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Abstract—This paper analyzes solution trajectories for optimal
power flow (OPF) with time-varying load. Despite its noncon-
vexity, it is common to solve time-varying OPF sequentially over
time using simple local-search algorithms. We aim to understand
the local and global optimality behavior of these local solution
trajectories. An empirical study on California data shows that
local solution trajectories initialized at different points may
converge to the time-varying global solution of the data-driven
OPF, even if the problem has multiple local solutions throughout
time. That is, these trajectories can avoid poor solutions. To
explain this phenomenon, we introduce a backward mapping
that relates a neighborhood of the time-varying OPF’s global
solution at a given time to a set of desirable initial points.
We show that this proposed backward mapping could act as a
stochastic gradient ascent algorithm on an implicitly convexified
formulation of OPF, which justifies the escaping of poor solutions
over time.

I. INTRODUCTION

Optimal power flow (OPF) is a nationwide optimization
problem that is at the core of the daily operation of power
systems. OPF aims to find a cost-minimizing operating point
for a power system, subject to various operational and se-
curity constraints [1]. The nonconvexity of OPF is a major
impediment to its efficient and optimal solvability in practical
settings. Despite this complexity, the OPF problem is solved
every few minutes to match the system’s power generation
to a demand profile that changes over time. The inherent
complexity of solving the AC model of OPF is mainly due
to its nonconvex constraints which are governed by physical
laws. Such nonconvexity in the problem may give rise to
poor local solutions in power systems [2], [3] and in machine
learning [4]. With the goal of addressing the underlying
nonconvexity of the problem, a recent line of research has
focused on approximating the problem as a single or se-
quence of convex optimization problems. These works include
quadratic convex [5], second-order conic programming [6],
and semidefinite programming [7], [8] relaxations.

Despite desirable theoretical guarantees, the convex relax-
ations of OPF suffer from two major drawbacks: 1) Their
global guarantees often come at the expense of higher run-
times or overly complicated implementations; 2) They do not
account for the time-varying nature of demand. This time-
varying property poses additional constraints on the ramping
capabilities of the generators, which in turn gives rise to a cou-
pled optimization problem that should be solved sequentially
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over time. In this work, we consider the time-varying OPF with
ramping constraints, where the load profile changes over time.
Unlike the previous convexification techniques, we solve the
problem sequentially using a simple local-search algorithm.
Due to the nonconvex nature of the problem, the local-search
algorithm may “become stuck” at a spurious (non-global) local
solution, thus leading to a potentially large optimality gap.
Previously, we made the observation on a small system in [9]
that the sequence of four local solution costs could converge
over time. Here, we present an extensive empirical study on
a larger system with 16 spurious solutions, and show that
all feasible local solution sequences (also called trajectories)
converge in cost and value to the best solution. Notably, this
phenomenon occurs despite the fact that the problem has
multiple point-wise poor local minima at almost all times. For
this system, we show that there is an escaping period in which
different local solution trajectories converge to a solution with
lowest cost, followed by a fracking period in which the local
trajectories can closely track the global solution. In other
words, load variation enables the local solution trajectories
to avoid poor solutions over time.!

To explain this observation, we provide a backward-in-
time mapping from a neighborhood of the globally optimal
solutions of OPF at a given time (namely, end of the escaping
period) to the set of desirable initial points. By leveraging
its special structure, we show that the proposed backward
mapping may act as a stochastic gradient ascent algorithm
on an implicitly convexified formulation of the OPF problem,
which in turn explains why local solution trajectories could
avoid poor solutions over time.

II. EMPIRICAL STUDY OF TIME-VARYING OPF

In this section, we analyze the local solution trajectories
of time-varying OPF for a 39-bus system with California
load data. The solution trajectories of time-varying OPF are
constructed by sequentially solving a series of optimization
problems with time-varying demand levels using a local-search
algorithm. To prevent the solution from changing abruptly over
a short period of time, the sequential optimization problems
are coupled via so-called ramping constraints, as we explain
below.

