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Abstract—Objective: Reliable measurement of voluntary hu-
man effort is essential for effective and safe interaction between
the wearer and an assistive robot. Existing voluntary effort
prediction methods that use surface electromyography (sEMG)
are susceptible to prediction inaccuracies due to non-selectivity in
measuring muscle responses. This technical challenge motivates
an investigation into alternative non-invasive effort prediction
methods that directly visualize the muscle response and improve
effort prediction accuracy. The paper is a comparative study
of ultrasound imaging (US)-derived neuromuscular signals and
sEMG signals for their use in predicting isometric ankle dorsi-
flexion moment. Furthermore, the study evaluates the prediction
accuracy of model-based and model-free voluntary effort pre-
diction approaches that use these signals. Methods: The study
evaluates sEMG signals and three US imaging-derived signals:
pennation angle, muscle fascicle length, and echogenicity and
three voluntary effort prediction methods: linear regression (LR),
feedforward neural network (FFNN), and Hill-type neuromus-
cular model (HNM). Results: In all the prediction methods,
pennation angle and fascicle length significantly improve the
prediction accuracy of dorsiflexion moment, when compared
to echogenicity. Also, compared to LR, both FFNN and HNM
improve dorsiflexion moment prediction accuracy. Conclusion:
The findings indicate FFNN or HNM approach and using
pennation angle or fascicle length predict human ankle movement
intent with higher accuracy. Significance: The accurate ankle
effort prediction will pave the path to safe and reliable robotic
assistance in patients with drop foot.

Index Terms—Ankle dorsiflexion, Ultrasound imaging, Elec-
tromyography, Linear regression, Feedforward neural network,
Neuromuscular model
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I. INTRODUCTION

Ankle dorsiflexion plays an essential role in activities of
daily living (ADLs), like walking, sitting to standing, and
balance control [1]. The weakened function or dysfunction of
ankle dorsiflexion, like drop foot, impedes ankle movements.
Powered ankle exoskeletons and functional electrical stimula-
tion (FES) are potential neurorehabilitation technologies that
can enable people with ankle weakness or dysfunction to re-
gain the function [2], [3]. To facilitate motor relearning, these
neurorehabilitation technologies use “assist-as-needed” control
[4], [5]. This neurorehabilitation control strategy provides FES
or robotic assistance based on a user’s movement intent or
voluntary effort, which can be determined by measuring any
or combination of the following modalities: neural signals
originating from the central nervous system, electrical activity
of the muscles when neurally excited, muscle force, limb
kinematics, and joint torques [6]. Both the efficacy of the
neurorehabilitation and the safety of the user depends on
accurately determining the user’s voluntary effort or intent.

Existing intent detection or prediction approaches can
be broadly categorized into mechanical and neuromuscu-
lar approaches. Mechanical approaches directly measure the
physical human-machine-interaction (pHMI) through force or
torque or limb kinematic measurements [7], [8]. However,
there are two shortcomings in this approach. First, the installa-
tion of a mechanical sensor needs an exoskeletal frame, which
limits the portability of the entire device. Second, interaction
between a human limb and a robotic device is prone to
misalignments between rotation centers of a human joint and
an exoskeleton joint, which may induce undesired interaction
force [9], [10].

Compared to the mechanical approaches, neuromuscular ap-
proaches predict voluntary effort by correlating neuromuscular
signals with the joint moment or joint kinematics. Surface
electromyography (sEMG) is a commonly used neuromuscular
signal to measure voluntary skeletal muscle activity [11], [12].
However, sEMG is sensitive to measurement noise and signal
cross-talk or interference from adjacent muscle groups. sEMG
is also least useful in measuring a deeply-located muscle’s
activity. Ultrasound (US) imaging is an alternative sensing
technique that can directly visualize targeted muscle activity at
different depths with low signal interference. However, unlike
sEMG, processing to obtain an image from US raw radio
frequency (RF) data is time-consuming and difficult for real-



time implementation. Given the advantages and disadvantages
of US imaging and sEMG, a motivation exists to examine,
which one of these neuromuscular signals is more suitable
for intent prediction. Further, it is unclear which voluntary
prediction approach is the most effective mapping function
between the sEMG or US imaging-derived surrogate signals
and a limb joint force or movement.

We divide the determination of the mapping function into
model-free and model-based categories. In model-free meth-
ods, a machine learning approximation builds a mathematical
relationship between a neuromuscular signal such as sEMG
or muscle structural or functional parameters derived from US
images like pennation angle (PA), muscle fascicle length (FL),
muscle thickness, and echogenicity and the measured human
limb force or movement. These mathematical relationships
use a combination of basis functions, e.g., linear or nonlinear
polynomials [13], exponential or Gaussian functions [12], as
well as linear or nonlinear regression [14], [15]. Sikdar et al.
[16] analyzed real-time US images of the forearm muscles to
classify the intent of finger movements. Activity maps, created
using a nearest neighbor classifier, used changes in the US
echogenicity of the forearm muscles. In their recent work [17],
Pearson’s correlation coefficient (PCC) was used between the
rest frame and other US frames in the motion sequence to
classify volitional motion intention. The objective was to pre-
dict intent during a virtual target grasp and a holding task for 5
different hand motions in a virtual environment. An artificial
neural network (ANN) is another model-free approach that
can be used to map the neuromuscular signals to voluntary
effort [18], [19]. Savelberg et al. [18] adopted an ANN to
predict dynamic tendon forces of the gastrocnemius muscles of
three cats by measuring their EMG signals. However, very few
contributions exist that use ANN-based human motion intent
detection by using parameters extracted from US images.

