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IIR Filtering on Graphs With Random
Node-Asynchronous Updates

Oguzhan Teke

Abstract—Graph filters play an important role in graph signal
processing, in which the data is analyzed with respect to the under-
lying network (graph) structure. As an extension to classical signal
processing, graph filters are generally constructed as a polynomial
(FIR), or a rational (IIR) function of the underlying graph operator,
which can be implemented via successive shifts on the graph. Al-
though the graph shift is a localized operation, it requires all nodes
to communicate synchronously, which can be a limitation for large
scale networks. To overcome this limitation, this study proposes a
node-asynchronous implementation of rational filters on arbitrary
graphs. In the proposed algorithm nodes follow a randomized
collect-compute-broadcast scheme: if a node is in the passive stage
it collects the data sent by its incoming neighbors and stores only
the most recent data. When a node gets into the active stage at a
random time instance, it does the necessary filtering computations
locally, and broadcasts a state vector to its outgoing neighbors. For
the analysis of the algorithm, this study first considers a general
case of randomized asynchronous state recursions and presents a
sufficiency condition for its convergence. Based on this result, the
proposed algorithm is proven to converge to the filter output in the
mean-squared sense when the filter, the graph operator and the
update rate of the nodes satisfy a certain condition. The proposed
algorithm is simulated using rational and polynomial filters, and its
convergence is demonstrated for various different cases, which also
shows the robustness of the algorithm to random communication
failures.

Index Terms—Graph signal processing, graph filters, fixed point
iteration, randomized iterations, node asynchronicity.

1. INTRODUCTION

N THE recent area of graph signal processing [1]-[4], the

data at hand is modeled with respect to a network structure,
in which the underlying graph is assumed to represent the depen-
dency between the data points. In order to analyze such network
structured models, classical signal processing techniques have
been extended to the case of graphs. In particular, the analysis
is based on the “graph operator,” whose eigenvectors serve as
the graph Fourier basis (GFB). With the use of GFB, sampling,
reconstruction, multirate processing of graph signals and some
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uncertainty results have been extended to the case of graphs
in [5]-[14].

One important aspect of graph signal processing is the use
of graph filters, which can be utilized in order to smooth out
graph signals (low-pass filters), or detect anomalies (high-pass
filters) [2]. Similar to the classical signal processing, graph
filters can be constructed in two different forms: finite impulse
response (FIR), or infinite impulse response (IIR). The FIR
case corresponds to a matrix polynomial of the given graph
operator [3]—[5]. It is well-known that a polynomial graph filter
of order L is localized on the graph, that is, nodes are required
to communicate only with its L-hop neighbors in order to
implement the filter. For this reason it is very natural to think of
polynomial graph filtering as a way of distributed signal process-
ing, in which the low-order polynomials are favored to keep the
communications localized. The papers [15]-[ 18] (and references
therein) made explicit connections between polynomial graph
filters and distributed computation, and studied various problems
including smoothing, regularization, and consensus.

In the IIR case, the graph filter is constructed with respect to
a rational function rather than a polynomial. It should be noted
that an IIR graph filter can be equivalently represented as an FIR
graph filter (possibly with a very high order) due to the finite
spectrum of the graph operator. Nevertheless, IIR filters are still
useful to consider since they can provide better approximations
for a given filter specifications. When extended to the case of
graphs, an IIR filter of order L can be implemented via iterative
procedures that preserve the locality of the communications. The
studies in [19]-[23] analyzed the convergence behavior of such
filters and showed successful applications on graph signals with
distributed processing.

Although both polynomial and rational graph filters can be
implemented in a distributed fashion, aforementioned imple-
mentations are based on successive graph shifts (multiplica-
tion with the graph operator). Although the graph shift can be
implemented via data exchange with the neighboring nodes, it
requires all the nodes to communicate simultaneously. That is,
all the nodes should send and receive data at the same time
instance, or nodes should wait until all the communications
are terminated before proceeding to the next iteration (shift).
Synchronization becomes an important limitation when the size
of the network, N, is large, e.g. distributed large-scale graph pro-
cessing frameworks [24]-[27], or the network has autonomous
behavior without a centralized control.

In order to eliminate the need for synchronization, this study
proposes a node-asynchronous implementation of an arbitrary
rational filter (including FIR) on an arbitrary graph. In the
proposed algorithm neighboring nodes send and receive a vector
variable (state vector) whose size is determined by the order
of the filter, and the nodes follow a collect-compute-broadcast
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framework. More precisely, the algorithm consists of two main
stages: passive and active. In the passive stage, a node receives
and stores the data (local state vectors) sent by its incoming
neighbors. When a node gets into the active stage at a random
time instance, it completes the necessary filtering calculations
(local state recursions), and then broadcasts its most recent
state vector to its outgoing neighbors. Thus, nodes behave
asynchronously on the network. By carefully designing the com-
putation scheme, the proposed algorithm is proven to converge
to the desired filtered signal in the mean-squared sense under
mild stability conditions.

A. Relations With Asynchronous Fixed Point Iterations

In this study, the analysis of the algorithm will be based on
the convergence properties of randomized asynchronous linear
fixed pointiterations (state recursions). We note that non-random
asynchronous fixed point iterations are well studied problems in
the literature [28]-[31], which considered more general non-
linear update models. For the linear model (which is the case in
this study), the earliest analysis can be traced back to the study
in [28] that provided the necessary and sufficient condition under
which the asynchronous iterations are guaranteed to converge
for any index sequence. More recently, studies in [32], [33]
(and references therein) studied the randomized variations of
asynchronous iterations, in which indices are assumed to be
selected with equal probabilities, and they provided sufficiency
conditions for the convergence. Asynchronous iterations are
considered also in the context of semi-supervised learning on
graphs [34], [35].

In the case considered in this study, the indices are allowed
to be selected with non-equal probabilities during the asyn-
chronous recursions. More importantly, the possibility of up-
dating different number of indices in each iteration (which can
be considered as partial synchrony) is also not ruled out. In fact,
convergence analysis of a similar setting is studied in [36], [37]
for the case of zero-input, in which the system is assumed to
have a unit eigenvalue, and the iterand is proven to converge
to a point in the eigenspace of the unit eigenvalue when all the
indices are updated with equal probabilities. On the contrary, the
model considered here starts with the assumption that the system
does not have a unit eigenvalue, and it further assumes that the
input is a nonzero constant, so there is a unique nonzero fixed
point. This study also considers the effect of the input noise.
For this setting, we prove that the Schur diagonal stability of the
system matrix (which is more relaxed than the condition given
in [28], [33]) is sufficient for the convergence of the randomized
asynchronous iterations in the mean-squared sense.

B. Outline and Contributions

This study consists of two main parts. The first part (Section I)
considers the analysis of the randomized asynchronous state
recursions in arbitrary linear systems, of which synchronous
non-random recursions are special-cases and all results continue
to be applicable. The second part (Sections IIl and IV) focuses on
the specific case of graphs and considers a node-asynchronous
implementation of rational graph filters. More precisely, in
Section II, we introduce the randomized asynchronous model for
the state recursions and present the first main result (Theorem 1)
that provides upper and lower bounds for the mean-squared error
of the randomized iterations. Based on this result, we provide a

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

sufficient condition (Corollary 1) that ensures the convergence
of the iterations. Then, we prove that the presented condition
is more relaxed than the well-known necessary condition for
the convergence of the non-random asynchronous iterations
(Lemma 1). The special case of uniform index-selection prob-
abilities is also considered (Corollary 2). In Section III, we
propose a node-asynchronous implementation of a graph filter
(Algorithm 1) and describe its behavior. Then, in Section IV we
prove the convergence of the proposed algorithm to the desired
filtered signal in the mean-squared sense for both synchronous
and asynchronous cases (Theorems 2 and 3). Finally in Sec-
tion V, we simulate the proposed algorithm for various different
graph filters (including rational and polynomial) and demon-
strate the convergence behavior of the algorithm numerically. A
preliminary version of this study was presented in [38]. Some
extensions of these results are presented in [39].

We note that results presented in this study allows the graph
to have directed edges possibly with a non-diagonalizable op-
erator. It is also important to point out that this study does not
consider the design of graph filters. The main focus here is a
node-asynchronous implementation of a given graph filter.

C. Notation

We will use E[-] to denote the expectation. We will use >
and > to denote the positive definite (PD) and the positive semi-
definite (PSD) ordering, respectively. For a matrix X possibly
with complex entries, we will use XT and X" to denote its trans-
pose and conjugate transpose, respectively; tr(X) to denote its
trace; omin(X) and opmax (X) = || X]|2 to denote its the smallest
and the largest singular values, respectively; p(X) to denote the
spectral radius (the largest eigenvalue in magnitude). When X is
a Hermitian matrix, we will use Ayin(X) and Apax(X) to denote
its the smallest and the largest eigenvalues, respectively. We will
use |X]| to denote the matrix obtained by replacing the elements
of X by their absolute values. For a matrix X € CM*V  we will
use vec(X) € CMN to denote the vector obtained by stacking
the columns of X. We will use ® to denote the Kronecker
product, which has the following mixed-product property:

(A®B)(X®Y)=(AX) @ (BY) (D

for matrices A, B, X,Y with conforming sizes.

