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Abstract—A new beamspace method for array processing, called
convolutional beamspace (CBS), is proposed. It enjoys the advan-
tages of classical beamspace such as lower computational complex-
ity, increased parallelism of subband processing, and improved
resolution threshold for DOA estimation. But unlike classical
beamspace methods, it allows root-MUSIC and ESPRIT to be
performed directly for ULAs without additional preparation since
the Vandermonde structure and the shift-invariance are preserved
under the CBS transformation. The method produces more ac-
curate DOA estimates than classical beamspace, and for corre-
lated sources, better estimates than element-space. The method
also generalizes to sparse arrays by effective use of the difference
coarray. For this, the autocorrelation evaluated on the ULA portion
of the coarray is filtered appropriately to produce the coarray
CBS. It is also shown how CBS can be used in the context of
sparse signal representation with dictionaries, where the dictionar-
ies have columns that resemble steering vectors at a dense grid of
frequencies. Again CBS processing with dictionaries offers better
resolution, accuracy, and lower computational complexity. As only
the filter responses at discrete frequencies on the dictionary grid are
relevant, the problem of designing discrete-frequency FIR filters is
also addressed.

Index Terms—Convolutional beamspace, DOA estimation,
sparse arrays, dictionaries, root-MUSIC, ESPRIT.

I. INTRODUCTION

IN ARRAY signal processing, the use of beamforming prior
to high-resolution estimation of directions of arrival (DOA),

referred to as beamspace processing, is well-known in the lit-
erature [1]–[5], and continues to be of current research interest
[6]–[8]. Given an N -sensor array with output x ∈ C

N , the idea
of beamspace is to compute a transformation y = Tx ∈ C

B ,
where B < N , and estimate the DOAs using y. For example,
the covariance of y can be estimated from its snapshots, and
its signal and noise eigenspaces are analyzed to perform DOA
estimation as in MUSIC [9], root-MUSIC [10], or ESPRIT [11].

One of the major advantages of beamspace processing is com-
plexity reduction. Due to dimensionality reduction (B < N ),
the B ×B covariance of y has smaller size than that of x.
So the complexity of the eigenspace computation O(B3), is
much smaller than O(N3), which is the complexity when using
element-space (T = I) directly. If T is carefully chosen, then
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the DOAs which fall outside a chosen subband in [−π/2, π/2)
are attenuated by T, so there are typically much fewer DOAs
represented by y, compared to x. One often uses a bank of
transformations {Ti}, which can be operated in parallel, to
cover all DOAs in [−π/2, π/2).

Besides low computation and parallelism, there are other
advantages for beamspace. Beamspace methods tend to have
smaller SNR threshold for resolution of closely spaced sources
[5], [12], [13]. Beamspace estimates typically have smaller bias
(and about the same mean square error) when compared with
element-space estimates [14].

However, to successfully perform root-MUSIC after the clas-
sical beamspace transformation, one has to take elaborate steps
[14]. Specifically, rows of T are chosen to be columns of the
DFT matrix, producing beams exhibiting common out-of-band
nulls. These nulls result in spurious roots outside the subband,
independent of the true in-band DOAs. The spurious roots are
factored out to reduce the degree of the polynomial to be rooted
so as to lower the complexity. Moreover, this method suffers
from numerical sensitivity issues [14] for even moderately large
array size N , such as N = 48. Similarly, classical beamspace
transformation also compromises the shift-invariance structure
required by ESPRIT. One has to chooseT to have the same shift-
invariance structure so that the lost shift-invariance structure can
be restored with a modified ESPRIT algorithm [15].

A. Contributions of This Paper

In this paper we introduce a new approach called the convo-
lutional beamspace (CBS) approach. It enjoys the advantages
of classical beamspace such as lower computational complex-
ity, increased parallelism of subband processing, and improved
resolution threshold for DOA estimation. Furthermore, unlike
classical beamspace methods, it allows root-MUSIC and ES-
PRIT to be performed directly for uniform linear arrays (ULAs)
without additional preparation since the Vandermonde structure
and the shift-invariance are preserved under the CBS transfor-
mation. The computational benefits of the proposed methods are
quantified and demonstrated throughout.

Unlike classical beamspace, CBS is based on the use of filter-
ing with a finite-impulse-response (FIR) filterH(z) followed by
uniform downsampling (decimation) by an appropriate integer
M . For large arrays, which are becoming increasingly important
[16], [17], the filter can be proportionately longer, offering
very effective attenuation of out-of-band DOAs. CBS produces
more accurate DOA estimates than classical beamspace, and
for correlated sources it often produces better estimates than
element-space as well. Crucial to the CBS method is the extrac-
tion of a steady-state component from the convolutional layer,
as we shall see.

We also provide an error analysis of the CBS method, based on
error analysis for MUSIC [18] (Section II-F). For uncorrelated
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sources, the error variance of CBS estimates is shown to be close
to that of the element-space. However, for correlated sources,
CBS can be significantly better. These conclusions are also
verified with simulations.

The CBS method in Section II is for the ULA, but we show in
Section III that it can be extended to sparse arrays by appealing to
the difference coarray of the original array. Difference coarrays
of sparse arrays such as the MRA [19], nested array [20], coprime
array [21], and their generalizations [22], [23] contain a large
ULA segment. Since the autocorrelation of measured data can
be estimated for all lags on the coarray, one can perform FIR
filtering of the correlation supported on the ULA part of the
coarray to produce a convenient CBS. This coarray CBS offers
great computational reduction. The advantage of sparse arrays,
namely the ability to identify O(N2) uncorrelated sources with
N sensors [20], [21], can be harnessed even while taking advan-
tage of the benefits of the CBS transformation.

Finally we also show how CBS ideas can be used in the
context of sparse signal representation with dictionaries. The
use of sparse representation techniques for DOA estimation
has been studied in [24] where a dictionary of steering vectors
(corresponding to a dense grid of potential DOAs) is used to
represent the array output. The sparse solution to this represen-
tation problem reveals the DOAs. We show how this problem
can be simplified computationally by use of CBS techniques.
Besides its significant computational advantage, the method also
produces more accurate DOA estimates. Since only the filter
responses H(ejωk) at the discrete frequencies on the dictionary
grid are relevant at the convolutional layer, we also address the
interesting problem of designing discrete-frequency FIR filters
for CBS dictionaries. Eigen-based methods such as MUSIC and
dictionary-based sparse recovery methods are both well-known
DOA estimation algorithms in the literature. The main goal of
this paper is to show that CBS can be applied to both methods,
and to coarray based methods.

B. Related Past Work

The use of convolution (digital filtering) prior to frequency
estimation for time-domain sum-of-sinusoids was introduced
many years ago by Silverstein, et al. [25], and studied in detail
in [26]. But these methods, and many of the details in [26], are
not directly applicable to spatial arrays. The purpose of this paper
is to develop the appropriate formulation for spatial arrays, and
provide several extensions, such as extensions to coarrays and
to dictionary methods.

In [27], an alternating low-rank decomposition (ALRD) ap-
proach is proposed. Each row of the beamspace transformation
matrix T contains a basis vector to be optimized. A constrained
optimization problem based on Capon’s minimum-variance cri-
terion is tackled by alternately solving for the basis vectors
and the beamforming weight vector using the recursive least
squares (RLS) method. A modified-ALRD (MALRD) scheme
[27], where only a single basis vector is used, is also proposed
to reduce computational complexity. In the MALRD scheme,
the transformation matrix T is equivalent to doing convolution
followed by uniform decimation. However, CBS differs from
MALRD in that only CBS uses the idea of digital filtering so that
standard filter design methods such as the minimax or equiripple

method, the window method, and so on [28], can be applied.
Moreover, only CBS exploits the Vandermonde structure of the
convolutional steady state so that root-MUSIC and ESPRIT can
be applied directly. Also note that MALRD is a special case
of the joint iterative optimization (JIO) algorithms [29], [30].
Besides the uniform decimation used in MALRD, non-uniform
decimation is also considered in [30]. But to preserve the Van-
dermonde structure of ULAs so that root-MUSIC and ESPRIT
can be readily applied, we always use uniform decimation for
CBS. Moreover, we will show by simulation (Fig. 6) that there
is no loss of performance in using uniform decimation since it
achieves the same error variance as not doing decimation (i.e.,
keeping all samples) does.

Preliminary versions of the basic ideas in Section II are
presented in a conference paper [31].

Paper outline: The basic idea of CBS for ULAs is introduced
in Section II, and details of dimension reduction using uniform
decimation, noise whitening in the reduced space using Nyquist
filter design, and error analysis are also presented. The extension
to sparse arrays based on difference coarrays is addressed in
Section III. CBS for dictionary-based sparse signal recovery is
then discussed in Section IV. Simulations in Secs. II, III, and
IV demonstrate the performance of the new method. Section V
concludes the paper.

Notations: Boldfaced capital letters denote matrices and bold-
faced lowercase letters are reserved for column vectors. We use
(·)∗, (·)T , and (·)H to denote complex conjugate, transpose, and
conjugate transpose, respectively. The identity matrix is denoted
by I, and E[·] is the expectation operator.