The aforementioned model-free approaches are essentially
black box approaches. The functional relationship between
neuromuscular signals and mechanical functions are estab-
lished without explicit equations. A Hill-type neuromuscular
model (HNM) is most frequently used for establishing a
cause-effect mapping between a neuromuscular signal and the
joint moment. Lloyd et al. [11] proposed a generic EMG
driven musculoskeletal model to predict inverse dynamic joint
moments. The model parameters were calibrated by using a
nonlinear least-squares approach. sEMG-based estimation of
neuromuscular excitation has also been utilized to drive HNM
during a wide range of human dynamic motor functionali-
ties, like muscle forces [20], [21], joint moments [22], joint
compressive forces [23], [24], joint stiffness [25], [26], and
joint angles [27], [28]. The prediction performance of HNM is
directly limited by the accuracy of physiological variables such
as, muscle FL, PA, etc. One way to approximately model these
parameters is based on simulation like OpenSim software [29].
However, parameters from simulation can hardly reflect real
neuromuscular conditions. Thus, a more reliable and transpar-
ent methodology to measure subject-specific muscle structural
parameters is proposed using US imaging. In [30], the authors
developed a US-based approach to indirectly approximate the
in vivo forces generated by human triceps surae muscles during

dynamic movement tasks. In [31], they proposed the modified
HNM with two contractile elements that accounted for the
independent slow and fast muscle fiber contraction. This HNM
was driven by US-based measures of FL, fascicle velocity, and
PA. In our previous work [32], sEMG and PA from US images
were combined as inputs to the HNM. The experimental results
showed better dorsiflexion moment prediction performance by
using the synthesized muscle activation that combines PA and
sEMG than using sole PA or sEMG.

Among these studies that used neuromuscular variables to
detect human motion intent, few contributions have determined
a preferable muscle variable and joint moment prediction
approach. The paper aims to determine the best neuromuscular
signal(s) that can be used to predict ankle dorsiflexion moment
generated by tibialis anterior (TA) muscle. These signals
include sEMG and three signals derived from US imaging:
FL, PA, and echogenicity. Muscle FL and PA are automatically
extracted from US images by applying an algorithm given in
[33], [34]. Furthermore, the best approach(es) among linear
regression (LR), feedforward neural network (FFNN), and
HNM to accurately predict the isometric ankle dorsiflexion
moment are investigated.

II. METHODS

Three approaches, LR, FFNN, and HNM are discussed
below to predict isometric ankle dorsiflexion moment by using
four neuromuscular variables, including PA, FL, echogenicity,
and sEMG.

A. Linear Regression (LR)

Among the three approaches, LR is the simplest and most
straightforward approach to describe the relationship between
neuromuscular variables and isometric dorsiflexion moment.
The exact expression can be given as

y(i) = βjx
(i)
j + bj + ε

(i)
j , i = 1, 2, ..., N (1)

where x(i)j (j = 1, 2, 3, 4) represents PA, echogenicity, FL,
and sEMG, respectively, at the ith time instant. y(i) is the
corresponding dorsiflexion moment computed by multiplying
load cell measurement Fl and fixed moment arm rl. βj
and bj are the regression slope and intercept for the jth

variable. ε(i)j is the error term or disturbance term for the
jth variable at the ith time instant. In (1), only the input
variables and observations are known. The estimated output
can be represented as

ŷ
(i)
j = β∗

j x
(i)
j + b∗j (2)

where β∗
j and b∗j are optimal values that minimize the er-

ror between observation y(i) and estimation ŷ
(i)
j . β∗

j and
b∗j are determined by defining a loss function L(βj , bj) =∑N
i=1(ŷ

(i)
j − y(i))2. A gradient-based search is used to cal-

culate the following equations ∂L
∂βj

= 0 and ∂L
∂bj

= 0. Once
the newly measured neuromuscular variables are known, the
moment will be predicted by substituting β∗

j and b∗j to (2).



Figure 1. The structure of FFNN with a single hidden layer and 5 neurons.

B. Feedforward Neural Network (FFNN)

An FFNN is an artificial neural network where connections

between the nodes do not form a cycle. In this kind of network,

the information moves only in one direction; i. e., forward

from the input layer to the output layer. As shown in Fig.

1, a single-layer perceptron network with five neurons was

designed for data training, where the inputs are fed directly

to the outputs via a series of weights and biases. Just as in

LR, x
(i)
j represent the input variables, z

(i)
j,p (p = 1, 2, ..., 5)

represent the states in hidden layer, and ŷ
(i)
j represents the

estimated output. wj,p and cj,p are the weights and biases

between the input layer and hidden layer, respectively. vj,p and

dj,p are the weights and biases between the hidden layer and

output layer. A Sigmoid activation function φ(x) = 1
1+e−x is

applied between the input layer and hidden layer. Each neuron

in the hidden layer is given as

z
(i)
j,p =

1

1 + e−(wj,px
(i)
j

+cj,p)
. (3)

The estimated output is calculated as

ŷ
(i)
j =

5∑
p=1

(
vj,pz

(i)
j,p + dj,p

)
. (4)

Since the dorsiflexion moment measurement is regarded as

the label, the FFNN training becomes a supervised learning

problem. All the weights and biases in Fig. 1 are determined

by a backpropagation algorithm [35].

C. Hill-type Neuromuscular Model (HNM)

An HNM to estimate the ankle joint torque contains the

following modules: neural activation, muscle activation, mus-

cle contraction dynamics, and skeletal dynamics [36]. For the

isometric ankle dorsiflexion condition, it is assumed that there

is no angular position and velocity change. Therefore, the

skeletal dynamics were neglected. The dorsiflexion moment

generated by TA contraction equals to the multiplication of the

muscle-tendon force and the corresponding constant moment

arm, which is given as

Mest = Fmtrmt (5)

where rmt is the ankle dorsiflexion moment arm represented

as algebraic functions of joint angles that have been fitted

to measured moment arm curves as mentioned in [37]. It is

expressed as rmt = −0.013q + 0.035 [38]. q is the angular

position of ankle joint relative to the neutral position , and

it is with the unit of radian. The muscle-tendon force Fmt

generated by muscle-tendon can be expressed as

Fmt = Fm cos(ϕ) = (Fce + Fpe) cos(ϕ) (6)

where Fce = fl(lm)fv(vm)aFmax denotes the force generated

by the contractile element (CE), while Fpe = fp(lm)Fmax

denotes the force generated by the passive elastic element

(PE). Fmax is the TA tendon force at MVIC, which is deter-

mined by system identification, based on data collected from

3 repeated trials. lm and vm are the muscle FL and velocity,

respectively, and ϕ is the pennation angle. Both lm and ϕ are

extracted from US images by using the commercial algorithm

[33], [34], and vm is derived by taking the time derivative

of lm. fl(lm) and fv(vm) represent the inherent force-fiber

length relationship and force-fiber velocity relationship for

the CE, respectively, and fp(lm) represents the passive force-

fiber length relationship for the PE. The explicit expressions

of fl(lm), fv(vm), and fp(lm) were defined in [32].