We will use 7 to denote asubsetof {1, ..., N}.Given asubset
T, its corresponding index-selection matrix will be denoted as
P € RV*N which is a diagonal matrix that has value 1 only
at the indices specified by the set 7. That is,

Pr=3 el wPr) =T, @
T

and

where e; € RY is the i*" standard vector that has 1 at the ‘"
index and 0 elsewhere, and | 7| denotes the size of 7.

II. ASYNCHRONOUS STATE RECURSIONS
Given a matrix S € CV*¥ and a constant input signal
u € CV, we will consider the following type of recursion on
the state vector x;, € CV:

Xp =SXp 1 +up1, (3)
where x denotes the initial value of the state vector, and uy
denotes the noisy input signal. That is,

u; = u—+ wy, 4
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where wy, is the noise term with the following statistics:
Elwi] =0, E [Wk WE] =4(k—s)T, (5)

where d(-) denotes the discrete Dirac delta function, and T is
allowed to be non-diagonal.

In the noise-free case, i.e., I' = 0, the fixed point of the
recursion in (3) is given as follows:

x*=1-8)"u, (6)

which requires S not to have eigenvalue 1 so that I —S is
invertible. In order to analyze the convergence behavior, we first
define the residual (error) vector as follows:

ey = X — x*. (7)
By substituting (7) into the state recursion in (3), the residual
), can be written explicitly as follows:
k—1
rr =SFro+ Z S"™ Wi_1-n. )
n=0
Due to the fact that w;,’s are uncorrelated in different iterations
and have zero-mean, the expected squared ¢5-norm of the resid-
ual r; can be written as follows:
“) ()

It is clear from (9) that when S is a stable matrix, i.e., when
the following holds true:

k-1

E [HI’]CHE] = HSk I‘0H§ + tr(Z Sn T (Sn)

n=0

p(S) <1,
the error term in (9) approaches an error floor. More precisely,

lim E [||r||3] = tr(YT), (A1)
k—o00

(10)

lim E[ry] =0, and
k—o0

where Y is given as follows:

T=I+) (S")s", (12)
n=1
which converges due to (10). (See [40, Appendix D].)

In the noise-free case (I' = 0), the limit in (11) implies the
convergence of x; to x*. On the other hand, in the case of an
unstable transition matrix S, i.e., p(S) > 1, the mean-squared
error is bounded away from zero even in the noise-free case.
Therefore, the condition in (10) is both sufficient and necessary
for the convergence of the state recursions in (3). This is, in fact,
a well-known result from the linear system theory [40].

In the context of graph signal processing [1]-[4], the matrix
S is assumed to be a local graph operator (shift matrix) on
the graph of interest. Thus, an iteration in the form of (3) can
be implemented on the graph as a data exchange between the
neighboring nodes. That is, (3) can be written as follows:

(xi)i = Y Sig (1) + (w1, (13)
J

for all nodes ¢ in 1 <4 < N. In this setting, u is considered
as a signal defined on the graph, where the nodes will be
the “domain” analogous to time. The index & will denote the
round of communication, so the graph signal u does not depend
on the iteration index k. Note that the noisy measurement
u; = u + wy, depends on k.
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Although the individual nodes can perform the updates of
(13) locally, such an implementation requires a synchronization
mechanism among the nodes. That is, all the nodes should send
and receive data at the same time instance, or nodes should wait
until all the communications are terminated before proceeding
to the next iteration. Synchronization becomes an important
limitation when the size of the network, NV, is large, or the
network has autonomous behavior, in which case there is no
centralized control over the network.

In order to overcome the need for synchronization, in this
study we will consider a randomized asynchronous variation
of the state recursion in (3), in which only a random subset of
indices are updated simultaneously and the remaining ones stay
unchanged. More precisely, we consider the following update
model:

i € T,
i ¢ Tk,

where T}, denotes the set of indices updated at the k*" iteration.

For non-random variants of the model in (14), the study [28]
assumed that only one index is updated per iteration and allowed
the use of the past values of the iterant, that is, x; may depend on
{Xk-1,...,Xp_s} for some fixed s. Thus, a noise-free and non-
random version of (14) with | 7| = 1 corresponds to the model
considered in [28] with s = 1, for which the following condition
is shown to be both necessary and sufficient for the convergence
of the iterations (see [28, Section 5] and [29, Section 3.2]):

p(IS)) < 1. (1)

In words, if (15) is satisfied, the iterations converge for any index
sequence in which no index is left out. On the contrary, if (15)
is violated, then there exists an index sequence for which the
iterations do not convergence.

The case of randomized index-selection was also studied more
recently in [32], [33] for the solution of IV linear equations
with N unknowns. These studies focused also on the case of
|7k| = 1 (updating only one index per iteration) and showed
that the following condition:

[S]]2 < 1, (16)

is sufficient (with some additional assumptions on S) to ensure
the convergence of the iterations. We refer to [32, Lemma 3.1]
and [33, Section 2.1] for the precise details.

In the randomized asynchronous model considered in this
study, we allow the case of updating more than one index per
iteration possibly with indices having non-uniform selection
probabilities. In the next subsection, we will elaborate on the
statistical properties of the index-selection model and define the
average index-selection matrix, which will play an important
role in the convergence analysis of the iterations.

(3); = {(S Xg—1); + (Ugp—1)s4, (14)

(xk—l)i7

A. Random Selection of the Update Sets

In the asynchronous model we consider in (14), the update
set T is assumed to be selected randomly and independently
among all possible 2V different subsets of {1,..., N} in every
iteration of (14). However, we would like to emphasize that the
independent selection of the update sets do not necessarily imply
independent selection of the indices. Thus, the model considered
here allows correlated index-selection schemes. We also note
that both the content and the size of 7, are random variables.
We do not assume that 7 s have identical distributions at every
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iteration k. Nevertheless, we do assume that the distribution of
Ty is first-order stationary in the following sense: expectation
of the index-selection matrix P, does not depend on k. More
precisely,

VEk.
RNXN

E[Pr]=P (17)

In the rest of the paper, the matrix P € will be referred
to as the average index (node) selection matrix, which is a
deterministic and diagonal matrix satisfying the following:

0<P<I, (18)

where the positive definiteness follows from the fact that no
index is left out (on average) in the update scheme of (14).
We also note that tr(P) = E[| 7| ] corresponds to the average
number of indices updated per iteration.

B. Convergence in the Mean-Squared Sense

It is easily verified that the fixed point of the randomized
model (14) continues to be x* given in (6). Therefore, the vector
r;, defined in (7) represents the residual for the randomized
asynchronous model as well. Thus, the convergence of ry; to zero
implies the convergence of x, to the fixed point x*. However, rj,
is arandom variable in the asynchronous case due to the random
selection of the indices. The following theorem, whose proof is
presented in Appendix A, provides bounds on the mean-squared
error as follows:

Theorem 1: Inthe randomized asynchronous model (14), the
mean-squared error can be bounded as follows:

_ gk

E [|lrg ]3] < @* roll3 + 53— t:(PT),  (19)
2 5 gk o2 4 LY

E [lIrillz] > 9% rolls + T—p- x(PT), (20)

where

V=Amin(I+S"PS —P), U=)\x(I+S"PS—-P).
2y
Regarding the bounds in (19) and (20) we first note that
the inequality in (18) implies ¢ > 0, hence ¥ > 0, irrespective
of the values of S and P. As a result the expressions on the
right-hand-side of (19), (20) are positive and finite. However,
Theorem 1 by itself does not ensure the convergence of the
iterations as the values of 1 and ¥ can be larger than or equal
to 1 for some values of S and P. The following corollary
presents a sufficiency condition that ensures the convergence
of the randomized iterations of (14) in the mean-squared sense
up to an error floor depending on the amount of input noise:
Corollary 1: 1If the state transition matrix S and the average
index-selection matrix P satisfy the following:

sfps<P, (22)

then, the limit of the mean squared error of the asynchronous
model in (14) is bounded as follows:

tr(PT)

2 tr(PT)
<
Amax (P — SHP'S) EAH

~ Amin (P —SHPS)’

(23)

Proof: The assumption (22) implies that 1) and ¥ defined in

(21) satisfy the inequality 0 < ¢ < ¥ < 1. Then, the bounds in
(23) follow directly from Theorem 1.