INote that with constant (time-invariant) load, all the local solution trajec-
tories will remain unchanged over time.
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A. Model Details

To examine the behavior of different local solution trajec-
tories, we consider a modified version of the IEEE 39-bus
system, as introduced in [2]. Specifically, the real and reactive
power demands are reduced by 50%, voltage limits tightened
from +/-6% to +/-5%, and the cost functions associated with
all generators are assumed to be linear. This system is known
to have 16 local solutions for the fixed demand values. In
this work, we take into account the time-varying nature of
the load profile. In particular, the shape of the demand curve
is based on the California’s net load for an average day in
January 2019 [10] (Fig. 1). The reported actual hourly net load
data was interpolated linearly to produce a net load estimate
for each 15-minute interval within 24 hours. The curve is
normalized and shifted so that time O represents 5:00 a.m.
All demands are scaled proportionally to this curve. Finally,
we introduce the ramping constraints that limit the change
in power generation for each generator over time. Here, the
maximum magnitude of allowable change in power generation
between two consecutive time steps is 5% of the capacity of
each generator.

B. Behavior of Discrete Local Solutions

According to [2], the OPF for the modified IEEE 39-bus
system has 16 local solutions at time ¢ = 0. Starting from
these initial local solutions, we constructed the sequences of
local trajectories using the MATPOWER optimization toolbox
and fmincon sequential quadratic programming solver’ in
the following procedure. We ran Algorithm 1 for all 16 initial
local solutions and obtained 16 different solution sequences,
which are called discrete local trajectories [9]. Among these
trajectories, only four remained feasible throughout the span of
twenty-four hours (local search may not always find a feasible
point or such point may not even exist). Fig. 2 shows the point-
wise distance between these four feasible trajectories and the
feasible trajectory with the lowest cost (labeled as Trajectory
I). Interestingly, all four trajectories converge to Trajectory 1
after seven hours.

Based on this observation, one may speculate that the
problem becomes devoid of spurious local solutions over
time. This is not the case for the considered problem. We

Note that unlike many interior point methods that require strictly feasible
initial points, fmincon sequential quadratic programming gives a second-
order critical point even if the initial point is not strictly feasible.
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Fig. 1. Average daily net load for California during January 2019 [10]

Algorithm 1 Algorithm for obtaining discrete local trajectories
Input: Power system model with a fixed initial point xq
Output: Discrete local trajectory {x;}£

1: Initialization : ¢t = 1

2: for every 15-minute time increment over a span of 24

hours do

3:  Set demand constraints for each bus based on the
demand curve at time ¢.

4:  Set generator production limits based on x;_; and the
ramping constraint.

5:  Solve the corresponding OPF problem with fixed de-
mand using fmincon with the initial point x;_;. Upon
feasibility, collect the solution as x;

6: end for

7: return {x;}7_,
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Fig. 2. Solution convergence for points on discrete local trajectories

uniformly searched the feasible region of the problem without
ramping constraints and verified that there are multiple point-
wise spurious local solutions for the static (decoupled) OPF
problem at different times. In particular, there are many local
solutions around the escape time (hour 7) when the discrete
local trajectories merge into one trajectory. Fig. 3 shows the
normalized objective cost values for different discrete local
trajectories, alongside the costs of the discovered point-wise
local solutions. Despite the existence of multiple sub-optimal
operating points at different times, the discrete local trajecto-
ries initialized at various local solutions result in the lowest
cost values over time. Fig. 4 takes a closer look at the active
and reactive power generation for three generators. This figure
shows that the problem has point-wise local solutions with a
wide range of generation levels, pinpointing the importance of
finding the solution with the lowest cost.