Up to this point, every term in (5) is defined, except for

the muscle activation variable a. Muscle activation in HNM

can be computed by using different neuromuscular variables,

therefore four different muscle activation sequences a
(i)
1 ∼

a
(i)
4 are introduced here. For PA obtained from US images,

the normalized values are regarded as the PA-induced muscle

activation, which is defined as

a
(i)
1 =

x
(i)
1 − x1min

x1max − x1min
. (7)

Similarly, for echogenicity and FL, the normalized values

are regarded as the echogenicity or FL-induced muscle acti-

vation, which is defined as

a(i)m =
xmmax − x

(i)
m

xmmax − xmmin
, m = 2, 3. (8)

The moving root mean square (MRMS) is applied to capture

the characteristics of sEMG in the time domain [32], [39].

Due to the time delay between the onset of sEMG and muscle

activation, a second-order recursive filter was used to calculate

the neural activation u(i) as described in [11], which is given

by considering the normalization of sEMG MRMS N (i)

u(i) = αN (i−τ) − δ1u
(i−1) − δ2u

(i−2) (9)

where α = 0.9486, δ1 = -0.056, and δ2 = 0.000627. τ is

the electromechanical delay (EMD), which is determined in

the experimental section. As mentioned in [40], when the

muscle contraction force is at a low level, there is a nonlinear

relationship between neural activation and muscle activation,

and beyond that level, the relationship is linear. Thus, a one-

parameter segmented transfer model from neural activation

u(i) to sEMG-induced muscle activation a
(i)
4 is designed as{

a
(i)
4 = d ln(cu(i) + 1), 0 ≤ u(i) < u0

a
(i)
4 = mu(i) + b, u0 ≤ u(i) < 1

(10)



The point (u0, a40) of above nonlinear model is defined as{
u0 = 0.3085−A cos(π4 )
a40 = 0.3085 +A sin(π4 )

(11)

Knowing that the linear part of the curve in (10) must

pass through both point (u0, a40) and point (1, 1), then the

coefficients m and b can be determined as m = 1−a40

1−u0
and

b = a40−u0

1−u0
. The coefficients d and c can be determined

by making the nonlinear part in (10) pass through the point

(u0, a40), then c = e
a40
d −1
u0

, and d is calculated iteratively

by using the Newton-Raphson method. Therefore, the four

parameters d, c, m, and b are all strongly related to the point

(u0, a40), which is determined by shape coefficient A. Besides,

A is reported within the range from 0 to 0.12 [40], which is

to be determined by system identification.

The objective of HNM calibration procedure is to minimize

the root mean square of the estimation error (RMSE) with

different kinds of muscle activation by tuning the unknown

parameters. The RMSE is expressed as

RMSE =

√√√√ 1

N

N∑
i=1

(
M

(i)
est − y(i)

)2

. (12)

The determination of A is performed by applying MATLAB

function lqscurvefit, and then the HNM is implemented for

dorsiflexion moment prediction. New data, which is not used

in the training procedure, is used for the moment prediction.

III. EXPERIMENTS

A. Participants

The study was approved by the Institutional Review Board

(IRB) at the University of Pittsburgh (IRB approval number:

PRO18020072). Three participants without any neuromuscular

disorders were involved in this study. Participant 1: Age

25, male. Participant 2: Age 27, male. Participant 3: Age

22, male. The participants signed an informed consent form

before they participated in the experiments. According to our

experimental design and data processing procedures and based

on the power analysis software G*Power [41], the participants

would have 87% power to detect (p < 0.05) the difference

between the estimated ankle dorsiflexion torques by using

three approaches, with respect to the same neuromuscular

signal and 92% power to detect (p < 0.05) the difference

between the estimated ankle dorsiflexion torques by using four

neuromuscular signals, with respect to the same approach.

B. Experimental Apparatus and Procedure

The experimental setup for this work is illustrated in Fig. 2

(d), where the participant was seated comfortably on a chair

with adjustable height. Throughout the entire experimental

procedure, the participant’s upper leg was kept horizontal,

and the lower leg was restrained perpendicular to the upper

leg. To equivalently measure the dorsiflexion moment, a load

cell platform was design as shown in Fig. 2 (c), where two

parallel pedals with the lower pedal is fixed on a rotary shaft.

A load cell sensor (MLP-300, Transducer Techniques, CA,

USA) was positioned between the upper and lower pedals.

Figure 2. Experimental setup illustration. (a) Single differential sEMG sensor.
(b) 3-D printed customized US probe holder with 1 degree of freedom. (c)
Load cell platform with 7 adjustable angular positions. (d) Participant’s initial
position with sEMG sensor and US transducer attached to the targeted skin
region, also with load cell pedal tied on foot.

The load cell was calibrated before each experimental session.

The initial angular position of the pedals could be set as -

15°, -10°, -5°, 0°, 5°, 10°, and 15° relative to the ground,

which correspond to the ankle dorsiflexion angular position q
in (5). So, there are 7 different experimental scenarios for each

participant. The negative angle means that the perpendicular

distance between toe and ground is higher than that between

heel and ground. Both the toe and heel of the right foot

were tied on the upper pedal of the load cell platform by

using velcro straps to guarantee the isometric dorsiflexion. The

equivalent moment generated by voluntary muscle contraction

(VC) is computed by multiplying the load cell measurement

and a constant moment arm.

The targeted region of TA was chosen as around 10 cm away

from the rotation center of the knee joint on the front shank. In

this targeted region, an sEMG sensor in Fig. 2 (a) (BagnoliTM

Desktop, DELSYS, MA, USA) was attached to the lower leg

skin through a piece of adhesive interface after the shaving

and cleaning with alcohol. In the same region, a clinical linear

US transducer (L7.5SC Prodigy Probe, S-Sharp, Taiwan) held

by a specially customized holder (as shown in Fig. 2 (b))

was attached on the skin, and conductive US gel was applied

between the transducer and participants skin. The placement

of US transducer on the skin could be rotated from cross-

sectional direction to longitudinal direction by the holder, and

in this study, the longitudinal direction was used to achieve

maximum visualization of the targeted muscle region.

The 7 scenarios were conducted in the following sequence:

0°, 5°, 10°, 15°, -5°, -10°, and -15°. Under each scenario,

there were two sets of experiments. The first set was used

to determine the dorsiflexion torque, TA muscle contraction

force, and corresponding neuromuscular signals at MVIC.

