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Abstract—This paper investigates an ultrasound (US)
imaging-based methodology to assess the contraction levels of
plantar flexors quantitatively. Echogenicity derived from US
imaging at different anatomical depths, including both lateral
gastrocnemius (LGS) and soleus (SOL) muscles, is used for the
prediction of the volitional isometric plantar flexion moment.
Synchronous measurements, including a plantar flexion torque
signal, a surface electromyography (sEMG) signal, and US
imaging of both LGS and SOL muscles, are collected. Four
feature sets, including sole sEMG, sole LGS echogenicity, sole
SOL echogenicity, and their fusion, are used to train a Gaussian
process regression (GPR) model and predict plantar flexion
torque. The experimental results on four non-disabled partic-
ipants show that the torque prediction accuracy is improved
significantly by using the LGS or SOL echogenicity signal
than using the sEMG signal. However, there is no significant
improvement by using the fused feature compared to sole LGS
or SOL echogenicity. The findings imply that using US imaging-
derived signals improves the accuracy of predicting volitional
effort on human plantar flexors. Potentially, US imaging can be
used as a new sensing modality to measure or predict human
lower limb motion intent in clinical rehabilitation devices.

I. INTRODUCTION

The human ankle joint produces a large burst of “push-
off” mechanical power in the late stance phase of walking.
A reduction in the “push-off” force, due to neurological
disorders or injuries, leads to a considerably poorer en-
ergy economy during walking [1]. For people with multiple
sclerosis, those recovering from stroke [2], and individuals
with ankle arthrodesis or arthroplasty [3], the peak push-off
power during ankle plantar flexion is reduced by more than
half. This ankle dysfunction severely impedes their normal
activities of daily living, especially for walking, running,
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jumping, and dancing. The recent therapy techniques to
improve weakened plantar flexion function mainly focus on
powered ankle exoskeletons [4], and functional electrical
stimulation (FES) [5], [6]. Effectiveness of control strategies,
such as assist-as-needed control, for operating these neurore-
habilitation devices depends on determining voluntary plantar
flexion torque. However, non-invasively measuring human
limb joint torque remains a major challenge.

Surface electromyography (sEMG) is a widely-used non-
invasive neuromuscular measurement for detecting voluntary
human limb mechanical functions, e.g., joint moment [7],
[8], angular position [9], and joint stiffness [10]. sEMG
measures electrical potentials during muscle neurons firings,
whose amplitude and frequency are positively related to the
muscle contraction force [11]. The determination of corre-
lation between sEMG signals and human limb mechanical
functions can be categorized into neuromuscular model-based
and model-free approaches. Lloyd et al. [12] examined if
an EMG driven musculoskeletal model of the human knee
could be used to predict knee torques, calculating using
inverse dynamics under multiple contractile conditions. In
[13], the authors developed a mathematical muscle model
based on anatomical and physiological data to estimate joint
torque solely from EMG. And joint stiffness was directly
obtained by differentiation of this model analytically. In [14],
the authors constructed a complete forward dynamics model
(FDM) by using an artificial neural network that learned non-
linear functions, relating physiological recordings of EMG
signals to joint trajectories. Zhang et al. [15] proposed to
use a BP neural network to built the mth order nonlinear
model between the sEMG signals and joints angles of human
legs. Experimental results on both non-disabled people and
spinal cord injury patients showed good performance on joint
angles estimation. However, sEMG-based intent detection
has several shortcomings, such as signal interference from
adjunct muscles and an inability to measure the signal from
deeply-located muscles [16].