III. MATHEMATICAL ANALYSIS OF TIME-VARYING OPF

The aforementioned case study reveals an important prop-
erty of the time-varying OPF: In the escaping period, different
discrete local trajectories converge to the operating point with
the lowest cost. Then, in the tracking period, the discrete
local trajectories track these globally optimal operating points,
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Fig. 3. Cost for points on four discrete local trajectories and point-wise local
solutions (for decoupled OPF), relative to the cost of the best trajectory

even if the load profile changes gradually over time. Such
tracking period has been studied in [11], [12], but the striking
feature of power systems is the existence of escaping periods.
To better understand this phenomenon, we will convert the
time-varying OPF to an unconstrained optimization problem.
Using the derived unconstrained optimization, we introduce a
backward mapping that fully characterizes the dynamics of
the discrete local trajectories over time. We show that the
convergence of different local trajectories can be explained
by the expansive property of this backward mapping. Finally,
we draw a novel connection between our derived mapping and
stochastic gradient ascent and use this insight to explain why
the discrete local trajectories can escape poor solutions.

A. Unconstrained Model for OPF with Fixed Demand

Suppose that the considered network has m buses, each
connected to a set of possibly nonzero loads and/or generators.
The AC model of the OPF with fixed and predefined demand
values can be written compactly as a polynomial optimization
with both equality and inequality constraints [1]:

:{IEIJIRI}? f(x) (la)
st hi(x)=di, i=1,...n (1b)
g](X) S Cj, .] = 17 cey T (IC)

Here, x is the concatenation of voltage angles and magnitudes
at different buses, as well as the active and reactive power
generation outputs for different generators. (R is the set of
real numbers.) The equality constraint (1b) ensures that the
generated power meets the demand, where d; is the demand
connected to bus ¢, and respects the underlying structure and
physical constraints of the network. The remaining constraints
in the problem—including the upper and lower bounds on
the voltage magnitudes and degrees, power generation, and
line flows—are captured by inequality constraints (1c). We
refer the reader to [1], [2] and [7] for more information on
the exact formulation of the problem. Note that f(x), h;(x),
and g;(x) are polynomial functions, and hence, continuously
differentiable (piecewise linear cost functions can also be
reformulated as such).

It is desirable to transform OPF into an unconstrained
optimization problem using the so-called implicit function
theorem [13]. First, we convert (lc) to equality constraints
using a set of slack variables, as in

hl(X) — dl
. _ hn(x) —dy, _
oloin f(w) st. H(w) = Gx) —crty? | = 0. 2
[gm (X) = em + y72n_

where w := [XT yT}T. It is easy to verify that p >
n. Assuming that constraint qualifications hold for a given
feasible point w, satisfying the Karush-Kuhn-Tucker (KKT)
conditions for (2), w, can be partitioned into two sub-vectors
w,B € R and w, € RP~™ such that the Jacobian
of H(w,) with respect to w? is invertible. Therefore, the
implicit function theorem guarantees the existence of a unique
differentiable function ¢ such that w? = ¢(wf) in a local
neighborhood of w,. Given such function, Problem (2) can be
re-written as (see [13]):

Flo(w™), w).

min
WR eRpfn

3)

Remark 1: Note that (3) cannot be formulated explicitly,
due to the unknown nature of the local solution w and the
function ¢(w'). Instead, we will use this formulation as an
intermediate step to analyze the behavior of the discrete local
trajectories over time.

B. Unconstrained Model for Time-Varying OPF

The above analysis reveals that, under some technical con-
ditions, the OPF problem with fixed load is equivalent to
an unconstrained optimization problem with a differentiable
objective function. In this subsection, we extend our analysis
to the time-varying OPF problem where demand changes over
time and the problem must account for ramping constraints.
As previously stated, the aim of ramping constraints is to
ensure that the solution does not change too drastically from
one time step to the next. One way to softly impose the
ramping constraint is through a proximal method, in which
the distance between the current and previous solutions is
penalized in the objective function of the optimization [14].
For the time-varying OPF with K equally-spaced time steps
to = 0,t1 = At,...,.tx = KAt (At > 0), the unconstrained
approximation can be written as the following sequence of
optimization problems:

