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On the Zeros of Ramanujan Filters
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Abstract—Ramanujan filter banks have been used for identifying
periodicity structure in streaming data. This letter studies the
locations of zeros of Ramanujan filters. All the zeros of Ramanujan
filters are shown to lie on or inside the unit circle in the z-plane.
A convenient factorization appears as a corollary of this result,
which is useful to identify common factors between different Ra-
manujan filters in a filter bank. For certain families of Ramanujan
filters, further structure is identified in the locations of zeros of
those filters. It is shown that increasing the number of periods of
Ramanujan sums in the filter definition only increases zeros on the
unit circle in z-plane. A potential application of these results is that
by identifying common factors between Ramanujan filters, one can
obtain efficient implementations of Ramanujan filter banks (RFB)
as demonstrated here.

Index Terms—Ramanujan sums, Ramanujan filter banks,
period estimation, cyclotomic polynomials.

I. INTRODUCTION

S EVERAL authors have shown that Ramanujan sums can
be used for signal processing applications [1]–[13]. A

comprehensive analysis of Ramanujan sums in the context of
signal processing for detecting periods in a discrete-time signal
was developed in [3] and [4]. Dictionary approaches were also
developed for detecting periods and a generalized framework
of nested periodic dictionaries is presented in [5]. Ramanujan
periodicity transform (RPT) is shown to be useful in applications
such as robust detection of brain stimuli for brain computer
interfaces [6]–[8] and removal of interference from ECG sig-
nals [9]–[11]. An overview of recent developments can be found
in [14].

In order to detect periodicity in streaming data, where the
periodicity structure in the signal can change over time, Ra-
manujan filter banks (RFB) were first proposed in [12] and
further developed in [13]. Ramanujan filters have Ramanujan
sums as their filter coefficients. RFB can be regarded as an
analysis filter bank wherein the output is the filtered version
of the input signal, filtered with FIR filters that correspond to
different periods. In this letter we study the locations of zeros
of Ramanujan filters. A very interesting structure is identified in
the locations of zeros. A factorization formula is derived which
helps identify the common factors between Ramanujan filters.
An important application of these results is that one can obtain
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efficient implementations of Ramanujan filter banks (RFB) by
sharing the common factors of different filters, as we shall
demonstrate.

A. Scope and Outline

In Section II we prove a lemma that characterizes the locations
of zeros of Ramanujan filters in terms of critical points of cyclo-
tomic polynomials by using Lucas’s theorem. As a corollary, a
factorization formula is obtained for the filters. In Section III we
show that the plots of zeros are indeed in accordance with the
derived result, and identify further structure in the locations of
zeros for some specific families of Ramanujan filters. Zeros of
Ramanujan filters in which multiple periods are used as filter co-
efficients are also characterized. In the Section IV, we illustrate
a possible application of derived results in designing efficient
structures for Ramanujan filter banks. Section V concludes the
paper.

B. Notation

Following notations are used throughout the paper:
1) The Wq = e−j2π/q is a qth complex root of unity.
2) The notation qi|q means that qi is a divisor of q.
3) The notation (k, q) represents the gcd of the integers k and

q. So (k, q) = 1 means that k and q are coprime, that is,
they have no common factor other than unity.

4) φ(q) is the Eulers totient function [15]. It is the number of
integers k in 1 ≤ k ≤ q satisfying (k, q) = 1.

C. Preliminaries

Ramanujan sums are defined as follows [16]. For every integer
q > 0, the qth Ramanujan sum is:

cq(n) =

q∑

k=1
(k,q)=1

ej2πkn/q =

q∑

k=1
(k,q)=1

W−kn
q =

q∑

k=1
(k,q)=1

W kn
q (1)

It is well known [3] that cq(n) is periodic with period q.
Throughout the paper, the q-th Ramanujan filter is defined
by Cq(z) =

∑q−1
n=0 cq(n)z

−n. In Section III-D will also define
extended filters based on l successive periods of cq(n), namely

C
(l)
q (z) =

∑ql−1
n=0 cq(n)z

−n [12], [13].

II. LOCATIONS OF ZEROS OF Cq(z)

In this section we study the locations of zeros of Cq(z). In
order to make Cq(z) a polynomial in z with positive powers, we
multiply it by zq−1 to get Ĉq(z):

Ĉq(z) = zq−1Cq(z) =

q−1∑

n=0

cq(n)z
q−1−n (2)
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Note that zeros of Ĉq(z) and Cq(z) which are not at the origin
are the same. Also, Cq(z) has no zero at z = 0 for any positive
integer q. Hence for simplicity, we study the location of zeros of
Ĉq(z) and discard the zeros at origin to get the zeros of Cq(z).