< lim

k—o0
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A number of remarks are in order:

1) Update Probabilities and Convergence: The convergence
of the iterations depends on the matrix S as well as
the average index-selection matrix P. Thus, the random
asynchronous iterations running on a given matrix S may
not converge for an arbitrary set of update probabilities,
yet the convergence can still be achieved for specific sets
of probabilities. The question of whether there exists a P
satisfying (22) or not for a given S will be discussed in the
next section.

2) Error Floor: The lower bound in (23) reveals an error
floor: no matter how many iterations are used, the expected
residual error is always bounded away from zero in the
presence of noise (I' # 0), which is also the case in
synchronous iterations as seen in (11). Nevertheless, (23)
shows that the error floor is bounded linearly by the noise
covariance matrix.

3) Convergence Rate and Index Selection: It should be noted
from Theorem 1 that the rate of convergence as well as the
error floor depend on the average index-selection matrix
P. That is to say, some set of index-selection probabilities
may yield a faster rate of convergence or alower error floor,
for which we provide a numerical evidence in Section V
(See Figs. 5, 8). However, their theoretical analysis will
be considered in a later study.

4) Sufficiency: It is important to emphasize that the condition
(22) is only sufficient but not necessary to ensure the
convergence of the randomized asynchronous iterations.
When (22) does not hold true, it merely means that the
upper bound dictated by Theorem 1 diverges in the limit,
which makes the theorem inconclusive regarding the con-
vergence. The non-necessity of the condition (22) will be
numerically verified later in Section V-C. Nevertheless,
the importance of the sufficient condition (22) follows
from the fact that it does not have any additional assump-
tion on the matrix S: it may have complex values, may be
non-Hermitian, and it may even be non-diagonalizable.
When the graph operators are considered in Sections III
and IV, this will be very important to ensure the conver-
gence of filters on an arbitrary directed graph.

In the following Sections II-C and II-D, we will elaborate on
the condition (22) as well as the implications of Corollary 1. If
desired, the reader can skip these two subsections and jump to
Section III directly, where we present an asynchronous imple-
mentation of IIR graph filters.

C. On the Schur Diagonal Stability

In addition to the convergence results presented here for the
randomized asynchronous state recursions, the mathematical
condition (22) appears in various different contexts. For exam-
ple, an implementation of a digital filter is guaranteed to be
free from limit cycles (overflow oscillation) when the transition
matrix S of its realization satisfies (22) for some P [41], [42].
(In fact, [42] requires STPS < P only.) Moreover, the study
in [43] showed that a condition in the form of (22) is sufficient
to ensure the convergence of time-varying block asynchronous
iterations.

Due to its importance in various different application, the con-
dition (22) and its variations have been studied extensively in the
literature. In fact, the condition was first referred to as diagonal
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stability in [44]. Later in [45], the term was revised as Schur
diagonal stability in order to distinguish the discrete and the
continuous counterparts. (See [45, Definitions 2.1.3 and 2.5.2].)
More precisely:

Definition 1: A matrix S € CV*¥ is said to be Schur diag-
onally stable (alternatively, S € Dy) if and only if there exists a
positive diagonal matrix P such that S"PS — P < 0.

Unlike the stability condition (10) that depends only on the
eigenvalues of a matrix, the Schur diagonal stability of a matrix
cannot be decided just by its eigenvalues in the sense that among
two similar matrices one may be Schur diagonally stable and the
other may not [42], [45]. Furthermore, Schur diagonal stability
is more restrictive than stability, but more relaxed than (15)
as shown by the following lemma (whose proof is provided in
Appendix B):

Lemma 1: The following hold true for any S € CV*V:

p(S) <1 = SeDy = p(S)<1. (24

Furthermore,

ISl <1 = S € Dy. (25)

We also note that the converse of the implications in (24) and
(25) do not hold in general. We refer to [45, Section 2] (and
references therein) for an elaborate compilation of properties of
the diagonal stability.

Two remarks are in order:

1) Random vs Non-Random Iterations: We would like to
point out that Corollary 1 together with Lemma 1 does
not contradict the well-known result of [28] that showed
the necessity of the condition p(|S|) < 1 for the conver-
gence of non-random asynchronous iterations. The key
difference between Corollary 1 and [28] is the notion of
convergence. The study [28] ensures the convergence of
the iterations for any index sequence, whereas Corollary 1
considers the convergence in the mean-squared sense.
When p(|S|) > 1, there exists an index sequence for which
iterations do not converge, yet the iterations do converge
in the mean-squared sense if the indices can be updated
with appropriate probabilities, i.e., the condition (22) of
Corollary 1 is satisfied.

2) Numerical Search: Schur diagonal stability of a given
matrix can be verified via the following semi-definite
program:

H 1 .
min ¢ st ¢l " diag(p) S — diag(p)

" (20)
P 1>p2>0,

where 1 denotes the vector with all ones. More precisely, it
can be shown that the optimal value of (26) satisfies ¢* < 0
if and only if the matrix S is Schur diagonally stable. Thus,
the strict negativity of the numerical solution of (26) for
a given matrix S determines the Schur diagonal stability
of S.

D. The Case of Uniform Probabilities

The sufficiency condition given by Corollary 1 involves both
the matrix S and the average index-selection matrix P. In
many practical scenarios, the indices (or the update sets) are
selected with uniform probabilities, in which case implications
of Theorem 1 can be simplified further as we discuss next.

When the indices are equally likely to be updated in each
iteration of (14), the average index-selection matrix becomes a
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scaled identity matrix. More precisely,

P =pI, where 0<p<1. 27

In general, it is possible to use different stochastic models for
the selection of the update sets whose average index-selection
matrix is in the form of (27). For example, when a subset of
size T is selected uniformly randomly among all possible (1]\5)
different subsets, the average index-selection matrix becomes
P = (T/N) 1. Notice that the case of T' = 1 corresponds to the
selection of only one index uniformly randomly per iteration.
It is also possible to select subsets of different sizes, which is
considered in [36], [37], [46], [47].

When the matrix P has the form in (27), the rate parameters
in (21) given by Theorem 1 reduce to the following form:

1/) :p0r2nin(s) +1 - P

which shows that the singular values of the matrix S bound the
rate of convergence of the iterations of (14). As a result, the
matrix S having a bounded spectral norm is sufficient to ensure
the convergence of the randomized asynchronous iterations,
which is formally presented in the following corollary:
Corollary 2: If ||S||, < 1 and the indices are updated with
equal probabilities in the random asynchronous model of (14),
then the limit of the mean squared error is bounded as follows:

U=pogpu(S)+1-p, (28

tr(T) ) 9 tr(T)
ﬁam(s) < kh_T)IOlCE[Hrknz] < T—oZ (S)’ (29)

Proof: If the indices are updated with equal probabilities,
the average index-selection matrix P is in the form of (27), thus
the condition (22) of Corollary 1 reduces to SHS < I, which
is readily satisfied due to the assumption ||S||, < 1. Then, we
can apply Corollary 1. The use of (28) in Theorem 1 gives the
bounds in (29).

Some remarks are in order:

1) Convergence Irrespective of the Update Probability: Un-
like the condition presented by Corollary 1, when the in-
dices are updated with equal probabilities, the sufficiency
condition given by Corollary 2 involves only the matrix
S. Therefore, if the condition (bounded spectral norm) is
met, the convergence is ensured irrespective of the actual
value of the average index-selection matrix P. However,
the rate of convergence does depend on P in general as
suggested by (28), which will be verified numerically as
well in Section V.

2) Noise Amplification: When the indices are equally likely to
be selected in the random asynchronous iterations, there
is an amplification to the input noise. This observation
follows simply from the assumption ||S||, < 1 thatimplies
1/(1 — 02,,(S)) > 1. Thus, the lower bound in (29) can
be further lower bounded with tr(T") = E[||wy||3], which
shows that the error floor is always larger than the amount
of input noise. This behavior of the random asynchronous
iterations is consistent with the synchronous counterpart.
The error floor of the synchronous iterations given in (11)
can be lower bounded as tr(Y' ') > tr(T") since the matrix
Y in (12) satisfies Y > 1.

3) Nonstationary Noise Covariance: We note that the input
noise need not have a stationary distribution for The-
orem 1, Corollary I, and Corollary 2 to be valid. As
long as the noise covariance matrix is upper bounded as
E[w,, wi] < T for all k, the corresponding upper bounds
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remain valid. Similarly, the corresponding lower bounds
are valid as long as the covariance matrix is lower bounded
as E[w, wil] = T for all k.

III. ASYNCHRONOUS RATIONAL FILTERS ON GRAPHS

In this section, we will consider a node-asynchronous imple-
mentation of a rational graph filter that is specified as follows:

hz) = p(z) / q(), (30)

where the polynomials p(z) and ¢(z) are of degree (at most) L,
and they are assumed to be in the following form:

L L
D=3 pt g =143 g
n=0 n=1

The coefficients are allowed to be complex in general, i.e.,
P, qn € C. In particular, polynomial graph filters, which corre-
sponds to the case of g1 = - -- = g1, = 0, are not excluded.

