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Uniqueness of Power Flow Solutions Using
Monotonicity and Network Topology

SangWoo Park *, Richard Y. Zhang

Absiract—This article establishes sufficient conditions
for the uniqueness of AC power flow solutions via the
monotonic relationship between real power flow and the
phase angle difference. More specifically, we prove that the
P — © power flow problem has at most one solution for
any acyclic or GSP graph. In addition, for arbitrary cyclic
power networks, we show that multiple distinct solutions
cannot exist under the assumption that angle differences
across the lines are bounded by some limit related to the
maximal girth of the network. In these cases, a vector of
voltage phase angles can be uniquely determined (up to
an absolute phase shift) given a vector of real power in-
jections within the realizable range. The implication of this
result for the classical power flow analysis is that under the
conditions specified above, the problem has a unique phys-
ically realizable solution if the phasor voltage magnitudes
are fixed. We also introduce a series—parallel operator and
show that this operator obtains a reduced and easier-to-
analyze model for the power system without changing the
uniqueness of power flow solutions.

Index Terms—Graph theory, monotone operators, power
systems, power flow analysis.

[. INTRODUCTION

HE AC power flow equations fundamentally underpin
T every aspect of power systems: from day-to-day oper-
ations in contingency analysis, security-constrained dispatch
of electricity markets, and yearly capacity planning for peak
load to decades-long transmission expansion and renewable
integration. The purpose of AC power flow problem is to solve
for the complex voltages, described by their magnitudes and
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phase angles, given a power system set-point. The power flow
equations are nonlinear and may admit multiple solutions. In the
past, the conventional wisdom was to assume that the solution
becomes unique by restricting it to “realistic” or “physically real-
izable” values. However, various examples in the literature show
that multiple solutions may persist even after restricting either
voltage magnitudes or phase angle differences to “physically
realizable” values [2]-[4, Sec. IV]. For the former, we present
an example in Section V, where multiple solutions exist despite
having fixed voltage magnitudes for all buses. For the latter, it
is possible to construct a two-bus example—one slack bus and
one PQ bus—that admits a high-voltage solution within standard
operating limits and another low-voltage solution with a large
phase angle difference of 49.9° that is still below the steady-state
limit of 90° [5]. Therefore, in principle, system operators may
encounter operating points that are very different from what they
had expected. In order to avoid these situations, it is important
to understand whether or not there is a unique “physically
realizable” power flow solution for real-world power systems.
The goal of this article is to develop sufficient conditions on top
of the “realism” that will guarantee a unique solution to the AC
power flow equations.

A. Monotonicity Between Phase Angles and Power Flow

Mathematical tools that are often used to prove uniqueness
results include the fixed point theorem with contraction mapping
and the inverse function theorem. In this article, we use the
notion of monotonicity to prove uniqueness of the power flow
solution under certain conditions. The results that we present
stem from a simple idea that is best explained via an example.
Consider a two-bus, lossless one-line system, with the line
reactance X . Voltage magnitude and angle are specified at one of
the buses (“slack bus™), whereas real power injection and voltage
magnitude are specified at the other bus (“PV bus”). Then, the
power transfer between the two buses is given with respect to
the two voltage magnitudes |v; |, |vz| and the angular difference
01 — 65 as asinusoid: P = |vy| - |vg| - sin(f; — 62)/X. Even in
this simple toy example, we can see that the power flow solutions
are not unique: every value of P satisfying |P| < |v1] - |va|/X
can be attained by two choices of #; — 6. However, if we restrict
61 — 62 to take on what we will call physically realizable values
within the steady-state stability limit of |#; — f3| < /2, then
the solution becomes unique. Indeed, this follows from the fact
that P is monotonically increasing with respect to f; — 6z within
this range. Formally, if we define f(x) = (|v1| - |v2|/X)sinxz
as the power flow function and ) = [—m/2, 4+ /2] as the range
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of acceptable values for z, then the strictly increasing property
of f guarantees the following inequality:

(f(z) = fW)(z—y) >0 Vz#y,

The inequality forces the nonlinear equation f(z) = P to have
no more than one solution = € €2 because a different y € {2
satisfying f(y) = P would contradict the inequality. Hence, the
phase angles ¢, and f; can be uniquely determined (up to an ab-
solute phase shift) given a value of P within the realizable range
|P| < |v1| - |v2|/X . This article extends this idea to an arbitrary
power network using a multidimensional generalization of the
monotonicity property.

z,y € L

B. Main Results

The major contribution of this article is the identification of
sufficient conditions under which the power flow equations have
a unique “realistic” solution. For the remainder of this article,
we focus on the relationship between voltage angle differences
and real power injections, referred to as the P — © problem
in the literature [6]. Analogous to the two-bus case, a set of
phase angles are physically realizable for alossless system if the
angular difference across every line lies within the stability limit
of 7/2. Under the constraint that phase angles are physically
realizable and smaller than a certain limit that depends on the
network topology, we extend the notion of monotonicity that was
illustrated for the earlier two-bus example to high-dimensional
networks. The contributions of this article are summarized as
follows.

1) We show that all acyclic networks have at most one
P — © power flow solution under the basic physically
realizable conditions on voltage angles. Furthermore, the
set of feasible real power injections (for nonslack buses)
on these graphs is a convex set.

2) We show that cyclic networks cannot have multiple dis-
tinct P — © power flow solutions under certain additional
conditions on voltage angles. These conditions can be
checked offline and provide a certificate for ruling out
multiple solutions. The certificate is easier to satisfy for
graphs with smaller maximal girth.

3) We show that the uniqueness of P — © power flow so-
lutions is preserved under series—parallel reduction. A
natural corollary to this is that power systems with gen-
eralized series—parallel (GSP) graphs have at most one
P — © power flow solution under some angle conditions.
Loosely speaking, these are graphs that can be constructed
entirely out of series and parallel terminal connections in
circuit theory, plus dangling vertices. Any tree or cycle
graph is a GSP graph.

The implication of these results for classical power flow
analysis is that under the conditions specified above, the problem
has a unique physically realizable solution if the phasor voltage
magnitudes are fixed. This occurs, for example, if all buses
except the slack bus are modeled as PV buses. In practice, tightly
controlled voltage magnitudes are enforced by operating limits,
and are usually achieved through the availability of dispersed
and controllable reactive sources. The assumption is commonly
used in the power industry and is implicit in the DC power flow
equations.

