R" which is expected to have periodic com-
ponents only upto Pp,.. can be represented in terms of the
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Fig. 1. Frequency response magnitude of the FIR Ramanujan filter

C{P (€7), when  is finite [20].
dictionary D as [16]

x=Db, where D=[H; Hy --- Hp__]. (2)
Here, H, is a N x ¢(q) matrix whose columns are the g-th Ra-
manujan sum and its ¢(g) shifted versions spanning the g-th
Ramanujan subspace S;. The columns are extended periodi-
cally to obtain N rows. The size of D is thus N x ®(Pp,qz).
The number of samples N is usually three or four times the
maximum component period, whereas ®(Ppq,) grows as
O(P2,,) [16]. Thus the matrix D is usually fat. Period
identification is posed as a sparse vector recovery problem
in this setting, and the component periods can be found by
identifying the set of subspaces that correspond to non-zero
entries in the coefficient vector b. Sub-matrices H, can in
fact be replaced by any other basis of S4, and such dictionar-
ies are called nested periodic dictionaries [17]. For example,
the Farey dictionary [16] uses the coprime frequency index
columns from the ¢ x g DFT matrices to span Sy, and the
natural periodic dictionary uses first ¢(g) columns of the g x ¢
identity matrix to span Sg.

The dictionary method, however, is not as effective when
the data to be analyzed is streaming and has a periodicit
structure that evolves over time. For this, Ramanujan fil-
ter banks (RFB) are more suited [18-20]. To detect compo-

nent periods up to Pp,q., RFB has FIR filters corresponding
to each period from 1 to P,,,,. The g-th Ramanujan filter

CP(z) = 1950 cy(n)z~™ has the first [ periods of the g-
th Ramanujan sum as its filter coefficients, where [ is a fixed
repetition number for all the filters in RFB. Thus, the ¢-th Ra-
manujan filter has gl possible non-zero filter coefficients.

Fig. 1 qualitatively shows the frequency response of the
9" Ramanujan filter. The g-th Ramanujan filter with a finite [
has ¢(g) passbands around the coprime frequency locations.
As [ increases, the passbands become narrower and the fre-
quency response approaches a set of Dirac-delta functions,
like the ideal Ramanujan filter Cy(e’*). Based on the outputs
of the different filters, the component periods can be esti-
mated owing to the following theorem proved in [19]:

Theorem 1. The lcm property of Ramanujan filter banks:
Let z(n) be a period-P input signal with 1 < P < Pp,,44. Let
nonzero outputs be produced by the subset of ideal Ramanu-
jan filters Cg, (e7*) corresponding to periods q1,q2,- - ,qK-
Then the period P is given by P =lem {q1,42, - ,qx}- <

Since the filter outputs are convolutions of z(n) with
cq(n), the outputs are approximately signals in the Ramanu-
jan subspace S;. Using a sliding window average, the ener-
gies of the filter outputs can be plotted as a function of time
for a streaming signal to get a time-period plane plot [18,19]
similar to time-frequency plots. RFB has applications in
finding periodicities in proteins [10] and DNAs [11].

3. HYBRID ANALYSIS-SYNTHESIS FRAMEWORK

The Ramanujan filter bank is an anal}rsis bank of FIR filters
that correspond to different periods. It is natural to look for

the synthesis counterpart of RFB. However, note that the RFB
is not like a traditional filter bank where the prototype filter
is a lowpass filter and the other filters in the filter bank are
frequency shifted versions of the Erototyf)e filler. The Ra-
manujan filters have multiple passbands located at coprime
frequencies. Decimating the outputs of these filters will in-
evitably lead to aliasing in a rather complex manner in the
frequency domain. In absence of any such decimation, the
RFB outputs have a lot of redundant information, and it is not
easy to combine outputs of the filters to perfectly reconstruct
the original signal. Thus, the RFB is not like traditional anal-
ysis filter banks for which there exist synthesis counterparts
with perfect reconstruction property [21].

3.1. Using dictionary for synthesis

To overcome this Erob]em, we propose a novel analysis-
synthesis framework where analysis is done by the RFB and
the synthesis is done via a dictionary generated based on the

outputs of the RFB. Consider a noiseless signal x € RV
having a non-changing periodicity structure, meaning the pe-
riodic components do not change over time. When the signal
is passed through an ideal Ramanujan filter bank (which has

Cq(e7¥) instead of Cé”(z)) containing filters up to Ppaq,
let the filters with indices 7,72, -+ , 7y produce non-zero
outputs. As long as x does not have any component period
larger than Py, from Theorem 1 we can conclude that the
signal has non-zero frequency components possibly only at
27kij /i, where (kij,m) = 1, ¢ = 1,...,m. This means
that the signal can be written as a linear combination of the
signals from Sy, Sy, ... Sr,.. As H, defined in Eq. (2) spans
Sg. we must have

x = Db, where D= [H,, H,, --- H..] (3
Here, the size of Dis N x Y- ¢(r;) and bisa 31", é(r;)
dimensional coefficient vector. This operation of retaining

only a few subspaces from D will be called dictionary prun-
ing. When x has only a few component periods in the range