Alternatively, ultrasound (US) imaging is another non-
invasive method that avoids the shortcomings of sEMG by
providing direct visualization of targeted skeletal muscle
contractions. The most frequently used structural parameters
from US images include: pennation angle (PA) [11], [17],
fascicle length (FL) [18], and muscle thickness (MT) [19].
These parameters have also been studied to determine a
mapping between US-derived structural parameters and joint



mechanical functions, such as muscle force [20] and joint
torque [21], [22]. In [23], five US-image-derived features
of the superficial rectus femoris (RF) muscle were used to
estimate the distal knee joint angle and velocity by using
a regression-based machine learning approach. The authors
in [24] used a contraction rate adaptive speckle tracking
algorithm to detect the quadriceps contraction strain by using
US imaging, which acted as an indicator of muscle fatigue
due to FES. Our previous work [11] explored the superior
ankle dorsiflexion torque prediction performance by combing
US imaging-derived parameters and sEMG signal based on
a modified Hill-type neuromuscular model. However, the
majority of the studies used sole sEMG signals or US
imaging-derived features to estimate human limb mechanical
functions, and few studies have worked on the estimation
impact by using the fusion of sEMG and US imaging. In
addition, those structural parameters, including PA, FL, and
MT, are usually off-line extracted, which impedes the online
implementation. Also, the reliable performance of feature
extraction algorithms depends on the image resolution and
selection of the region of interest (ROI), which varies from
trial to trial and person to person.

Compared to the structural parameters from US image,
echogenicity covers more information in the ROI without
depending too much on the image resolution. It is pre-
ferred for online implementation, although its physical and
physiological relevance is unclear. Generally, echogenicity
represents the brightness and darkness of the US image and
is calculated by taking the mean gray-scale value of each
pixel in the ROI. In this paper, we fuse echogenicity and
sEMG signals to predict human plantar flexion torque. A
Gaussian process regression (GPR) model uses the combined
signals. Another advantage of GPR is its ability to overcome
noise in neuromuscular measurements. Experimental results
on four non-disabled participants are analyzed to evaluate the
prediction performance by using the fused feature compared
to the prediction by using sole echogenicity and sole sEMG
signals with the GPR model.

II. METHODS

A. Subjects

Institutional Review Board (IRB) at the University of
Pittsburgh (IRB approval number: PRO18020072) approved
this study. Four participants (Age: 24.5 ± 2.1 years old),
without any neuromuscular disorders, were recruited in this
study. Every participant signed an informed consent form
before participating in the experiments.

B. Experimental Protocol

The experimental setup for this study is illustrated in Fig.
1 (a), where each participant was seated on a chair with
adjustable height and instructed to perform two separate
experiment sets. The first experiment set was to determine
the maximum voluntary isometric contraction (MVIC) during
isometric plantar flexion for the posture shown in Fig. 1 (a).
Participants were asked to achieve and maintain MVIC for 2
seconds and the maximum torque was recorded. The second

experiment set was to collect continuous-time measurement
data, including US imaging, sEMG signal, and plantar flexion
torque. Participants were instructed to cyclically perform
plantar flexion within a 11-second duration for three periods
in each trial. The participants started in a relaxed state, then
increased the plantar flexors contraction to MVIC, sustained
at MVIC for around 1 second, and finally relaxed the plantar
flexors. This procedure with three periods was repeated three
times as three trials and a 2-minute rest period was provided
between two successive trials to avoid muscle fatigue.

During the isometric plantar flexion, the participant’s upper
leg was held horizontally on the level chair seat by velcro
straps to limit any knee and upper leg motion during the
plantar flexion. The lower leg was kept perpendicular to
the upper leg and the foot. The plantar flexors include
medial gastrocnemius (MGS), lateral gastrocnemius (LGS),
and soleus (SOL) muscles. Through physical and visual
observation of how plantar flexors move during the isometric
plantar flexion, a location 10 cm distal to the knee joint was
chosen as the targeted region, where LGS and SOL muscles
locate at superficial and deep locations. The region is shown
as the yellow dashed line in Fig. 1 (a). A sEMG sensor
(BagnoliTM Desktop, DELSYS, MA, USA) was attached to
the skin through double-sided tape to non-invasively measure
the LGS’s electrical signals during the plantar flexion. A
clinical linear US transducer (L7.5SC Prodigy Probe, S-
Sharp, Taiwan) was attached to the skin by a customized
3-D printed holder, as shown in Fig. 1 (b). The holder with 1
rotational degree of freedom (DOF) can rotate the transducer
from cross-sectional direction to longitudinal direction, as
shown in Fig. 1 (c). Thus, the holder can be adjusted to
obtain a suitable transducer orientation for observing plantar
flexors’ structure at different depths, as shown in Fig. 1 (f).
The elevation angle in between the holder base (attaching to
the skin) and holder arm (stabilizing the US transducer) in
Fig. 1 (b) was designed as a fixed angle of 90°, which implies
that the US transducer was always kept perpendicular to the
targeted tissue. Conductive US gel was applied between the
skin and US transducer. Due to the placement of the US
transducer (shown in Fig. 1 (d)), only the direction going
through LGS and SOL can be imaged at different depths. The
segmentation between LGS and SOL is participant-specific.
As shown in Fig. 1 (f), the depth that ranges between 8
mm and 32 mm is the LGS muscle while the portion that
ranges between 32 mm and 62 mm is the SOL muscle. A
load cell platform in 1 (e), as used in [11] was used to
measure the isometric plantar flexion torque by multiplying
the force measurement from load cell and a constant moment
arm (approximately 0.1 m).