C. Related Work

The paper [7] is one of the first to study the solution set of the
power flow equations, which contrary to the conjecture at that
time constructed an example showing the general nonuniqueness
of power flow solutions. A more thorough study was later
presented in the paper [8], which derived the estimate number
of solutions and characterized the stability region for the power
flow problem. However, the results are limited to lossless trans-
mission networks consisting of only PV buses. Soon after, [9]
formulated the coupled power flow equations in rectangular
coordinates and described a set of linear necessary conditions
for the solution of the power flow problem, which helped sys-
tematically investigate the problem feasibility. Subsequently,
researchers have tried to explicitly characterize conditions under
which the power flow solution exists and is unique. For exam-
ple, the work [10] derived conditions under which the reactive
power-voltage problem has a unique solution under decoupling
assumptions. Then, [6] extended these results by deriving con-
ditions for the real power-phase angle problem under the same
decoupling assumptions. Note that in this article, we consider
the real power-phase angle problem as in [6], but discard the
assumptions on zero resistive losses because it fails to accurately
capture the true physics when transmission lines are not purely
inductive. Furthermore, we consider a general lossy network.

Researchers have also observed that information about the
topology of the power system network can be utilized to derive
stronger results. Without making decoupling assumptions, the
paper [2] investigated the number of power flow solutions in a
radial network and showed that for practical system parameters,
the solution always exists and is unique. The results were ex-
tended to unbalanced three-phase distribution networks in [11].
Adding to these results, the work in [12] shows that several
algorithms, using the fixed-point, convex relaxation, and the
energy function approaches, converge to the unique high-voltage
solution for radial networks. In the more recent study [13], the
authors studied the power flow problem and its relationship to
optimization in tree networks by mainly analyzing the injection
region of the power network. While these results are limited
to tree graphs, our current work characterizes a wider class
of topologies under which the power flow solution is unique.
Finally, the work in [14] used the network topology to upper
bound the number of power flow solutions.

The most widely used tool to prove existence and unique-
ness of power flow solutions is the fixed point technique. The
work [15] was the first to apply the fixed point technique devel-
oped for nonlinear circuits to power flow. In [16] and [17], a fixed
point formulation of the power flow problem was used to specify
a domain around a feasible point and derive sufficient conditions
for a unique solution. In the recent works [18] and [19], the
authors developed a new fixed point formulation of the lossless
power flow equations that includes both PQ (bus where real
and reactive power are specified) and PV buses, and for radial
networks derived network parametric conditions that guarantee
the existence and uniqueness of a high-voltage solution. Ex-
tensions of the conditions to multiphase distribution systems
appear in [20] and new sufficient conditions using a fixed point
technique on the complex domain appear in [21].

Moving away from fixed point techniques, the work [22]
developed a semidefinite programming based procedure to
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characterize the domain of voltages over which the power flow
operator is monotone. In a similar but different spirit, this article
utilizes monotonicity to rule out multiple solutions. Further-
more, we take advantage of the network topology information
to derive less conservative sufficient conditions. The recent
work [23] presents a unifying framework for network problems
on the n-torus while introducing the concept of winding cell
that is used to partition solutions. The framework can be applied
to the AC power flow problem under the lossless setting and
their monotonicity assumptions share close resemblance to our
approach. In this work, we provide a more general result on
arbitrary networks with losses.

The remainder of this article is organized as follows. Section IT
lays out the basic notations used in this article. In Section III, we
define the P — © power flow problem formulation. Section IV
establishes the condition under which strict monotonicity holds
over a single line and presents favorable properties that arise
from the monotonicity. The properties are used to prove that
there is at most one power flow solution for acyclic networks.
Section V extends this result to general cyclic networks. We
present additional (voltage) angular conditions under which
cyclic graphs cannot have multiple distinct power flow solutions.
This condition is closely related to the maximal girth of the un-
derlying graph. Section VI shows that series—parallel reduction
on a graph preserves the uniqueness of power flow solutions,
and arrive at the conclusion that GSP networks have at most
one solution under additional angle constraints. Section VII
develops a linear-time algorithm for a subset of GSP graphs.
Finally, Section VIII provides numerical and simulation results
that support the ideas developed in this article. All the proofs
will be delineated in the technical report [24].

1. NOTATIONS

We start with some mathematical notations. For a given vector
x, let z;, denote its kth element. When notation is overloaded,
z(k) will sometimes take on the role of z. The symbol j denotes
the unit imaginary number. The notations (-)” and (-)¥ denote
the transpose and Hermitian transpose of a matrix, respectively.
For a complex number z, |z| denotes its magnitude and for a set
X, the symbol | X | denotes its cardinality. :(-) denotes the real
part of a given argument.

Power system topology is specified by an undirected graph
G = (V,E) and we assume that this graph is simple and
connected. For an undirected graph G = (V,E), V is the set
of vertices (buses) and E C V x V is the set of undirected
edges (lines). If the edges of an undirected graph are weighted
with the weights captured by a set W, then the graph is rep-
resented as G = (V,E, W). For a directed graph (digraph)
D = (V,E,W),E C V x V denotes the set of directed edges.
The undirected edge e connecting two vertices k£ and £ is de-
noted by a set notation e = {k, £} whereas a = (k, £) denotes
a directed edge a coming out of vertex k£ and going into £.
Depending on the context, an edge can be denoted by either e
or {k, £}. The same goes for directed edges. The series element
of the equivalent II-model of each line {k, ¢} is modeled by
admittance Gy, — j By, where Gy, By, > 0. Let d denote the
vector of degrees, where its kth element d(k) stands for the
degree of vertex k& € V. Similarly, limited to directed graphs,

let d* and d~ denote the vectors of out-degrees and in-degrees,
respectively. Moreover, let G| V'] and E[V’] denote the subgraph
and edge-subset of G that are induced by a given vertex set
V' C V, respectively. The symbol 1 is the vector of ones.
Finally, K,, denotes the complete graph on n vertices.

lll. P-6 PROBLEM FORMULATION

As mentioned in the introduction, we focus our attention to
the relationship between the voltage phasor angles and the real
power injections. To this end, we will study the mapping from
angles to real powers. Let the slack bus (also the reference bus)
be indexed by 1, unless defined otherwise. Let v € C™ be the
vector of complex bus voltages. The complex voltage at bus
k can be expressed in polar form, vy, = |vg|eI®*, where |vg|
and 6}, denote the voltage magnitude and phase angle at bus k,
respectively. For convenience, we also define Ox; = 0 — 6, to
be the angle difference across line {k, £}.

The P — © power flow problem assumes that all buses ex-
cept the slack bus are PV buses. This means that the voltage
magnitudes V = (|v1], ..., |va|)T are fixed at all buses and the
net real power injections are fixed at all buses except the slack
bus. We denote the specified real power injection vector as P =
(p2,-..,pn)T. The unknown variable is © = (fy,...,0,)7
because bus 1 is the reference bus and #; is fixed at zero.
Although the voltage magnitudes are considered fixed at all
buses, we make no assumption about their particular values. For
example, the magnitude could be low as in the two-bus example
mentioned in Section I. Finally, assuming that the shunt elements
of the model have zero real part, we can neglect the admittance
of the shunt elements without loss of generality. That is, we
assume that the shunt elements are purely reactive.