1 < P < Ppag, the matrix D has significantly lesser number
of columns than ®(Pp,4;), and might even be a tall matrix
instead of a dictionary. Thus, if the filters are indeed ideal, we
can conclude that the signal x lies in the column space of ma-

trix D from Eq. (3). Note that given the RFB outputs alone,
there is no way to recover the input z, that is, there is no
known synthesis bank for perfect reconstruction. This is also
not the goal of this paper. The goal is to get an estimate of the
noise-free version x of a signal from the noisy version y. In
the following subsection, we develop a denoising framework
to achieve this by combining the information at RFB output
with the noisy input signal y to extract a cleaner version & of
the input. This is a unique aspect of our method.

3.2. Denoising framework

Consider a noisy signal ¥ = x + e as an input to the RFB,
where x is a noiseless signal having no periodic component
with a period larger than Pp,.., and e is a random noise
vector. Consider a practical RFB with filters up to Pp,q, with
finite repetitions [. If the [ is sufficiently large, it is reason-
able to assume that the sidelobes of the filters are sufficiently
suppressed in the passbands of other Ramanujan filters. Un-
der moderate noise conditions, the output energies of the
filters corresponding to certain indices 1,73 . .. 7, are much
larger than the output energies of the other filters. Thus, if
we appropriately threshold the output energies to attenuate
the noise components, we retain only the subspace indices
T1,T2...Tm, Which are the filter index values that would
have produced non-zero outputs if the noiseless signal & was
passed through the RFB instead of . Once these contributing
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Fig. 2. Denoising framework using Ramanujan analysis filter bank and adaptive synthesis dictionary. See Sec. 3 for details.

subspace indices for x are known, we form a dictionary D
like in Eq. (3).

We discussed in the previous subsection that it is not
straightforward to compute b just from the RFB output val-
ues. However, for the denoising application, the denoised
signal must have some resemblance to the input noisy signal
y depending on the noise level. Thus the denoising problem
can be solved by first solving the optimization problem

b= arg min| |y — Dbl[3 + A||b|lx “)

to find b and then taking the denoised signal to be & = Db.
Here A is a regularization hyperparameter that can either be
chosen heuristically or based on the expected noise variance.
This regularizedY least squares problem can be solved by
convex optimization algorithms such as [22]. Since the de-

noised output Z lies in the column space of D, it is guaran-
teed to be a periodic signal. Instead of solving Eq. (4), we

can also estimate Sby solving
b = argmin ||b||o s.t. ||y — Db||3 < e (5)
b

where € is again a noise-dependent hypngarameter. This Iy
norm minimization problem can be solved approximately by
sparse coding algorithms such as OMP [3]. In practice, we

noticed that both versions of estimating b (i.e. Eq. (4) and
Eq. (5)) lead to very similar SNR gains.

3.3. Further discussion

Note that the denoising effect here is because of two oper-
ations. The outputs of RFB are thresholded to retain only

the subspaces corresponding 7y, -, in D that have en-
ergy above a threshold. This thresholding attenuates the noise
components. Another possible contributor to the denoising
effect is Eq. (4) or Eq. (5), where some of the less signif-
icant subspaces among the retained subspaces S, ,---, S,
are eliminated from the representation of & due to the sparsity
promoting cgltimization problems with /1 and lp norms.

The RFB output thresholding is done heuristically based
on the expected noise variance. However, note that some of
the low energy harmonics of a component signal may have a
lower energ[\]r output at the corresponding filter than the noise
energy at other filters. For example, for a period 6 signal hav-
ing both period 2 and Speriod 3 comgonents, the retained sub-
spaces may only be Sy and S if the period 3 component is

of low energy and gets thresholded. In order to mitigate this
unwanted dgropping of low energy harmonics, we can care-
fully balance the two denoising contributors. One way is to
set the RFB output threshold conservatively so as to not miss
some of the low energy harmonics and hope that the noise
subspaces retained at this stage will be dropped by the opti-
mization algorithm in the next stage. Another way is to set
RFB thresholds slightly higher so as to completely eliminate
all the noise subspaces. To form a synthesis dictionary in
this case, along with the subspaces corresponding to the in-
dices 7,79, ,Tm, We also add subspaces corresponding
to the divisors of ri,72,--- ,7m. Let r; have k; divisors
di1,dia, - - - ,dig,. Thus, the synthesis dictionary is given by

ﬁ = [Hdll':"' DHdlkl Hdmla"' 'lHdmkm] (6)

")

v

-~
divisors of r; divisors of rop,

This way, the lost subspace S5 in the above example will be
reintroduced, since 3 is a divisor of 6. See Fig. 2 for the
complete denoising framework using Ramanujan analysis fil-
ter bank and pruned synthesis dictionary.

