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Abstract

Convolutional neural network is an important model in deep learning, where a
convolution operation can be represented by a tensor. To avoid exploding/vanishing
gradient problems and to improve the generalizability of a neural network, it is de-
sirable to have a convolution operation that nearly preserves the norm, or to have
the singular values of the transformation matrix corresponding to the tensor bounded
around 1. We propose a penalty function that can constrain the singular values of
the transformation matrix to be around 1. We derive an algorithm to carry out the
gradient descent minimization of this penalty function in terms of convolution kernel
tensors. Numerical examples are presented to demonstrate the effectiveness of the
method.

Keywords: penalty function, transformation matrix, convolutional layers, generaliz-
ability, unstable gradient.

1 Introduction
Convolutional neural networks are a class of deep learning models that are widely used
in computer vision problems. The training of a convolutional neural network can be seen
as an optimization problem involving a convolutional kernel tensor. In this paper we
present a mathematical formulation of regularization on the convolutional kernel tensor
to maintain both upper and lower boundedness of the linear transformation associated
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with the convolutional kernel. This is desirable during the training process by avoiding
an unstable gradient problem. We develop a theory and a gradient descent algorithm for
our proposed regularization function.

The classical convolution operation is an essential tool in signal processing. More
general forms of convolution that use no flip in multiplications but may have different
strides and padding patterns have been introduced and widely used in deep learning [7].
Here, only element-wise multiplication and addition are performed and there is no reverse
multiplication with the convolutional kernel. Without loss of generality, we will consider
in this paper 2-dimensional and 3-dimensional convolutions with unit strides and with
zero padding. Specifically, given a convolutional kernel matrix K = [ki j] ∈ Rk×k and an
input matrix X = [xi j] ∈ RN×N , we consider the convolution of K and X , denoted by
Y = K ∗X ∈ RN×N , as defined by

yr,s = (K ∗X)r,s = ∑
p∈{1,··· ,k}

∑
q∈{1,··· ,k}

xr−m+p,s−m+qkp,q, (1.1)

where m = pk/2q, and xi, j = 0 if i≤ 0 or i > N, or j ≤ 0 or j > N. Here and throughout,
pxq denotes the smallest integer greater than or equal to x.

Indeed, in convolutional neural networks (CNNs), a more general form of convolution
is typically used where the input is a multichannel signal represented by a 3-dimensional
tensor X = [xi jk]∈RN×N×g. Namely, the input X has g channels of N×N matrices. Then,
a convolutional kernel is represented by a 4-dimensional tensor K = [ki jk`] ∈ Rk×k×g×h

and the multichannel convolution of K and X produces a 3 dimensional tensor output
Y = [yi jk] ∈ RN×N×h, as denoted by Y = K ∗X and defined by

yr,s,c = (K ∗X)r,s,c = ∑
d∈{1,··· ,g}

∑
p∈{1,··· ,k}

∑
q∈{1,··· ,k}

xr−m+p,s−m+q,dkp,q,d,c, (1.2)

where m = pk/2q and xi, j,d = 0 if i≤ 0 or i > N, or j≤ 0 or j > N. We will also call (1.1)
a one-channel convolution, which is a special case of the multichannel convolution (1.2).

Clearly, the convolution operation is a linear transformation on X and each convo-
lutional kernel corresponds to a linear transformation matrix. Indeed, the convolution
equation Y = K ∗X can be written as a matrix-vector product after reshaping X and Y .
Let vec(X) denote the reshape of X into a vector as follows. If X is a matrix, vec(X) is
the column vector obtained by stacking the columns of X on top of one another. If X is a
tensor, vec(X) is the column vector obtained by stacking the columns of the flattening of
X along the first index (see [8] or Section 2.2 for more details). Then, given a kernel K,
there is a corresponding matrix M such that

vec(Y ) = M vec(X).