Leti € C™ be the vector of complex currents, where 7y, is the
total current flowing out of bus k into the rest of the network.
Given a complex admittance matrix ¥ € C™*", the equation
1 =Y v holds due to Ohm’s Law and Kirchoff’s Current Law.
Furthermore, the complex power injected at bus k is equal to
Sk = Pk +Jjqr = vkiil, where py and gi denote the net real
and reactive power injections at bus k, respectively. Therefore,
we can write the equation for the real power injections as:
pr = R{(Yv)Hv,}. Since voltage magnitudes are known pa-
rameters, the injection vector P is only a function of © and we
can define the following injection operator that describes the
P — © problem.

Definition 1: Define Py, : R"1 — R as the map from the
vector of phasor angles to the real power injection at bus &:

Be(©) = R{(Y )l un}. )
Moreover, define the injection operator P : R"~1 — R as
P(©) = [Py(©),...,P,(O). ®)

The goal of the P — © problem is, given P € R™1, to find
© € R™! such that P(©) = P.

V. AcycLiC NETWORKS

In this section, we derive conditions under which the P — ©
problem has at most one solution for a power system represented
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by an acyclic graph. In particular, a straightforward generaliza-
tion of the elementary angle assumption that is necessary for a
single line network to have at most one solution is sufficient for
any acyclic network to have at most one solution.

A. Single Line Properties

We begin the analysis with a single line. Consider any line
{k, £} € E and the real power flow from bus % to bus ¢, denoted
by pr¢. Elementary calculations show that

Pre = Gre(|ve|® — |vk| - |ve| cos Oke) + Bre|vi| - [ve| sin Oxe.
(&)
Therefore, given the line properties and the voltage magnitude
at both ends, the flow px, depends only on the voltage angle
difference 0y,. Hereby, we define the function py,(-) for every
{k, £} € E such that pgs = pre(fxe)- Taking the derivative
OPke
OOxce

concludes that py, is monotonically increasing in 0y, if

(Ore) = Grelvk] - |ve| - sin Ore + Bre|vk| - |ve| - cos Ore

Gre|ve| - |ve| - sinOge + Bre|vk| - |ve| - cosfre = 0.
A strict inequality of the above equation is obtained if
—tan™ ' (Bie/Gre) < Oke < ™ — tan™ " (Bge/Gie).
Similarly, p, is strictly monotonically decreasing in 0y, if
tan ! (Bre/Gre) — T < Ore < tan ' (Bre/Gre).

Combining these observations, both py, and p,. are strictly
monotonic functions of f; as long as

|Ore| < ta;n_l(Bkg/ka) (C))]

which corresponds to the region of steady-state stability of the
line {k, £} considered individually. We refer to tan— ( B¢ /Gs)
as the steady-state stability limit for linee = {k, £} € [E and will
restrict attention to angles that satisfy (4) for each line {k, £} in
the system. In what follows, we will give the definitions on the
set of allowable angles and set of allowable injections.
Definition 2: For a power systtm G =(V,E), let
G = (V,E,W) indicate a weighted version of the power
system network. For each line e= {k,£} € E, there is
a corresponding angle limit (weight) wg, € W such that
wie < tan~(Bgg/Gp). Note that wye can be written in an
equivalent notation, we. The set W is called the “set of allow-

able limits.” The “set of allowable angles™ for a power system
G = (V,E, W) is defined as:

I[(G)={O© cR™': 6; = 0and |f| < wie V{k, £} € E}.

Furthermore, fora given © € ['(G), define P(G,0) € R* ' to
be the vector of net injections (at all buses except for the slack
bus) realized by ©. We define P(G,T'(G)) C R™! to be the
set of all possible net injections for allowable angles and refer
to it as the “set of allowable injections.”

We acknowledge that there is no one-to-one correspondence
between the notion of stability of a line considered individually
in isolation and the steady-state and transient stability of an
actual power system, particularly where there are additional
control feedback loops such as “power system stabilizers.”

However, limiting angles to satisfy (4) results in some conve-
nient properties of power flow solutions. These properties are
explained in the following lemma:

Lemma 1: Define p,, = pre(—wke) and Prp = Pre(wre)-
Then for each pxe € (p, ,, Pye) there exists a unique g with
|@re| < wip suchthat pry = Pre(fre). In fact, there is an explicit
expression for the solution

Pre — Grelvi|?
vk | - [ve| Zre

Ore = ékt(ﬁkﬂ) = sin ' ( ) — ke (5)

where Zpp = +/ Gkif + BEE and r¢ = ta.]J_l(—Gkg/Bkg).
Furthermore, if we define 7x,(-) = Por(—0re(-)), then

Pek = Tre(Pre) (6)

where 7'y is a strictly decreasing function.

Previously, we established that pg.(-) is a strictly increas-
ing function of A, over the range |fxs| < wke. By using the
Browder-Minty theorem in its proof, Lemma 1 states that the
inverse of the function pye(-) is well-defined. In fact, the in-
verse function ék,g{-) is also an increasing function, of py, over
(Ek 2 Pre)- Moreover, given pi, € (p L Dre), there is a uniquely
determined corresponding value for the flow p;; coming from
the opposite direction. This enables us to express pg as a
well-defined function of pg, as in (6).

B. Tree Networks

In this section, we build on the results for a single line to prove
uniqueness of the P — © power flow problem for tree networks.
We also show that the sef of allowable injections is a convex
set. Although a tree network is not realistic for transmission
systems, this will provide important results that will be used
for the general case of a mesh. Some of the results that we
mention here are already well known in the existing literature.
However, we organize the proof of this existing result around
the monotonicity property, with the goal of generalizing the
arguments to mesh networks.

We will write T C V x V for a collection of lines that form a
tree and consider power systems with graphs G = (V, T, W).
Recall that the reference/slack bus is indexed by 1. A key
observation about tree topology is that for any bus k& € V there
is a unique path E, C T of successive lines between bus £ and
bus 1, which we consider to be the root of the tree. Define the
“distance” c(k) between bus k and bus 1 to be the number of lines
in the unique path E}. between bus k and bus 1 in T. We define
E; =0 and ¢(1) = 0. Generically, results for such networks
could be proved by beginning with leaves and proceeding toward
bus 1 by using an induction argument on the decreasing distance
to bus 1. By following such approach, the next theorem can be
obtained.

Theorem 2: Suppose that the power system G = (V, T, W)
has a tree topology. Then

1) For each P € P(G,I'(G)), there is a unique © € I'(G)
such that P = P(©).
2) P(G,T'(G)) is a convex set.