C. Data Acquisition and Processing

The measurements from load cell, sEMG, and US machine
were synchronized and sampled at the same frequency by
a real-time system in MATLAB/Simulink (R2012b, Math-
Works, MA, USA). The signals from the load cell were
processed by a signal conditioner (DRC-4710, OMEGA En-
gineering, CT, USA) and then collected by a data acquisition



Figure 1. Experimental setup illustration for isometric plantar flexion.

board (DAQ, QPIDe Board, Quanser, Canada). The signals

from the sEMG sensor were processed by an input module

and a main amplifier (BagnoliTM Desktop, DELSYS, MA,

USA) with an amplified gain 10 k, filtered to the bandwidth

between 20 Hz and 450 Hz, and then collected by the DAQ.

For the US machine, the pulse sequence (PS) mode was

employed to image the muscles during isometric plantar

flexion due to its ultrafast sampling rate characteristic. The

synchronization of US imaging to load cell (sEMG) signal

was guaranteed by designing a trigger sequence with 1000

Hz frequency and 5 % duty cycle in the Simulink real-

time system. The first second of the 11 seconds was left

blank to initialize the data collection procedure, and the three

plantar flexion periods were finished within the remaining 10

seconds. All sensors were sampled at 1000 Hz.

The isometric plantar flexion torque time sequence was

defined as y(i), (i = 1, 2, ..., n represents the torque value at

the ith sampling instant). The sEMG signals were processed

by taking the moving root mean square (MRMS), which was

detailed in our previous work [8], [11], and denoted as x
(i)
0 .

The raw data from US imaging were beamformed to gray-

scaled US images offline in MATLAB, as shown in Fig. 1 (f).

By direct observation, LGS and SOL were segmented in the

two rectangular boxes. The echogenicity values of LGS and

SOL, calculated by averaging the linearized decibel values

(from 0 to 255) of all pixels in the corresponding ROIs, were

denoted as x
(i)
1 and x

(i)
2 .

D. Data Training, Prediction, and Statistical Analysis

Gaussian process regression (GPR) has been widely ap-

plied to predict continuous quantities [25]. A GPR model is a

non-parametric kernel-based probabilistic model. It defines a

distribution over functions, and interface takes place directly

in the functions space, which is known as the function-space

view [25]. Each plantar flexion torque measurement y(i) can

be thought of as related to an underlying function g(x
(i)
j ),

j = 0, 1, 2, and 3 with respect sEMG feature set, LGS

echogenicity set, SOL echogenicity set, and fused feature set,

and a Gaussian noise model is given as

y(i) = g(x
(i)
j ) +N (0, σ2

jn) (1)

where σ2
jn is the variance for each neuromuscular signal. The

purpose of regression is to search for the underlying function

g(x
(i)
j ).

A novel approach of folding the noise into the covariance

function, as mentioned in [26], can be represented as a

“squared exponential” choice

k(x
(p)
j , x

(q)
j ) = σ2

jfe
−(x(p)

j
−x

(q)
j )

2

2l2 + σ2
jnδ(x

(p)
j , x

(q)
j ) (2)

where σ2
jf is the maximum allowable covariance for each

neuromuscular signal, x
(p)
j and x

(q)
j are the two sampled neu-

romuscular measurements at pth and qth sampling points, and

δ(x
(p)
j , x

(q)
j ) is the Kronecker delta function. If x

(p)
j ≈ x

(q)
j ,

then the first term of (2) approaches its maximum value,

meaning g(x
(p)
j ) is almost perfectly correlated with g(x

(q)
j ).