In convolutional neural networks, for each convolutional layer, there is a convolution
kernel tensor K, which produces output Y = K ∗X for input X in this layer and we need
to get the values of K by minimizing certain loss function L (K) with respect to K (see
Subsection 1.1 below). If ‖vec(Y )‖2/‖vec(X)‖2 is very large or very small, the gradient
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of the loss function become very large or very small respectively, resulting in exploding
and vanishing gradients problems [11]. It is thus desirable to use K such that

‖vec(Y )‖2 ≈ ‖vec(X)‖2. (1.3)

Namely, we would like to constrain the singular values of the corresponding transforma-
tion matrix M to be close to 1 during the optimization process. Ideally then, we would
like to use K so that the corresponding M has orthonormal columns (i.e. MT M = I), but
this is in general impossible because MT M = I involves gN2(gN2+1)/2 equations while
K has only k2gh parameters with k� N usually in neural networks. One known situation
where an orthogonal M can be constructed is the one-channel periodic convolution with
full sized N×N kernel (i.e. k=N), for which the convolution becomes a diagonal matrix
multiplication after discrete Fourier transforms; see [18] for example. For a multichannel
convolution with a small kernel (k� N), a more realistic goal is to penalize the kernel so
that the singular values of the corresponding transformation matrix M are bounded above
and below. One may consider explicitly adding max{|σmax(M)− 1|, |σmin(M)− 1|} to
L (K) as a penalty function during the optimization process, where σmax(·) and σmin(·)
denote the largest and respectively the smallest singular values of a matrix, but with two
objectives, this is difficult to implement.

We focus in this work on the development of a penalty function with theory and al-
gorithm. We propose using Rα(K) := σmax(MT M−αI) (for some α > 0) as a penalty
function for the regularization of the convolutional kernel tensor K. We will show that
reducing Rα(K) keeps the largest singular value bounded from above and the small-
est singular value from below. Equivalently up to a scaling, this reduces the condition
number of M. We will then derive a gradient descent algorithm for minimizing Rα(K).
Numerical examples will be presented to illustrate effectiveness of our method.

There have been many works devoted to enforcing the orthogonality or spectral norm
regularization on the weights of a neural network; see [3, 6, 17, 24] and the references
contained therein. For a convolutional layer, some of these works enforce the constraint
directly on the h×(gkk) matrix reshaped from the kernel K ∈Rk×k×g×h without any clear
impacts on M [3, 6]. [17, 24] normalize a matrix reshaped from K by its spectral norm.
[18] first constructs a full-sized kernel under the periodic convolution that has a corre-
sponding M with bounded singular values and then projects the full-sized convolutional
kernel to a desirable small one. This projection obviously may not preserve the desirable
singular value bound of the original kernel. Compared with those approaches, our method
works on the convolution kernel K but regularize on the singular values of M. We also
note that there are many works on constructing orthogonal weight matrices in the context
of recurrent neural networks; see [1, 10, 16, 22] and the references contained therein,
but we are concerned here with optimizing the singular values of a linear transformation
defined by a convolution kernel rather than a general weight matrix.

The rest of the paper is organized as follows. In subsection 1.1, we will discuss the
origin of our problem in deep learning. In Section 2.1, we first propose the penalty func-
tion and discuss its theoretical property. We then derive the gradient formula and propose
the gradient descent algorithm for the one-channel case in Subsection 2.1 and for the mul-
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tichannel case in Subsection 2.2. In Section 3, we present numerical results to show the
effectiveness of the method. We end in Section 4 with some concluding remarks.

1.1 Applications in deep learning
The regularization problem we consider arises in training of deep convolutional neural
networks. Convolutional neural network is one of the most widely used model of deep
learning. A typical convolutional neural network consists of convolutional layers, pool-
ing layers, and fully connected layers. Training the neural networks is an optimization
problem, which seeks optimal weights (parameters) by reaching the minimum of loss
function on the training data. This can be described as follows: given a labeled data
set {(Xi,Yi)}N

i=1, where Xi is the input and Yi is the output, and a given parametric fam-
ily of functions F = { f (Θ,X)}, where Θ denotes the parameters contained in the func-
tion, the goal of training the neural networks is to find the best parameters Θ such that
Yi ≈ f (Θ,Xi) for i = 1, · · · ,N. The practice is to minimize the so called loss function, e.g
ΣN

i=1‖Yi− f (Θ,Xi)‖2
2 on the training data set.