The participants were asked to perform ankle dorsiflexion by

loading the load cell platform to the strongest contraction

point and then unloading to a relaxed state. Each participant

was verbally encouraged to elicit a maximum muscle contrac-

tion. The participants performed three repeated loading and

unloading trials, where each trial lasted for 2 seconds. Three



Figure 3. Flow diagram for model training and prediction.

repeated trials were performed under each scenario. At least 30

seconds of rest period was provided between two successive

trials. During this experimental set, sEMG signal, load cell

signal, and US imaging were recorded synchronously. In the

second set experiments, there were three repeated trials, each

lasting 6.12 seconds. Measurements from load cell and sEMG

were collected throughout the entire duration. The 1st second

of each trial was left intentionally blank to initialize the US

machine to get ready for imaging the TA muscle. This also

allows synchronization of US imaging, sEMG, and load cell

data. For the synchronization at t = 2 seconds, the US machine

was externally triggered by a signal sent from a real-time

system designed in Matlab/Simulink (R2012b, MathWorks,

MA, USA). After the trigger, the participants were verbally

instructed to perform the dorsiflexion against the load cell

platform. They were instructed to ramp the dorsiflexion force

from zero contraction to the strongest contraction, within 1

second, and stay at the strongest contraction for around 3

seconds, before resting the muscle. All data collection was

stopped at 6.12 seconds, which means that the US imaging

RF data collection period was 5.12 seconds. To avoid muscle

fatigue, the participants rested for 2 minutes to 4 minutes

between two successive trials. Data from randomly selected

two trials were used for model training and a third trial

data was used for predicting the ankle dorsiflexion moment

from the trained models. The flow chart of data collection,

processing, training, and prediction procedures is illustrated

in Fig. 3, which is detailed in the following sections.

C. Data Acquisition and Pre-processing

The measurement from the load cell was processed through

an input signal conditioner (DRC-4710, OMEGA Engineering,

CT, USA). In order to measure the dorsiflexion moment, the

load cell measurement was multiplied by the moment arm

of the testbed (0.1 m). The measurement from the sEMG

sensor was processed through an input module (BagnoliTM

Desktop, DELSYS, MA, USA) and a main amplifier (Bagno-

liTM Desktop, DELSYS, MA, USA) with an amplified gain

10k. Additionally, through this amplifier, the sEMG signal was

filtered to bandwidth between 20 Hz and 450 Hz. Signals from

both the conditioner and amplifier were collected by a data

acquisition board (QPIDe Board, Quanser, Canada) through

two analog input channels. To image the TA contraction, a

commercial linear array transducer (L7.5SC, 6.4 MHz center

frequency) was used with the connection to an US scanner

(Prodigy, S-Sharp, Taiwan).

A real-time system in Matlab/Simulink (R2012b, Math-

Works, MA, USA) was set up to synchronize the collection

of signals from the load cell and sEMG sensor at 1000 Hz.

The pulse sequence (PS) mode of US imaging was applied. To

guarantee the simultaneous firing time for US imaging with

the real-time system in Simulink, a 1000 Hz trigger sequence

with 5 % duty cycle was sent to the US scanner.

According to [42], the most commonly used time domain

(TD) sEMG features include mean absolute value, zero cross-

ings, slope sign changes, and waveform length. In addition,

pre-mentioned MRMS is also a typical sEMG TD feature,

which can be calculated by the following equation

x
(i)
4 =

⎧⎪⎨
⎪⎩

(
1
N0

∑n=i
n=i−N0+1

(
l(n)

)2)1/2

, i ≥ N0(
1
i

∑n=i
n=1

(
l(n)

)2)1/2

, i < N0

(13)

where N0 represents the length of the moving window. For

convenience, it was set as 200 ms. l(n) represents the am-

plitude of sEMG signal at each sampling instant. Under the

situation with the same window length, correlation analysis

between each of the sEMG features and ankle dorsiflexion

moment was performed. Then MRMS was chosen to derive the

neural activation in (9) due to its highest correlation coefficient

with dorsiflexion torque. The results of the correlation analysis

are provided in the supplementary file.

The original PS mode US imaging RF data was pre-

processed through beamforming in MATLAB, and the voltage

signal from the US scanner was transferred to grayscaled

US images, as shown in Fig. 4. The targeted muscle during

ankle dorsiflexion was the TA, which is the superficial muscle,

shown in Fig. 4. The region of interest (ROI) was defined

within the red dashed rectangle. For each image frame, PA was

defined as the angle between the visualized fascicle and the

deep aponeurosis. The orientation of the muscle fascicle and

deep aponeurosis, as well as the length of the muscle fascicle

x
(i)
3 , were tracked frame by frame in a time sequence.

Unlike the architectural variables like PA and FL,

echogenicity is a physical property of US waves when they

interact with tissues. Brightness and darkness depends on how

much of the US waves penetrate the tissue or are reflected

back, as shown in Fig. 4, and these represent the echo

bounce ability of the tissue. Higher brightness means the echo

bounce is higher, which is called hyperechogenic while the

darkness is called hypoechogenic. In the ROI of each frame,

the grayscaled value of every pixel was computed and then

the average was computed for all pixels to determine the

echogenicity of the current frame x
(i)
2 .

A 4th-order Butterworth lowpass filter was applied for x
(i)
j

(j = 1, 2, 3, 4) to eliminate noise at high frequency. Thereafter,

x
(i)
j (j = 1, 2, 3, 4) was directly substituted in (2) of LR

method and (3) of FFNN method, respectively, while the

normalization (7) and (8) were regarded as muscle activation

of HNM, and the normalization N (i) =
x
(i)
4 −x4min

x4max−x4min
was

substituted in (9) of HNM.



Figure 4. A typical US image of the TA. x-axis is the distance along the
probe longitudinal direction, and y-axis is the depth of muscle. The RGB data
of every pixel were transferred to grayscale values between 0 and 255.

D. Data Training, Prediction, and Statistical Analysis

The outcomes from data acquisition and pre-processing

subsection included sEMG MRMS, PA, FL, and echogenicity.