€29}

A. Rational Graph Filters

In the following we will use G € CV*V to denote a graph
operator for the graph with N nodes. Here G ; denotes the
weight of the edge from node j to node . In particular, G; ; = 0
when nodes ¢ and j are not neighbors. Examples of such local
graph operators include the adjacency matrix, the graph Lapla-
cian, etc. The graph is allowed to be directed possibly with a
non-diagonalizable adjacency matrix. We will use MV, (7) and
Nout(7) to denote the incoming and outgoing neighbors of the
node ¢. More precisely we have:

Nn(l):{J|Gz,]7éO}> J\/’oul()_{]|Gjl7éO}

For a given graph operator G € CV*¥ | the rational graph
filter corresponding to (30) has the following form:

hMG) =p(G) ¢(G) ™, (33)

where we implicitly assume that ¢(G) is an invertible matrix.
When u € CV is asignal on the graph, we will use 1 to denote
the filtered version of u with the filter h(G). That is,

u=h(G)u,

where u is the given signal on the graph.

A special case of rational graph filtering corresponds to
Laplacian smoothing [15], [48], [49]. More precisely, given an
undirected graph with the Laplacian matrix L and a signal u on
the graph, the Laplacian smoothing is obtained as the solution
of the following regularized least-squares problem:

(32)

(34)

G=argminfu—g3+7€"LE v 20, G5
whose closed form solution can be obtained as follows:
u=~h(L)u, where h(z)=1/(1+~x). (36)

Thus, a rational graph filter can be considered as an extension to
the Laplacian smoothing, in which the filter can have an arbitrary
response in the graph frequency rather than (36) [15].

B. Node-Asynchronous Implementation

Unlike the classical digital filters, a rational graph filter can be
represented as an FIR (polynomial) graph filter of order at most
N — 1. (See [50, Theorem 6.2.9].) Thus, one way to implement
(34) is to compute N — 1 graph shifts and take an appropriate
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Fig. 1. Visual illustration of the proposed asynchronous implementation of a
given graph filter. Edges can be directed in the network. (a) The node ¢ waits and
listens in the passive stage. (b) When the node ¢ receives a message, it updates its
buffer. (c) When the node 7 gets into the active stage at a random time instance,
it first updates its state vector. (d) After the update, the node 7 broadcasts its state
vector to its outgoing neighbors.

linear combination. However, for large graphs (NN is large)
this is not practical because of its complexity. Furthermore, as
discussed in [36], the graph shift (multiplication with G) forces
all nodes to communicate at the same time, which requires a syn-
chronization among the nodes of the network. In a large network
synchronization introduces delays, or it may not be even possible
in the case of autonomous networks. In order to overcome
this limitation, this section will introduce a randomized node-
asynchronous implementation of the rational graph filtering
in (34).
In the proposed implementation, the i'"
have the following four local variables:
e an input signal: u; € C,
e a state-vector: x; € CL,
e an output variable: y; € C,
e abuffer of size L | N, (7)],
where only the input signal u; is constant, and the value of the
remaining quantities are changing over time in arandom manner.
In fact, the output variable y; will be proven to converge to
the corresponding element of the filtered signal u; in the mean
square sense in the proposed approach under some (realistic and
practical) conditions on the filter, the graph operator, and the
update statistics. (See Theorem 3.)
An overview of our approach (which is illustrated in Fig. 1)
is as follows: while a node is not doing updates, it stays in the
“passive” stage in which it only receives and stores the state
vectors in its buffer sent by its incoming neighbors. See Fig. 1(b).
When the node 7 “wakes up” at a random time instance (asyn-
chronously with respect to other nodes), it follows a two-step
update procedure (see Fig. 1(c)):
1) Graph shift step: using the values held in its buffer, the state
vector x; is updated based on its neighbors according to
the graph operator G.

2) Filtering step: the state vector x; is updated once more
using the input signal and state recursions imposed by the
underlying graph filter in (33).

node is assumed to
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Once the graph filtering stage is completed, the node ¢ broadcasts
its most recent state vector x; to its outgoing neighbors, who can
use its value to update themselves at random asynchronous times
in future, in a similar manner. See Fig. 1(d). In the mean time, the
local output variable y; also gets updated using the state vector
x; and the input signal ;.

C. Implementation Details

In this section, we will present the precise details of the
proposed asynchronous update mechanism, which was outlined
in the previously section. Then, we will present the proposed
method formally in Algorithm 1.

We first consider the graph shift step. In order to incorporate
the underlying graph structure into the filtering operation, the
graph shift step updates the local state vector as the linear
combination of the state vectors of the incoming neighbors. More
precisely, when the i*" node is updating its state vector, the node
does the following computation first:

/
X Y Giyx;,
JEN (1)

(37)

where x, € CL denotes the “graph shifted version” of the state
vector x;. [t is important to note that the computation in (37) can
be done locally and asynchronously by the i*" node, as the node
is assumed to have all the state vectors of its incoming neighbors
already available in its buffer.

In the filtering step, we use the graph shifted state vector x/
to carry out a state recursion corresponding to the underlying
filter. In this regard, consider the scalar IR digital filter, hq(z),
whose transfer function is given as follows:

ha(2) =p(z"") [a(z"") =Y b 27", (38)
n=0

where p(z) and ¢(z) are as in (31), and h,,’s correspond to the
coefficients of the impulse response of the digital filter. Further-
more, we assume that the digital filter (38) has the following
state-space description:
A=T'AT, b=T"'D

c=¢T, d=d, (39

)

where the quadruple (1/3;, B, c, E) corresponds to the direct form
description of the filter in (38) (see [51, Section 13.4]):

0 1 0O --- 0 0
0 0 1 -+ 0 0
A= : : R ) b= . J:po,
0 0 0o --- 1 0
—qL —qrL-1 - 0 —q1 1

c=[prL—pPoqrL PrL—1—Poqr-1 P1—Ppoqi), (40)

and T € CL*L is an arbitrary invertible matrix.

Although the response of the filter in (38) does not depend
on the particular selection of the matrix T, the convergence
properties of the node-asynchronous implementation of the filter
on the graph does depend on the similarity transformation. We
will elaborate on this in Section IV-A, but the optimal choice of
T is not known at this time.

Using the state-space description of the underlying filter in
(39), the i*" node executes the following updates locally in the
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Algorithm 1: Node-Asynchronous Rational Graph Filter-
ing.

1: procedure INITIALIZATION(%)

2 Initialize the state vector x; € CF as x; = 0.

3: procedure PASSIVE STAGE(%)

4 if x; is received from the node j € N, (¢) then

5 Store the most recent value of x;;.

6: procedure ACTIVE STAGE(%)

7 > graph shift
8 > noisy sample
9

0

1

/
Xi =2 jenia(i) Gig X5
V; — U + w;.

Yi < ¢ X, + dw;. > filtering
1 X; < AX, +bu;. o> filtering
11: Broadcast x; to all j € Noy ().
filtering step:
yi < ¢ x; +d (u; +w;),
X; < A X; +b (uz + U)i), (41)

where w; denotes the additive input noise measured by the node ¢
during an update. We note that the value of u; remains the same,
but the value of w; is different in each update due to it being
random. If the nodes do not take measurements, one can easily
assume that the measurements are noise-free and set w; = 0 so
that the noise covariance is I' = 0.

The random node-asynchronous implementation of the IIR
graph filter (33) is summarized in Algorithm 1. In the next
section we will prove that this algorithm is indeed a valid
implementation of (33) under some conditions to be stated.

Except the initialization stage, which is executed only once,
Algorithm 1 consists of two main states: passive and active,
both of which are triggered asynchronously. More precisely, the
active stage is triggered randomly by a node-specific timer, or
condition, and the passive stage is triggered when a node receives
a state vector from its incoming neighbors. It is also assumed
that a node stores only the most recent received data.

When the node ¢ gets into the active stage at a random time
instance, the node first computes its graph shifted state vector x,
in Line 7 using the values that are available in its buffer. Then,
the node takes a noisy measurement of the underlying graph
signal u;. When the filtering recursions in Lines 9 and 10 are
completed, the node broadcasts its own local state vector to its
outgoing neighbors, and gets back into the passive stage.

In the presented algorithm we emphasize that a node getting
into the active stage is independent of the values in its buffer.
In general, a node does not wait until it receives state vectors
from all of its neighbors. In between two activations (i.e., in the
passive stage), some values in the buffer may be updated more
than once, and some may not be updated at all. Nodes use the
most recent update only.