If x
(p)
j is distant from x

(q)
j , the first term of (2) approaches

to 0. In addition, the effect of this separation will depend on

the length parameter, l.
The redefinition in (2) is equally suitable for the objective

in this work, which is to predict the plantar flexion torque

y∗j by using new neuromuscular measurement set x∗
j , based

on the given n−dimensional plantar flexion torque measure-

ment, y, and neuromuscular measurement set, xj . In order to

perform GPR, the covariance functions among all possible

combinations of data from each neuromuscular measure are

calculated, and the results are summarized into three matrices

Kj =

⎡
⎢⎢⎢⎢⎣

k(x
(1)
j , x

(1)
j ) k(x

(1)
j , x

(2)
j ) · · · k(x

(1)
j , x

(n)
j )

k(x
(2)
j , x

(1)
j ) k(x

(2)
j , x

(2)
j ) · · · k(x

(2)
j , x

(n)
j )

...
...

. . .
...

k(x
(n)
j , x

(1)
j ) k(x

(n)
j , x

(2)
j ) · · · k(x

(n)
j , x

(n)
j )

⎤
⎥⎥⎥⎥⎦

(3)

K
∗(m)
j =

[
k(x

∗(m)
j , x

(1)
j ) · · · k(x

∗(m)
j , x

(n)
j )

]
(4)



K
∗∗(m)
j =

[
k(x

∗(m)
j , x

∗(m)
j )

]
(5)

where x∗(m)
j , m = 1, 2, 3..., represents the new measurement

set, which will be used in the prediction procedure.
Based on the key assumption of Gaussian process mod-

eling that the data can be represented as a sample from a
multivariate Gaussian distribution, we can derive that[

y

y
∗(m)
j

]
∼ N

(
0,

[
Kj K

∗(m)T
j

K
∗(m)
j K

∗∗(m)
j

])
. (6)

Furthermore, the conditional probability p
(
y
∗(m)
j | y

)
fol-

lows a Gaussian distribution, which can be given as

y
∗(m)
j | y ∼ N

(
K

∗(m)
j K−1

j y, K
∗∗(m)
j −K

∗(m)
j K−1

j K
∗(m)T
j

)
.

(7)
Therefore, the best estimate for the plantar flexion torque

y
∗(m)
j is the mean value in the above Gaussian distribution

ȳ
∗(m)
j = K

∗(m)
j K−1

j y (8)

and the estimation uncertainty in the prediction procedure is
considered as the variance in (7)

var(y
∗(m)
j ) = K

∗∗(m)
j −K∗(m)

j K−1
j K

∗(m)T
j . (9)

The outcomes from neuromuscular data acquisition and
processing contain sEMG MRMS, LGS echogenicity, and
SOL echogenicity from three repeated trials on every par-
ticipant. The data were categorized into four feature sets,
including sole sEMG MRMS feature, sole LGS echogenicity
feature set, sole SOL echogenicity feature set, and fused
feature set. In each trial, for every feature set, data of
two plantar flexion periods were used for training and the
remaining period was used for prediction based on leave-
one-out cross validation principle through the GPR model.

One-way repeated-measure analysis of variance (ANOVA)
followed by a Tukey’s honestly significant difference test
(Tukey’s HSD) was applied to evaluate the prediction perfor-
mance across four different feature sets on each participant.
The significant difference level was chosen as p < 0.05.

