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Smoothing Property of Load Variation
Promotes Finding Global Solutions of

Time-Varying Optimal Power Flow
Julie Mulvaney-Kemp, Salar Fattahi, and Javad Lavaei

Abstract—This paper analyzes solution trajectories for optimal
power flow (OPF) with time-varying load. Despite its nonlinearity,
time-varying OPF is commonly solved every 5-15 minutes using
local-search algorithms. Failing to obtain the globally optimal
solution of power optimization problems jeopardizes the grid’s
reliability and causes financial and environmental issues. The
objective of this paper is to address this problem by under-
standing the optimality behavior of OPF solution trajectories.
An empirical study on California data shows that, with enough
variation in the data, local search methods can solve OPF to
global optimality, even if the problem has many local minima. To
explain this phenomenon, we introduce a backward mapping that
relates the time-varying OPF’s global solution at a given time to a
set of desirable initial points. We show that this mapping could
act as a stochastic gradient ascent algorithm on an implicitly
convexified formulation of OPF, justifying the escape of poor
solutions over time. This work is the first to mathematically
explain how temporal data variation affects the complexity of
solving power operational problems.

Index Terms—Optimal power flow, online optimization, global
minima, local search

I. INTRODUCTION

OPTIMAL power flow (OPF) is a large-scale optimization
problem at the core of the daily operation of power

systems world-wide. OPF aims to find a cost-minimizing oper-
ating point for a power system, subject to various operational
and security constraints [2]. The OPF problem is challenging
because of its nonconvexity and the frequency at which it is
solved [3]. Because demand across the system is constantly
in flux, the OPF problem is solved every few minutes to
match the system’s power generation with its latest demand
profile. Nonconvex constraints in the AC model of OPF are
the main impediment to solving the problem efficiently and
optimally. Physical laws govern these constraints, indicating
nonconvexity is inherent to the problem. In power systems [4],
[5] and in machine learning [6], such nonconvexity is known
to give rise to poor local solutions. To realize the vision of
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sustainable and resilient power grids, there is a pressing need
to address the nonconvexity and timescale of both existing and
emerging optimization problems for the control and operation
of the grid. Since these problems are all built upon the power
flow equations, we focus on OPF in this paper.

With the goal of addressing the underlying nonconvexity
of the problem, a recent line of research has focused on
approximating the problem as a single or sequence of convex
optimization problems. These works include quadratic con-
vex [7], second-order conic programming [8], and semidef-
inite programming [9], [10] relaxations. Despite desirable
theoretical guarantees, the convex relaxations of OPF suffer
from two major drawbacks: 1) Their global guarantees often
come at the expense of higher runtimes or overly complicated
implementations; 2) They do not account for the time-varying
nature of demand. This time-varying property poses additional
constraints on the ramping capabilities of generators, which in
turn gives rise to coupled optimization problems.

On the other hand, research on multiperiod OPF, such as
[11], [12], and dyanamic OPF, such as [13], [14], endeavors
to solve multiple such time-coupled OPF problems simulta-
neously. This leads to large problem formulations which are
still nonconvex in nature. As a result, solution strategies for
these problems often rely on the convex relaxations discussed
previously in combination with receding horizon approaches
or nonlinear programming algorithms, which lack global opti-
mality guarantees [11]. Another drawback is that the data for
all time periods must be specified at the outset. In practice,
forecasts may not be adequately accurate far in advance.

Real-time OPF is another approach which targets the
timescale of OPF. In [15] a real-time algorithm is used to track
the optimal solution every few seconds in between traditional
OPF updates, which occur on a slower timescale ranging
from every 5 to 30 minutes. It uses new measurements of
the decision variables’ values and constraints at every time
step in order to compute a correction and track the optimal
solution. The correction is computed by solving a quadratic
optimization problem with one iteration of a quasi-Newton
algorithm. This has the advantage of responding quickly to
fluctuations, but does not replace the need to solve OPF on
the traditional timescale. Other faster-timescale approaches to
OPF-related problems include [16]–[18].