Note that by Part 1 of Theorem 2, for a given power system
G with a tree topology, there is a well-defined function O such
thatforeach P € P(G,I'(G)), the unique value © € I'(G ) with

Authonized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 15,2021 at 16:20:18 UTC from IEEE Xplore. Restrictions apply.



PARK et al.: UNIQUENESS OF POWER FLOW SOLUTIONS USING MONOTONICITY AND NETWORK TOPOLOGY 323

;=10 0y =0
f2=0 65=0
f=0 fa=10
fy=-2rf3, —— Pz
/ \
O3 = /3 s = —4m/3
\ /
6 =0 95 = —5m/3

Fig. 1. Cycle example showing multiple solutions. the two graphs show
two different solutions that satisfy the power flow equations. in the top
solution, there is no flow going around the cycle. in the bottom solution,
there is a clockwise flow going around the cycle.

the property P = P(©) satisfies © = O(P). That is, ©(e) is the
inverse of P(©).

V. CycLIC NETWORKS

For networks with cycles, restricting the voltage angles to
the set of allowable angles is not enough to guarantee that the
P — © problem has at most one solution. Hence, we begin this
section by analyzing a simple example on a cycle to illustrate the
need for additional conditions on voltage angles in guaranteeing
a unique solution. In Fig. 1, we have a six-bus lossless network
where all the real power injections are set to be zero. Under
this setting, we can see that there are at least two solutions:
one with zero flow in all lines and another one with a nonzero
flow around the cycle, corresponding to a w/3 angle difference
across each line. This example is similar to the one in [7] and
is essentially due to the fact that the sum of angle differences
from bus 1 to bus 6 (i.e., 015 + O3 + O34 + 045 + O56) is less
than — and therefore becomes equivalent to 7/3 (mod 27),
allowing a positive amount of power to flow from bus 1 to bus
6 and then back to bus 1. In this example, if the absolute value
of 012 + 623 + O34 + O45 + O56 were to be restricted below m,
there would be no possibility of multiple solutions. We state this
formally in the following lemma.

Lemma 3: Consider a power network G = (V,E, W) with
Vo= {1 s N} Hand B —-{f1,2F e fN — 1IN, EN; 1)
Forevery P € P(G,TI'(G)) thereis aunique solution© € I'(G)
such that P = }5(9) if

wiz +woz +---Fwn_i N < T/2. @)

Lemma 3 applies to only a single cycle network. However, this
will be extended to any arbitrary network below. The main idea
behind the development of this result is to associate a digraph
to every possible distinct solution based on its deviation from a
baseline solution. We call two solutions distinct if every two cor-
responding elements of these solutions are different. If an angle
constraint similar to (7) is met for every such digraph (named the
residual-digraph), then there cannot be multiple distinct power
flow solutions (i.e., distinctly unique). In this section, we prove

results on distinct uniqueness but the same methodology can
also be readily used to prove results on uniqueness (in the
common sense) by substituting the digraph with a hybrid graph
that contains both directed and undirected edges. In addition, if
there are two nondistinct solutions, then one can delete the edges
with the same flows in the two solutions and then compensate for
the nodal injections at the endpoints of all such removed edges
in order to arrive at a subgraph that has two distinct solutions.
In other words, having only unique distinct solutions for the
subgraphs of the network implies the uniqueness of the solution
for the original network. As a result, we only focus on studying
distinct solutions in this section. For the rest of this article, we
also assume that the digraphs under consideration do not have
self-loops. Furthermore, in order to satisfy the power balance
equations, there must be at least one incoming and one outgoing
edge at each nonslack bus of the residual-digraph. This merits
introducing the concept of feasible orientation, which we define
as follows.

Definition 3: (Feasible Orientation) Consider a general power
network G = (V,E, W).LetD = (V,E, W) be a digraph that
is created by assigning a specific orientation E to the original
undirected edges E of graph G. The digraph D is called a
“feasible orientation” of the underlying undirected graph if

dt(k)>1,d (k) >1 Vke V\{1}.

The set of all feasible orientations for graph G is called the “set
of feasible orientations™ and is denoted by D (G).

The condition in Definition 3 simply requires that each bus
have in-degree and out-degree greater than or equal to one. Now,
we are ready to state the theorem that generalizes Lemma 3.
From here on, we will use the word “vertex” more often in place
of the word “bus.”

Theorem 4: Consider an arbitrary power network
G = (V,E, W). Suppose that for every feasible orientation
D € Dy (G), there exists a directed cycle C with its vertex set
denoted as Vg, = {u(1),...,u(|Va|)} C V such that

|vdc|_1
Z Wy(i)u(i+1) < T/2. (8

i=1

Then, for each P € P(G,I'(G)) there cannot be multiple dis-
tinct solutions satisfying P = P(©).

Note that condition (8) becomes less restrictive if there exists
a short directed cycle for every feasible orientation of the
underlying graph. In the graph theory literature, the length of
the smallest directed cycle of digraph D is called the girth of
D which we denote by 4(ID). Therefore, to rephrase the earlier
statement, having a small girth for all of the possible feasible
orientations is crucial. This calls for a new notion of maximal
girth of an undirected graph, in addition to the girth, which we
define as follows.

Definition 4: For a given undirected graph G, define the
“maximal girth” A(G) as follows:

max

A(G) =
L DeDs (G)

o(DD). ©)
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Corollary 5: Given an arbitrary power network G =
(V,E, W), suppose that
(10)

Wge < ) V{k,f} ceE.

m
2-(A(G) -1
Then, for each P € P(G,I'(G)) there cannot be multiple dis-
tinct solutions satisfying P = P (©).

Note that for cyclic networks, P(G,I'(G)) is in general a
nonconvex set, and there have been recent works that address
the issue via convex restrictions [25]. So far, we have shown that
finding a directed cycle satisfying condition (8) for all feasible
orientations corresponds to certifying that the P — © problem
cannot have multiple distinct solutions. Furthermore, Corol-
lary 5 has introduced the concept of maximal girth to show that
if the allowable limits are uniformly less than the upper-bound
in (10), then the P — © problem cannot have multiple distinct
solutions. The smaller the value of A(G), the more freedom
there is for angle differences over lines. The question arises as to
whether we can calculate or upper-bound A (G ). For the example
in Fig. 1, itis relatively easy to see that A(G) = 6. However, for
a graph with m edges, the number of feasible orientations is on
the order of 2™ and calculating or even proving an upper-bound
on A(G) is a difficult task. Most of the existing results provide
bounds that are on the order of n/s, where s is the minimum
out-degree of a digraph [26], which is not useful for our purpose
since s = 1 for feasible orientations.