II. CONVOLUTIONAL BEAMSPACE FOR ULAS

We consider an N -sensor ULA with sensor spacing λ/2, and
monochromatic plane waves of wavelength λ arriving from D
directions. The array output equation is

x = Ac+ e, (1)

where c contains source amplitudes ci, e contains additive noise
terms, and A = [aN (ω1) aN (ω2) · · · aN (ωD)] with aN (ω) =
[1 ejω ej2ω · · · ej(N−1)ω]T , so that A is a Vandermonde ma-
trix. Here ω = π sin θ, with DOA θ ∈ [−π/2, π/2) measured
from the normal to the line of array. We assume E[c] = 0,
E[e] = 0, E[eeH ] = σ2

eI, and E[ceH ] = 0.
The main results of this section are as follows. In Section II-A,

we show that the convolutional steady state of the CBS output
bears the same structure as the ULA output (1), as shown in
(6). In Section II-B, we show how to use uniform decimation to
reduce computational complexity. The decimated output (10)
still has the Vandermonde structure of the ULA output (1).
Hence, root-MUSIC and ESPRIT can be directly applied to
the decimated covariance (15) without further adjustment, as
explained in Section II-C. In Section II-D, it is shown that by
choosing the filter used in CBS to be a spectral factor of Nyquist
filters as in (21), we can whiten the noise term after decimation.
Then, the computational complexity of CBS is compared to
various methods in the literature in Section II-E, and a brief
error analysis is given in Section II-F. Finally, simulations are
presented in Section II-G.
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Fig. 1. The steady state CBS signal y = [y(3) y(4) y(5)]T generated by
sliding the weights h(k) over the sensors.

A. The Convolutional Steady State

Letx(n), 0 ≤ n ≤ N − 1be the output of theN -sensor ULA.
We convolve this sequence with an FIR filter with transfer func-
tion H(z) =

∑L−1
n=0 h(n)z

−n with L < N to get the possibly
nonzero output samples y(n), 0 ≤ n ≤ N + L− 2. Of these,
only

y(L− 1), y(L), · · · , y(N − 1) (2)

involve all the L filter coefficients, and can be considered steady
state output samples:

y �

⎡
⎢⎢⎣
y(L− 1)
y(L)

...
y(N − 1)

⎤
⎥⎥⎦ = H

⎡
⎢⎢⎣

x(0)
x(1)

...
x(N − 1)

⎤
⎥⎥⎦ = Hx, (3)

where H is a (N − L+ 1)×N banded Toeplitz matrix:

H =

⎡
⎢⎢⎣
h(L− 1) · · · h(0) 0 · · · 0

0 h(L− 1) · · · h(0) · · · 0
...

...
. . .

...
. . .

...
0 0 · · · h(L− 1) · · · h(0)

⎤
⎥⎥⎦ .

For example, y(L− 2) does not contain h(L− 1) (as x(−1) =
0) and y(N) does not contain h(0) (as x(N) = 0). So these are
not part of the steady state output (3). The steady state samples
y are obtained by sliding the reversed weights h(k) from left to
right uniformly, as shown in Fig. 1. We call y the convolutional
beamspace signal. In contrast, in classical beamspace y = Tx,
T is a fat B ×N matrix, but without any Toeplitz structure. For
instance, a popular choice is to letT containB consecutive rows
of the N ×N DFT matrix [14]. As we shall see, the banded
Toeplitz structure of H is essential to obtain a Vandermonde
structure in y.

Now assume we have a signal arriving from DOA θ̄ so
that x(n) = ejωn, 0 ≤ n ≤ N − 1 (up to some scale, which we
ignore), where ω = π sin θ̄. Then from the steady state equation
(3), ignoring noise, we have

y = ej(L−1)ωH(ejω)
[
1 ejω · · · ej(N−L)ω

]T
, (4)

where H(z) =
∑L−1

n=0 h(n)z
−n. So the CBS signal y in re-

sponse to a single DOA is a Vandermonde vector just like the
array output vector x = aN (ω) = [1 ejω ej2ω · · · ej(N−1)ω]T .
Moreover, y is scaled by the filter frequency response H(ejω).
Thus if there are D sources with DOAs ωk, then since x(n) =

Fig. 2. Typical magnitude response |H(ejω)|, and example of DOA locations
(red arrows). Two of the six DOAs are in the passband.

Fig. 3. Typical beamspace filter bank (magnitude responses).∑D
k=1 cke

jωkn, we have

y =

D∑
k=1

cke
j(L−1)ωkH(ejωk)aN−L+1(ωk) +He. (5)

The arriving signals with DOAs ωk are therefore filtered by the
response H(ejω). Thus the array equation (1) is replaced with

y = ALd+He (6)

where AL is a Vandermonde matrix obtained from A by
keeping the first N − L+ 1 rows, and d has elements dk =
cke

j(L−1)ωkH(ejωk). While the development is valid for any
ULA, for large arrays (largeN ), which are getting more attention
recently [16], we can make L large and design a sharp-cutoff
filter with good stopband. Assuming signals in the stopband are
not too strong so that y contains only those DOAs that fall in
the passband of H(ejω), we have

y ≈ AL,0d0 +He. (7)

Here AL,0 has D0 columns of AL corresponding to the D0

sources that fall in the passband of H(ejω), and d0 has the
corresponding D0 rows of d. Fig. 2 shows a typical filter
response, with two out of six DOAs falling in the passband.
The FIR filter H(z) can be designed by any standard method
such as the minimax or equiripple method, the window method,
and so on [28]. If the filter does not have sharp cutoff, it is likely
that a DOA falls in the transition band, which requires more
careful consideration.

Note that we can process the array output x(n) with an
entire filter bank Hi(e

jω), 0 ≤ i ≤ M − 1 to cover the full
DOA range 0 ≤ ω < 2π, as in Fig. 3. The outputs of filters can
be processed in parallel to estimate all D DOAs. The DOA
estimation procedure would be to first estimate the number of
DOAs D0 from y, and identify these D0 DOAs using standard
methods. Since the filter output y is represented in terms of the
Vandermonde matrixAL just like the original array outputx, we
can use root-MUSIC or ESPRIT without any further adjustment
or processing to the data. This is an advantage of the proposed
CBS method compared to classical beamspace methods, for
which root-MUSIC requires some preprocessing [14] (due to
loss of Vandermonde structure), and so does ESPRIT [15] (due
to loss of shift-invariance). The method, as presented, works
best for large ULAs, but can be extended to sparse arrays with
relatively few sensor elements, as we shall see in Section III.
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B. Decimating the Filter Output

In classical beamspace methods the complexity advantage
is obtained because B � N . However, for CBS described
in the previous section, N − L+ 1 ≈ N since L � N in
practice. To achieve the complexity reduction of beamspace
methods, we simply decimate y(n) with a uniform down-
sampler. Since the passband of H(z) has width ≈ 2π/M
(Fig. 3) we can decimate y(n) by the integer M . For larger
arrays, L can be large, and the filters can be designed with
sharp cutoff and good stopband attenuation to minimize alias-
ing due to decimation [32]. Let v(n) = y(n+ L− 1) so that
y = [v(0) v(1) · · · v(N − L)]T . Define the decimated ver-
sion v0(n) = v(Mn). The vector y is then replaced by the
decimated vector v̄0 = [v(0) v(M) · · · v(J0M)]T , where J0 =
�(N − L+ 1)/M�. We can estimate the J0 × J0 covariance of
v̄0 from snapshots and estimate the D0 DOAs in the passband,
if D0 < J0. The complexity of eigenspace computation is now

O(J3
0 ) � O(N3). (8)

One might think that decimation leads to “waste” of hard-
earned data, but we can make good use of essentially
all data while estimating a J × J covariance, where J =
	(N − L+ 1)/M
. Consider shifted versions v(n+ l) for
0 ≤ l ≤ M − 1 and define their decimated versions vl(n) =
v(Mn+ l). These are the polyphase components of v(n) [32].
Let vl = [vl(0) vl(1) · · · vl(J − 1)]T , that is,

vl = [v(l) v(l +M) · · · v(l + (J − 1)M) ]T . (9)

We will estimate J × J covariances of vl and average over all
l to obtain a “coherent” estimate of the J × J covariance of
decimated CBS data. Note that we took the floor function of J
to accommodate the shorter polyphase components.

C. Decimated Covariance and DOA Estimation

In the following, we develop the decimated covariance matrix.
Let Dl = [δl δl+M . . . δl+(J−1)M ]T be a decimation matrix,
where δl is the lth standard basis vector for the (N − L+ 1)-
dimensional space. Then we can write vl = Dly. From (6) we
have vl = Dly = DlALd+DlHe. It can be verified that this
simplifies to

vl = Adecdl +DlHe, (10)

where

Adec = [aJ(Mω1) aJ(Mω2) · · · aJ(MωD)] (11)

with

dl =
[
c1e

j(L−1+l)ω1H(ejω1) · · · cDej(L−1+l)ωDH(ejωD )
]T

.

Thus with Rdl
= E[dld

H
l ], the covariance of vl is

Rvl
= E[vlv

H
l ] = AdecRdl

AH
dec + σ2

eDlHHHDH
l . (12)

It can be verified that the “decimated” matrix

Gdec � DlHHHDl (13)

is independent of l (see Section II-D for details), so

Rvl
= AdecRdl

AH
dec + σ2

eGdec. (14)

The dependency of the first term of (14) on l can be averaged
out:

Rave =
1

M

M−1∑
l=0

Rvl
= AdecR̆dA

H
dec + σ2

eGdec, (15)

where R̆d is Rdl
averaged over l. In practice, we estimate

Rvl
from snapshots for each l, and then estimate Rave. This

is the estimated J × J covariance to be used for estimating
DOAs in the filter passband. Since vl for all l are used, all the
N − L+ 1 components of the CBS signal y are exploited (if
N − L+ 1 is a multiple of M ), and no data is wasted. In (15),
the Vandermonde structure is preserved, so we can directly use
root-MUSIC. ESPRIT is also applicable as shift invariance is
retained.