min
whk eRp—n

“

o (G0, (W) WP )| [ w e — w1

for kK = 1,..., K, where o > 0 is the penalization parame-

B\ Re )| n
ter, and w,;, |, = (W*tk’il) (W*f/k’i1> is a local

solution to Problem (3) at time #;_. (Note that wP* is not
regularized without loss of generality in light of its dependence
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Fig. 4. Real and reactive power output of select generators: points on discrete local trajectories and point-wise local solutions

on wf*.) Due to time-varying nature of the demand, the
functions f;, and ¢, and the partition (Ry, By) change over
time, and hence, they are indexed by the time steps. To
simplify the analysis, assume that the partition (B, Ry) does
not change over time, i.e., we have By = B and Ry R
for £k = 1,..., K. If the partition changes, then the entire
time interval should be divided into sub-intervals, each with
a constant partitioning of w, and then use the argument of
the next section for each sub-interval. Problem (4) can be
written as

®)

. 2

nin - Fiy(z) +allz - zp-all,
fork=1,...,K, where z = wli*, z;,_; = w*ik_l, and F(z)
is defined as f;, (¢¢,(2),z). This problem is strongly convex
and has a unique solution if « is large.

IV. BACKWARD MAPPING

The above analysis reveals that a local-search algorithm
used to solve the time-varying OPF implicitly aims to recover
a stationary point of the unconstrained problem (5). Therefore,
we focus on (5) in our subsequent analysis. Consider a given
time T'At, playing the role of the end of the escaping period.
It is easy to see that a sequence of stationary points {zj};_,
for (5) satisfies the equation VFy(zy) + 2ca(z — zg—1) = 0
for every k =1,2,...,T (where V is the gradient operator).
Therefore, given the solution zg_;, this equation defines an
implicit formula for obtaining z;. However, going backward
in time, one can write z;_1 in terms of zj:

1
Zp—1 =2z + %VFk(Zk) = Gr(zk) (6)

This gives rise to the following end-to-end backward mapping
from z7 to the initial point zy via the composition operator o:

zo=G10G20...Gk(z7) (N

Provided that the mapping (7) from zr to zy is expansive
enough, a large set of initial points (even multiple local
solutions of OPF at time 0) are guaranteed to converge to a

small neighborhood of the globally optimal solution of the
problem at time ¢ TAt. This expansive nature of the
mapping implies escaping the spurious local solutions from
time O to 7T"At. Then, the global solutions at future times will
be tracked successfully if the data variation is not high [11].
This expansive property can be observed in the empirical study
of the modified IEEE-39 system under California data.

A. Connection to Stochastic Gradient Ascent

This section aims to explain how data variation plays a
key role in escaping spurious local solutions of time-varying
OPF. Specifically, we will show that the backward mapping (6)
can be treated as a variant of stochastic gradient ascent on a
smoothed version of the function F}(z). This gives rise to the
following important observation:

A certain level of stochasticity in { Fy,(z) }1_, over time may
enable the stationary points {zk}fz1 to escape “sharp” local
minima over time.

To explain this phenomena, first we introduce the smoothing
property of the stochastic gradient descent (SGD). Recently,
[15] proposed an alternative viewpoint to SGD and its ability
to avoid spurious sharp local minima. Given an initial point
Xq, suppose that our goal is to find the global minimum of
a (time-invariant) function F'(z) using SGD. Accordingly, the
iterations of SGD can be written as

Zy1 = Zf — n(Vf(zk) +wk)7 Vk € {0, 1,2,.. } ()

where w; is a bounded random variable with zero mean and 7
is a predefined step-size. Upon defining zy = z;, — nV F(zg),
one can write the above iterations in terms of the intermediate
sequence {Z}, as in

9)

To analyze the average behavior of SGD, one can consider the
evolution of E,, (Z;+1), where the expectation is taken over
wy conditioned on {wyp, . ..,wk—1}. Hence,

Eo,. (Zky1) = Zk — nVEy, (F(21 — nws))