Since nodes are assumed to store the most recent data of its
incoming neighbors in the presented form of the algorithm, the
node i requires a buffer of size L - |Nj,(4)]. In fact, Algorithm 1
can be implemented in such a way that each node uses a buffer
of size 2L only. One can show that this is achieved when
each node broadcasts the difference in its state vector rather
than the state vector itself, and the variable x; accumulates all
the received differences in the passive stage. However, such
an implementation may not be robust under communication
failures, whereas the current form of the algorithm is shown to be
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robust to communication failures. (See Section V-B.) Moreover,
the current form of the algorithm is easier to model and analyze
mathematically as we shall elaborate in the next section.

Due to its random asynchronous nature, Algorithm 1 appears
similar to filtering over time varying graphs, which is studied
extensively in [21]. However, random asynchronous communi-
cations differ from randomly varying graph topologies in two
ways: 1) Expected value of the signal depends on the “expected
graph” in randomly varying graph topologies [21, Theorem 1],
whereas the fixed point does not depend on the update prob-
abilities in the case of asynchronous communications. 2) The
graph signal converges in the mean-squared sense in the case
of asynchronous communications (see Section I'V), whereas the
signal has a nonzero variance in the case of randomly varying
graph topologies [21, Theorem 3].

We also note that the study in [52] proposed a similar algo-
rithm, in which nodes retrieve and aggregate information from
a subset of neighbors of fixed size selected uniformly randomly.
However, the computational stage of [52] consists of a linear
mapping followed by a sigmoidal function, whereas Algorithm 1
uses a linear update model. More importantly, aggregations are
done synchronously in [52], that is, all nodes are required to
complete the necessary computations before proceeding to the
next level of aggregation. On the contrary, nodes aggregate
information repetitively and asynchronously without waiting for
each other in Algorithm 1.

IV. CONVERGENCE OF THE PROPOSED ALGORITHM

For convenience of analysis we define

Xy =[x1 X2 Xy Xy] € CHV,

Y1 w1 uy
YN wN

. (42)

un

Here, X( k) will be called the augmented state variable matrix,
andy ) € CY is the output vector after & iterations of the algo-
rithm. Also W) € CN is the noise vector at the k" iteration,

and u € C¥ is the graph input signal as before.

We note that the index k is a global counter that we use to
enumerate the iterations. In general, nodes are unaware of the
value of k, which is why the augmented variables in (42) are
indexed with k in parenthesis, but the variables corresponding
to individual nodes are not indexed by & at all. Whenever a
node completes the execution of the active stage of Algorithm 1,
we assume that an iteration has passed. Thus, (42) denotes the
variables at the end of the Kt iteration. Furthermore, we will
use 7T to denote the set of nodes that get into the active stage
simultaneously at the k*" iteration.

Algorithm 1 allows the nodes to update their values with
different frequencies. Similar to (17), we will use the diagonal
matrix P € RV*V to denote the average node (index) selection
matrix in the algorithm. In particular, P = pI corresponds to
the case of all the nodes having the same rate of getting into the
active stage.

In order to analyze the evolution of the state variables in the
algorithm, we first note that the state vector of a node ¢ at the
beginning of the k' iteration can be written as follows:

X, = X(k—l) e;, 1<7<N. 43)
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Thus, if the node i gets into the active stage at the k'" iteration,
i.e., i € T, then its graph shifted state vector (computed in
Line 7 of the algorithm) can be written as follows:

xi= Y Giyxj=) Xpe e Gle
FEN(7) J

= X(kfl) GT e,;. (44)

Therefore, the next value for its state vector is given as follows:

Xyei = (AXp G +bu+wy 1)') e, i€Th
(45)
On the other hand, if the node 7 does not get into the active
stage at the kth iteration, i.e., i ¢ Ti, its state vector remains
unchanged. Thus, we can write following:

i ¢ Th

Since both (45) and (46) are linear in the augmented state
variable matrix X ), we can transpose, and then vectorize both
equations and represent them as follows:

Xk) € = X(k-1) €i, (46)

_ (AXy_1)i + (Wp—1)i, @ € Ty,
Xk)i =4 ,— = 47)
(%) {(Xkl)ia i Tr,
where the variables of the vectorized model are as follows:
X} = vec (X(Tk)> ., A=A®G,
ua=b®u, Wk=b®W(k), (48)

and Uy, is defined similar to (4) as U = U + Wy. Furthermore,
the update set 7, of the vectorized model is defined as follows:

Te={i+jNlie Th.0<j <L}, (49)

which follows from the fact that when a node gets into the
active stage, it updates all elements of its own state vector
simultaneously according to Line 10 of the algorithm.

‘We note that the mathematical model in (47) appears as a pull-
like algorithm, in which nodes retrieve data from their incoming
neighbors. However, with the use of a buffer, the model (47)
can be implemented in a collect-compute-broadcast scheme as
proposed in Algorithm 1. See also Fig. 1.

When the algorithm is implemented in a synchronous manner,
the state recursions of (47) reduce to the following form:

Xp = A Xp_1 + Ug_1, (50)

and the following theorem (whose proof is provided in Ap-
pendix C) presents the mean-squared error of the algorithm:

Theorem 2: In Algorithm 1, assume that all the nodes on the
graph get into the active stage synchronously, and the matrix A
does not have an eigenvalue equal to 1. Then,

E[lyw -] =|cee) &7 @ -x ]
k—1
+ 3 tr (G TGN, (51
n=0

where X* is the fixed point of (50), and h,,’s are the coefficients
of the impulse response of the digital filter as in (38).
In (51) it is clear that as long as

p(A) <1, (52)
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the first term of (51) converges to zero irrespective of the initial
vector Xy, as the iteration progresses. So, from Theorem 2 the
residual error approaches an error floor:

lim E [[lyg — 3] = tr(HT), (53)

where

H= Z |hn|2 (Gn)H Gﬂ,.

n=0

(54)

Thus, the error floor in the synchronous case depends on the
impulse response of the underlying digital filter as well as the
graph operator, but the similarity transform T does not affect
the error floor. In short, the similarity transform does not affect
either the convergence or the error floor in the synchronous case.
Note that the stability condition in (52) ensures the convergence
of (54). Note also that p(A) = p(A) p(G) in view of (48).

Next consider the asynchronous case. The equivalent model
of the algorithm in (47) is in the form of (14), thus the results
presented in Section II (Corollary 1 in particular) can be used
to study the convergence of the algorithm. In this regard, we
present the following theorem, whose complete proof is given
in Appendix D:

Theorem 3: In Algorithm 1, let P denote the average node
selection matrix and I the covariance matrix of the measurement
noise. If the state transition matrix A of the filter, and the operator
G of the graph satisfy the following:

|Al; G"P G <P, (55)
then
. ~12
— <
lim E [y — ;] < e(@®), (56)
where
b 2 2 G_ 2
R — Ibl|z [[c]lz [G]3 PP (57)

Aoin (P — [A[FGT P G)

Theorem 3 presents an upper bound on the mean-squared
error. In the noise-free case (I' = 0), the right-hand-side of (56)
becomes zero, and the condition (55) ensures the convergence
of the output signal to the desired filtered signal in the mean-
squared sense. We note also that the right-hand-side of (56) is
linear in the noise covariance matrix, which implies that the error
floor of the algorithm increases at most linearly with the input
noise. This will be numerically verified later in Section V-A.
(See Fig. 4(b).) In fact, it is possible to integrate stochastic
averaging techniques studied in [34], [35] into Algorithm 1 in
order to overcome the error due to noise at expense of a reduced
convergence rate.

We conclude by noting that graph filtering implementations
considered in [15]-[23] are likely to tolerate asynchronicity up
to a certain degree. In fact, [23] presented numerical evidences
in this regard. This is not surprising because linear asynchronous
fixed-point iterations are known to converge under some condi-
tions [28], [29]. The main difference of Algorithm 1 studied in
this paper is due to its proven convergence under some mild and
interpretable conditions with the assumed random asynchronous
model (Theorem 3).
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A. Selection of the Similarity Transform

In addition to the dependency on the graph operator and the
average node selection matrix, the sufficiency condition (55)
depends also on the realization of the filter of interest. Thus, in
the asynchronous case, both the condition for convergence and
the error bound depend on the similarity transform. Since the
condition becomes more relaxed as the state transition matrix A
has a smaller spectral norm, it is important to select the similarity
transform T in (39) in such a way that A has the minimum
spectral norm.

Due to their robustness, minimum-norm realizations of digital
filters have been studied extensively in signal processing [41],
[53], [54]. A minimum-norm implementation corresponds to an
appropriate selection of the similarity transform T in (39) due
to the following inequality:

A2 > p(A) = p(A). (58)

~

The lower bound p(A) depends only on the coefficients of the

polynomial g(x) due to the definition of A in (40).