For example, a typical convolutional neural network has l convolutional layers param-
eterized by l convolution kernels Kp (1 ≤ p ≤ l) and m so-called fully-connected layers
defined by weight matrices Wq,(1 ≤ q ≤ m); we omit the bias for the ease of notation.
Then the output of the network can be written as Y = f (K1,K2, · · · ,Kl,W1,W2, · · · ,Wm,X)
and we train the network by solving the following optimization problem for the training
dataset {(Xi,Yi)}N

i=1:

minK1,K2,··· ,Kl ,W1,W2,··· ,Wm

1
N

Σ
N
i=1‖Yi− f (K1,K2, · · · ,Kl,W1,W2, · · · ,Wm,Xi)‖. (1.4)

Exploding and vanishing gradients are fundamental obstacles to solving (1.4) or train-
ing of deep neural networks [11]. The singular values of the Jacobian of a layer bound
the factor by which it changes the norm of the backpropagated signal. If these singular
values are all close to 1, then gradients neither explode nor vanish. This can also help
improve the generalizability. Specifically, although the training of neural networks can be
seen as an optimization problem, but the goal of training is not merely to minimize the
loss function on training data set. In fact, the performance of the trained model on new
data is the ultimate concern. That is to say, after we find the weights or parameters Θ

through minimizing the loss function on training data set, we will use the weights Θ to
get a neural network to predict the output or label for new input data. Generalizability,
the ability of a network to extend its performance on the training data to new data, can
be improved through reducing the sensitivity of the output against the input data pertur-
bation [9, 20, 21, 23, 24]. This again can be achieved through (1.3) and hence through
regularizing the singular values of M.
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2 Regularization of Convolution Kernel Tensors
One way to achieve (1.3) is by minimizing σmax(MT M− I) so that M is close to being
orthogonal. Since the number of parameters in the convolution kernel K may be rela-
tively small, the minimum value with respect to K may not be very close to 0. Namely,
enforcing M to be nearly orthogonal may be too strong a condition to satisfy. Note
that our goal to decrease σmax(M) while increasing σmin(M) is equivalent, up to a scal-
ing, to decreasing the condition number of M. In light of this, we propose to minimize
Rα(K) := σmax(MT M−αI) for some fixed α . The following theorem justifies this ap-
proach.

Theorem 2.1. Let α > 0 and M ∈ Rm×n be such that Rα(K) = σmax(MT M−αI) < tα
for some 0 < t ≤ 1. Then the largest and the smallest singular value of M, denoted by
σmax(M) and σmin(M) respectively, satisfy that√

(1− t)α < σmin(M)≤ σmax(M)<
√
(1+ t)α.

In particular, κ2(M) := σmax(M)
σmin(M) <

√
1+t
1−t .

Proof. We use λ1(·),λ2(·), · · · ,λm(·) to denote all eigenvalues of an m×m matrix. Since
MT M−αI is symmetric and σmax(MT M−αI)< tα , then for all i = 1,2, · · · ,m, we have

−tα < λi(MT M−αI)< tα,

and thus
(1− t)α < λi(MT M)< (1+ t)α.

Therefore we have √
(1− t)α < σmin(M)≤ σmax(M)<

√
(1+ t)α.

The bound on the condition number κ2(M) follows immediately.

Theorem 2.1 suggests that reducing Rα(K) to a value less than α is sufficient to keep
σmax(M) bounded above and σmin(M) bounded below. Then, the reduction in Rα(K)
needed to maintain boundedness of the singular values may be less by using a larger
value of α . We next discuss the gradient descent algorithm to minimize Rα(K). We first
discuss the one-channel convolution and then present the generalization to multichannel
cases.

2.1 One-channel convolution
We first consider the one-channel convolution (1.1), i.e. in the context of (1.2), the num-
bers of input channels and the output channels are both 1. In this case, the kernel is a
k×k matrix and the input and the output are N×N matrices. For the ease of notation, we
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use a 3× 3 convolution kernel to illustrate the associated transformation matrix. Let the
convolution kernel K be

K =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 .

Then the transformation matrix corresponding to the convolution operation is

M = M(K) :=



A0 A−1 0 0 · · · 0

A1 A0 A−1
. . . . . . ...

0 A1 A0
. . . . . . 0

0 . . . . . . . . . A−1 0
... . . . . . . A1 A0 A−1
0 · · · 0 0 A1 A0


(2.1)

where

A0 =



k22 k23 0 0 · · · 0

k21 k22 k23
. . . . . . ...

0 k21 k22
. . . . . . 0

0 . . . . . . . . . k23 0
... . . . . . . k21 k22 k23
0 · · · 0 0 k21 k22


, A−1 =



k32 k33 0 0 · · · 0

k31 k32 k33
. . . . . . ...

0 k31 k32
. . . . . . 0

0 . . . . . . . . . k33 0
... . . . . . . k31 k32 k33
0 · · · 0 0 k31 k32


,

A1 =



k12 k13 0 0 · · · 0

k11 k12 k13
. . . . . . ...