Note that since the columns of Adec are aJ(Mωi) rather than
aJ(ωi), we can only estimate Mωi mod 2π, or equivalently

ωi + 2πsi/M, (16)

where the integers si are unknown, creating ambiguity. But
since ωi are known to be in the passband of H(ejω) which
has width 2π/M , the ambiguities si can be resolved because for
each DOA, there is only one integer si such that ωi + 2πsi/M
is within the passband. We will show by simulation the effec-
tiveness of this decimation method, as it achieves almost the
same performance as that obtained when we do eigenspace
computation directly on y, which is of much higher complexity
O(N3).

Remark: One merit of (15) is that the decimated signals are
combined “coherently.” Note that the ith diagonal element of
R̆d is

(R̆d)ii =
1

M

M−1∑
l=0

E[|ciej(L−1+l)ωiH(ejωi)|2] (17)

=
1

M

M−1∑
l=0

pi|H(ejωi)|2 = pi|H(ejωi)|2, (18)

where pi = E[|ci|2] is the power of the ith source. This explains
the “coherent” property of the method as the signal powers
(R̆dl

)ii = pi|H(ejωi)|2 ≥ 0, ∀ l are combined coherently. Ac-
tually, when the sources are uncorrelated, R̆dl

is the same
diagonal matrix for all l so that R̆d = R̆dl

for all l, and Rave

in (15) is exactly equal to Rvl
in (14) for all l. Ideally, if we

have the exact autocorrelation matrices Rvl
, then there is no

need to do this average to obtain the same matrix. However, in
practice, we only have estimates of Rvl

from snapshots, so this
average is helpful to performance. We will show by simulation
that this coherent method outperforms the method using only
one polyphase component v0. We will also see that it is also
better than the noncoherent method, which just computes the
average of DOA estimates obtained separately from eigenspace
method using each vl.

D. Spectral Factors of Nyquist Filters to Whiten Noise

The undecimated output of convolution (6) has co-
variance Ryy = ALRdA

H
L + σ2

eG, where Rd = E[ddH ]

and G = HHH is Hermitian and Toeplitz with first row
[g(0) g∗(1) g∗(2) · · · g∗(N − L)], where

g(k) =
∑
n

h(n)h∗(n− k) (19)

is the deterministic autocorrelation ofh(n). The noise termσ2
eG

cannot be a diagonal matrix unless the filter has the trivial form
H(z) = cz−n0 [32]. But the decimated output (10) has covari-
ance (14) for all l. It can be verified that Gdec = DlHHHDl is
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY

J × J Hermitian and Toeplitz with first row

[g(0) g∗(M) g∗(2M) · · · g∗((J − 1)M)], (20)

which is independent of l. Thus, whereas G is the autocorre-
lation matrix of h(n), the matrix Gdec is constructed from the
decimated autocorrelation g(Mk), and does not depend on l.
So the corresponding noise term can be whitened by making
Gdec = I, or equivalently

g(Mk) = δ(k), (21)

where g(k) is as in (19). Eq. (21) is called the Nyquist(M )
property of g(k). Since |H(ejω)|2 is the Fourier transform of
g(k), we say that H(z) is a spectral factor of the Nyquist(M )
filter |H(ejω)|2. In short, by designing the FIR filter H(z) to
be a spectral factor of an FIR Nyquist(M ) filter G(z) with
G(ejω) ≥ 0, we can ensure that the noise terms in the decimated
versions v(Mn+ l) are white for all l. SoRave becomesRave =

AdecR̆dA
H
dec + σ2

eI where Adec is as in (11). This makes it
easy to find the noise eigenspace by computing eigenvectors
of Rave, which is what we do in simulations. Spectral factors
of Nyquist filters arise in digital communications [33] and in
filter bank theory [32]. There are many ways to design such
filters [34]–[37]. In fact, any filter Hk(e

jω) in an orthonormal
(equivalently paraunitary) filter bank is automatically a spectral
factor of a Nyquist filter [32]. Many examples of good FIR
designs with this property can be found in the literature [32],
[35], [38]–[41]. In fact, if H(ejω) is a “good” filter with total
passband width ≈ 2π/M and ripples properly constrained, this
Nyquist property (21) is approximately satisfied, that is,∑

n
=0

|g(Mn)| � g(0) (nearly-Nyquist property). (22)

For simplicity, this is what we use in simulations.
In classical beamspace transformation y = Tx, the orthog-

onality condition TTH = I is normally imposed [42]. The
Nyquist condition (21) is analogous to this because we are
imposing Gdec = TTH = I, where T = DlH.

E. Computational Complexity

The computational complexity of CBS is compared to var-
ious methods in the literature in Table I. For element-space
root-MUSIC and ESPRIT, the complexity is dominated by the
eigenvalue decomposition of the N ×N covariance of the array
output x defined in (1). The complexity is O(N3). For element-
space MUSIC, an additionalO(GN2) is required to compute the
MUSIC spectrum P (ω) = (aHN (ω)EnE

H
n aN (ω))−1, where En

TABLE II
RUNNING TIME PER MONTE CARLO RUN FOR FIG. 5(C) WHEN M = 4 FOR

BEAMSPACE METHODS

is the noise subspace, and G is the number of grid points used
for grid search of ω. For classical beamspace, the complexity
is dominated by the eigenvalue decomposition of the B ×B
covariance of y = Tx, where T is a B ×N beamspace trans-
formation matrix. The complexity is O(B3). Similarly, classical
beamspace MUSIC requires an additional O(GB2) to compute
the MUSIC spectrum. For CBS, the complexity is dominated
by the eigenvalue decomposition of the covariance (15) for
the decimated signals. Assuming the filter length L � N so
that (N − L+ 1)/M ≈ N/M , the complexity is O((N/M)3),
where M is the decimation ratio. Similarly, CBS MUSIC re-
quires an additional O(G(N/M)2) to compute the MUSIC
spectrum. In Table I, we give an example of typical numbers by
settingN = 100, G = 200,M = 4, andB = N/M = 25. Note
that CBS and classical beamspace have the same complexity,
which is much smaller than that of element-space. A direct
comparison of running time for each algorithm is also presented
in Table II.

For all expressions listed in Table I, we include complexity
only for computations after the covariance matrices have been
estimated using snapshots. For ALRD-RLS and MALRD-RLS
[27], the snapshots are used in the RLS algorithm, but no
covariance is estimated explicitly. Hence, we do not include
ALRD-RLS and MALRD-RLS in Table I, but we list their
total complexity here: O(GK(B̄I2 + B̄2)) for ALRD-RLS and
O(GK(I2 + B̄2)) for MALRD-RLS, where I is the length of
the basis vectors contained in the B̄ ×N beamspace transforma-
tion matrixT,K is the number of snapshots, andG is the number
of grid points used for grid search of ω. Note that we use the
notation B̄ as it may be different fromB for other algorithms. To
compare ALRD-RLS and MALRD-RLS with other algorithms,
we need to include complexity for estimating the covariance
also. For instance, for classical beamspace root-MUSIC, the
complexity of y = Tx for K snapshots, where T is a B ×N
matrix, is either O(KNB), or O(KN log2 N) if rows of T
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are chosen to be columns of the DFT matrix so that the FFT
algorithm can be used. Estimating the B ×B covariance of y
using K snapshots then requires O(KB2) computation. Thus,
the total complexity is O(B3 +KB2 +KN min(B, log2 N)).
But from this expression, it is more tricky to obtain typical
numbers as in Table I because the constant factors of each term
in the big-O notation are hidden.

F. Error Analysis

Now we analyze the performance of CBS with decimation.
This is only an approximate analysis of the mean square error
(MSE) of the DOA estimates, but it provides insights. For
simplicity, we consider the MUSIC algorithm here, although
the simulations presented later use root-MUSIC or ESPRIT.
Let ω̂i be the estimate of the ith DOA ωi, 1 ≤ i ≤ D. When
MUSIC is performed on an N -sensor ULA with K snapshots
in element-space, the estimate ω̂i is asymptotically (for large K
and N ) unbiased and has variance [18]

varelm(ω̂i) =
6σ2

e

KN3
(R−1

cc )ii, (23)

whereRcc = E[ccH ] is the autocorrelation of the source ampli-
tudes. In particular, if the sources are uncorrelated with powers
σ2
i , then we have

varelm(ω̂i) =
6σ2

e

KN3σ2
i

. (24)

For simplicity, consider CBS with decimation using only one
polyphase component, and suppose the decimation ratio M is a
divisor of (N − L+ 1), so

J = (N − L+ 1)/M (25)

is an integer. Suppose the filter H(ejω) satisfies the nearly-
Nyquist property (22) so that Gdec ≈ I. Let H(ejω) be a good
filter with passband [−π/M, π/M ], i.e.,

|H(ejω)|2 ≈
{
M, |ω| < π/M
0, otherwise (26)

so that it has unit energy. For CBS with decimation, since the
columns of Adec are aJ(Mωi) rather than aJ(ωi), so in view of
(14), for an in-band DOA ωi (DOA in the passband of the filter),

varCBS(Mω̂i) ≈ 6σ2
e

KJ3|H(ejωi)|2σ2
i

. (27)

Using (25), (26), and the fact that var(cx) = c2var(x) for any
constant c > 0 and random variable x, we therefore obtain

varCBS(ω̂i) ≈ 6σ2
e

K(N − L+ 1)3σ2
i

. (28)

Moreover, if the filter length L � N ,

varCBS(ω̂i) ≈ 6σ2
e

KN3σ2
i

= varelm(ω̂i). (29)

Thus, the error variance of CBS is approximately independent
of the decimation ratio M and equal to that of element-space.
Hence, one may want to choose a large M to lower computa-
tional complexity. However, there is some price to be paid for this
advantage. Since the number of identifiable sources is limited
by J = (N − L+ 1)/M , large M means fewer sources can be
identified in the passband. Secondly, since a large M implies
that the filter has narrower pass and transition bands, the stop
band attenuation degrades for large M (for fixed filter length L).