The lower bound in (58) may not be achieved with equality
in general, and we will consider one such example in the next
section. Nevertheless, it is known that the companion matrix

A is diagonalizable if and only if the digital filter in (38) has
L distinct poles [55]. That is to say, when there are L distinct
nonzero z,,’s such that ¢(z,,!) = 0, we can write the following
eigenvalue decomposition:

A=V;A; V! (59)

where A n is a diagonal matrix with z,, I*s on the diagonal, and

V3 is a Vandermonde matrix corresponding to z,'’s. If the
similarity transform T is selected according to (59), then the
bound in (58) is indeed achieved. More precisely,

T=V; = A=A; = [Al2=0p(A). (60)
Thus, the most relaxed version of the sufficiency condition of
Theorem 3 is obtained when the updates of Algorithm 1 are
implemented using the similarity transform given in (60).

When the filter (38) has repeated poles, the companion matrix
A is not diagonalizable, hence an implementation achieving the
bound (58) does not exist [53]. Nevertheless, the study [53]
discussed that for any € > 0, there exists a realization with a
state transition matrix A such that

~

[All2 < p(A) +e. (61)
Therefore, it is always possible to obtain “almost minimum”
realizations with the spectral norm arbitrarily close to the lower
bound in (58). As a particular example, the case of FIR graph
filters will be considered in the next section.

B. The Case of Polynomial Filters

Polynomial (FIR) graph filters can be considered as a special
case of the rational graph filter (33), in which the denominator is
selected as ¢(z) = 1 so that ¢(G) = I, and the filtered signal in
(34) reduces to 1 = p(G) u. In this case, the companion matrix
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Fig. 2. Visualization of the signals on the graph. Colors black and pink rep-

resent positive and negative values, respectively. Intensity of a color represents
the magnitude. (a) The graph signal u that has nonzero values on 30 nodes. (b)
The filtered signal u on the graph with the filter in (71).

A (direct form implementation) has the following form:

01 0 -0
00 1 -0

A=|:: : . | erFE (62)
00 0 - 1
00 -+ --- 0

which has all eigenvalues equal to zero, so that p(;&) =0. As
a result, no realization of a polynomial filter can achieve the
lower bound (58) since || A |2 = 0 implies A = 0. However, the
spectral norm of a realization can be made arbitrarily small. In
particular, consider the following similarity transform:

6L—l] ) ,

where € is an arbitrary nonzero complex number. Then, the
corresponding realization A can be found as follows:

[All2 = ef.

T =diag ([1 € € (63)

A=T'AT=cA = (64)

Thus, it is possible to select a value for e (with a sufficiently
small magnitude) in order to satisfy the condition (55). (See [45,
Fact 2.5.4].) Such a selection is not unique in general, and one
can easily find a value for e satisfying the following:

-1
€ < (IIGz g ||P—1||2) :

which ensures that the condition (55) is met.

As a result, for any graph operator G and average node
selection matrix P, it is always possible to implement any
polynomial filter in a random node-asynchronous manner that
is guaranteed to converge in the mean-squared sense. However,
we note that T given in (63) may not be the optimal similarity
transform in general.

We also note that when a polynomial filter is implemented
in a synchronous manner, Theorem 2 shows that the algorithm
reaches the error ﬂgor after L iterations since A in (62) is a nil-
potent matrix and A™ = A™ = 0 for n > L. This convergence
behavior will be verified numerically later in Section V-D. The
error bound still depends on T because of || A ||5.

(65)

V. NUMERICAL SIMULATIONS

We now simulate the proposed algorithm on the graph vi-
sualized in Fig. 2. This is a random geometric graph on
N = 150 nodes, in which nodes are distributed over the region
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[0 1] x [0 1] uniformly at random. Two nodes are connected to
each other if the distance between them is less than 0.15, and the
graph is undirected. The graph operator, the matrix G € RV*V |
is selected as the Laplacian matrix whose eigenvalues can be
sorted as follows:

0=X <X < S)\N:p(G

where the spectral norm of G is computed numerically, and
the equality between the spectral radius and the spectral norm
follows from the fact that G is a real symmetric matrix.

For the numerical simulations we consider the following
smoothing problem: assume that we are given the graph signal
u € RY that has only 30 nonzero entries, which is visualized
in Fig. 2(a). It is clear that the signal u is not smooth on the
graph. In order to obtain a smoothed version of u, which will be
denoted by u € RY, we will apply a low-pass graph filter to the
signal u. In this regard, we will consider examples of rational
(ITR) graph filters in Sections V-A, V-B and V-C, and consider
a polynomial (FIR) filter in Section V-D.

Throughout the simulations we will consider a particular
stochastic model for the selection of the nodes. That is, in
each iteration of Algorithm 1 we will select a subset of size
1 uniformly randomly among all subsets of size p. For this
particular model, the average node selection matrix becomes:

) = ||G|l> = 16.8891, (66)

1
P=_—1
N

We note that the case of = N corresponds to the synchronous
implementation of the algorithm. With P as in (67), we note that
the sufficiency condition (55), which ensures the convergence
of Algorithm 1, reduces to the following form:

[All2 |Gll2 <1, (68)

which does not depend on p. Furthermore, the bound on the
noise floor given by (56) reduces to the following form:

| ) Bl I3 G
lim E [y — 8)2] < tr(r) ( 12212 1G5 g0 )
dim B {llyay ] - [AZ G2

(69)

For the sake of simplicity we will assume that the covariance
matrix of the measurement noise is as follows:

I =o°1,

(67)

(70)

where o2 will denote the variance of input noise.

A. An Example of a Rational Graph Filter

In this section we will consider a rational filter (30) con-
structed with the following polynomials of order L = 3:

3
qg(z) =1+ Z ~" ™, v =0.055,

n=1
(71)
where the value of  is selected in such a way that it normalizes
the spectrum of G, that is, G||2 < 1is satisfied.

The frequency response of the filter in (71) on the graph is
visualized in Fig. 3(a), which shows that the filter has low-pass
characteristics on the graph. When compared with the input sig-
nal u, the filtered signal u has alower amount of projection on the
eigenvectors with larger eigenvalues as shown in Fig. 3(b). Since
u mainly contains low frequency components (eigenvectors with
small eigenvalues [4]), 1 is smoother on the graph as visualized
in Fig. 2(b).

p(r) =1 —72)°,
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Fig. 3. (a) Response of the rational filter h(\) constructed with (71). (b)

Magnitude of the graph Fourier transforms of u and u where (Ai, v4) denotes
an eigenpair of G.
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Fig. 4. (a) Squared error norm in 100 different independent realizations
together with the mean squared error of Algorithm 1 with the implementation in
(73). (b) Error floor of the algorithm with respect to the amount of input noise
together with the bound in (69).

We now consider the implementation of the filter (71) using
Algorithm 1. In this regard, we first construct the direct form
implementation of the corresponding digital filter as in (40):

R 0 1 0 o ro 2931
A=| 0 0 1 | b=(0fc'=|29 | d=1
- = =y 1 —4y

(72)

It is readily verified that the matrix A in (72) has L =3
distinct eigenvalues that are given as {—, jvy, —j7v}. Thus,
the similarity transform T can be selected as the eigenvectors
of A as in (60), which corresponds to the Vandermonde matrix
constructed with {—v, jv, —jv}. As a result, the correspond-
ing realization of the filter according to (39) is given as follows:

-10 0 1 -2 -8
A=~ 0 4 0 ,b:m 1+ |, T=~3| 2+25
0 0 —j 1—3j 2—2j

(73)

Since ||All2 = p(A) = ||, we note that (68) is satisfied for
the value of 7y in (71), thus Algorithm 1 converges in the mean-
squared sense when no input noise is present, and when there is
noise, it reaches an error floor upper bounded as in (69).

In the first set of simulations of Algorithm 1 we consider the
case of ;4 = 1, i.e., only one randomly selected node is updated
per iteration. In order to verify the convergence numerically,
we simulated independent runs of Algorithm 1 with the filter
realization in (73) and computed the mean-squared error by av-
eraging over 10* independent runs. In order to present the effect
of the measurement noise, we consider the case of 02 = 10~ 16 as
well as the noise-free case. Fig. 4(a) presents the corresponding
mean-squared errors together with the error in the noise-free
case for 100 different realizations. Due to the random selection
of the nodes, the residual itself is a random quantity, which does
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Fig. 5. The mean squared error of Algorithm 1 when more than one node is
updated simultaneously with noise variance o> = 10716, The first row in the
figure corresponds to Fig. 4(a).

not decrease monotonically as seen in Fig. 4(a). Nevertheless,
the expectation of the error norm decreases monotonically until
it reaches the error floor. We note that the error floor in the
noise-free case corresponds to the numerical precision of the
numerical environment (MATLAB).

In order to present the effect of the noise variance on the
error floor, we run Algorithm 1 for different values of o2
for kmax = 4 - 10% iterations (which ensures that the algorithm
reaches an error floor as seen in Fig. 4(a)) while selecting
only p = 1 node per iteration. The error floor corresponding
to different values of o together with the upper bound in (69)
are presented in Fig. 4(b). In addition to the upper bound (69)
scaling linearly with the noise variance, Fig. 4(b) shows that the
error floor itself scales almost linearly with the noise variance
as well.