Here, we upper-bound the maximal girth by using another
property of the underlying undirected graph, namely the length
of its longest chordless cycle, which we denoted by (G ). The
basic idea behind the proof is that any directed cycle with a
chord can be further decomposed into two cycles, one of which
is again a directed cycle. The formal statement with its proof
is provided in Lemma 10 of the technical report [24]. With this
upper-bound on maximal girth, condition (10) can be substituted
by the following new condition:

V{k, €} € E. (11)

m

“ <T@ )
A major benefit of this result comes from the fact that x(G)
can be computed in a relatively straightforward fashion. For
the example in Fig. 1, the value of x(G) is equal to the value of
A(G). The procedure for the computation of (G ) and its values
for several IEEE test cases are reported in Section VIII-B. For
complete graphs, x(G) = 3 because all vertices are connected
by an edge. In connection with Corollary 5, this implies that
complete graphs cannot have multiple distinct solutions if angle
differences are restricted below 7 /4, which is often the case in
real-world power operations due to security considerations. It
is acknowledged, however, that power system graphs are not in
practice complete graphs and are, in fact, sparse.

VI. SERIES—PARALLEL REDUCTION

This section shows that under the assumption that voltage
angles lie within the allowable limits, the uniqueness of P — ©
problem solutions is preserved under series—parallel reduc-
tion, with appropriate updates on the set of allowable limits,
namely W. These updates are involved with the dangling vertex,
highway-path, and parallel edges of the graph, which will be
explained in detail throughout the section. We conclude the

Fig. 2. Simple diagram illustrating a sequence of series-parallel reduc-
tions for the IEEE 14-bus system.

section with a recognition that all graphs that are reducible (via
series—parallel reduction) to a K2 have a unique power flow
solution if the updated allowable limitf on the remaining single
line is less than /2. These graphs turn out to be equivalent to
a group of graphs called GSP that includes any tree or cycle
graph. In fact, every outer-planar graph is GSP [27]. This result
has practical implications because real-world transmission and
distribution systems are not far away from this type of topology.
We begin by defining series—parallel reduction and GSP graphs.
As detailed in [27], one of the equivalent definitions of a GSP
graph is as follows:

Definition 5: A graph is a GSP graph if it can be reduced to
a single edge graph (K3) by a sequence of the following three
operations:

1) replacement of a pair of parallel edges with a single edge
that connects their common endpoints;

2) replacement of a pair of edges incident to a vertex of
degree 2 with a single edge;

3) deletion of a dangling (degree 1) vertex.

Any sequence of these three operations will be called a
“series-parallel reduction.”

To help visualize how the three operations work, in Fig. 2,
we illustrate a reduction example on the IEEE 14-bus network.
Starting from the original network (a), the graph is subsequently
reduced to (d) via a sequence of series—parallel reductions.
Going from (a) to (b) represents an example of operation 3,
where the dangling vertex (numbered by 8 in the figure) is
deleted. The process from (b) to (c) is an example of operation 2,
where two edges incident to a vertex of degree 2 is replaced by
a single edge. Finally, the process from (c) to (d) is an example
of operation 1, where two parallel edges are replaced by a single
edge.

glgt turns out that the analysis of conditions (8-11) for the
original power network can be performed on a “series—parallel
reduced” network that could be far smaller than the original
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graph. Let us revisit the example in Fig. 2. In the original network
(a), edge {7, 8} cannot be part of any cycle because vertex 8 has
degree 1. Therefore, this edge can be omitted from the analysis
of directed cycles. In network (b), edges {6,12} and {12,13}
have to be either both part of a cycle or both not part of any
cycle. Therefore, the two edges can be replaced by a single edge
{6,13} with a new allowable limit, we 13 = we 12 + w12,13-
A similar implication follows if we replace the two parallel
edge in (c), connecting vertex 6 and 13, by a single edge with
a new allowable limit that is of maximum value among the
replaced edges. Before we present the formal statement of this
observation, we define what a highway-path is below.
Definition 6: An induced path P of G with vertex set

V= {s,u"(1),u"(2),...,u"(H),t} (12)
from vertex s to vertex ¢ is called a highway-path if
du"(@) =2 Vie{l,...,H} (13)

and u" (i) is a non-slack vertex for every i € {1,..., H}.

Note that a single edge is also considered a highway-path.
By building on the previous observations and using the above
definition, we show that the problem of determining the unique-
ness of the power flow solutions for the original meshed network
can be reduced to determining the uniqueness of solutions on a
smaller graph that excludes a dangling vertex, a highway-path
or a parallel edge.

Theorem 6: Consider a power network G = (V,E, W).

1) If G contains two parallel edges e1, e € E both connect-
ing the same pair of vertices, define

?ZV, ]EZ]E\{Bg}
W = {w, | we = we, Ve € E\ {e1},
We, :max{welawez}}'

2) If G contains a highway-path P, let V" be the vertex set
of P as described in (12). Define

V=V\{u"Q),...,«"(H)}, E=E[V]U{{s,t}}

W = { @, | W = we, Ye € E[V], @, = Z i,
ecE[VF]

3) If G contains a dangling (degree 1) vertex u, define
V=V \{u}, E=E[V], W = {@. | @ = we, Ve € E}.

Let the reduced graph G” be defined by G" = (V,E, W).
Then, the P — © power flow problem for the original graph G
has at most one solution if condition (10) is satisfied for G".

Theorem 6 implies that deleting the graph’s dangling vertex,
or contracting multiple edges that are connected in series, or
eliminating one of the two parallel edges do not influence
the uniqueness of power flow solutions as long as the set of
allowable limits W is updated appropriately. One major advan-
tage of Theorem 6 is that the analyses pertaining to directed
cycles, maximal girth, and longest chordless cycle introduced
in Section V can now be applied to a smaller reduced network.
For instance, checking condition (8) is time-dependent on the
number of vertices, edges, and simple cycles of a graph. As the
graph becomes larger, this computation can be daunting since

the number of simple cycles can grow exponentially in the
number of vertices. The effect of series—parallel reduction on
several IEEE test cases is illustrated in Section VIII-A.

Finally, it is no coincidence that these three reduction proce-
dures are equivalent to the three operations that are allowed and
required to turn a GSP graph into a K5 graph (see Definition 5).
In other words, any GSP graph can be reduced to a single line
after undergoing a sequence of reduction procedures delineated
in Theorem 6. The absence of cycles suggests that Theorem 4 is
unnecessary in this case and warrants a simpler result, which is
given as a corollary below. The corollary states that the P — ©
problem on GSP graphs has at most one solution if the final
updated allowable limit for the reduced single line is less than
/2.

Corollary 7: Suppose that the power system G = (V,E, W)
has a GSPtopology. Let L. = (V,E, W) bea K, graph (contain-
ing the slack bus) that is series-parallel reduced from G, where
W = {w} represents the “allowable limit” on the remaining line
that is updated according to the procedures in Theorem 6. If
w < /2, then there is a unique © € I'(G) such that P = P(0©)
foreach P € P(G,I'(G)).