Zp+1 = zp—nwi —nVEF (2 —nwy),Vk € {0,1,2,...}

(10)
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for all t € {0,1,2,...}. Therefore, on average, SGD acts
as the exact gradient descent on the surrogate function
E,, (F(zx — nwy)). Comparing this function with F'(z), one
can verify that the former is a smoothed version of the latter,
where the smoothness is due to the convolution of F'(z) with
the probably density function of the random variable wy.
Note that the original function may not be convex, and yet
the convolution may become convex. As illustrated in [15],
such convolution may give rise to (one-point) strong convexity
of E,, (F(zr — nwy)) with respect to the globally optimal
solution, which in turn guarantees the convergence of {Z}
(and hence {z;}) to a small neighborhood around the global
solution even in presence of sharp local minima. A key
takeaway from this observation is that F'(z) can possess
multiple sharp, poor local minima, and yet its smoothed
version E,,, (F(zr — nwy)) may be devoid of such solutions.

Going back to the time-varying OPF and the backward map-
ping (6), we assume that the variation in {V F(z)}7_, follows
a stochastic process indexed by the time k. In particular, we
write VFy(z) — VFi41(2) = (i(z) + wi, where (;(z) is a
deterministic and time-varying function and wy, is a bounded
random variable with zero mean. Such assumption is realistic
in power systems, where the demand response can be modeled
as a deterministic time-varying function capturing its average
behavior, together with an additive stochastic term accounting
for its random nature. The iteration (6) is equivalent to

1
Zip =Zp41 + TVFT(ZICH)
(0%

T-1

1 (11)
+5a _zk: 1 (VE(zr41) — VFr11(Zk11))
Tk Cr(Zht1)twr
which can be written as the following dynamical model
1 1
Zp = Zpq1 + %VFT@kJrl) + %Vk+1(zk+l) (12a)
Vkt1(Zht1) = Vkg2(Zrr1) + ey (Zrr1) +wrpr (12b)

where vy11(zx+1) is referred to as the variation process. In
particular, (12b) defines explicit dynamics for the variation
process comprising of three parts. The first term vj42(Zk+1)
captures the correlation between the variation processes at
times ¢;41 and tx4o. Furthermore, the term (41 (2zx+1) cap-
tures the bias that is added to the noise process at time ¢y 1.
Finally, w41 is an independent randomness that is injected
into the variation process at time f;y;. Comparing (12)
with (8), one can verify that the former reduces to stochastic
gradient ascent if vgy2(Zk41) + Cit1(2r+1) = 0. Therefore,
if wiy1 dominates the first two terms, (12) resembles an
approximate version of stochastic gradient ascent applied to
Fr(z); otherwise, it is a biased version of GSD. Similar
to (10), this implies that, on average, the points generated via
the backward mapping (6) would be close to the iterations
of the gradient ascent on the smoothed version of Fp(z).
This implies that, despite the possible existence of multiple
spurious and sharp local minima in {F}(z)}7_,, the smoothed
version of Fr(z) may be strongly convex. This together

with the expansive nature of gradient ascent on strongly
convex functions [16] yields that the end-to-end backward
mapping (7) is expansive, and the discrete local trajectories
can escape poor local solutions over time.

V. CONCLUSIONS

This paper studies time-varying optimal power flow (OPF)
problems, where a set of optimization problems should be
solved sequentially due to load data variation over time. The
solution to each OPF is obtained using local search initialized
at the solution of the previous OPF. We offer a case study
on a 39-bus system under California data, where the OPF at
the initial time has 16 solutions leading to 4 feasible solution
trajectories. We show that all trajectories converge to the best
solution trajectory, even though OPF has many local minima at
almost all times. To understand this highly desirable property,
we introduce the notions of escaping period and tracking
period, study the behavior of the time-varying OPF during the
escaping period via a backward-in-time mapping, and relate
it to a biased GSD algorithm. We show that enough data
variation enables escaping poor solutions of OPF over time.
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