We note that the filter realization in (73) ensures the conver-
gence of the algorithm irrespective of the value of ;. However,
the convergence rate of the algorithm does depend on the value
of 1 in general. This point will be demonstrated in the following
set of simulations, in which we use the filter realization in (73)
and set the noise variance as 02 = 10716, In order to obtain a fair
comparison between different values of y, we fix the total num-
ber of updates to be 25 000, so the algorithm gets [25 000/ |
iterations. We run the algorithm independently 10° times for
each value of = {1,..., N} and present the corresponding
mean-squared errors with respect to the number of updated nodes
in Fig. 5.

We first point out that Fig. 5 verifies the convergence of the
algorithm for all possible values of p. More interestingly, the
figure shows also that the algorithm gets faster as it gets more
asynchronous (small 11). Equivalently, for a given fixed amount
of computational budget (total number of nodes to be updated),
having nodes updated randomly and asynchronously results in
a smaller error than having synchronous updates. However, it is
important to emphasize that the behavior shown in Fig. 5 is not
typical for the algorithm; rather, it depends on the underlying
filter. Indeed we will find a similar behavior in Section V-C, but
an opposite behavior later in Section V-D. We also note that for
the case of zero-input, the study [37] theoretically discussed the
conditions under which randomized asynchronicity results in a
faster convergence.

B. Updates With Failing Broadcasts

Algorithm 1 assumes that when a node broadcasts the most
recent value of its state vector to its outgoing neighbors (Line 11
of Algorithm 1), all the recipient nodes reliably receive the
message. However, in a more realistic scenario the broadcasted
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Fig. 6. The mean-squared error of the algorithm with (a) u = 1, (b) u = N,
when the broadcasted messages are delivered successfully with probability cv.

message may not be received by some of the recipients due to
unreliable communication between the nodes. In the case of such
communication failures, the theoretical analysis presented in
Section IV (Theorems 2 and 3) becomes inconclusive regarding
the convergence of the algorithm. Nevertheless, in this section
we will numerically verify that the proposed algorithm is robust
to such communication failures.

Similar to the previous section, in this set of simulations we
use the filter realization in (73) (with ~ selected as in (71)) and
set the noise variance as 02 = 1076, However, we modify the
implementation in such a way that when a node broadcasts its
state vector, a recipient node is assumed to receive the message
with probability « independent of the other nodes. Thus, v = 1
corresponds to the case where convergence is guaranteed by
Theorem 3.

We consider two cases, namely ;o = 1 (one node is activated
randomly in each iteration) and ¢ = N (all nodes are activated
synchronously). In both cases the broadcasted messages are
delivered with probability «. The mean squared errors for these
two cases are given in Figs. 6(a) and (b), respectively.

Both Figs. 6(a) and (b) verify the convergence of the al-
gorithm even in the case of unreliable communication. In the
case of u = 1, Fig. 6(a) suggests that the convergence rate of
the algorithm decreases as the communications become more
unreliable (the value of « gets smaller). However, for the case
of i = N, Fig. 6(b) presents an unexpected behavior. The case
of reliable communications (o« = 1) does not result in the fastest
rate of convergence. When the communications fail with some
probability, the algorithm may converge faster. While the be-
havior is surprising, it is consistent with Fig. 5 in the sense
that fully synchronous iterations are slower than asynchronous
counterparts for the specific filter in (73). Even when the nodes
get updated synchronously, failed broadcasts break the overall
synchrony over the network, hence the algorithm converges
faster. However, when the communications fail with high prob-
ability (e.g., the case of o = 0.25 in Fig. 6(b)), the convergence
is indeed slower. We also note that the behaviors demonstrated
in Figs. 6(a) and (b) remain the same even for the noise-free
(o2 = 0) case.
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Fig. 7. The mean-squared error of Algorithm 1 for a case of an unstable
augmented state transition matrix A. Input noise variance is 02 = 10716,

C. A Case of Convergence Only With Asynchronous Iterations

The results in Section V-A (namely Fig. 5) showed that the
proposed algorithm may converge faster as the iterations get
more asynchronous (i.e., the value of p gets smaller). In this
section we will demonstrate an even more interesting behavior,
where the algorithm converges only if the iterations are suffi-
ciently asynchronous (. is smaller than a threshold).

In this subsection, we will use the same filter realization as in
(73), but use the following value for the parameter ~:

5 = 0.065, (74)

which results in a slight change in the response of the filter
as presented in Fig. 3(a). More importantly, for the value of ~y
in (74), the sufficiency condition in (68) is not satisfied, thus
Theorem 3 is inconclusive regarding the convergence of the
algorithm with asynchronous iterations. In fact, Theorem 2 tells
that the algorithm diverges in the synchronous case since the
matrix A is unstable for the value of + in (74):

p(A) =p(A®G)=p(A)p(G) = p(G)~ 1-097%5)

In order to examine the convergence behavior of the algo-
rithm, we repeat the simulations done in Section V-A with the
value of v set as in (74). That is, the noise variance is set to
be 02 = 10715, and the algorithm is simulated independently
10* times for each value of yz = {1, ..., N'}. The corresponding
mean-squared errors are presented in Fig. 7.

For the specific filter considered in this simulations, Fig. 7
shows that the convergence of the algorithm displays an obvious
phase-transition in terms of the amount of asynchronicity. That
is to say, the algorithm convergences only if the number of si-
multaneously updated nodes satisfies ;1 < 66, and the algorithm
diverges otherwise. Therefore, a specific amount of asynchronic-
ity is in fact required for the convergence in this example.

Although the theoretical analysis of the algorithm presented
in Section IV does not explain the phenomena observed here,
for the zero-input case the study [36], [37] proved that the
convergence can be achieved for some unstable systems as
long as the iterations are sufficiently asynchronous. Simulation
results presented in Fig. 7 shows that a similar behavior exists
even when the input is nonzero.

D. An Example of a Polynomial Graph Filter

Now consider the implementation of a polynomial (FIR)
graph filter with the proposed algorithm. In particular, we con-
sider the following filter of order L = 3:

pla)=(1—~2)*, q@)=1, ~=0055 (76)
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Fig. 8. The mean-squared error of Algorithm 1 for the case of the polynomial

(FIR) filter described in (76) with the input noise variance o2 =101,

which has low-pass characteristics on the graph as visualized
in Fig. 3(a). In the implementation of the filter we use the
following similarity transformation T = diag([1 v ~?]) so that
the realization of the filter has the following form:

010 L T0 ~1
A:fle 0 1], b:zM, cT=*y3[ 3 ] d=1, (77
000 71

whichssatisfies || A |2 |G|z = |7][|Gll2 < 1forthe value of v in
(76), thus Theorem 3 ensures the convergence of the algorithm
irrespective of the value of p. For the particular case of syn-
chronous iterations, ;4 = N = 150, Theorem 2 shows that the
algorithm converges after L = 3 iterations, i.e., the algorithm
reaches the error floor in (53) when ko > 600.

In order to examine the convergence behavior of the algorithm
with a polynomial filter, we repeat the simulations done in
Sections V-A and V-C with the filter realization in (77). That is,
the noise variance is set to be 0> = 10716, and the algorithm is
simulated for each value of u = {1,..., N'}. The corresponding
mean-squared errors are presented in Fig. 8.

We note that the convergence behavior of the algorithm with
the polynomial filter in (77) differs from that of the filter con-
sidered in Section V-A. In particular, the algorithm reaches the
error floor after ku > 600 in the synchronous case (which is
proven by Theorem 2), and the algorithm gets slower as it gets
more asynchronous. When the results presented in Figs. 5 and 8
are considered together, a definite conclusion cannot be drawn
regarding the effect of the asynchronicity on the convergence
rate. Depending on the underlying graph filter, the asynchronic-
ity may result in a faster or a slower convergence of the proposed
algorithm.

VI. CONCLUSION

In this paper, we proposed a node-asynchronous implemen-
tation of rational graph filters, in which nodes on the graph
follow a collect-compute-broadcast scheme in a randomized
manner: in the passive stage a node only collects data, and
when it gets activated randomly it runs a local state recursion
for the filter, and then broadcasts its most recent value. In
order to analyze the proposed method, we first studied a more
general case of randomized asynchronous state recursions and
presented a sufficiency condition that ensures the convergence
in the mean-squared sense. Based on these results, we proved
the convergence of the proposed algorithm in the mean-squared
sense when the graph operator, the average update rate of the
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nodes and the filter of interest satisfy a certain condition. We
simulated the proposed algorithm under different conditions and
verified its convergence numerically.