As mentioned in the previous subsection, due to a short time

duration for the strongest ankle dorsiflexion and a enough rest-

ing period between two successive trials in both experimental

sets, it was assumed that there was no muscle fatigue during

both sets. LR and FFNN models were trained directly from

the randomly selected two trials of the second experimental

set. The slope and y−axis intercept of LR, and the weight

matrices of FFNN were determined. Then each neuromuscular

signal sequence from the third remaining trial was used as the

input for the trained LR and FFNN models to predict ankle

dorsiflexion moment. To train the HNM, first Fmax, A, and

the neuromuscular signals at MVIC were determined from the

first experimental set. Afterwards, the HNM was trained from

the randomly selected two trials in second experimental set.

Finally, each neuromuscular signal sequence from the third

trial was used as the input to the trained HNM model to predict

ankle dorsiflexion moment.

One-way repeated-measure analysis of variance (ANOVA)

followed by a Tukey’s honestly significant difference test

(Tukey’s HSD) was applied to evaluate the training and

prediction performance across four different neuromuscular

signals with respect to the same mathematical model and

across three different mathematical models by using the same

neuromuscular signal. The significant difference level was

chosen as p < 0.05.

IV. RESULTS AND DISCUSSIONS

The results are divided into three subsections: results of

the first set experiments that find MVIC of the TA muscle,

results of model training, and results of model prediction in

the second set experiments. To simplify notation for different

scenarios and different participants in the following section,

the abbreviations such as, A1S0, A2S10, and A3S-10, are

respectively used for the ankle angle scenarios of 0°, 10°, and

-10° on the first, second, and third participant, respectively.

A. Results of MVIC

The purpose of the first set of experiments was to determine

the dorsiflexion moment and the corresponding neuromuscular

variables at MVIC, which were used to determine certain

parameters in the HNM method. The verbal encouragement

enabled the participants to generate voluntary dorsiflexion

moment as strong as possible, thus there was a sub-maximal

dorsiflexion moment in each trial per scenario. The 3 sub-

maximal dorsiflexion moment values from the 3 repeated

trials under each scenario are listed in Table I. The maximum

and averaged values of the 3 sub-maximal values are plotted

in Fig. 5. MVIC is determined as the higher dorsiflexion

moment between the two highest sub-maximal values, once

the difference between them is within 5 %. If the difference

condition is not satisfied, the procedures were repeated until

the difference condition is satisfied. Therefore, only one MVIC

value exists per scenario, which is also listed in Table I. Take

A1 as an example, the results show that once the pedal of

the load cell platform negatively passes the neutral position,

on average, the capability of generating maximum dorsiflexion

moment of A01 decreases by 18.20 % (p < 0.001), 23.27 %

(p < 0.001), and 30.38 % (p < 0.001) for S-5, S-10, and S-

15, respectively. However, when the pedal positively passed

the neutral position, this capability was increased, only within

a small range, by 5.02 % (p = 0.497), 4.49 % (p = 0.614),

and 2.68 % (p = 0.939) for S5, S10, and S15, respectively.

The findings in this section indicate that MVIC is related

to the ankle’s angular position. Considering the correlation

between TA muscle length and the designed 7 scenarios, it

is not hard to conclude that MVIC could have increased

during TA muscle lengthening and reduced during TA muscle

shortening. This effect is also known as force-enhancement

and force-depression [43]. Apart from muscle length, there

are many other factors that can influence MVIC in skeletal

muscles. According to [44], the MVIC of the elbow flexors

can be increased by local cues such as firing a gun before

maximal efforts. Also, hypnosis, epinephrine injection or in-

gestion of amphetamine can also alter MVIC. Gandevia [45]

reported a systematic review on how peripheral and central

components of muscle fatigue affected voluntary muscle con-

traction strength. Even under conditions designed to maximize

supraspinal drive, voluntary activation of muscle is commonly

not maximal in measurements of isometric strength. This

deficiency varies with the subject, task, time, and the muscle

group [45]. Future work is needed to extract the spinal or

supraspinal changes that cause the MVIC changes and to

correlate those central changes with indices of performance

in different participant groups and experimental tasks.

B. Results of Model Training

In the second set of experiments, the dorsiflexion moment,

pre-processed sEMG, and US image variables including PA,

echogenicity, and FL of the 1st trial under A1S0 are shown in

Fig. 6. There exists a positive correlation between PA and the

moment, as well as sEMG MRMS and the moment, while a

negative correlation between echogenicity and the moment,

as well as FL and the moment. Although the participant



Table I
SUB-MAXIMAL DORSIFLEXION MOMENT IN EACH TRIAL AND THE DETERMINED MVIC UNDER EACH SCENARIO ON EVERY PARTICIPANT.

Scenario
A1 (N ·m) A2 (N ·m) A3 (N ·m)

Trial 1 Trial 2 Trial 3 MVIC Trial 1 Trial 2 Trial 3 MVIC Trial 1 Trial 2 Trial 3 MVIC
-15° 20.648 20.374 19.415 20.648 12.991 13.235 13.181 13.235 12.263 13.098 13.692 13.692
-10° 20.322 23.433 22.854 23.433 13.446 13.145 13.720 13.720 13.118 13.290 13.648 13.648
-5° 23.989 23.389 23.631 23.989 14.130 13.512 14.252 14.252 14.750 15.262 15.463 15.463
0° 28.857 27.941 30.213 30.213 15.571 16.378 16.576 16.576 18.775 16.736 17.922 18.775
5° 30.913 30.333 29.919 30.913 15.855 15.886 16.071 16.071 17.492 16.925 17.164 17.492

10° 30.369 29.743 30.595 30.595 15.505 15.655 16.472 16.472 17.570 17.125 18.273 18.273
15° 30.515 28.644 29.978 30.515 15.868 15.972 16.869 16.869 17.692 18.096 17.663 18.096
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Figure 5. Maximum (MVIC) and averaged values of sub-maximal dorsiflexion moment across three trials under 7 scenarios of each participant.

was instructed verbally to maintain the maximum voluntary

contraction, the generated dorsiflexion moment was prone to a

decrease, as shown in Fig. 6. Similar patterns were also found

in PA, FL, and sEMG MRMS. In addition, when TA recovered

to a relaxed state, PA, FL, and sEMG MRMS approximately

returned to the initial values, but not for echogenicity. The

values of echogenicity represent the averaged grayscale value

for each pixel in the ROI, and there is a time-dependent drift

in the changing pattern of echogenicity. This drift implies

that there exists deformation for muscle tissue after MVIC

although there is no muscle contraction, and muscle tissue

would not recover to initial state instantaneously. Among

the four pre-processed variables, the noise in sEMG MRMS

outplays than the other variables.