The above analysis is valid as long as all the in-band sources
are uncorrelated. Whether an in-band source is correlated with an
out-of-band source (source in the stopband) or not does not mat-
ter. This also suggests how CBS can improve performance over
element-space. For illustration, consider an example where there
is one in-band source with power 1 and one out-of-band source
with power Po, with correlation coefficient 0 < ρ < 1. Hence,

Rcc =

[
1 ρ

√
Po

ρ
√
Po Po

]
, (30)

and

R−1
cc =

1

(1− ρ2)Po

[
Po −ρ

√
Po

−ρ
√
Po 1

]
, (31)

so it can be derived from (23) that

varelm(ω̂1) =
6σ2

e

KN3(1− ρ2)
. (32)

The error variance for element-space gets larger as ρ gets larger,
but is independent of the out-of-band power Po. By contrast, for
CBS, as long as the out-of-band source is attenuated enough by
the filter so that the in-band source is the only effective source
after filtering, then it is as if there is only the first source, or
its effective Rcc,CBS is a 1× 1 matrix Rcc,CBS = 1. Hence,
setting σ2

1 = 1 in (29), we obtain

varCBS(ω̂1) ≈ 6σ2
e

KN3
< varelm(ω̂1). (33)

It is important to note that this does not contradict the analysis
for beamspace MUSIC in [42], [43] because therein the signal
subspace dimension in the beamspace is assumed to be the
same as that in the element-space, but for CBS, signal subspace
dimension after filtering can be smaller. That is, in [42], [43],
all sources, including those in the stopband if any, still have
to be estimated in the beamspace, while in our case we only
have to estimate in-band ones. Besides, (33) does not contradict
the fact that the beamspace Cramer-Rao bound (CRB) cannot
be smaller than the element-space CRB [43] because the gap
between the error variance of a practical algorithm and the CRB
can differ in different situations. The foregoing example shows
that CBS can improve MUSIC MSE performance in some cases
when there are correlated sources.

Remark: A more rigorous analysis will have error variance
expressions involving H(ejω). The filtered out-of-band sources
contribute to error terms that perturb the eigenvectors of the
covariance matrix. Such an error term is not white and may be
correlated with in-band sources. This makes a rigorous analysis
complicated, and we leave it for future work. From a practical
point of view, observe that if H(ejω) is designed to have good
stopband attenuation, then the error term due to filtered out-of-
band sources is much smaller than the white noise term, and the
analyses in this subsection can be good approximations.

G. Simulations

In all simulation examples in this paper, we assume the
number of DOAs is unknown. For CBS, the number of in-
band DOAs D0 has to be estimated. For element-space, the
number of all DOAs D has to be estimated. For CBS method
to estimate D0, we plot the distribution of eigenvalues of the
covariance Rave in descending order in log scale, and the most
convex point (maximum of the second difference) of the curve
is regarded as the first noise subspace eigenvalue. Then, the
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Fig. 4. Performance of CBS and element-space when there are many out-of-
band DOAs. (a) Typical eigenvalue distribution for CBS. (b) Typical eigenvalue
distribution for element-space. (c) Probability of resolution.

number of eigenvalues larger than this is the estimated D0. For
element-space to estimate D, the same method is used, with
Rave replaced by the covariance of the original array output x.
See Fig. 4(a)–(b) for a numerical demonstration (details of this
plot will be described below). To compare with CBS using a
filter H(z), for element-space, we just consider DOA estimates
in the passband of H(z) and ignore those in the stopband. The
number of in-band DOAs obtained in this way is also viewed as
the estimate of D0 for element-space.

Whenever we mention root mean square errors (RMSE) in
detected in-band source angles, we refer to averaging square er-
rors measured in ω over all in-band DOAs and over those Monte
Carlo runs that obtain the correct number of in-band DOAs.
Similarly, since the stochastic Cramer-Rao bounds (CRBs) [44]
depend on DOAs, we have averaged over in-band DOAs in the
plots. Noise varianceσ2

e = 1 is used. If not specified particularly,

the following settings are used for each example. First, all
sources are uncorrelated with equal powers pk = 1. Second, the
coherent method (15) is used for CBS with decimation. Third,
H(z) is designed to be lowpass using the Parks-McClellan
algorithm [28], with passband edge π/2M and stopband edge
3π/2M . Here their average π/M is viewed as the filter cutoff,
and M is the decimation ratio. These Parks-McClellan filters
satisfy (22).

Probability of resolution. We first consider a scenario where
there are many out-of-band DOAs. In this case, CBS is especially
advantageous over element-space in terms of probability of
resolution. Consider a ULA with N = 99 sensors. The filter
length is L = 16, and the decimation ratio is M = 4. There are
two in-band DOAs, which are at angles θ = −5◦, 5◦. We vary
the number of out-of-band DOAs D̄, while they are uniformly
placed in the range ω ∈ [0.5π, 0.98π], i.e., ω = 0.5π, 0.5π +
δ, 0.5π + 2δ, . . . , 0.98π with δ = 0.48π/(D̄ − 1). (Recall ω =
π sin θ.) Fig. 4(c) shows the probability of resolving the correct
number of in-band DOAs using the method of finding the most
convex point of eigenvalue distribution. Typical eigenvalue dis-
tributions for a Monte Carlo run are shown in Fig. 4(a)–(b) when
there are 5 out-of-band DOAs. Note that 2 and 7 eigenvalues are
regarded as signals for CBS and element-space, respectively,
corresponding to the number of in-band DOAs and all DOAs.
Covariance estimates are obtained by using 100 snapshots,
and we average 1000 Monte Carlo runs to get the plot. As
expected, for CBS, the number of out-of-band DOAs does not
affect the probability of resolution, which is always 1 in this
example, because they are attenuated by the filter. Even when
the number of out-of-band DOAs is greater than the number
of sensors N = 99, CBS can still recover the in-band DOAs
with probability one. But for element-space, the probability of
resolution decreases significantly as the number of out-of-band
DOAs increases.

Estimation errors. We now compare the estimation errors
of classical beamspace [14], MALRD-RLS [27], CBS, and
element-space. Consider a ULA with N = 96 sensors receiving
6 sources at angles −3◦, 1.5◦, 3◦, 40◦, 60◦, and 80◦. The filter
length is L = 25, and the decimation ratio M is varied. Filter
responses for someM are shown in Fig. 5(a). For all filters used,
there are three sources in the passband (−3◦, 1.5◦ and 3◦) and
three in the stopband (40◦, 60◦, and 80◦). All sources are first
assumed uncorrelated. For MALRD-RLS, the parameters (as
mentioned in the last paragraph of Section II-E) are reasonably
chosen as per [27]. Specifically, we set I = 12, B̄ = N/I , and
the forgetting factor α = 0.998 as in [27]. The number of grid
points for grid search of ω is chosen as G = 1000 to keep a
balance between performance and complexity. For MALRD-
RLS, the number of DOAs and their locations are estimated
together based on the output power spectrum P (ω) [27]. We
declare that there is a source at ω̄ if P (ω̄) is a local maximum
with prominence greater than 0.4 (with the spectrum normalized
to have a maximum value 1), where prominence is defined
as in findpeaks of MATLAB. In all cases experimented
except MALRD-RLS, the probability of resolving the correct
number of in-band DOAs is always 1, so it is not plotted.
MALRD-RLS failed to resolve only once in 500 trials, so the
probability of success is nearly unity as well. We turn to study
the RMSE in detected in-band source angles using root-MUSIC,
for various values of 1/M (filter cutoff normalized by π), as
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Fig. 5. RMSE of classical beamspace, MALRD-RLS, CBS, and element-
space. (a) Responses of typical filters used. (b) RMSE for uncorrelated sources.
(c) RMSE for in-band sources correlated with out-of-band sources. (d) RMSE
for correlated in-band sources.