Simulation results indicated that the presented sufficient con-
dition is not necessary for the convergence of the algorithm.
Moreover, the algorithm was observed to be robust to the com-
munication failures between the nodes. It was observed also
that the asynchronicity may increase the rate of convergence.
Furthermore, simulations revealed that the proposed algorithm
can converge even with an unstable filter if the nodes behave
sufficiently asynchronously. Deeper theoretical analysis of some
of these experimental observations is left for the future. For
future studies, it would be interesting to consider the randomized
asynchronous scenario in which nodes get updated depending
on the values they have.

APPENDIX A
PROOF OF THEOREM 1

The update model (14) can be written as follows:
X = Z e el x; 1+ Z e el (Sxp1+u+wi1),

i¢ T €Tk
(78)
= Xk—1 —|—P7‘k ( (S—I)Xk_l +u+wi_q ), (79)

which can be re-written in terms of the residual vector rj, defined

in (7) as follows:
rp=(I+Pp (S=1I)) rp_1 + Py, wi_1. (80)

Using the assumption that the residual vector r_1, the index-
selection matrix P, and the noise term wy,_; are uncorrelated
with each other, and the assumption that wj,_; has a zero mean,
the expected residual norm rj conditioned on the previous
residual ry_; can be written as follows:

E k3 | ve1] =E[|| @+ Pr(S = D) rpaf3]

+E[|IP7, wi-1]l3] .

The first term on the right-hand-side of (81) can be written as
follows:

E[ry, I+ S"-0)Pp) A+Pr(S—1) ;] (82)
=r,_, (I+S"PS—-P)r,_,, (83)

(81

which can be upper and lower bounded as W |lrj_1]|3 and
1 ||rx_1]3, respectively, where ¥ and 1 are defined as in (21).

The second term on the right-hand-side of (81) can be written
as follows:

E [wgfanwkfl] =tr (E [inkflwl,jfl]) =tr(PT),
(84)
where we use the fact that P% P, = P, and the assumption
that the noise and the index-selection are uncorrelated.
Thus, the conditional expected residual norm can be upper
and lower bounded as follows:

6 et < E [erl3 Irit] — (P T) < ¥ ey |3
(85)
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By taking expectation of (85) with respect to the previous
residual rj_;, we obtain the following:

Y E [[lrp-1l3] <E[Irexl3] - tr(PT) < UE [Jlrea3] -
(86)
The iterative use of the inequalities in (86) yields the results
given in (19) and (20).

APPENDIX B
PROOF OF LEMMA 1

We first note that by left and right multiplying with P-1/2, the
condition (22) can be equivalently written as:

S"PS<P <« |PY2SP'?|, <1, (87

which proves the implication in (25). (Consider P = pI.)

We now prove the first implication of (24): Lemma 2.7.25
of [45] shows that p(|S]) < 1 if and only if |S| € Dy. Since |S|
is Schur diagonally stable, there exits a positive diagonal P such
that | P/2|S|P-"2||, < 1 due to (87). Then,

[PLZSP2], = || [P/ 2P 2 [, > [[PY/2sP 2,
(88)

where the equality follows from the fact that P is a positive
diagonal matrix, and the inequality follows from the fact that
|| 1X]| |l2 > [|X]|2 holds true for any matrix X [56]. Then, we
have that [|P'/2SP~1/2||, < 1, which implies S € Dy due to
the equivalence in (87).

We now prove the second implication of (24): assume that
S € Dy and further assume that there exists an eigenpair (A, v)
of S such that |A| > 1. Then,

vl (SHPS—P) v=(AP-1)vIPv >0, (89)

which contradicts with the assumption that ST P S — P is neg-
ative definite. Thus, p(S) < 1 must hold true.

APPENDIX C
PROOF OF THEOREM 2

In what follows I,,, denotes the m x m identity matrix. Since
the state variables evolves according to (50) in the synchronous
case, we can write the following due to (8):

k-1
—k —k N = &N
E[r,th] =A"r, 5 (A)"+ Y A"T (@AM (90)
n=0
where we define T, = X;, — X* similar to (7). Here X* denotes
Qe fixed point of the vectorized model in (50) (which exists since
A is assumed to not have eigenvalue 1), and it can be written as
follows:

= (Ipn —K)71 a=In—(A®G))" (bou)

=(T'®Iy) Iy —A®G)' (b®u) 1)

= (T'l ®1Iy) Vec([GL_lz Gz z}) , (92)
where the vector z € C is defined as follows:

2= q(G) " u. (93)
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We note that the equivalence between (91) and (92) follows
from the following identity:

I -G 0 --- 0 GL-lg 0

0 I -G 0 GL 2y 0

0 o 0 - -G Gz 0
G qr1G -+ @G I+¢:G z q9(G)z

94
which can be written as follows:

(ILN—A@)G)Vec([GL’lz Gz z]):B®u,
95)
where we use the fact that ¢(G) z = u.
Line 9 of the algorithm together with the result of (44) shows
that the output vector yy defined in (42) is related to the

vectorized state variables as follows:

Yk = G Xr(rk,_l)CT + dU(k) = (C ® G) Xi—1 +du+ dW(k)

(96)

Furthermore, the fixed point of the vectorized model given in
(92) satisfies the following equality:

GLl-lg

(c®G) X" +du=(c®G) +du
Gz

V4

L L
> n—pPotn) G2+ poq(G)z=> p,G"z
n=1

n=0
=p(G)z=p(G)q(G) 'u=1 o)
Combining (96) and (97), we can write the following:
Yy —u=(c®G)(Xp-1 —X") +dw. (98)
Then,
E [y — l3] = tr ((c® G) E[f,_, FL,] (c® G)Y)
+ [dP? ex(T),
— (e @ G) A" 5|2 + |d)? tx(T)
k—2
+3 o ((c ®G)A"T (A" (cw G)”) . (99)
n=0

where we use the result in (90).

Due to (48), we note that A" = (A ® G)" = A" ® G".
Furthermore, the augmented noise covariance matrix I’ can be
written explicitly from (48) as follows:

T=E[w,w;] =E[(b®wy)(b®w)"| =bb"aT.

(100)

Thus,

(c@GA"TA" (ce G =|cA"b?G™! T (G™HH,
(101)

We also note that the coefficients of the impulse re-
sponse of the underlying digital filter is given as follows [51,
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Eq. (13.4.13)]:

d, n =0,

h?L: -1
cA" b, n>0.

(102)

Using (102) in (101), we can re-write (99) as follows:
~ ko1 |2
E [||y(k) — 11||%] = ||(C X G) Ak-1 I'()H2 + |h0|2 tr(I‘)

k—2
+ Z |hn+1|2t1‘ (Gn+1 r (Gn+1)H) ’

n=0

(103)

which is equivalent to the result in (51).

APPENDIX D
PROOF OF THEOREM 3

Let P € REV*EN denote the average index-selection matrix
for the vectorized model in (47). Then, the structure of the update
sets in (49) imply the following:

P=1I,0P. (104)
where I, denotes the identity matrix of size L.
We now show that the following holds true:
A'"PA<P, (105)

which also ensures that A is a stable matrix, hence the fixed point
X* computed in (92) exists. In this regard, using (48), (104), and
the mixed-product property in (1), we can write (105) explicitly
as follows:

(A"A)® (GF"PG) < (I, ® P). (106)

Let V denote the eigenvectors of A" A . By left-multiplying with
VH ® Iy and right-multiplying with V ® Iy, the condition
(106) can be written equivalently as follows:

2 @ (GEPG) < (I, ®P), (107)

where 3 o is a diagonal matrix consisting of the singular values
of the matrix A. Since both sides of (107) are block diagonal
matrices, the condition (107) holds true if and only if all of the
individual blocks satisfy the inequality, that is,

o?(A)GHPG <P (108)

for all singular values, 0;(A), of the matrix A, which can be
expressed explicitly as follows:

o2 (A)GHPG <

min

<02

max

(A)GRPG < P. (109)

Since (55) is both necessary and sufficient to satisfy (109), we

conclude that (55) is equivalent to the condition in (105).
Since the assumption (55) ensures that (105) is satisfied, we

can apply Corollary 1 to the model in (47) and conclude that

tr(PT)
Amin (ﬁ _A'Pp K)

lim E[|x, —X*[3] < (110)
k—oo

Using the equality (98) from Appendix C:

Iy —all3 < llell3 1GI3 1%-1 — %13 + [ld w13,
(111)
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which results in the following:
) ~ cl3 |G|3 tr(PT
tim E [y, - 3] < 1R TG TP ey )
k=v00 Anio (P~ A" P X)
(112)

We have the following due to (100) of Appendix C and (104):
tr(PT) = tr (bb"” ® PT) = ||b||3 tr(PT). (113)
We also note that (106) and (109) implies the following:
f— _H —_
Amin (P _A"'Pp A) = Amin (P~ [|AJ2G" P G). (114)
The use of (113) and (114) in (112) gives the desired result.
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