4. EXPERIMENTAL RESULTS

In this section, we compare our denoising framework with
some of the well-known denoising methods. We consider a
random unit-norm period 12 signal of length 100 and add
white Gaussian noise so that the SNR is 0 dB. For compar-
ison, we use the SNR gain metric that is defined as the in-
crease in the SNR of the denoised signal compared to that of
the noisy signal. Fig. 3 shows the signals denoised by dif-
ferent methods. For denoising with the proposed framework,
we set the RFB threshold to 0.4 times the maximum energ

output of the filter bank, P,qr = 40, [ = 10, and A = 0.01.
Fig. 3(c) shows the signal denoised by the proposed method
using a ‘with-divisors” synthesis dictionary (Eq. (6)), whereas
Fig. 3(d) shows the signal denoised by the ‘without-divisors’
synthesis dictionary (Eq. (3)). The reconstruction is done by
solving Eq. (4). Notice that the ‘without-divisors’ dictionary
loses out on a lower energy harmonic, but the ‘with-divisors’
dictionary picks up the lost harmonic and provides a much
better SNR gain. Although we have shown results with the
l; method (Eq. (4)), the Iy method (Eq. (5)) gives very simi-
lar SNR gains and denoised outputs with pruned dictionaries.
In order to gauge whether the dictionary pruning really helps,
we also denoised using the full Ramanujan dictionary as in
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Fig. 3. Comparison of different denoising methods for a period 12 signal. See Sec. 4 for details and discussion.

Eq. (2) but the results from Fig. 3(e,f) make it clear that dic-

tionary pruning is a crucial step without which the denoising 10
performance is not as good.
Comparing the denoised output of the proposed method )
with the results from Fig. 3 (f-j), we see that our method pro- 5
vides much better results than OMP, DFT, NHA, wavelets, &
and K-SVD based denoising methods. None of these methods 5 |
yields a truly periodic signal, which is a unique advantage of c oF T T T T T T TR e
our method. For OMP denoising with the full Ramanujan dic- '® ~
tionary (Fig. 3(f)), e = 1 was used. We shall note that OMP o =#= Proposed, with-divisors | ~
denoising gives better denoising results if the signal length nz: _5 == Proposed, without-divisors A N
is very large but P, is kept low, in which case the dictio- ® Unpruned, -1 ~
nary is more often tall than fat. Although DFT denoising (Fig. == Unpruned, OMP N -
3(g)) does not perform that well here, it gives good results if _10 H~° - DFT Denoising S o
the period is a divisor of the signal ]engtﬁ. In such cases, the _ _:gzge[')‘:z;?n ~
fundamental frequency falls on the DFT grid and hence DFT —h = Wavelet Denoisigm Sa
performs very well. 15 I X L 1 '
The NHA based denoising method (Fig. 3(h)) also does -10 -5 0 5 10 15

not perform very well. The main reason for this is that NHA
requires good initialization from DFT to perform well, which
the DFT may not provide when the noise level is significant
and the period is not a divisor of the signal length. More-
over, since the NHA method requires iteratively adding fre-
quency components one by one, it suffers from error propa-
gation. K-SVD denoising (Fig. 3(i)), which is a data-adaptive
technique, does not perform well for this setting. One pos-
sible reason is that with the small signal length, K-SVD is
not able to learn a good dictionary from the patches of the
noisy signal. Note that wavelet denoising (Fig. 3(j)) does not
yield acceptable results. Wavelets are designed for good rep-
resentation of signals with time-localized supports, such as,
for example, bump signals [23], whereas the periodic signals
are very different than this.

In Fig. 4, we compare the above denoising methods based
on the SNR gains offered for different levels of noise in the in-
put. For each value of input noise level, we average the SNR
gains obtained for 1000 randomly generated period 12 signals
corrupted with noise. The best sets of hyperparameters (such
as the RFB threshold, A, €) are empirically chosen for each
method at every input SNR by joint search over appropriate
sets of values. Notice that the proposed method that uses the
‘with-divisors’ dictionary offers the best SNR gain that is sta-
ble over a large range of input SNR values, followed next by
the ‘without-divisors’ dictionary method.

Noisy Signal SNR (dB)
Fig. 4. Comparison of SNR Gains offered by different denoising
methods averaged over 1000 Monte-Carlo runs

To compare the denoising performance for signals with
multiple periodic components, we also considered signals that
are combinations of period 7 and period 12 signals. Since the
effective period is 7 x 12, data with only 100 samples hardly
looks periodic. Even in this case, the proposed denoising
methoge demonstrated results superior to the other methods.
Details are omitted because of space constraints.

5. CONCLUDING REMARKS

In this paper, we proposed a hybrid analysis filter bank and
synthesis dictionary framework for periodic signal denoising
that combines the information at RFB output with the noisy
input signal to extract a cleaner version of the input. Com-
Egred to other well-known methods, our framework offers the

st SNR gain that is stable over a large range of input SNR
values even when the signal length is not too large. Another
unique advantage of our method is that the denoised signal
is exactly periodic, unlike the other methods. An interest-
ing task for the future would be to optimize each filter in the
analysis bank, based on data, to minimize interference from
input components belonging to other Ramanujan subspaces
not represented by that filter.
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