In this work, which is positioned between MPOPF and
real-time OPF, we consider time-varying OPF with ramping
constraints in an online fashion, where the load profile changes
over time. Unlike the previous convexification techniques, we
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solve the problem sequentially using a simple local-search
algorithm. Due to the nonconvex nature of the problem, the
local-search algorithm may return a spurious (non-global)
local solution, thus leading to a potentially large optimality
gap. Previously in [19], we made the observation that for
a small system with time-varying demand, the solution tra-
jectories of the time-varying OPF stemming from four initial
local solutions could converge over time. Here, we present an
extensive empirical study on a larger system with 16 spurious
solutions using California load data, and show that all feasible
local solution sequences (also called trajectories) converge in
cost and value to the best solution. Notably, this phenomenon
occurs despite the fact that the problem has multiple point-wise
poor local minima at key times. For this system, we show that
there is an escaping period in which different local solution
trajectories converge to a solution with lowest cost, followed
by a tracking period in which the local trajectories closely
track the global solution.

This observation leads to an important phenomenon in
time-varying OPF: load variation enables the local solution
trajectories to avoid poor solutions over time.1 In other words,
despite the highly nonconvex nature of the OPF problem at
any given time, our numerical algorithm acts on an implicitly
smoothed and well-behaved variant of the problem, thereby
avoiding the undesirable local solutions over time. We will
formalize this statement in the paper by providing a backward-
in-time mapping from the globally optimal solutions of OPF
at a given time (namely, end of the escaping period) to the set
of desirable initial points. By leveraging its special structure,
we show that the proposed backward mapping may act as a
stochastic gradient ascent algorithm on an implicitly convexi-
fied formulation of the OPF problem, which in turn explains
why local solution trajectories could avoid poor solutions over
time. This work is the first studying the role of data variation
in reducing the complexity of power optimization problems.
Since it relies on simple local search methods, the solution
techniques have extremely low memory and time complexities
and can also be implemented in a distributed setting to
accommodate the distributed nature of future grids [20].

II. EMPIRICAL STUDY OF TIME-VARYING OPF

In this section, we analyze the local solution trajectories of
time-varying OPF primarily for a 39-bus system. A secondary
analysis on a 9-bus system is also shared to highlight that the
observed behavior is not unique to the 39-bus system. The
solution trajectories of time-varying OPF are constructed by
sequentially solving a series of optimization problems with
time-varying demand levels using a local-search algorithm.
California load data and synthetic load scenarios are used to
determine demand levels over time. To prevent the solution
from changing abruptly over a short period of time, the
sequential optimization problems are coupled via so-called
ramping constraints, as we explain below.

1Note that with constant (time-invariant) load, all the local solution trajec-
tories will remain unchanged over time.

A. Model and Algorithm Details

To examine the behavior of different local solution trajec-
tories, we consider a modified version of the IEEE 39-bus
system, as introduced in [4]. Specifically, the real and reactive
power demands are reduced by 50%, voltage limits tightened
from +/-6% to +/-5%, and the cost functions associated with
all generators are assumed to be linear. The OPF problem for
this system with a generation cost-minimizing objective and
fixed demand values is known to have 16 local solutions. In
this work, we take into account the time-varying nature of
the load and scale all demands proportionally to a given load
profile. Finally, we introduce the ramping constraints that limit
the change in power generation for each generator over time.

Starting from the 16 known initial local solutions, we
constructed the sequences of local trajectories using the MAT-
POWER optimization toolbox [21] and fmincon sequential
quadratic programming solver2 in the following procedure. We
ran Algorithm 1 for all 16 initial local solutions and obtained
16 different solution sequences, which are called discrete local
trajectories [19].

Algorithm 1 Algorithm for obtaining discrete local trajectories

Input: Power system model with a fixed initial point x0,
demand curve, ramping constraint specifications

Output: Discrete local trajectory {xt}Kt=0

1: Initialization : t = 1
2: for every 15-minute time increment over 24 hours do
3: Set demand constraints for each bus according to the

demand curve at time t.
4: Set generator production limits based on xt−1 and the

ramping constraint.
5: Solve the resulting cost-minimization OPF problem

with fixed demand and initial point xt−1 using
fmincon. Upon feasibility, collect the solution as xt.