0 k11 k12
. . . . . . 0

0 . . . . . . . . . k13 0
... . . . . . . k11 k12 k13
0 · · · 0 0 k11 k12


.

In particular, M is a N2×N2 doubly block banded Toeplitz matrix, i.e., a block banded
Toeplitz matrix with its blocks are banded Toeplitz matrices [12].

To minimize Rα(K) = σmax(MT M−αI), we derive a formula for its gradient with re-
spect to K, i.e., ∂σmax(MT M− I)/∂kp,q with M = M(K) being the transformation matrix
defined from K in (2.1) for each entry kp,q of the convolution kernel. Our result provides a
framework to use Rα(K) as a regularization term in the optimization of L (K) in convo-
lutional neural networks. To compute the gradient, we need the following classical result
on the first order perturbation expansion about a simple singular value; see [19].
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Lemma 2.1. Let σ be a simple singular value of A = [ai j] ∈ Rm×m (n≥ p) with normal-
ized left and right singular vectors u and v. Then ∂σ/∂ai j is u(i)v( j), where u(i) is the
i-th entry of vector u and v( j) is the j-th entry of vector v.

For our situation, we need to consider perturbation of MT M when M is changed.
Clearly, if an entry mi j changes, only the entries belonging to j-th row or j-th volume of
the matrix MT M are affected. Actually, we have the following lemma.

Lemma 2.2. Let M = [mi j] ∈ Rm×n and let σmax(MT M−αI) be the largest singular
value of MT M−αI with u and v normalized left and right singular vectors. Assuming
σmax(MT M−αI) is simple and positive, we have

∂σmax(MT M−αI)
∂mi j

= v( j)uT MT ei +u( j)eT
i Mv (2.2)

where ek denotes the k-th column of the n×n identity matrix.

Proof. Let A = [ai j] = MT M−αI. A direct calculation yields

∂A
∂mi j

= MT ∂M
∂mi j

+
∂ (MT )

∂mi j
M = MT (eieT

j )+(e jeT
i )M.

It follows from this, lemma 2.1 and the chain rule that

∂σmax(A)
∂mi j

=
n

∑
s=1

n

∑
t=1

∂σmax(A)
∂as,t

∂as,t

∂mi j

=
n

∑
s=1

n

∑
t=1

u(s)v(t)
∂as,t

∂mi j

= uT ∂A
∂mi j

v

= uT (MT (eieT
j )+(e jeT

i )M)v

= v( j)uT MT ei +u( j)eT
i Mv

We can now derive a formula for the gradient descent of σmax(MT M− I) with respect
to the convolution kernel K as follows.

Theorem 2.2. Assume the largest singular value of MT M−αI, denoted by σmax(MT M−
αI), is simple and positive, where M = [mi j] = M(K) ∈ Rn×n is the doubly block banded
Toeplitz matrix (2.1) corresponding to a one channel convolution kernel K = [ki j]∈Rk×k.
Assume u and v are normalized left and right singular vectors of MT M−αI associated
with σmax(MT M−αI). Given (p,q), if Ωp,q denotes the set of all indexes (i, j) such that
mi j = kp,q, we have

∂σmax(MT M−αI)
∂kp,q

= ∑
(i, j)∈Ωp,q

(
n

∑
t=1

u( j)v(t)mit +
n

∑
s=1

u(s)v( j)mis). (2.3)
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Proof. From (2.1), mi j is either 0 or equal to some kp,q. Indeed, mi j = kp,q if and only if
(i, j) ∈Ωp,q. Now, applying the chain rule to calculate ∂σmax(MT M− I)/∂kp,q and using
Lemma 2.2, we have

∂σmax(MT M− I)
∂kp,q

=
n

∑
i=1

n

∑
j=1

∂σmax(MT M− I)
∂mi j

∂mi j

∂kp,q

= ∑
(i, j)∈Ωp,q

σmax(MT M− I)
∂mi j

= ∑
(i, j)∈Ωp,q

(
n

∑
t=1

u( j)v(t)mit +
n

∑
s=1

u(s)v( j)mis).

We remark that MT M− I in the above theorem is a symmetric matrix. Then its largest
singular value σmax(MT M−αI) is either its largest eigenvalue or the absolute value of its
smallest eigenvalue. Then the left singular vector u is equal to v or −v respectively.