The EMD in (9) was defined as the delay between the onset

of sEMG signal and dorsiflexion moment. To determine the

EMD on each participant, the time delay values from the

two training trials under each scenario were calculated and

the averaged values were regarded as the EMDs, which are

listed in Table II. The averaged EMDs were rounded to integer

values and utilized in the HNM for both training section and

prediction section due to the sampling frequency being at 1000

Hz. Due to the testing at different ankle angles, i.e., the change

from -15° to 15°, the ankle angle varies from dorsiflexion to

plantar flexion, which implies that the TA muscle performs

eccentric contraction along this angle change sequence. For

each participant, the EMD values exhibit a decreasing trend

as the TA muscle length increases. These EMD results show

consistency with the experimental and simulation findings in

[46], [47].

The measured and estimated dorsiflexion moments from

training procedure under A1S15 are shown in Fig. 7. At the

Table II
EMD VALUES OF EACH PARTICIPANT IN EACH SCENARIO

Participant
EMD (ms)

-15° -10° -5° 0° 5° 10° 15°
A1 64.5 53.5 49 43.5 39 35.5 29
A2 54.5 46.5 37 31 26.5 20.5 18
A3 57 51.5 45.5 38.5 33 29.5 24.5

starting of the 1st trial, the PA decreases, as seen in Fig. 6. As

shown in Fig. 7 (a), the training results by using LR and HNM

approaches were affected by the decreased PA value around

1.5 s; however, the FFNN approach overcame the decrease in

PA. Also, as shown in Fig. 7 (d), FFNN resisted the noise in

sEMG MRMS better than LR or HNM. These results indicate

higher robustness of FFNN than LR or HNM. Due to the

time-dependent drift of echogenicity, at some time instances,

the trained data in Fig. 7 (b) did not track the measured

moment well, especially for the peak values. To quantitatively

evaluate the training results of each neuromuscular variable

and their corresponding modeling approaches, the averaged

RMSE values across scenarios between the measured and

trained ankle dorsiflexion moments are listed in Table III.

C. Results of Model Prediction

Figure 8 shows the measured dorsiflexion moment and the

predicted moment with respect to PA, echogenicity, FL, and

sEMG under A3S15. Under this particular scenario, the results

in Fig. 8 show that the prediction with respect to echogenicity

exhibits the worst performance, while the results with respect

to PA and FL exhibit much better prediction. In addition,

results in Fig. 8 (d) indicate the FFNN approach is more robust

to sEMG signal noise, compared to LR and HNM approaches.
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Figure 6. Variables measured using US images, sEMG MRMS, and the corresponding dorsiflexion moment during 1st trial under A1S0.

Figure 7. Ankle dorsiflexion moments from training and measurement under
A1S15. (a) Training with PA. (b) Training with echogenicity. (c) Training
with FL. (d) Training with MRMS of sEMG.

Table III
RMSE VALUES (AVERAGE±STANDARD DEVIATION) ACROSS SCENARIOS

BETWEEN TRAINED AND MEASURED DORSIFLEXION MOMENTS FOR EACH

PARTICIPANT

Variable Method
RMSE (N ·m)

A1 A2 A3

PA
LR 2.217 (0.673) 2.483 (1.274) 2.104 (0.572)

FFNN 1.831 (0.640) 2.053 (1.354) 1.411 (0.568)
HNM 1.688 (0.744) 1.712 (0.534) 1.953 (0.513)

Echo
LR 5.176 (0.431) 3.598 (1.444) 2.444 (0.884)

FFNN 4.033 (0.613) 2.520 (0.970) 1.926 (0.864)
HNM 3.540 (0.551) 2.222 (1.014) 2.666 (1.105)

FL
LR 2.308 (0.743) 3.039 (1.069) 1.341 (0.708)

FFNN 1.626 (0.527) 2.134 (1.112) 0.773 (0.520)
HNM 1.284 (0.230) 2.814 (1.183) 1.174 (0.744)

sEMG
LR 3.341 (0.871) 2.241 (0.310) 2.212 (0.320)

FFNN 2.280 (0.657) 1.909 (0.211) 1.692 (0.398)
HNM 3.228 (1.266) 2.306 (0.186) 2.810 (0.631)

Figure 8. Ankle dorsiflexion moment from prediction and measurement under
A3S15. (a) Prediction with PA. (b) Prediction with echogenicity. (c) Prediction
with FL. (d) Prediction with MRMS of sEMG.

The averaged RMSE values and standard deviations be-

tween the measured (actual) and predicted dorsiflexion mo-

ments across all scenarios were computed to obtain a quanti-

tative evaluation of the prediction algorithms, when different

approaches and neuromuscular variables were used. These

results are listed in Table IV. The results show that for

the same approach, RMSE value of the echogenicity-based

prediction across all scenarios is higher than the RMSE values

of the PA, FL, or sEMG-based prediction. Meanwhile, for each

neuromuscular variable, the RMSE values of both FFNN and

HNM were lower than the LR modeling approach.

To determine if the findings can be generalized for an

individual, validation across scenarios and participants (VASP)

was performed on the data collected from all three participants.

The results in Fig. 9 show that when PA is used as a

neuromuscular variable, the RMSE values of FFNN and HNM

are lower than the RMSE values of LR by 19.64 % (p = 0.323)

and 27.26 % (p = 0.119), respectively. When echogenicity is



Table IV
RMSE VALUES (AVERAGE±STANDARD DEVIATION) ACROSS SCENARIOS

BETWEEN PREDICTED AND MEASURED DORSIFLEXION MOMENTS FOR
EACH PARTICIPANT

Variable Method RMSE (N ·m)
A1 A2 A3

PA
LR 2.683 (1.294) 3.653 (1.232) 2.711 (0.933)

FFNN 1.998 (0.657) 3.111 (1.660) 2.038 (0.701)
HNM 2.111 (0.517) 2.639 (1.449) 1.712 (0.549)

Echo
LR 5.730 (1.499) 3.942 (1.388) 2.978 (1.425)