VIl. ALGORITHM

In this section, we design an algorithm for finding the unique
solution of the P — © problem when the graph has a GSP
structure. In general, the P — © equations constitute a system
of nonlinear equations and are prone to complex and chaotic
behavior. Conventional algorithms such as Newton’s method
may fail to converge when a bad initial guess is provided or if
the system is close its security margins. In the special case, where
the injection operator P(©) is strictly monotone, leading to a
unique (if there exists) P — © problem solution, a fixed point
iteration approach will converge to the correct solution with
a convergence rate that depends on the monotonicity constant
and Lipschitz constant of the operator in question. However,
requiring the injection operator to be monotonic over a feasible
region is quite restrictive. In our case, the uniqueness of the
P — © power flow problem for GSP graphs emerges from a
repetitive reduction process of the network and its flow set in

* a parameterized way which is not amenable to conventional

numerical methods. The power flow algorithm that we propose
for the GSP networks, therefore, will emulate this reduction
process.

A. Linear-Time Algorithm

We begin with a simple example illustrating the idea behind
the algorithm. Fig. 3 shows a GSP network with four buses
and five lines, where bus 1 is the slack bus as usual. Let
W = {w1,2, w23, w13, w14, wza} denote the set of allow-
able limits for this network. Suppose that the assumption in
Corollary 7 is met, meaning that the network can be reduced
to a single edge connecting vertices 1 and 4 via series—parallel
reduction and the updated allowable limit for that edge is less
than 7 /2. More specifically, this means that @; 4 < 7/2, where
@y 4 equals the left-hand side of the following expression:

max {wy 4 max{wis+ws3 wis}+twsa} <m/2. (14)

Authonized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 15,2021 at 16:20:18 UTC from IEEE Xplore. Restrictions apply.



326

IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 1, MARCH 2021

Fig. 3. Two-cycle network sharing an edge.

Now, set the variable z to represent the real power flow from
vertex 1 to vertex 2, i.e., z = p;5. Due to power balance at each
vertex and the fact that vertex 2 has a degree of two, pa3 is
an increasing function with respect to x. Furthermore, due to
Lemma 1 and the allowable angle assumptions that we made,
this means that 12 and 623 are also increasing functions of ps.
It follows that 13 = 612 + 023 is also an increasing function of
z. Finally, due to the assumption on @; 4 in (14), we know that
w3 < %, which implies that p,5 is an increasing function of
613 and also of .

Similarly, the flow variables expressed as bold arrows in Fig. 3
are all monotonically increasing with respect to z. Furthermore,
once x is known, all the other flow variables can be calculated
sequentially. We will call this flow variable = the primary flow.
This sequential process is illustrated as follows:

1) Set x = 0.

2) Calculate: pag = p2 — T12(z).

3) Calculate #12 and #33. Then, add them up to obtain ;3.

4) Calculate p13 = p13(f13).

5) Calculate: pg4 = p3 — 723(p23) — 713(p13)-

6) Calculate: pg; = psg — 734(p34)-

These steps will be embedded in the algorithm proposed in
this section. Each iteration of the algorithm will involve the
above calculation of the flow variables followed by an update
on the value of the primary flow. Notice that at each step of the
process, all the necessary information is already calculated in
the preceding steps. Also, none of the steps involves solving a
separate optimization problem and just requires simple algebraic
calculations. Before delving into the full algorithm, we introduce
a concept of outer-cycles.

Definition 7: Aninduced cycle C of G is called an outer-cycle
if the following two conditions are met:

1) C contains two highway-paths such that the union of the
two paths is C and the intersection is {s,¢}. One of the
paths (arbitrarily chosen), denoted by SP, will be called
the principal-path and has vertex set VP. The other path,
named S°, will be called the auxiliary-path and has vertex
set V. Let the vertex sets be denoted as follows:

VP = {s5,uP(1),uP(2),...,uP(N),t}
Ve = {s,u*(1),u%2),...,u*(M),t}.

(15)
(16)

2) All the vertices except for s and ¢ have degree 2 and are

nonslack buses.

The concept of an oufer-cycle is useful because it corresponds
to a cycle that is reduced via a combination of operations 1
and 2 of the series—parallel reduction (see Definition 5). For
example, in Fig. 2, the outer-cycle with vertices {6,12,13}
is reduced as it is transformed from subfigure (b) to (d). The
order in which outer-cycles and dangling vertices are deleted
essentially define the series—parallel reduction. In our algorithm,
it also corresponds to the order in which the flows are calculated
starting from the primary flow. Theorem 8 states that for a subset
of GSP graphs, the exemplary steps above can work and the
P — © power flow problem can be solved in linear time. Here,
we will use the notation G — G to signify the series—parallel
reduction from graph G to G".

Theorem 8: For Corollary 7, suppose that O =
{C4,...,CR} is the sequence of outer-cycles reduced in
the process G — L. Let E; denote the edge set for cycle
C;. Then, there is a linear-time algorithm with complexity
O(|E| - log(1/e€)) to find the unique solution of the P —©
power flow problem, given a desired precision level e, if the
following condition holds:

| (ingi)ﬂ]Ej | S]- Vj:{]':"':R}‘

The linear-time algorithm is given in Algorithm 1. The al-
gorithm makes use of the fact that for each line, there is one
direction for which the flow increases with respect to the primary
flow and another for which the flow decreases with respect to the
primary flow. Let F+ denote the set of ordered pair of indices
(K, £) such that pg, is monotonically increasing with respect
to the primary flow. Also, for notation reasons, let p(k, £) also
denote the flow from bus % to £ in addition to pg,. Below, we
define a type of projection operator II that allows the iterative
sequence to stay in the allowable sets arising from our angle
difference assumptions. Here, x'™" denotes the iter'™ iteration
value of the primary flow . Furthermore, we make use of
several MATLAB functions: break means to break out of all
the for-loops, and find(A == a) returns the index of an array A
for which the value is equal to a.

a7)

giter+l — %Im and break if prs > By,
H(Izter,pu) = { piter+1 A: i;l‘i and break if pre < Py
Ore = One(Pre)

Eachiteration of Algorithm 1 involves calculating all the flows
in the set 7T based on the current value of the primary flow.
This process is done sequentially in the same order in which the
original graph is reduced to the final K3 graph. Based on these
values, the primary flow is updated by the bisection method until
the solution is found. In Section VIII-C, a set of representative
numerical examples are generated and the performance of this
proposed algorithm is illustrated.

otherwise.

B. Graphs That Do Not Satisfy the Assumption in
Theorem 8

Theorem 8 states that if a power system network with GSP
topology satisfies (17), then the power flow problem can be
solved efficiently. Equation (17) essentially requires that any
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Algorithm 1: Linear-Time GSP Algorithm.