shown in Fig. 5(b). Covariance estimates are obtained by using
200 snapshots, and 500 Monte Carlo runs are used. Note that,
for MALRD-RLS and element-space, the notion of filter cutoff
is not relevant, so their plots are constant. CBS outperforms
classical beamspace [14], the poor performance of the latter

being consistent with numerical sensitivity issues mentioned in
[14] as the number of “beams” B (i.e., passband width in our
notion) increases. CBS also outperforms MALRD-RLS. Note
that element-space performs slightly better, and that the RMSE is
almost independent ofM for CBS, consistent with (24) and (28).
Fig. 5(c) shows the performance when there are in-band sources
correlated with out-of-band sources: sources n and n+ 3 have
a correlation coefficient ρ = 0.85 for n = 1, 2, 3. In this case,
CBS outperforms element-space significantly (without spatial
smoothing), consistent with (33). Again, this does not contradict
[42], [43] as we explained for (33). Note that we also show the
RMSE of element-space using spatial smoothing [45]. We divide
the array into 6 overlapping subarrays of size 91: {1, . . . , 91},
{2, . . . , 92}, . . . , {6, . . . , 96}, and then do spatial smoothing.
Although spatial smoothing can achieve performance improve-
ment for correlated sources, only CBS can achieve both perfor-
mance improvement and complexity reduction (see Table II).
This is because spatial smoothing does not do dimensionality
reduction (unlike CBS). Stochastic (element-space) CRBs [44]
are also shown in Fig. 5(b)–(c). While both CBS and element-
space come close to the CRB for uncorrelated sources, only
CBS comes close to the CRB for correlated sources. CBS fills
in the gap between element-space (without spatial smoothing)
and CRB for correlated sources. The running time per Monte
Carlo run for each algorithm in Fig. 5(c) is shown in Table II.
The computational complexity of CBS is comparable to that
of classical beamspace and more than 10 times lower than that
of element-space (with or without spatial smoothing). Running
time of MALRD-RLS depends on the number of grid points
G for grid search of ω. As mentioned before, we have chosen
G = 1000, and the complexity of MALRD-RLS is the high-
est. This choice of G was necessary to obtain the reasonable
performances shown in Fig. 5. On the other hand, performances
cannot be significantly improved by a larger G. For instance, the
RMSE for Fig. 5(b) would change from 0.0023 only to 0.0021 if
G is changed from 1000 to 10000, but the complexity gets much
higher. Finally, we consider the case when there are in-band
correlated sources in Fig. 5(d). Here, sources 1 and 2 are corre-
lated with ρ = 0.85 and all others are uncorrelated. CBS again
outperforms classical beamspace and MALRD-RLS. Although
CBS does not outperform element-space as in Fig. 5(c), it is
only slightly worse than element-space, and both of them are
reasonably close to the CRB.

Truncation versus decimation. Next, we show that decimat-
ing the filter output is indeed an effective method. To this
end, we compare CBS with decimation (15), CBS with trun-
cation, and element-space. “CBS with truncation” means we
keep only the first Nbs ≤ N − L+ 1 samples of the filter out-
put, v(0), v(1), . . . , v(Nbs − 1). Consider a ULA with N = 99
sensors receiving 2 in-band sources at angles −5◦, 5◦, and 1
out-of-band source at angle 40◦. The filter length is L = 16,
and the decimation ratio is M = 4. Fig. 6 shows the RMSE in
detected in-band source angles using root-MUSIC. Covariance
estimates are obtained by using 100 snapshots, and 500 Monte
Carlo runs are used. As expected, for the truncated CBS, RMSE
decreases asNbs increases. Remarkably, the RMSE atNbs = 84,
corresponding to keeping all the steady-state samples of the filter
output, is about the same as the RMSE of CBS with decimation
by M = 4. Moreover, CBS with decimation gives a RMSE
almost the same as element-space, as suggested by (29). So in
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Fig. 6. RMSE of truncated CBS, decimated CBS, and element-space.

Fig. 7. RMSE of CBS using all polyphase components coherently and non-
coherently, versus using only one polyphase component.

the decimation method, the only loss is due to discarding the
transient part of the filter output, which is insignificant if L �
N . Hence, decimation reduces the complexity of eigenspace
computation by a factor of O(M3) without compromising the
RMSE performance!

Coherent versus noncoherent. Finally we compare the co-
herent method (15) with the noncoherent method, and with the
method which uses only one polyphase component. Consider
a ULA with N = 99 sensors. The filter length is L = 16, and
the decimation ratio is M = 12. Two in-band sources are at an-
gles θ = −0.5◦, 0.5◦, and 30 out-of-band sources are uniformly
placed in the rangeω ∈ [0.5π, 0.98π]. Fig. 7 shows the RMSE in
detected in-band source angles using root-MUSIC. Covariance
estimates are obtained by using 100 snapshots, and 5000 Monte
Carlo runs are used. Indeed, the RMSE of the coherent method
is slightly smaller than that of the noncoherent method, and is
much smaller than that of using only one polyphase component.

III. CONVOLUTIONAL BEAMSPACE FOR SPARSE ARRAYS

In this section, we show that CBS can be also applied to sparse
arrays. In Section III-A, the idea of difference coarrays for sparse
arrays is reviewed. In Section III-B, we show how to do CBS in
the coarray domain, as depicted in (40) or (41). In Section III-C,
we show that we can again use uniform decimation to reduce
computational complexity, and the decimated output (44) still
has the Vandermonde structure of the ULA output. Hence,

root-MUSIC and ESPRIT can be directly applied to the filtered
and decimated coarray output without further adjustment. A
brief discussion of computational complexity is given in Sec-
tion III-D. Finally, simulations are presented in Section III-E.

Consider linear arrays for which the sensor locations are at
nλ/2 where n ∈ N = {n0, n1, . . . , nN−1}. The integer set N
defines the array. For a ULA, we have N = {0, 1, 2, · · · , N −
1}. More generally N can be a sparse array like the nested array
[20], coprime array [21], or minimum redundancy array (MRA)
[19]. One advantage of sparse arrays over ULAs is that it is
possible to estimate O(N2) DOAs using an N -sensor sparse
array [20].

Let x(ni), 0 ≤ i ≤ N − 1 be the array output. One can still
use a filter h(i) to perform a “convolution” as before, that
is, y(m) =

∑
i x(ni)h(m− i). But this is not useful because

the array output in response to a single DOA has the form
x(ni) = cejωni 
= ejωi (except for a ULA). So the vector x =
[x(n0) · · ·x(nN−1)] is not Vandermonde, and Eqs. (4) and (5)
are not true. So a filtering effect like H(ejωk)aN−L+1(ωk)
cannot be achieved in this way. But we will have better luck
working in the difference coarray domain. This is similar in
principle to the idea in [46] for classical beamspace.

A. Difference Coarrays

With the array output

x(ni) =

D∑
k=1

cke
jωkni + e(ni), ni ∈ N , (34)

the cross-correlation between outputs of sensors ni and nm is

E[x(ni)x
∗(nm)]

=
D∑

k=1

D∑
l=1

E[ckc
∗
l ]e

j(ωkni−ωlnm) + σ2
eδ(ni − nm) (35)

under standard statistical assumptions mentioned in Section II.
For zero-mean uncorrelated sources, E[ckc

∗
l ] = pkδ(k − l),

where pk = E[|ck|2] is the power of the kth source. So

R(ni − nm) � E[x(ni)x
∗(nm)]

=

D∑
k=1

pke
jωk(ni−nm) + σ2

eδ(ni − nm),

which depends only on the difference ni − nm between sen-
sor locations, hence the notation R(ni − nm). The difference
coarray C of the array N = {ni} is the set of all possible
differences ni − nm between sensor locations. By estimating
E[x(ni)x

∗(nm)] using snapshot averages, we can estimate

R(l) =

D∑
k=1

pke
jωkl + σ2

eδ(l) (36)

for all l ∈ C. The difference coarray is symmetric in the sense
that if l ∈ C, then −l ∈ C. Let the largest element in C be Z,
and let U be the largest integer such that the uniform region
−(U − 1) ≤ l ≤ U − 1 is in C. Then −(U − 1) ≤ l ≤ U − 1
is called the central ULA segment of the difference coarray. If
U < Z, the regionU ≤ l ≤ Z − 1 contains some integers which
do not belong in C, called holes in the coarray, and in particular
U is a hole. Note that for an array with hole-free coarray (like
the nested array), the coarray itself is the central ULA segment.
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Since (36) can be estimated for all l ∈ C, we can in particular
estimate R(l) over the central ULA segment −(U − 1) ≤ l ≤
U − 1, and define a Hermitian Toeplitz matrix

R =

⎡
⎢⎢⎣

R(0) R∗(1) · · · R∗(U − 1)
R(1) R(0) · · · R∗(U − 2)

...
...

. . .
...

R(U − 1) R(U − 2) · · · R(0)

⎤
⎥⎥⎦ . (37)

All elements of the matrix can be estimated by averaging
x(ni)x

∗(nm) over snapshots, and over all ni, nm that produce
identical difference l = ni − nm. This estimate of R was de-
noted as R̃ in [47]. By computing the noise eigenspace of R̃
we can estimate the DOAs ωk using standard methods such as
MUSIC. In general, R̃ may fail to be positive definite because
it is a finite snapshot estimate. But it is shown in [47] that if we
order its eigenvalues in terms of their absolute values and define
the noise subspace accordingly, this always works.