As cq(0) �= 0 for any q, Ĉq(z) is a degree q − 1 polynomial in
z. Hence it has q − 1 (possibly complex) zeros. In this section,
we will prove the following Lemma. The terms “cyclotomic
polynomial,” and “critical points” are explained after the lemma.

Lemma 1 (Zeros of Ramanujan Filters): Let Cq(z) =∑q−1
n=0 cq(n)z

−n and let Ĉq(z) = zq−1Cq(z). Out of the q − 1

zeros of Ĉq(z)
1) φ(q)− 1 zeros are located strictly inside the unit circle

in z-plane and correspond to the critical points of the qth

cyclotomic polynomial Fq(z) defined in (3).
2) The remaining q − φ(q) zeros are located on the unit circle

in z-plane at W k
q , (k, q) �= 1.

The zeros of Cq(z) are the non-zero zeros of Ĉq(z). ♦
The q-th cyclotomic polynomial Fq(z) mentioned above is

defined as

Fq(z)
Δ
=

q∏

k=1
(k,q)=1

(z −W k
q ) (3)

The term “critical points” of Fq(z) refers to the zeros of
dFq(z)/dz.

Note that Fq(z) is a degree φ(q) polynomial. Its zeros are
located on the unit circle in z-plane at z = W k

q , where (k, q) =
1, 0 ≤ k ≤ q − 1. Also note

Ḟq(z)
Δ
=

dFq(z)

dz
= Fq(z) ·

⎛

⎜⎝
q∑

k=1
(k,q)=1

1

z −W k
q

⎞

⎟⎠ (4)

We will appeal to the following theorem by Lucas in the proof.
Theorem 1 (Lucas, theorem (6,1) of [17]): All the critical

points of any non-constant polynomial f(z) lie in the convex
hull H of zeros of f(z). If the zeros of f(z) are not collinear,
no critical point of f(z) lies on the boundary of H unless it is a
multiple zero of f(z). ♦

Proof of Lemma 1: We can rewrite Cq(z) as follows

Cq(z) =

q−1∑

n=0

cq(n)z
−n =

q−1∑

n=0

q∑

k=1
(k,q)=1

W kn
q z−n (5)

Therefore, Ĉq(z)

= zq−1

q∑

k=1
(k,q)=1

q−1∑

n=0

(W k
q z

−1)
n

= zq−1

q∑

k=1
(k,q)=1

1− (W k
q z

−1)
q

1−W k
q z

−1

= zq−1(1− z−q)

q∑

k=1
(k,q)=1

1

1−W k
q z

−1

= (zq − 1)

q∑

k=1
(k,q)=1

1

z −W k
q

=
zq − 1

Fq(z)
· Ḟq(z) (6)

A related expression for Ḟq(z)/Fq(z)was obtained in a different
context for one sided z-transform of Ramanujan sums in [18]:

∞∑

n=0

cq(n)z
−n =

zdFq(z)/dz

Fq(z)
(7)

The infinite sum in (7) converges to RHS only when |z| > 1,
whereas no such assumption is required in the derivation (6).

Now from (6), we can see that either of the two factors in (6)
can contribute to zeros of Ĉq(z). For the first factor, the zeros of
Fq(z) are located at z = W k

q , where (k, q) = 1, 0 ≤ k ≤ q − 1

and the zeros of the numerator (zq − 1) are at z = W k
q , 0 ≤ k ≤

q − 1. Hence, after cancellation we are left with q − φ(q) zeros
for Ĉq(z) which are located at W k

q , (k, q) �= 1.

The remaining φ(q)− 1 zeros of Ĉq(z) are contributed by the
other factor Ḟq(z). Since Fq(z) is a non-constant polynomial,
by Lucas’s theorem we have that the critical points of Fq(z),
namely the zeros of Ḟq(z), lie in the convex hull of the zeros of
Fq(z). Since the zeros of Fq(z) are on the unit circle in z-plane,
the convex hull of the zeros is strictly inside the unit circle,
except at the zeros itself. Now note that Ḟq(z) cannot have a
zero where Fq(z) is zero, since none of the zeros of Fq(z) are
repeated. Hence all the zeros of Ĉq(z) contributed by the term
Ḟq(z) lie strictly inside the unit circle in z-plane. This completes
the proof of Lemma 1. �

Now we obtain an expression for Cq(z) which enables effi-
cient implementation of Ramanujan filter banks as explained in
Section IV later. We have

Cq(z) =
Ĉq(z)

zq−1
=

zq − 1

zq−φ(q)Fq(z)
· Ḟq(z)

zφ(q)−1
(8)

Applying an identity for cyclotomic polynomials [19], [20]:

zq − 1 =
∏

qk|q
Fqk(z) (9)

gives us

Cq(z) =

⎛

⎜⎝
∏

qk |q
qk<q

F̂qk(z)

⎞

⎟⎠ · Ḟq(z)

zφ(q)−1
(10)

where

F̂q(z) = z−φ(q)Fq(z) (11)

is a causal version of the cyclotomic polynomial.