III. RESULTS AND DISCUSSIONS

A. Images of Plantar Flexors Contractility Change

As shown in Fig. 1 (f), the US image at the muscle’s
relaxed state was selected as the initial frame, and the same
targeted ROIs in each new frame were compared with the
ROIs in the initial frame. Figure 2 shows the linearized deci-
bel value change of each pixel in both (a) LGS and (b) SOL
at different volitional plantar flexion levels, including 0%,
25%, 50%, and 100% MVIC, each subplot corresponds to the
change from previous contraction level (level-to-level change
plot). By direct observation, the decibel values difference
varies monotonically when the participants generate more
plantar flexion torque, which implies that the decibel values
change is highly correlated to the plantar flexion torque.
In addition, with the increase of plantar flexion torque, the
decibel value change rate of becomes lower, as shown the
change from 25 % to 50 % MVIC and 50 % to 100 % MVIC
compared to the change from rest to 25 % MVIC.

Table I
CORRELATION ANALYSIS RESULTS BETWEEN ECHOGENICITY AND

TORQUE, SEMG MRMS AND TORQUE ON EACH PARTICIPANT.

Participants Trials LGS -CC SOL-CC sEMG-CC

A1
1 -0.958 -0.945 0.926
2 -0.972 -0.953 0.932
3 -0.974 -0.956 0.928

A2
1 -0.925 -0.956 0.892
2 -0.914 -0.959 0.873
3 -0.919 -0.923 0.759

A3
1 -0.939 -0.923 0.903
2 -0.943 -0.910 0.916
3 -0.957 -0.927 0.900

A4
1 -0.937 -0.937 0.755
2 -0.927 -0.933 0.795
3 -0.928 -0.932 0.761

Average -0.941 -0.938 0.862

B. Correlation Analysis and Prediction Comparison

To facilitate the correlation between US imaging measures
and plantar flexion torque, the two-dimensional image time
sequence was converted to one-dimensional echogenicity
time sequence for both LGS and SOL. Figure 3 shows
the measurements of LGS echogenicity, SOL echogenicity,
sEMG raw signal and sEMG MRMS signal, and the corre-
sponding plantar flexion torque for the 1st trial on participant
A1. Visually, in this trial, sEMG MRMS is not as good as
echogenicity to correlate with the plantar flexion torque. The
correlation analysis among different neuromuscular measure-
ments and plantar flexion torque was given by calculating
the correlation coefficients (CCs), as given in Table I, where
LGS-CC, SOL-CC, and sEMG-CC represent the correlation
coefficients between LGS echogenicity and torque, between
SOL echogenicity and torque, and between sEMG MRMS
and torque, respectively. Except sEMG-CC in trial 3 on A2
and all trials on A4, all other CCs absolute values are higher
than 0.8. The results also show that CC between echogenicity
and torque is higher than CC between sEMG MRMS and
torque.

The preliminary results from correlation analysis indicate
that these neuromuscular measurements can be used to pre-
dict the ankle plantar flexion torque. As mentioned before,
four feature sets are used to train the GPR model and predict
plantar flexion torque by using new measured feature sets
based on leave-one-out cross validation principle. The root
mean square error (RMSE) between the predicted plantar
flexion torque and torque measurement in each trial was
calculated by taking the mean value of RMSE from cross
validation process. To validate the performance of this GPR
model for plantar flexion torque prediction, the prediction
RMSE values across 3 trials on each participant (mean value
± standard deviation) were calculated and normalized to
individual’s MVIC, as shown in Fig 4. Results on all 4 partic-
ipants show that the prediction RMSE value is significantly
reduced by using either LGS echogenicity or SOL echogenic-
ity compare to sEMG MRMS. Therefore, echogenicity from
either of them can be selected to predict the ankle plantar
flexion torque with higher accuracy than the sEMG signal.
However, there is no significant difference between the pre-
diction RMSE values by using LGS echogenicity and SOL



Figure 2. Plantar flexors contractility comparison among different contraction levels in the first volitional plantar flexion cycle of trial 1 on participant A1.
(a) Images of the linearized decibel value change for each pixel on LGS. (b) Images of the linearized decibel value change for each pixel on SOL.
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Figure 3. Measurements of plantar flexors’ echogenicity from US images,
raw and processed sEMG signals, and ankle plantar flexion torque on
participant A1 in trial 1.

echogenicity. It implies that the proposed approach cannot

differentiate contributions from LGS and SOL to plantar

flexion torque. Furthermore, although the fused feature can

reduce the prediction RMSE on four participants compared

to sEMG MRMS, along with significant reduction on Partic-

ipant A3 and A4, there is no evident reduction compared to

LGS or SOL echogenicity, and there is even a significantly

increased prediction RMSE on Participant A4. One possible

reason is that the GPR model is very sensitive to the number

of input variables sequence. While the fused feature set is

prone to significantly reduce the training RMSE, it may cause

overfitting for the GPR model and deteriorate the prediction

performance.