B. Convolutional Beamspace in the Coarray Domain

Consider an FIR filterG(z) = H(z)H∗(1/z∗)whereH(z) =∑L−1
n=0 h(n)z

−n so that G(ejω) = |H(ejω)|2 ≥ 0. We have

G(z) =

L−1∑
k=−L+1

g(k)z−k, (38)

where g(k) =
∑

n h(n)h
∗(n− k) and g(k) = g∗(−k).Assume

L < U and define the finite duration signal

R(u)(l) =

{
R(l), −(U − 1) ≤ l ≤ U − 1
0, otherwise. (39)

where R(l) is as in (36). This is R(l) restricted to the central
ULA portion of the coarray, hence the superscript “(u)”. Now
consider the convolution

R0(n) =

U−1∑
l=−(U−1)

R(u)(l)g(n− l), (40)

which can be nonzero in −(U + L− 2) ≤ n ≤ U + L− 2.
In the restricted range S = {n| − (U − L) ≤ n ≤ U − L}, we
have⎡

⎢⎢⎣
R0(−(U − L))

R0(−(U − L− 1))
...

R0(U − L)

⎤
⎥⎥⎦

︸ ︷︷ ︸
r0

= Gco

⎡
⎢⎢⎣
R(−(U − 1))
R(−(U − 2))

...
R(U − 1)

⎤
⎥⎥⎦

︸ ︷︷ ︸
r

, (41)

where Gco is the banded Toeplitz matrix⎡
⎢⎢⎢⎢⎣
g(L− 1) · · · g(−(L− 1)) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . 0
0 · · · 0 g(L− 1) · · · g(−(L− 1))

⎤
⎥⎥⎥⎥⎦

of size (2(U − L) + 1)× (2U − 1). Thus, all the 2L− 1 filter
coefficients g(k) are involved in the computation of R0(n) in
n ∈ S, so that r0 in (41) defines the steady state portion of the
output. We refer to r0 as the coarray convolutional beamspace
signal generated from the ULA segment r of the coarray. In this
steady state, we can readily verify that

R0(n) =

D∑
k=1

pkG(ejωk)ejωkn + σ2
eg(n), n ∈ S. (42)

Since pkG(ejω) ≥ 0, the quantity R0(n) in (42) resembles the
autocorrelation of a sum of sinusoids buried in noise with au-
tocorrelation σ2

eg(n), and in particular R0(n) = R∗
0(−n). The

DOA ωk is filtered by G(ejωk), so if G(ejω) is a good lowpass
filter with passband width ≈ 2π/M, then

R0(n) ≈
D0∑
k=1

pkG(ejωk)ejωkn + σ2
eg(n), n ∈ S, (43)

where D0 is the number of sources falling within the passband
of the filter G(ejω).

In summary, the DOAs in a narrow subband can be isolated by
this coarray filtering. Restricting the filtering to the ULA portion
of the coarray (as in (39)) and considering only the outputs
in the steady state S, we ensure the exact relation (42). Since
the filter, by design, satisfies G(ejω) ≥ 0, (42) is still a valid
autocorrelation truncated to S. Since the steady state domain S
still looks like a ULA (i.e., (42) has the Vandermonde structure
with respect to n ∈ S), we can directly apply root-MUSIC or
ESPRIT without any additional steps. As U is typically as large
asO(N2), we can design a sharp-cutoff filter with good stopband
attenuation by using a relatively long filter length L.

C. Decimating in the Coarray Domain

Since the filter G(ejω) has passband width ≈ 2π/M , we can
work with the uniformly decimated version

R0(Mn) =
D∑

k=1

pkG(ejωk)ejMωkn + σ2
eg(Mn) (44)

with n restricted such that Mn ∈ S. Decimation achieves the
dimensionality reduction needed to reduce the computational
complexity in the subbands, such reduction being an integral
part of any beamspace processing. If G(ejω) is Nyquist(M ),
then g(Mn) = δ(n) and

R0(Mn) =

D∑
k=1

pkG(ejωk)ejMωkn + σ2
eδ(n)

≈
D0∑
k=1

pkG(ejωk)ejMωkn + σ2
eδ(n). (45)

Since the noise term has δ(n) and pkG(ejωk) ≥ 0, Eq. (45)
represents the autocorrelation of a sum of sinusoids buried in
white noise. We now define a q × q Hermitian Toeplitz matrix
(where q is the largest integer with (q − 1)M ∈ S):⎡

⎢⎢⎣
R0(0) R∗

0(M) · · · R∗
0((q − 1)M)

R0(M) R0(0) · · · R∗
0((q − 2)M)

...
...

. . .
...

R0((q − 1)M) R0((q − 2)M) · · · R0(0)

⎤
⎥⎥⎦ .

Its eigendecomposition reveals the noise subspace from which
the frequenciesMωk (mod2π) can be identified (whenD0 < q).
From these we can identify ωk without ambiguity as before,
by using the fact that only those ωk that are in the passband
of G(ejω) contribute significantly to R0(n). Again, for finite
snapshots, we order eigenvalues in terms of their absolute values
to define noise subspace [47].

As before, instead of using one filter G(ejω) ≥ 0, we can
use a filter bank Gi(e

jω), 0 ≤ i ≤ M − 1 with filter responses
covering the range 0 ≤ ω < 2π as in Fig. 3. We now constrain
Gi(e

jω) to be Nyquist(M) with Gi(e
jω) ≥ 0. Using these we
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TABLE III
RUNNING TIME PER MONTE CARLO RUN FOR COARRAY BASED CBS FOR

SPARSE ARRAYS (FIG. 8) WHEN THERE ARE 80 OUT-OF-BAND DOAS

obtain the decimated coarray CBS signals Ri(Mn), 0 ≤ i ≤
M − 1.Analysis of the ith signalRi(Mn) reveals theDi DOAs
falling into the ith subband. The union of these DOAs gives the
set of all D DOAs.

D. Computational Complexity

The computational advantage of CBS for sparse arrays is
similar to CBS for ULAs. With −(U − 1) ≤ l ≤ U − 1 being
the central ULA segment of the difference coarray, the complex-
ity of eigenspace computation for CBS is O((U/M)3), which
is much smaller than O(U3), the complexity of eigenspace
computation for element-space. (Here, we work in the coarray
domain for both CBS and element-space. So, in this section
element-space means “coarray domain without filtering.”) A
direct comparison of running time for CBS, element-space, and
classical beamspace is also presented in Table III.

E. Simulations

We consider an example where the number of in-band DOAs
is greater than the number of sensors, which is a scenario
that makes sparse arrays stand out. A two-level nested array
[20] with each level having 12 sensors is considered, a total
of 24 sensors. CBS ESPRIT is compared with element-space
ESPRIT, classical beamspace root-MUSIC [14], and classical
beamspace ESPRIT [15]. We follow the procedure in [46] to do
classical beamspace in the coarray domain. The covariance in the
beamspace is computed by TRTH , where T is the beamspace
transformation matrix, and R is defined in (37). For CBS, a
Parks-McClellan filter H(z) of length L = 16 and with cutoff
π/M is used, where M = 4 is the decimation ratio. So the
filter G(z) in (38) has length 31. There are 25 in-band DOAs,
uniformly placed in the range ω ∈ [−0.2π, 0.2π]. We vary the
number of out-of-band DOAs, while they are uniformly placed in
ω ∈ [0.5π, 0.98π]. Covariance estimates are obtained by using
1000 snapshots, and 5000 Monte Carlo runs are used. Fig. 8(a)
shows the probability of resolving the correct number of in-band
DOAs. CBS consistently offers a larger probability of resolution
than element-space and classical beamspace root-MUSIC and
ESPRIT, as the number of out-of-band DOAs varies. Moreover,
as shown in Fig. 8(b), CBS has the smallest average of absolute
values of bias in detected in-band source angles. Finally, Fig. 8(c)
shows that compared to element-space and classical beamspace
ESPRIT, CBS has similar RMSE in detected in-band source
angles when there are fewer out-of-band DOAs. But, CBS has
significantly smaller RMSE when there are more out-of-band
DOAs. Note that classical beamspace root-MUSIC always has
zero probability of resolution due to numerical sensitivity issues
[14] as we have a large coarray size U = 156; so we do not
plot its bias and RMSE in Fig. 8(b)–(c). The running time per
Monte Carlo run for each algorithm is shown in Table III. The

Fig. 8. Performance of CBS in coarray domain, and element-space in coarray
domain for sparse arrays using ESPRIT. The classical beamspace method in
the coarray domain [46] is also compared using both root-MUSIC and ESPRIT.
A nested array [20] with 24 sensors was used. (a) Probability of resolution.
(b) Average absolute bias. (c) RMSE.

computational complexity of CBS is a little lower than that
of classical beamspace and about 7 times lower than that of
element-space. This example shows that for the typical scenario
of resolving more sources than sensors using sparse arrays, many
benefits of CBS can still be realized. Also, according to our
simulations, ESPRIT typically yields better estimates for CBS
in the coarray domain than root-MUSIC.

IV. CONVOLUTIONAL BEAMSPACE AND SPARSE RECOVERY

In this section, we show that CBS can also be used in
conjunction with sparse signal recovery. In Section IV-A, we
show how to integrate CBS into the basic single-snapshot sparse
recovery problem, as depicted in Problem (52). In Section IV-B,
we show that we can again use uniform decimation to reduce
computational complexity as in Problem (54). In Section IV-C,
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the multiple-snapshot version is also presented, as depicted in
Problem (56) (without decimation) and Problem (57) (with deci-
mation). The comparison of computational complexity between
CBS and element-space is summarized in Section IV-D. As
only the filter responses at discrete frequencies on the dictionary
grid are relevant, the problem of designing discrete-frequency
FIR filters is addressed in Section IV-E. Finally, some remarks
are given in Section IV-F, and simulations are presented in
Section IV-G.