6: end for
7: return {xt}Tt=0

B. Behavior of Discrete Local Trajectories for a 39-bus system
with California Data

In this example, the shape of the demand curve is based
on the California’s net load for an average day in August
2019 [22] (Fig. 1). The reported actual hourly net load data

2Note that unlike many interior point methods that require strictly feasible
initial points, fmincon sequential quadratic programming gives a second-
order critical point even if the initial point is not strictly feasible.
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Fig. 1: Average daily net load for California during August 2019 [22]
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was interpolated linearly to produce a net load estimate for
each 15-minute interval within 24 hours. The curve is normal-
ized and shifted so that time 0 represents 3:00 a.m. Here, the
maximum magnitude of allowable change in power generation
between two consecutive time steps is 10% of the capacity
of each generator. All 16 discrete local trajectories remain
feasible throughout the span of twenty-four hours. (This is
not guaranteed, as local search may not always find a feasible
point or such point may not even exist.) Fig. 2 shows the
point-wise distance between these feasible trajectories and the
feasible trajectory with the lowest cost (labeled as Trajectory
2). Interestingly, all 16 trajectories converge to Trajectory 2
within nine hours.
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Fig. 2: Solution convergence for points on discrete local trajectories

Based on this observation, one may speculate that the
problem becomes devoid of spurious local solutions over time.
This is not the case for the considered problem. We uniformly
searched the feasible region of the problem without ramping
constraints and verified that there are multiple point-wise spu-
rious local solutions for the point-wise (single time instance,
without ramping constraints) OPF problem at different times.
In particular, there are many local solutions around the escape
time (hour 9) when the discrete local trajectories merge into
one trajectory. Fig. 3 shows the normalized objective cost
values for different discrete local trajectories, alongside the
costs of the discovered point-wise local solutions. Despite the
existence of multiple sub-optimal operating points at different
times, the discrete local trajectories initialized at various local
solutions result in the lowest cost values over time. Fig. 4
examines the active and reactive power generation for two
representative generators. This figure shows that the problem
has point-wise local solutions with a wide range of generation
levels, highlighting the importance of finding the solution with
the lowest cost.

Observe that most of the spurious point-wise local solutions
have sharp and random nature. In other words, they appear at
different time-steps with various cost values, and then quickly
disappear after a short period of time. This implies that the
landscape of OPF may be highly nonconvex at any given time
step. However, it can be observed that our numerical algorithm
is not affected by such sharp local solutions. To explain this
phenomena, we will show in Section IV that the data variation

enables the solver to act on a smoothed version of the problem
that is devoid of sharp local minima.
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Fig. 3: Cost for points on discrete local trajectories and point-wise local
solutions (for a single instance of OPF), relative to the cost of the best
trajectory
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Fig. 4: Real and reactive power output of select generators: points on discrete
local trajectories and point-wise local solutions

C. Behavior of Discrete Local Trajectories for a 9-bus system
with California Data

In this example, we consider a modified version of the
IEEE 9-bus system with 4 known local solutions to the OPF
problem, as introduced in [4]. Specifically, the active and
reactive power demands are reduced by 40% and the lower
bounds on reactive power compensation are tightened to -5
Mvar. The demand data is a normalized and shifted version of
California’s net load for an average day in May 2019 [22]
(Fig. ??). Fig. ?? shows the relative objective cost values
for different discrete local trajectories, alongside the costs
of the discovered point-wise local solutions, produced using
Algorithm 1 with a 5% ramping constraint. Again, we observe
that the load variation enables all trajectories to converge to
the optimal trajectory.

D. Impact of Load Variation on 39-bus System

Next, we consider discrete local trajectories for three dif-
ferent load profiles on the same 39-bus system. Isolating the
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(a) Average daily net load for California during May 2019 [22]
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(b) Data and results for an empirical study on a 9-bus system

Fig. 5: Data and results for an empirical study on a 9-bus system

impact of load variation enables insight into how variation
creates trajectories that avoid poor solutions, as occurred in
the previous examples. The three demand curves used are
sinusoidal functions with amplitudes representing 5%, 10%
and 12% deviation from the initial load, as shown in the
left column of Fig. 6. The ramping constraint (i.e., maximum
magnitude of allowable change in power generation between
two consecutive time steps) is 5% of the capacity of each
generator. In each scenario, all 16 discrete local trajectories
remain feasible throughout the time horizon (100 steps).