III. IDENTIFYING FURTHER STRUCTURE IN THE

LOCATIONS OF ZEROS

Fig. 1 shows plots of zeros of Cq(z) for some selected values
of q. In each of these plots, the zeros are indeed in accordance
with Lemma 1. We can see that the locations of zeros seem to
exhibit a lot more structure than what is stated in Lemma 1. For
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Fig. 1. Zeros of Cq(z) for some selected values of q plotted on the z-plane.

example, notice that z = 1 is always a zero of Cq(z) for any
q > 1. This follows from the fact that

∑q−1
n=0 cq(n) = 0 for any

q. In the following subsections, we consider special cases of q
and further derive properties for zeros of corresponding families
of Ramanujan filters. We believe that these are of sufficient
academic interest to merit inclusion here. We also obtain zeros
for generalized filters with l periods of Ramanujan sums as filter
coefficients instead of just one.

A. Case when q is a power of two

For q = 2m where m is a natural number, we have [3]

cq(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 2m−1 does not divide n

−2m−1 if 2m−1 divides n but
2m does not divide n

2m−1 if 2m divides n

Hence we have

Ĉq(z) = 2m−1z(2
m−1) − 2m−1z(2

m−1−1)

= 2m−1z(2
m−1−1)(z(2

m−1) − 1) (12)

Discarding the zeros at z = 0, the zeros ofCq(z) are the 2m−1-th
roots of unity, and lie on the unit circle in z-plane. No zeros lie
inside the unit circle. We can indeed verify this result from Fig. 1.
The zeros of C4(z) are the square roots of unity. Similarly the
zeros ofCq(z) for q = 8 and q = 16 are the fourth and the eighth
roots of unity respectively.

B. Case When q is a Prime Number

For q = p, a prime, we have [3]

cq(n) =

{
q − 1 if n is multiple of q
−1 otherwise.

(13)

So we have

Ĉq(z) = (q − 1)zq−1 − zq−2 − zq−3 − · · · − 1

= (z − 1)
[
(q − 1)zq−2 + (q − 2)zq−3 + · · ·+ 2z + 1)

]

Hence we have one zero located at z = 1 and other q − 2 zeros
are the zeros of the special integer coefficient polynomial:

gq(z) = (q − 1)zq−2 + (q − 2)zq−3 + · · ·+ 2z + 1 (14)

Since q is prime, we know from Lemma 1 that the zeros of
gq(z) are strictly inside the unit circle. We can verify this result
for prime values of q = 3, 5, 7, 11 from the Fig. 1. Except at
z = 1, all the zeros of Cq(z) lie strictly inside the unit circle.

C. Case When q is a Power of a Prime

For q = pm where p is a prime, we have [3]

cq(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if pm−1 does not divide n

−pm−1 if pm−1 divides n but
pm does not divide n

(p− 1)pm−1 if pm divides n

(15)

Hence we have

Ĉq(z) = (p− 1)pm−1z(p
m−1) +

p−1∑

k=1

−pm−1z(p
m−1−kpm−1)

= pm−1z(p
m−1−1)

[
(p− 1)z((p−1)pm−1) −

p−1∑

k=1

z(p−k−1)pm−1

]

Simplifying, we get Ĉq(z) = pm−1z(p
m−1−1)Ĉp(z

pm−1

) (16)

Hence, discarding the zeros at z = 0, we have that the zeros of
Ĉq(z) are the pm−1-th roots of zeros of Ĉp(z).

To visualize the relation (16), compare the locations of zeros
forC3(z) andC9(z) from Fig. 1. Here we havep = 3,m = 2 and
q = 32 = 9. The zero of C3(z) at z = 1 gives rise to three zeros
of C9(z) on the unit circle. These three zeros are the pm−1-th
i.e. 3rd roots of z = 1. Similarly, the zero of C3(z) at z = −1/2
gives rise to three zeros of C9(z) that lie inside the unit circle,
and correspond to cube roots of z = −1/2.

D. Case When Multiple Periods of Ramanujan Sums are
Used in the Filter Definition

When the filter impulse response has l periods of cq(n) as
filter coefficients, we have
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Fig. 2. Zeros of C(l)
7 for 1 ≤ l ≤ 5.