Initialize: Set ¢,6° > ¢, P and iter = 0

Delete dangling vertex & and add injection value of
—7k,¢(px) to its unique adjacent bus £: Py = Py — 7 ¢(pk)-
Do this for all dangling vertices.

Set reduction order: Find the sequence of outer-cycles that
are eliminated during the sp-reduction process.

= 0={C,,...,Cgr}

For each cycle C; € O: set the principal (Sf ) and auxiliary

(S$) paths of C; so that S be the path with one edge.

Order the vertices in 8§ as V§ = {uf(1),...,u§(M;)} so

that (u$(1),u$(2)) € F*.

Set primary flow z to represent p(u$(1),u%(2)). Then, do

T = p(ui(1),u$(2)), z = p(ui(1),uf(2)),

2 = 1@ +2), ug(1) = u3(1)

while [6"|> € do

for j=1:R do

z = find(V§ == uf,(1))

for f=1:2-1do
=uj(z—f),l=u}(z—-f+1)

g=uf(z— f+2) .

p(k’, f) = 'Fk,E(Pf == p(f, Q))’ H(;E'm}p(k,f))

end

for f =2z:M;-2do

k=ui(f+1), £=ui(f+2), g=u}(f)

p(k,£) = Py — 7qk(p(q, k)) 1L(z", p(k, £))

end

W = Y pr " Ous k) s (k1)

p(ul (1), ud(M;)) = Pus ), us (a1, (w5)

Pu;(l) = Pu;*(]) - p(u}‘(l),u?@))

Pusmy) = Pus () + p(u§ (M — 1), uf(M;))

Delete dangling vertex k, and add injection

value of —# ¢(pk) to its unique adjacent bus £:

Py = Py — r0(pi)

end
p(uf(Mg),uk(1)) =
Pug,(mp) — P(u(Mp — 1), uk(Mr))
(2", p(uk(Mr), uk(1)))
8" = wp + Oug, (Mr) ug(1)
if 6" > 0 then

| T — gler giter+1 —
else

| z=x
end
iter = iter + 1

(T+z)

B

iter : mlter—i—l —

(T4 z)

b=

end

chordless cycle can only share at most one edge with all the
previous reduced cycles. Obviously, this result weakens once
the assumption is not met. We will illustrate the difficulties that
arise using the IEEE 14-bus system, which has a GSP topology
but does not satisfy (17).

Consider the system drawn in Fig. 4 and notice that pg 12
is selected as the primary flow. Given the primary flow value,

Fig. 4. Simple diagram of the IEEE 14-bus system. Buses are marked
in plain numbers, while the flow variables are marked in parenthesized
numbers in the order in which they are calculated in Algorithm 1. Nodal
real power injections are not shown in order to simplify the diagram.

the flows (2)—(5) can be easily calculated as delineated in Sec-
tion VII-A. The first difficulty arises when trying to calculate
the next unknown, flow (6). This is because the assumption
of Theorem 8 breaks down: cycle {6,13,14,9,10,11,6} and
cycle {5,6,11,10,9,4,5} share three edges. Therefore, even
though we know g o from the previous calculations, i.e., by
doing fs0 = 06,13(p6,13) + 013,14(P13,14) + O14,0(P14,0), find-
ing flow (6) requires solving an additional implicit func-
tion. NOtiﬂg thatpn,m =Py — Tﬁsrll{pﬁ,ll) al'ldpm,g = Pig—
711,10(P11,10) = Pro — 711,10(P11 — 76,11(ps,11)), the implicit
function to be solved is

6611 (pe,11) + é11,1u(P11 —76,11(P6,11))
+ 610.0(Pro — 11,10(P11 — 76,11 (p6.11))) = 6.0

where the only variable is now pg 11. This equation is mono-
tonically increasing in pg 1; and can be solved in log(1/€). After
having found the value for flow (6), flows (7)—(9) can be found
by simple arithmetic calculations. Similarly, pg 7 can be found
by solving another monotonic implicit function. This is because
the nodal injection at bus 8 gives a unique pr g that acts as an
additional negative injection at bus 7. After this, pg 4 and pr 4
can be calculated by explicit arithmetic equations. The next
difficulty arises after these steps. At this point, buses 5 and
4 both have three lines where the flows are unknown, which
means that there is no easy way to calculate the remaining
flow variables of the network. The only thing left to do is to
solve a subproblem on a subsystem of the original network,
which is depicted in Fig. 4 as dotted lines. For this subprob-
lem, it is important to update the original nodal real power
injections at bus 5, namely Ps, by Ps — 7 5(pe,5). Likewise,
the original nodal real power injections at bus 9, namely P,
by _Pg — fw:g(pm‘IQ) — fm,g(pm?g). AlSO, update injection at
bus 4 in a similar manner. Now, observe that this subsystem
satisfies all the assumptions made in Theorem 8 and hence the
subproblem can be solved in linear time.

The example above illustrates the fact that violating the
assumptions corresponds to an increase in the algorithm’s
complexity. Suppose that the original graph G can be di-
vided into two subgraphs: the first part containing all
the difficulties and the second part satisfying the assump-
tions made in Theorem 8. Then, the complexity of the
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(d)

Fig. 5. (a) IEEE 30-bus system before reduction, (b) IEEE 30-bus
system after reduction, (c¢) IEEE 39-bus system before reduction, and
(d) IEEE 39-bus system after reduction.

algorithm will become O({mjcilog(1/e€)} - malog(1/e)) =
O(cimymalog?(1/€)) where m;’s are the number of edges
for each subgraph and c¢; is the number of additional implicit
functions that have to be solved for the first subgraph.

VIII. NUMERICAL AND SIMULATION RESULTS

In this section, we use simulation and computation to numer-
ically verify and support the ideas that have been developed
in this article. We start with visualizing how series—parallel
reduction works on actual power systems. Then, we calculate
the longest chordless cycle—which provides an upper bound on
maximal girth—of benchmark power systems. Finally, we apply
Algorithm 1 to a class of networks in order to demonstrate its
performance.

A. Series—Parallel Reduction of IEEE Test Cases

In Section VI, we introduced series—parallel reduction and
showed that analyzing the uniqueness of the P — © problem
solution can be performed on a smaller “series—parallel reduced”
network. In Fig. 5, we illustrate how these reductions visualize
when applied to actual IEEE test cases (note that here the slack
bus was not necessarily selected as bus 1). Fig. 5(a) and (c)
represents the graphs before the reduction, and Fig. 5(b) and (d)
represents the graphs after the series—parallel reduction. We can
see that the reduced graphs are much smaller and contain the
core information of the original graph. These reductions make
Theorem 4 more practical to use because condition (8) is much
easier to check on a smaller network.