FFNN 4.962 (1.064) 3.365 (1.656) 2.588 (1.449)
HNM 4.518 (0.835) 3.233 (1.530) 3.116 (2.149)

FL
LR 2.603 (1.551) 3.171 (0.882) 1.635 (0.568)

FFNN 2.138 (1.446) 2.131 (1.279) 1.263 (0.358)
HNM 2.452 (1.417) 2.662 (1.220) 1.042 (0.539)

sEMG
LR 2.969 (0.942) 2.267 (0.509) 1.901 (0.184)

FFNN 1.970 (0.694) 2.147 (0.438) 1.729 (0.645)
HNM 2.665 (0.903) 2.312 (0.346) 1.834 (0.323)

used as a neuromuscular variable, the RMSE values of FFNN
and HNM are lower than the RMSE values of LR by 11.85
% (p = 0.653) and 9.58 % (p = 0.756), respectively. When
FL is used as a neuromuscular variable, the RMSE values of
FFNN and HNM are lower than the RMSE values of LR by
2.50 % (p = 0.995) and 13.93 % (p = 0.844), respectively.
When sEMG is used as a neuromuscular variable, the RMSE
values of FFNN and HNM are lower than the RMSE values
of LR by 20.26 % (p = 0.079) and 5.20 % (p = 0.838),
respectively. However, as can be seen by the p-values, no
statistical significant difference was found among different
approaches with respect to the same neuromuscular variable.

The results in Fig. 9 also show that in the LR approach,
when PA, FL, and sEMG are used, the RMSE values are
significantly lower than the RMSE values, when echogenicity
is used, by 28.32 % (p < 0.05), 30.70 % (p < 0.05), and
40.05 % (p < 0.01), respectively. In the FFNN approach,
when PA, FL, and sEMG are used, the RMSE values are
significantly lower than the RMSE values, when echogenicity
is used, by 31.92 % (p < 0.05), 19.43 % (p = 0.491), and
45.78 % (p < 0.05), respectively. In the HNM approach,
when PA, FL, and sEMG are used, the RMSE values are
significantly lower than the RMSE values, when echogenicity
is used, by 39.92 % (p < 0.01), 34.04 % (p < 0.05), and
37.15 % (p < 0.05), respectively. The results of R2 values
show that in the LR approach, when PA, FL, and sEMG are
used, the R2 values are significantly increased than the R2

values, when echogenicity is used, by 19.32 % (p < 0.01),
16.73 % (p <0.05), and 18.35 % (p < 0.05), respectively.
In the FFNN approach, when PA, FL, and sEMG are used,
the R2 values are significantly increased than the R2 values,
when echogenicity is used, by 16.17 % (p = 0.207), 4.21 %
(p = 0.955), and 19.93 % (p < 0.05), respectively. In the
HNM approach, when PA, FL, and sEMG are used, the R2

values are significantly increased than the R2 values, when
echogenicity is used, by 16.81 % (p < 0.05), 12.73 % (p =
0.138), and 12.79 % (p = 0.135), respectively. However, there
is no significant difference of the RMSE error or R2 values
among LR, FFNN, and HNM approaches with respect to each
of the neuromuscular variable.

D. Discussions

In this paper, voluntary ankle dorsiflexion effort was de-
tected and evaluated by using Hill-type neuromuscular model-
based and model-free approaches. The sEMG MRMS and
US imaging-derived signals, PA, FL, and echogenicity, were
evaluated as non-invasive neuromuscular signals to predict the
voluntary ankle effort. There are three reasons for selecting
PA, FL, and echogenicity as the features from US images. The
first one is that, in existing literature, the three features are the
most frequently used US image features for voluntary effort
prediction [48]–[51]. These features have high correlation
with muscle or joint mechanical functions as described in
the introduction section. The second reason is that these
three features represent morphological information (PA and
FL) and functional information (echogenicity). We want to
investigate if either of these two information could be used
as an indicator for muscle activation level. The third reason
is that a HNM is used to predict ankle dorsiflexion moment,
where PA and FL are used to represent muscular geometry
in the HNM model. Echogenicity is an easily accessible
measurement derived from ultrasound imaging that does not
require complex tracking algorithms; thus, saving processing
time and potentially enabling real-time implementation with
minimal efforts in the future.

The comparisons among different mathematical approaches
with respect to the same neuromuscular variable, and among
different neuromuscular variables corresponding to the same
mathematical approach were performed. Moreover, this is
the first study investigating both model-free and model-based
approaches for detecting human ankle dorsiflexion intent by
using multiple non-invasive neuromuscular variables. The re-
sults in Table IV are consistent with the results in [50],
where the PCC between MVIC and muscle thickness, PA, and
echogenicity were compared. Both muscle thickness and PA
showed higher PCC with MVIC than echogenicity in both
young and elderly groups. Furthermore, multiple regression
analysis revealed that muscle thickness had the best correlation
with MVIC. Similarly, in [52], the results suggested that echo
intensity (EI) obtained from the quadriceps femoris muscle
was related to the muscular power and functional capacity
of older subjects. However, it was shown that the EI in
some regions of the quadriceps muscle may not correlate well
with muscular performance. The possible reason is that the
echogenicity variable is sensitive to the orientation of the US
probe, the relative movement between the US probe and the
skin, as well as the pressure on the skin.

In terms of the robustness for the 3 mathematical ap-
proaches, as shown in Fig. 7 and Fig. 8, when the sEMG signal
was used as a neuromuscular variable, FFNN had the highest
robustness to the inherent noise in the signal, compared to the
LR and HNM approaches. A possible reason is that the nonlin-
ear multiple-layer NN and backpropagation algorithm can be
trained to act as a digital filter that minimizes the noise effects.
For model-free methodology, just like the LR and FFNN
approaches used in this paper, in [49] nonlinear regression like
exponential function was utilized to determine the relationship
between each US parameter and EMG. In [13] polynomial



Figure 9. Average values and standard deviation of RMSE and R2 between measured and predicted dorsiflexion moments in VASP. *, **, and *** represent
the significant difference level at p < 0.05, p < 0.01, and p < 0.001.