C(l)
q (z) =

ql−1∑

n=0

cq(n)z
−n

=

q−1∑

n=0

cq(n)z
−n
[
1 + z−q + · · · z−(l−1)q

]
(17)

=

(
q−1∑

n=0

cq(n)z
−n

)(
l−1∑

k=0

z−qk

)
= Cq(z)

(
1− z−ql

1− z−q

)
(18)

From this we can see that the ql − 1 zeros of C(l)
q (z) are of two

categories: (a) the zeros of Cq(z), and (b) zeros that are ql-th
roots of unity which are not also q-th roots of unity. There are
q(l − 1) such zeros of the second category. Fig. 2 shows the
locations of zeros for C(l)

7 for 1 ≤ l ≤ 5.

E. A Special Case of q as a Product of Two Numbers

One can ask whether we can characterize zeros of Cq(z)
where q = p1p2, where p1 and p2 are some integers. We were not
able to characterize this for general integers p1 and p2. However,
in this section we consider a very specific case of this, where
p1 = 2 and p2 is odd. Here we use the multiplicative property
of the Ramanujan sums [3]:

cp1p2
(n) = cp1

(n)cp2
(n) whenever p1 and p2 are coprime.

(19)

When p1 = 2 and p2 is odd, the coprime condition is satisfied.
Now note that c2(n) = {1,−1} in its first period. Hence for
q = 2p2 we have

Cq(z) =

q−1∑

n=0

c2(n)cp2
(n)z−n =

q−1∑

n=0

(−1)ncp2
(n)z−n (20)

=

q−1∑

n=0

cp2
(n)(−z)−n = C(2)

p2
(−z) (21)

Hence the zeros of Cq(z) for q = 2p2, where p2 is odd, are the

negatives of the zeros of C(2)
p2 (z). As an example the zeros of

C14(z) (q = 14 from Fig. 1) are the negatives of the zeros of
C

(2)
7 (z) (l = 2 from Fig. 2).

IV. EFFICIENT STRUCTURE FOR RAMANUJAN FILTER BANKS

In this section, we show how the factorization (10) leads to
a possible way of implementing the Ramanujan filter banks
more efficiently. Firstly, note that cyclotomic polynomials have
integer coefficients. The coefficients of Fq(z) remain small
even when q is large. In particular, the first 104 cyclotomic

Fig. 3. (a) Standard implementation of two filters from RFB, (b) Equivalent
efficient implementation, by extracting a common factor P (z).

polynomials have no coefficients other than 1, 0, or -1 [19], [20].
Hence the first 104 cyclotomic polynomials can be implemented
without any multipliers!

Now we present an example of an efficient implementation of
a 2-filter RFB consisting of C12(z) and C18(z). We pull out a
common filter factor from the first terms of the expression (10)
for q = 12 and q = 18. Note that

C12(z) = P (z)F̂4(z) ·
(
z−3Ḟ12(z)

)
, and

C18(z) = P (z)F̂9(z) ·
(
z−5Ḟ18(z)

)
(22)

where, P (z) is the common factor given by

P (z) = F̂1(z)F̂2(z)F̂3(z)F̂6(z) (23)

Hence instead of standard implementation as in Fig. 3(a), we can
implement the two filters as in Fig. 3(b). Since the filter F̂q(z)has
order of φ(q), P (z) is a 6th order filter (since

∑
qk|q φ(qk) = q

[15]). Therefore the implementation as in Fig. 3(b) saves com-
putations corresponding to a 6th order filter, by reusing the
common filter factor P (z).

This saves a lot of repetitive convolutions of signals with
impulse responses. This particular example was chosen as it
well-illustrates the point of filters having common factors, owing
to many common divisors of 12 and 18. In practice, an RFB
usually has all filters from C1(z) to CN (z) for some integer N .
When the filter bank has many filters, there are multiple ways
in which common factors can be shared, and some are more
efficient than others. An interesting problem for future would be
to identify the most efficient way to exploit such common factors.

V. CONCLUDING REMARKS

In this letter we have proved that all the zeros of Ramanujan
filters lie on or inside the unit circle in z-plane. A general proof
was based on Lucas’s theorem. We considered different special
cases of q, such as primes and powers of primes, and discovered
interrelations between them. We also characterized the zeros
of Ramanujan filters having l periods of cq(n) instead of just
one period. It is shown with an illustrative example that the
factorization of filter transfer function in terms of cyclotomic
polynomials and their derivatives opens up a possibility of
efficient implementation of RFB.
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