With the gradient, we can minimize σmax(MT M−αI) with respect to K using an
optimization method. In convolutional neural networks, the number of parameters are
usually so large that a first order method such as gradient descent is typically used. We
therefore also consider the gradient descent method

K← K−λ∇σmax(MT M−αI)

where λ is a step size parameter called learning rate. Then, at each step of iteration, to get
the gradient, we need to compute σmax(MT M−αI) and the associated left and right sin-
gular vector. Although the dimension of M is large, M is quite sparse and we can compute
a few largest singular values efficiently with Krylov subspace methods [2, 14, 15]. More-
over, a Toeplitz matrix can be embedded into a circulant matrix and the matrix-vector
multiplication can be efficiently computed using the fast Fourier transform by exploiting
the convolution structure; see [4, 12] and the reference therein. Nevertheless, this may
be computationally costly, since the gradient descent algorithm may require a large num-
ber of iterations and hence repeated computations of the gradients. On the other hand,
with λ usually being very small, each step of iterations involve a small change in K and
σmax(MT M−αI). We therefore suggest to use the power method to update the largest
singular value and singular vectors at each step of gradient descent step. Our experiences
indicates that a few iterations are usually sufficient. With this approach, one potential
issue is that the largest singular value may be overtaken by the second largest singular
value during the iterations. As a remedy, we keep and update the two largest singular val-
ues and singular vectors and select the larger one after each update as the largest singular
value. We will present a detailed algorithm in Section 2.2 in the more general context of
multichannel convolution.
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2.2 Multi-channel convolution
We now generalize the result in Section 2.1 to multichannel convolutions. Consider a
4-dimensional tensor convolution kernel K = [ki, j,k,l] ∈ Rk×k×g×h and a 3-dimensional
tensor input X = [xi, j,k]∈RN×N×g. Let Y = [yi, j,k]∈RN×N×h be the 3-dimensional tensor
output produced by the convolution Y = K ∗X as defined in (1.2). Let vec(X) denote the
vectorization of X , i.e.

vec(X) = [xT
:,1,1, . . . ,x

T
:,N,1,x

T
:,1,2, . . . ,x

T
:,N,2, . . . ,x

T
:,1,g, . . . ,x

T
:,N,g]

T

where we have used MATLAB notation x:,i, j := [x1,i, j, . . . ,xN,i, j]
T .

In this notation, the convolution operation is expressed as vec(Y ) =Mvec(X), where

M=M(K) :=


M(1)(1) M(1)(2) · · · M(1)(g)
M(2)(1) M(2)(2) · · · M(2)(g)

...
... · · · ...

M(h)(1) M(h)(2) · · · M(h)(g)

 , (2.4)

and M(c)(d) = M(K:,:,d,c) is a N2×N2 doubly block banded Toeplitz matrix as defined in
(2.1) from the 2-dimensional kernel K:,:,d,c. Namely, M(c)(d) is the transformation matrix
corresponding to 2-dimensional kernel K:,:,d,c that convolutes with the d-th input channel
to produce the c-th output channel.

As in Section 2.1, we are interested in minimizing σmax(MTM−αI) with respect to
K. We can easily generalize Theorem 2.2 to the multichannel case as follows; the proof
follows from Lemma 2.2 as in that of Theorem 2.2 and is omitted here.

Theorem 2.3. Assume the largest singular value of MTM−αI is simple and positive,
where M=M(K) is the structured matrix corresponding to the multichannel convolution
kernel K ∈ Rk×k×g×h as defined in (2.4). Assume u,v are the normalized left and right
singular vectors corresponding to σmax(MTM− I). Given (p,q,z,y), if Ωp,q,z,y is the set
of all indexes (i, j) such that mi j = kp,q,z,y, we have

∂σmax(MT M− I)
∂kp,q,z,y

= ∑
(i, j)∈Ωp,q,z,y

(
g∗N2

∑
t=1

u( j)v(t)mit +
g∗N2

∑
s=1

u(s)v( j)mis). (2.5)

where mi j is the (i, j) entry of M.

As discussed at the end of Subsection 2.1, we can use the derivative in a gradient
descent iteration to minimize Rα(K) with respect to K. We give a detailed description of
the full procedure in the following algorithm.

Algorithm 2.1. Gradient Descent for Rα(K) = σmax(MT M−αI).