regression analyses were performed to correlate isometric leg

extension torque with US imaging-derived cross-sectional area

and width-thickness ratio, EMG RMS, and mechanomyogra-

phy RMS. However, the frame rate of B-mode US imaging

was 25 Hz, which was much lower than 1000 Hz used in

this paper. Furthermore, the isometric torque estimation or

prediction performance was not validated in a continuous time-

domain. Thus, the estimation or prediction method may not be

practical as a real-time feedback in neurorehabilitation device

control. For model-based methodology, in [53], the parameters

of HNM including the shape coefficient, maximum muscle

contraction force, and tendon slack length were calibrated,

while other neuromuscular parameters including PA, FL, and

tendon length were assigned using the simulation software

OpenSim. This approximation approach essentially neglected

subjective differences in PA and FL among participants. This

issue is addressed in this study by including person-specific

variables: PA, FL, and echogenicity that were extracted from

real-time US images. In [31], the authors also considered

sEMG signal and US imaging-derived variables to implement

an HNM approach that used a differential model with two

contractile elements to account for both slow and fast con-

traction fibers. In the aforementioned contributions, the muscle

activation in HNM was only based on the transformation from

neural activation, which was only related to the normalization

of pre-processed sEMG signal. In our study, except for sEMG-

induced muscle activation, US image variable-induced muscle

activation was also utilized in the HNM approach, which

means that the subject-specific measures from US images were

not only used for muscle contraction model but also used for

muscle activation model.

Although sEMG, US imaging, and load cell signals were

recorded at 1000 Hz in real-time, the processing and analysis

were done off-line. The targeted muscle fascicles from US

images had to be initially defined in the first frame of the im-

age sequence, before the algorithm Muscle Fascicle Tracking
could be used. Additionally, the fascicle tracking algorithm

is dependent on US images with visually distinct fascicles

and aponeurosis, which may not be practical when fascicles

cannot be distinguished with US images such as in multi-

pennate muscles. To realize real-time operation, an extensive

investigation and engineering efforts are required. Therefore,

real-time implementation was not included in the current work

of which the main focus is to report the evaluation of iso-

metric ankle dorsiflexion moment prediction by using various

neuromuscular signals, as well as neuromuscular model-based

and model-free approaches. Further work should involve two

aspects: 1) sEMG and US imaging features extraction in real-

time and 2) ankle dorsiflexion moment prediction in real-

time. While for sEMG feature extraction, there is no doubt

that sEMG MRMS can be obtained in real-time at 1000 Hz,

for US imaging features extraction, we suggest the use of

parallel computing framework on a graphical processing unit

to improve image processing time [54].

The results in this work focus on people without neuro-

logical disorders. The architectural features and echogenicity

derived from US images of pathological skeletal muscles

may differ from those of normal muscles. As studied in

[55], the authors revealed the fundamental differences in

architectural and mechanical properties of the ankle joint

and medial gastrocnemius muscle fascicles between young

adults with spastic cerebral palsy and typically developed

age-matched controls. In [56], the authors found a markedly

varied muscle deformation pattern between patients group with

facioscapulohumeral muscular dystrophy and healthy patients

group, where patients with severe peroneal weakness showed

less displacement of the central tendon region of TA muscle,

while the healthy patients showed a non-uniform displacement

pattern with the central aponeurosis showing the largest dis-

placement. For the muscles with pathological change, there

might be performance degradation of the proposed methods,

but it is hard to determine until investigation is performed.

Therefore, for the proposed methods to find its application

in assistive devices control, further investigation on impaired

muscles will be needed in our future work.

During the experiments, we ensured that all devices were

stable on the targeted skin position, especially the ultrasound

transducer. However, a limitation of the study is that the



robustness of the prediction performance to slippage or to
the effects of different attachment points after removing the
sensors remains to be studied. Secondly, although HNM was
widely used for joints mechanical functions detection, like
muscle contraction force, joint moment, joint angle, and joint
stiffness, one general, and so far neglected problem in the pre-
sented HNM approach is that it fails to reproduce muscle force
or joint moment in dynamic contractions, where the muscle
length is joint angle-dependent. As mentioned in [43], muscle
force increases during and after active muscle lengthening
(known as Force-enhancement), and reduces during and after
active muscle shortening (known as Force-depression). During
the dynamic contractions, the effects of muscle contraction
history may have a crucial role for muscle force or joint
moment prediction, which are not addressed in the presented
HNM approach. Due to compliance of series elastic structures,
even during quasi isometric (end held) contractions, there
is a substantial shortening of the muscle fascicle (shown in
Fig. 6). Thus, prediction of realistic muscle forces (and joint
moments) based on sEMG and US imaging data requires con-
sideration of contraction history effects in the muscle models.
Especially, extension of the scope of the method to non-
isometric contractions (e.g. every day movements including
muscle-tendon complex shortening and lengthening) requires
consideration of contraction history effects. There exist a
series of further developments in muscle models [57]–[59]
that enable the reproduction of Force-enhancement and Force-
depression during dynamic muscle contraction. The models
that consider these enhancements will be investigated in our
future work. Furthermore, the current study assumed that there
was no angular position and velocity change in the isometric
ankle dorsiflexion situation, because two effective ways were
designed in the experiments: 1) participants were asked to
wear hard and tight shoes, 2) both toe and heel were tied
on the upper pedal of the load cell platform tightly by using
velcro straps. However, due to the soft tissue of the foot
and small movements in the foot joints (e.g. tarsometatarsal
joints/Lisfranc joints), movements between TA muscle and
origin will be expected. The influence of those small move-
ment on neuromuscular variables like PA and FL has not been
considered in the paper, which needs to be investigated in the
future experiments.

V. CONCLUSION

In this study, model-free methods, LR and FFNN, as well as
a model-based method, HNM, were applied to predict volun-
tary human ankle dorsiflexion moment with respect to different
neuromuscular variables from both US images and sEMG.
Under 7 scenarios, sEMG, US imaging, and load cell signals
were simultaneously recorded in real-time from the voluntary
isometric dorsiflexion of three participants. The results from
VASP showed that with respect to the same variable there was
no significant difference among three approaches, but using the
same approach, the prediction performance was significantly
improved by using PA, FL, and sEMG in comparison with
echogenicity, respectively. The findings in this study deter-
mined a better neuromuscular variable and better modeling

approaches for detecting human lower limb movement intent
non-invasively. In the future work, validations of non-isometric
ankle dorsiflexion movement are necessary to generalize the
findings in this work. This is essential for a practical imple-
mentation of motorized or FES-assisted rehabilitation devices.
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