C. Discussion

The experimental results on 4 able-bodied participants

verified our hypothesis that the US imaging would increase

the ankle plantar flexion torque prediction accuracy compared

to the sEMG signal. Across the 4 participants, compared to

the sEMG signal, the averaged prediction RMSE normalized

to each individual’s MVIC was reduced 49.7 % by using

LGS echogenicity and 55.7 % by using SOL echogenicity.
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Figure 4. Prediction RMSE values normalized to MVIC on each participant
by using 4 feature sets based on GPR model. �, ��, and � � � represent the
significant difference level at p < 0.05, p < 0.01, and p < 0.001.

However, by using GPR model, the fused feature set did

not outperform sole LGS echogenicity or SOL echogenicity

in the preliminary results. The results in Fig. 3 showed

echogenicity for both LGS and SOL was negatively corre-

lated to the torque, while the sEMG MRMS was positively

correlated to the torque. A possible reason for the negative

coorelation between echogenicity and plantar flexion torque

is that the echogenicity is a physical property by which a

tissue interacts with US waves. The brightness and darkness

in Fig. 1 (f) represent the US reflection ability. Higher

brightness means the reflection is higher, which is also called

hyperechogenic, while the darkness is called hypoechogenic.

It was indicated in [17] that the intramuscular fat, water,

and fibrous tissue would increase the reflection ability while

the isotropic muscle fibers would decrease the reflection

ability. But with the increasing muscle contractions, those

components are compressed and then the reflection ability

reduces resulting in the decreased echogenicity. As shown

in Fig. 3, the LGS and SOL echogenicity values at muscle

relaxation state are around 78 and 120, respectively. In

addition, the LGS and SOL echogenicity variation ranges

are around 16 and 23, respectively. These difference between

LGS and SOL echogenicity values indicates that overall SOL

muscle contains more intramuscular fat, water, and fibrous



tissue than LGS. The preliminary results in this paper indicate
that echogenicity in US images has a promising potential
to non-invasively detect human plantar flexors’ contraction
force, which can be used as a feedback when implementing
plantar flexion rehabilitation devices.

There are limitations in the current study. First, the setup
of the current study was limited to a sitting state. The effects
of different hip and knee initial positions on the proposed
approach are unknown. Therefore, more experiments are
needed to verify the prediction performance under extended
hip extended and straight knee conditions. A single position-
fixed ROI was defined as a rectangular shape for both
LGS and SOL as shown in Fig. 1 (f), respectively, which
may cause a problem of including other muscles due to
the fact that muscle shape and thickness change as the
muscle contracts. Also, more work is needed to investigate
the proposed approach during walking. Finally, echogenicity
from US imaging is sensitive to many factors, including
pressure applied by the US transducer, orientation of the US
transducer, and elevation angle between the US transducer
and the targeted skin [27]. Effects of these factors were not
considered in the study.

IV. CONCLUSION

This paper proposed a non-invasive GPR-based approach
that used echogenicity from US images to predict volun-
tary ankle plantar flexion torque. Multiple GPR models
were respectively trained usingLGS echogenicity set, SOL
echogenicity set, sEMG MRMS set, and fused feature set.
The GPR models predicted new plantar flexion torque from
the new measurements data sets. The results showed that the
prediction RMSE was significantly reduced by using either
LGS echogenicity or SOL echogenicity or fused feature
set compared to sEMG MRMS. However, no significant
difference in the reduction of the prediction RMSE was
observed by using the fused feature set vis-a-vis the sole use
of LGS echogenicity or SOL echogenicity set in the GPR
model. The results imply US imaging as a potential sensing
modality to detect human ankle volitional torque, which is
vital for control of robotics-based devices, designed for both
intact limbs and those with below the knee amputation.
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