1. Input: an initial kernel K ∈ Rk×k×g×h, input size N×N×g and learning rate λ .
2. Compute (σ1,u1,v1) and (σ2,u2,v2), i.e. the first and the second largest singular values
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and the associated normalized left and right singular vectors of MTM−αI where
M=M(K) is defined in (2.4);

3. set u = u1,v = v1.
4. While not converged:

4. Compute G = [∂σmax(MT M−I)
∂kp,q,z,y

]k,k,g,hp,q,z,y=1, by (2.5);
5. Update K = K−λG;
6. Update (σ1,u1,v1) and (σ2,u2,v2) using the power method;
7. If σ1 ≥ σ2, u = u1,v = v1;

else, u = u2,v = v2;
8. End

3 Numerical experiments
In this section, we present two numerical examples to illustrate effectiveness of the func-
tion Rα(K) in regularizing the singular values and the condition number of M. We study
performance of our algorithm with respect to different sizes of convolution kernels and
different values of α in Rα(K). An interesting experiment is to apply it to convolutional
neural networks. However, since that involves a much more expanded numerical study,
we leave it to a future work. All numerical tests were performed on a PC with MATLAB
R2016b.

In both examples, we start from a random kernel with each entry uniformly distributed
on [0,1], i.e. in MATLAB, K= rand(k,k,g,h) with rand(′state′,1). We then minimize
Rα(K) using Algorithm 2.1 and we demonstrate the beneficial effect of reducing the con-
dition number of M, or decreasing σmax(M) while maintaining σmin(M). In our numerical
experiments, we have used λ = 0.01. At step 6 of Algorithm 2.1 to update the singular
values of M, we have experimented using the power method with two iterations as well
as using the full SVD decomposition. We have found that the results are comparable and
we present the one based on the power method only.

EXAMPLE 1: We consider kernels of different sizes with 3×3 filters in this example,
namely K ∈ R3×3×g×h for various values of g,h. For each kernel, we use the input data
matrix of size 15× 15× g. We use the penalty function R1(K) = σmax(MT M− I). We
present in Figure 3.1 the results of 3× 3× 3× 1, 3× 3× 1× 3, 3× 3× 3× 6, and 3×
3×6×3 kernels. In the figures, we have shown the convergence of σmax(MT M− I) (red
solid line) on the right axis scale, and σmax(M) (blue solid line), σmin(M) (blue dashed
line), and the condition number κ(M) (blue dotted line) on the left axis scale.

For all kernel sizes, σmax(MT M− I) converges well within 20 iterations. The condi-
tion number κ(M) and σmax(MT M− I) decreases accordingly. σmin(M) does not change
significantly, however. It appears minimizing R1(K) is more effective in decreasing κ(M)
and σmax(MT M− I) but less so in increasing σmin(M). The kernel sizes mainly affect the
final converged values but not the convergence behavior.

EXAMPLE 2: We consider kernels of size 3×3×3×1 and use Rα(K)=σmax(MT M−
αI) with α = 0.1,1,5, and 10. We present in Figure 3.2 the convergence of σmax(MT M−
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Figure 3.1: Example 1: Convergence of σmax(M),σmin(M),κ(M),σmax(MT M− I) for four kernel sizes

I) (red solid line) on the right axis scale, and σmax(M) (blue solid line), σmin(M) (blue
dashed line), and the condition number κ(M) (blue dotted line) on the left axis scale.

For all values of α , σmax(MT M−αI) converges to a value dependent on α . The con-
dition number κ(M) and σmax(MT M−αI) decreases accordingly. For the larger values
of α , the convergence appears faster. For example, for α = 5 and 10, σmax(MT M−αI)
reaches minimum a little below the values of α at the 6th and the 4th iteration. Even
though the minimum values are also larger than other cases, it has similar effect in reduc-
ing κ(M) and σmax(MT M−αI) as suggested by Theorem 2.1. An interesting observation
is that after σmax(MT M−αI) reaches a value smaller than α , it increases back to a level
of α . It appears there may be a theoretical barrier to reducing σmax(MT M−αI) much
below α .

4 Conclusions
In this paper, we have considered how to regularize the weights of convolutional lay-
ers in convolutional neural networks. The goal is to constrain the singular values of the
structured transformation matrix corresponding to a convolutional kernel to be neither
too large nor too small. We have devised the penalty function and proposed the gradient
decent method for the convolutional kernel to achieve this. Numerical examples demon-
strate its effectiveness for different size of convolution kernels. We have also proposed a
more general penalty function Rα(K) and have observed some interesting behavior with
respect to the choice of α . It will be interesting to further investigate this, which is left to
a future work.
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Figure 3.2: Example 2: Convergence of σmax(M),σmin(M),κ(M),σmax(MT M−αI) for different α
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