TABLE |
UPPER-BOUNDS ON MAXIMAL GIRTH FOR IEEE TEST CASES
x(G) | k(G)
cases 4 4
casel4 6 6
case30 11 8
case39 17 8
A_.-A...‘t“:'.l“
iz
ll f;"d____"a..z\g\
an ,’ ez
N =" o
\ ‘\: *‘ /;1
o7 M //
— pes——

Fig. 6. Further decomposition of a directed chordless cycle. The solid
arrows represent the original directed chordless cycle. The dotted ar-
rows represent a possible orientation of the three edges that lie in the
interior of the cycle.

B. Calculation of k(G)

In Section V, we introduced (G ) as an upper-bound on the
maximal girth A(G), which is computationally more tractable
than A(G). To find the value of x(G ), we first use a function built
in Sage [28] to calculate all simple cycles of the graph and then
narrow them down to chordless cycles. Ultimately the length of
the longest chordless cycle is obtained. The values are calculated
for several IEEE standard test cases and reported in Table I. A
tighter bound can be found by observing that chordless cycles
are not entirely immune to further decomposition. For example,
consider the IEEE 39-bus network depicted in Fig. 5(c). One of
the chordless cycles that are found using our implementation
is {1,2,3,4,14,13,12,11,6,7,8,9,39,1}, which has length
thirteen (note that this is not the longest chordless cycle). This
is a chordless cycle because there is no edge directly connecting
any two vertices of the cycle. However, as we can observe from
Fig. 6, this cycle can be further partitioned into three smaller
chordless cycles by the three edges in its interior. Furthermore,
depending on the orientation of these three edges, at least one
of the three smaller cycles is again a directed cycle if the big
cycleis oriented. The tighter bound achieved from this process is
denoted by k(G ) and also reported in Table I. Now, Corollary 5
can be used to study when the power flow equations have a
unique solution.

C. Performance of Linear-Time Algorithm

In order to verify the effectiveness of the proposed algorithm,
we analyze its performance along with the performance of
Newton—Raphson method as a standard algorithm used to solve
power-flow in practice. To implement this standard algorithm,
we use the Matpower [29] runpf function with the “Newton—
Raphson (NR)” option. Furthermore, in order to satisfy the
assumptions in (17), we create a class of triangulated networks
of varying sizes (see [24] for figure) using the Matpower case-
file format (mpc). The allowable set of angles is enforced by
setting the 12th and 13th columns of the field “branch” in the
casefile to the steady-state stability limit (refer to Definition 2).
Note that the Matpower-NR algorithm cannot enforce additional
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Fig. 7. Comparison of average errors and solving times for Algorithm
1 and MATPOWER-NR. The first three figures plot the average error
for different values of p = 0.1, 1, 10 (from top to bottom). the last three
figures plot the average solving time for different values of u = 0.1,1,10
(from top to bottom).

angle constraints, such as (14), whereas Algorithm 1 does by
design. Note that Matpower-NR can be modified to incorporate
these constraints if we formulate the power flow problem as
an optimal power flow problem, but then this becomes a con-
strained nonconvex optimization problem, which introduces its
own difficulties and is not the subject of this paper (even finding
a feasible point to such optimization problem is a challenge).
The following steps describe the experiments.

1) Generate arandom ©" that belongs to the set I'(G ). This
is the true set of angles that we wish to recover via the
above algorithms.

2) Calculate the real power injection vector P, using ©*,

3) Taking P as input, solve the P — © power flow problem
using both Algorithm 1 and Matpower-NR method. The
voltage angles retrieved from each algorithm are denoted
by ©! and O, respectively.

4) Calculate the errors ||©! — ©*||2 and ||ONR — ©* 5.

For the initial point that is provided to the Matpower solvers,
we generate a random point around the true solution via @™ =
O* + Omise where O™ jg 3 random vector whose elements
are independent and normally distributed with mean p. For the
initialization of Algorithm 1, a random value is chosen between
the minimum and maximum allowable real power flow. In order

400 T T T T T T
;..é’ 2001 M
I . I 11 .
o 5 10 15 20 25 30 35
Fig. 8. Errors for the 36 (Out of 400) simulations when Matpower-NR

converged successfully for p = 10.

to highlight the performance of the two algorithms as the initial
point deviates away from the true solution, we test three different
values of p = {0.1,1,10}. The experiments are performed on
an increasing number of buses and 20 independent simulations
are carried out for each fixed network.

Fig. 7 shows the results of these experiments. The top three
figures plot the average two-norm error (for varying values of
) and the bottom three figures plot the average solver time (for
varying values of ) as a function of the network size. From the
top three figures, it can be observed that Matpower-NR performs
relatively well and is able to recover ©* when the initial point
is close enough to ©*. However, as """ deviates further away
from ©*, Matpower-NR fails to reliably recover ©*. In fact,
for most cases with initial values far from the true solution,
the Matpower-NR algorithm does not even converge within the
maximum iteration limit. For 2 = 10, the Matpower-NR method
successfully converged for only 36 out of the 400 simulations.
Fig. 8 plots the errors for these 36 convergent cases. It can
be seen that several of these display high errors despite the
successful convergence, implying that the algorithm converged
to a different solution. Furthermore, it is demonstrated that
Algorithm 1 does not converge to any of these different solutions
and is capable of recovering ©* irrespective of the initial point
or the number of buses. Finally, from the bottom three figures,
we can observe that the solving time for Algorithm 1 has a
very slow growth in the size of the network and therefore can
be used to solve large-scale problems. Note that Algorithm 1
was implemented in MATLAB with no strenuous efforts at
optimizing the solving time and the purpose of Fig. 7 is only to
demonstrate linear-time complexity of the proposed algorithm.

IX. CONCLUSION

In this article, we establish sufficient conditions for the
uniqueness of power flow solutions (if it exists) in an AC power
system via the monotonic relationship between real power flows
and voltage phase angles. We extend a simple observation made
for a single line network—that angle differences bounded by
their stability limit will give monotonicity and uniqueness—to
the general network with multiple lines. More specifically, we
prove that the P — © power flow problem has at most one solu-
tion for any acyclic or GSP graphs. These conditions guarantee
the uniqueness of power flow solution, if it exists. In addition,
for arbitrary power networks, we show that multiple distinct so-
lutions cannot exist under the assumption that angle differences
across the lines are bounded by some limit related to the maximal
girth of the network. It is also shown that the series—parallel
reduction on a graph does not alter the uniqueness of P — ©
problem solutions and therefore the analysis for a large network
can be performed on a much smaller “reduced” network. Finally,
we develop an efficient algorithm for a subset of the GSP graphs
that work reliably, irrespective of the initial point.
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