Sparse signal representation techniques for DOA estimation
have been studied in the literature [24]. In this context, a dictio-
nary D of steering vectors a(ωi) on a grid of potential DOAs
{ωi}di=1 is considered, and the goal is to find a sparse signal
q = [q1 q2 · · · qd]T that well represents the ULA output x:

x = [aN (ω1) aN (ω2) · · · aN (ωd)]︸ ︷︷ ︸
dictionary D

q+ e, (46)

where the error term e should be “small”. The number of
dictionary atoms d is typically much larger than D, the number
of sources. A popular technique to obtain the sparse vector q is
the Lasso method [48] that solves the following problem:

min
q∈Cd

‖q‖1 (47a)

subject to ‖x−Dq‖22 ≤ β, (47b)

where β > 0 is a parameter. The l1-norm objective (47a) serves
as a surrogate for sparsity, and the l2-norm constraint (47b) limits
the search space to where the noise term is small.

A. Convolutional Beamspace and Dictionaries

As in (3), we convolve the sequence x(n), 0 ≤ n ≤ N − 1
with an FIR filter h(n), 0 ≤ n ≤ L− 1withL < N, and extract
the steady state samples:

y = Hx. (48)

As in (4), the response to a single DOA is (ignoring noise)

y = HaN (ω) = ej(L−1)ωH(ejω)aN−L+1(ω). (49)

Thus, (46) and (48) yield

y = [aN−L+1(ω1) · · · aN−L+1(ωd)]Λhq+He, (50)

where Λh is a diagonal matrix with ith diagonal element
(Λh)ii = ej(L−1)ωiH(ejωi). In other words, the diagonal el-
ements are the frequency responses of h(n) evaluated at the
dictionary frequencies (with some phase shift). If H(ejω) is a
good narrowband lowpass filter, then

y ≈ [aN−L+1(ω1) · · · aN−L+1(ωd0
)]︸ ︷︷ ︸

dictionary DL

q0 + He, (51)

where ω1, ω2, . . . , ωd0
are the frequencies within the passband

of H(ejω), and q0 ∈ C
d0 is a significantly shorter vector than

q. Thus, a Lasso problem can be formulated for the CBS signal
y as

min
q0∈Cd0

‖q0‖1 (52a)

subject to ‖y −DLq0‖22 ≤ β. (52b)

Here, the original dictionary D in (47b) is replaced by the
dictionary DL for CBS.

B. Decimation for Dictionaries

To reduce computational complexity by dimensionality re-
duction, we decimate the CBS signal y by M if H(ejω) is a
good filter with passband width ≈ 2π/M . Let v(n) = y(n+
L− 1) so that y = [v(0) v(1) · · · v(N − L)]T . Let v0(n) =
v(Mn) and v0 = [v0(0) v0(1) · · · v0(J0 − 1)]T , where J0 =
�(N − L+ 1)/M�, so the decimated version

v0 = [v(0) v(M) · · · v((J0 − 1)M) ]T . (53)

Then, we obtain the complexity-reduced problem

min
q0∈Cd0

‖q0‖1 (54a)

subject to ‖v0 −DL,0q0‖22 ≤ β, (54b)

where DL,0 is the matrix obtained by retaining the rows
0,M, . . . , (J0 − 1)M of DL.

C. Multiple Snapshots for Dictionaries

The previous formulation is for a single snapshot. For multiple
snapshots, we adopt the �1-SVD method proposed in [24].
Suppose we have K snapshots, X = [x(1) x(2) · · ·x(K)]. To
reduce dimensionality, we take the SVD X = UΣVH and
retain a N × k matrix containing most of the signal power:
XSV = UΣJk = XVJk, where Jk = [Ik 0]T . We often take
k < K to be roughly the number of sources, and the original
formulation of the �1-SVD method is then [24]

min
Q∈Cd×k

‖Q‖1,2 (55a)

subject to ‖XSV −DQ‖2F ≤ β, (55b)

where ‖Q‖1,2 =
∑

m

√∑
n |Qmn|2. That is, the �2-norm

across singular vector samples is first computed for each spatial
index, and then the �1-norm is computed across spatial samples
for sparsity.

CBS can also be applied to the multiple snapshot scheme
based on the �1-SVD method. We first convolve the spatial sam-
ples of each snapshot with a filterh(n) of lengthL and extract the
steady state samples: Y = HX, similar to (48). Then, we take
the SVD Y = UY ΣY V

H
Y and retain a (N − L+ 1)× k0 ma-

trix containing most of the signal power: YSV = UY ΣY Jk0
=

YVY Jk0
. A multiple-snapshot version of Problem (52) can then

be formulated as

min
Q0∈Cd0×k0

‖Q0‖1,2 (56a)

subject to ‖YSV −DLQ0‖2F ≤ β. (56b)

Likewise, a decimated version can be considered. Let V0 =
[v0(1) v0(2) · · ·v0(K)] be the multiple-snapshot counterpart
of (53). Then, we take the SVD V0 = UV ΣV V

H
V and retain

a J0 × k0 matrix containing most of the signal power: VSV =
UV ΣV Jk0

= V0VV Jk0
. Then, a multiple-snapshot version of

Problem (54) can be formulated as

min
Q0∈Cd0×k0

‖Q0‖1,2 (57a)

subject to ‖VSV −DL,0Q0‖2F ≤ β. (57b)

Problem (57) is expected to yield better performance than Prob-
lem (55) because fewer DOAs are to be recovered in (57). This
is indeed the case as we shall see in simulations.
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TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITY OF SPARSE RECOVERY METHODS

TABLE V
RUNNING TIME PER MONTE CARLO RUN FOR DICTIONARY METHODS (FIG. 9)

WHEN THERE ARE 10 OUT-OF-BAND DOAS

D. Computational Complexity

An important advantage of CBS is reduced computational
complexity. The comparison of computational complexity be-
tween CBS and element-space is summarized in Table IV.
Assume that the filter H(ejω) used in CBS has passband width
≈ 2π/M , and that the dictionary grid ωi is a uniform grid
of frequencies in [0, 2π). Then, d in Problem (47a) and d0 in
Problems (52) and (54) are related by d0 ≈ d/M . That is, the
number of optimization variables of CBS is only 1/M of that of
element-space for the single-snapshot case.

Next, consider the multiple-snapshot case. According to [24],
to get adequate performance, we have to take k to be roughly the
number of sourcesD in Problem (55). As only theD0 sources in
the passband are effective after filtering, we can take k0 ≈ D0 in
Problem (56). If the sources are roughly uniformly distributed,
then D0 ≈ D/M , so k0 ≈ D/M . Then, dk in Problem (55) and
d0k0 in Problems (56) and (57) are related by d0k0 ≈ dk/M2.
That is, the number of optimization variables of CBS is only
1/M2 of that of element-space for the multiple-snapshot case
using the �1-SVD method. This can be a very significant com-
plexity reduction. A direct comparison of running time for CBS
and element-space is also presented in Table V.

E. Filters Designed for Dictionaries

An interesting question that arises for CBS dictionaries is how
to design the filter H(ejω). One can directly adopt standard
methods such as the Parks-McClellan algorithm, the window
method, and so on [28], but these standard filters are designed to
be optimal or sub-optimal over continuous frequencies ω. The
fact that only the response H(ejωi) at the discrete frequencies
ωi, i = 1, . . . , d are relevant to CBS dictionaries, as in (50), can
be leveraged to design better filters for dictionaries.

Consider a Type I [28], [32] linear-phase FIR filter h(n), 0 ≤
n ≤ L− 1 such that L is odd and that h(n) is even symmetric,
i.e., h(L− 1− n) = h(n). Type I is just for illustration, and
other types of linear-phase FIR filters can be designed similarly.
It can be shown that H(ejω) = e−jω L−1

2 A(ω), where A(ω) =∑M
m=0 bm cos(mω) where M = (L− 1)/2, b0 = h(M), and

bm = 2h(M −m) otherwise. Note that |A(ω)| is the magnitude
response. Then, a standard minimax filter design problem can be

formulated as [28]

min
h(L−1

2 ),...,h(L−1)
max

ω∈Ωp∪Ωs

|W (ω)(A(ω)−Ad(ω))| , (58)

where Ωp is the passband, Ωs is the stopband,

Ad(ω) =

{
1, ω ∈ Ωp

0, ω ∈ Ωs
(59)

is the desired magnitude response, and W (ω) is a weighting
function such that

W (ω) =

{
1, ω ∈ Ωp

λ, ω ∈ Ωs
(60)

for some design parameter λ > 0. Note that W (ω)(A(ω)−
Ad(ω)) is affine in the variables h(L−1

2 ), . . . , h(L− 1), and
that the absolute function is a convex function. Hence, since
the composition of a convex function with an affine mapping
is still convex, |W (ω)(A(ω)−Ad(ω))| is convex. Moreover,
the pointwise supremum of a collection of convex functions
is still convex, so we conclude that Problem (58) is a convex
problem. Traditionally, the passband Ωp and stopband Ωs are
continuous. However, as described earlier, only the frequency
response H(ejωi) at the discrete frequency grid {ωi}di=1 are
relevant, so instead of (58), we can consider

min
h(L−1

2 ),...,h(L−1)
max

ω∈Ω′
p∪Ω′

s

|W (ω)(A(ω)−Ad(ω))| , (61)

where Ω′
p = {ωi, 1 ≤ i ≤ d | ωi ∈ Ωp} and Ω′

s = {ωi, 1 ≤ i ≤
d | ωi ∈ Ωs}. We may also choose a sparser frequency grid (e.g.,
only include even i’s) for Problem (61) to obtain a potentially
better filter. See Fig. 10(a) for an example. Problem (61) can
be readily solved by any numerical convex program solver such
as CVX [49]. Such a filter should have a better response than a
standard filter in the literature (e.g., firpm of MATLAB) over
the discrete frequencies ω1, . . . , ωd.

F. Remarks

1) The choice of the grid of potential DOAs {ωi}di=1 is in
the designer’s hands. One way is to choose a uniform grid in
ω. Another is to choose a grid uniform in the physical DOA
θ. Recall that ω = π sin θ. Hence, the second way leads to a
nonuniform grid in ω, with denser points in high-frequency part
and sparser points in low-frequency part. It is hard to say which
type, uniform or nonuniform, is better because it depends on the
actual locations of the DOAs. Yet, if the DOAs are expected to be
uniformly distributed over the physical angle θ, it makes sense to
choose the nonuniform type. An interesting observation is that
the type of the grid also affects the result of filter design. For
example, suppose we want to design a lowpass filter H(ejω).
If we choose the nonuniform type of grid, with denser points
in high-frequency part, then the resulting filter will have better
attenuation for the high-frequency stopband. That is, the density
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of the grid points induces a weighting effect across different
frequency bands. See Fig. 11 for a numerical demonstration.

2) Instead of using a filter H(ejω), we can use a filter bank
Hi(e

jω), 0 ≤ i ≤ M − 1 to cover the full range 0 ≤ ω < 2π as
in Fig. 3. Using these, we obtain the CBS signals yi, 0 ≤ i ≤
M − 1. Solving an optimization problem as in (52) for each yi

in parallel reveals the Di DOAs falling into the ith subband. The
union of these DOAs gives the set of all D DOAs. Similar idea
can be applied to Problems (54), (56), and (57). Note that here
we do not confine each filter Hi(e

jω) to be a spectral factor of
a Nyquist filter as we did for subspace-based methods such as
MUSIC because the property that the noise is white is not used
in sparse signal recovery.

3) One method for selecting the parameter β in the sparse
recovery problems (e.g., Problem (47a)) was proposed in [24].
The method is based on estimating the variance of the left
hand side of the constraint (e.g., ‖x−Dq‖22 in (47b)). It was
originally proposed for element-space, but we can extend the
method to CBS. In the simulations, we will follow this method
to choose β.

G. Simulations

Unlike in subspace-based methods such as MUSIC, where
we estimate the number of DOAs and their locations sepa-
rately, for dictionaries, we estimate them together. Specifically,
for element-space, after getting the optimal solution Q̂ for
Problem (55), we plot the dictionary power spectrum P (ωi) =∑

n |Q̂in|2 for 1 ≤ i ≤ d. Then, we declare that there is a source
at ωi if there is a peak (local maximum) that is larger than a
particular threshold: P (ωi) ≥ ε. The same method is used for
CBS. See Fig. 9(a)–(b) for an example (described below). In all
examples, we use λ = 1 in (60).

We first compare the most complexity-reduced version of
CBS (57) with the element-space (55) under multiple snapshots.
Consider a ULA with N = 99 sensors. First assume a Parks-
McClellan filter H(z) of length L = 16 and with cutoff π/M is
used, where M = 4 is the decimation ratio. A dictionary of 200
points uniform in ω is used. There are two in-band DOAs at an-
gles−0.573◦ and0.573◦, which are exactly on the grid of the dic-
tionary for simplicity. We vary the number of out-of-band DOAs,
while they are uniformly placed in the range ω ∈ [0.5π, 0.98π].
The reduced dimension for the �1-SVD method in (55) and (57)
is chosen as k = k0 = 3. The peak threshold ε = 0.1 is used
(with the spectrum normalized to have a maximum value 1). We
choose β = 641.7 in (55b) and β = 221.7 in (57b) according to
the method in [24], as described in Remark 3 above. Fig. 9(a)
shows the probability of resolving the correct number of in-band
DOAs. We use K = 100 snapshots and 100 Monte Carlo runs
to get the plot. As the number of out-of-band DOAs increases,
the probability of resolution decreases significantly for element-
space, while the probability of resolution is always one for CBS
due to good stopband attenuation. Note that there is a trade-off
between the performance and the reduced dimension k for the
�1-SVD method for element-space. A large k can lead to better
performance, but it requires higher computational complexity.
Typical dictionary power spectra of CBS and element-space
for a Monte Carlo run with 10 out-of-band DOAs are shown
in Fig. 9(b)–(c). For CBS, only the passband part is plotted.
The two in-band DOAs are clearly distinguished by CBS, but
they cannot be resolved by element-space. The running time

Fig. 9. Performance of CBS and element-space dictionaries when there
are many out-of-band DOAs. (a) Probability of resolution. (b) Typical dic-
tionary power spectrum of CBS. (c) Typical dictionary power spectrum of
element-space.

per Monte Carlo run for CBS and element-space is shown in
Table V. The computational complexity of CBS is about 9 times
lower than that of element-space.

Next, the impact of a well-designed minimax-discrete type
filter described in Section IV-E (instead of the Parks-McClellan
filter) is studied. Consider a ULA withN = 99 sensors. Problem
(57) is to be solved again. A dictionary of 200 points uniform in
ω is used. We compare lowpass FIR filters with length L = 16
designed using the Parks-McClellan algorithm [28] and our
minimax-discrete optimization problem (61). The passband is
Ωp = [0, 0.1π], and the stopband is Ωs = [0.4π, π]. For the
filter design problem (61), we use a grid of 50 points uniform
in ω, which is sparser than the dictionary grid. Two in-band
DOAs are at angles −0.6◦, 0.6◦ with equal powers pk = 1,
and 10 out-of-band DOAs are uniformly placed in the range
ω ∈ [0.5π, 0.98π]with varying equal powers. Here all the DOAs
are not on the dictionary grid, in contrast to the previous example.
The decimation ratio is M = 4. The reduced dimension for the
�1-SVD method is chosen as k0 = 2. The same peak threshold
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Fig. 10. Performance of minimax-discrete and Parks-McClellan filters for
CBS dictionaries when there are powerful out-of-band sources. (a) Filter re-
sponses. (b) Probability of resolution. (c) RMSE.

ε = 0.1 is used, and we choose β = 1338 in (57b) according to
the method in [24], as described in Remark 3 in Section IV-F. In
Fig. 10(a), the magnitude responses of the filters are plotted.
Although the minimax-discrete type filter is optimized only
over a discrete grid, it has better attenuation over the whole
continuous stopband. We experimentally found that if we use a
grid of 200 rather than 50 points for filter design, the resulting
minimax-discrete filter is almost the same as the Park-McClellan
filter. This is expected because the denser the grid, the closer the
discrete type to the continuous type. Due to the better stopband
attenuation, as we vary the power of the out-of-band sources,
the minimax-discrete filter has larger probability of resolving
the correct number of in-band DOAs and smaller RMSE in
detected in-band source angles, as shown in Fig. 10(b)–(c). Here
we use K = 100 snapshots and 100 Monte Carlo runs. Due
to the powerful out-of-band DOAs, element-space always has

Fig. 11. Responses of minimax-discrete filters designed based on different
types of grids.

zero probability of resolution, so is not plotted in Fig. 10. For
smaller out-of-band source power in Fig. 10(c), the minimum
possible RMSE (≈ 10−3), which is the distance between each
true DOA and the closest grid point, is achieved. This example
shows that designing discrete-frequency filters specifically for
CBS dictionaries makes a difference.

Finally, Fig. 11 shows how the design result of minimax-
discrete type filers is affected by the type of grid. The filter length
is L = 16. The passband is Ωp = [0, 0.1π], and the stopband is
Ωs = [0.4π, π]. Grids of 50 points uniform inω and uniform in θ
are compared. Due to the denser grid points in high frequencies,
the latter has a better attenuation in the high-frequency range
at the expense of a worse response around the transition band.
Hence, if there are powerful out-of-band sources far from the
transition band, the latter is better, but if they are near the
transition band, the former is better.

V. CONCLUSION

In this paper we introduced the convolutional beamspace
(CBS) as an alternative to classical beamspace methods of array
processing. While enjoying the computational advantages of
classical beamspace, CBS also allows the direct use of root-
MUSIC and ESPRIT without any complicated preprocessing. A
simple error analysis showed that CBS can have better estimation
performance when the sources are correlated. We also developed
CBS methods for coarrays of sparse arrays, and for dictionary
based methods which use dictionaries of steering vectors to
obtain sparse representations of array data. Due to dimension
reduction and effective filtering of out-of-band sources, many
advantages are obtained across all these frameworks, such as
lower computational complexity, better DOA estimates, and
improved resolution.
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