The results show that larger magnitudes of data variation
lead to fewer poor solutions over time. At 5% variation 4
trajectories remain at 4 different poor solutions, while the
remaining 12 trajectories converge to the best solution. At 10%
variation 3 trajectories converge to the same poor solution,
while the remaining 13 trajectories converge to the best
solution. At 12% variation all 16 trajectories converge to the
best known solution. These results are displayed in the center
column of Fig. 6, which shows the distance between each
trajectory and the trajectory with the lowest cost, along with
discovered point-wise local solutions. The search for point-
wise local solutions is done every fourth time step due to the
significant computational effort required to repeatedly solve
the problem from a range of initial points. Fig. 6 (right column)
compares the number of point-wise local solutions with the
number of distinct3 trajectories over time. In these three cases,
the number of distinct trajectories decreases until it plateaus at
the minimum number of point-wise local solutions found over
the entire period. This offers one potential explanation of how
load variation creates trajectories that escape poor solutions:
In exploring a range of static problems, you may encounter
one or more times at which the problem has a favorable

3Solutions are considered distinct if the real or reactive power output at any
generator differs by at least 1 MW or 1 MVAr, respectively, or if the voltage
magnitude or angle at any bus differs by at least 10−3 p.u. (345V) or 10−3

radians, respectively.

landscape4. At such times, the coupled problem may escape
a poor solution. Eventually, the number of poor trajectories is
limited by the number of spurious point-wise local solutions
of the most favorable landscape.

III. MATHEMATICAL ANALYSIS OF TIME-VARYING OPF

The case study in Section II reveals an important property
of the time-varying OPF problem: In the escaping period,
different discrete local trajectories converge to the operating
point with the lowest cost. Then, in the tracking period,
the discrete local trajectories track these globally optimal
operating points, even if the load profile changes gradually
over time. Such tracking period has been studied in [23],
[24], but the striking feature of power systems is the existence
of escaping periods.

To better understand this phenomenon, we analyze the
problem structure mathematically. First, we reformulate the
time-varying OPF as an unconstrained optimization problem
to enable the analysis. Using the derived unconstrained prob-
lem, we introduce a backward mapping that characterizes the
dynamics of the discrete local trajectories over time. We show
that the convergence of different local trajectories can be
explained by the expansive property of this backward mapping.
Finally, in Section IV we draw a novel connection between our
derived mapping and stochastic gradient ascent and use this
insight to explain that the behavior of the trajectories may be
driven by some low-complexity averaged model over a period,
rather than the high-complexity OPF problems at each step.

A. Unconstrained Model for OPF with Fixed Demand

The AC model of OPF in a single time instance with fixed
and predefined demand values can be written compactly as
an optimization problem with both equality and inequality
constraints:

min
x∈Rp

f(x) (1a)

s.t. h(x) = d ∈ Rn (1b)
g(x) ≤ 0 ∈ Rm (1c)

Here, x is the concatenation of the voltage angle and magni-
tude at each bus, as well as the real and reactive power gener-
ation outputs for each generator. The equality constraint (1b)
ensures that the generated power meets the demand, where d
is the vector of real and reactive demand at each bus, and re-
spects the underlying structure and physical constraints of the
network. The remaining constraints in the problem—including
the upper and lower bounds on the voltage magnitudes and
degrees, power generation, and line flows—are captured by
the inequality constraint (1c). It is easy to verify that p > n.
We refer the reader to [2], [4] and [9] for more information on
the exact formulation of the problem. Note that f(x), h(x),
and g(x) are continuously differentiable (piecewise linear cost
functions can be reformulated as such).

4The number of spurious point-wise local solutions is an indicator of how
difficult a given static OPF problem is. If only one point-wise local solution
is found, the problem may be convex. However, the search is not exhaustive,
so other local minima with small regions of attraction may exist.
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Fig. 6: Three scenarios highlighting the role of load variation. The three plots for each scenario are (left to right): load profile input, resulting discrete local
trajectories and point-wise local solutions (for a single instance of OPF), comparison of the number of point-wise local solutions to the number of distinct
discrete local trajectories.

In order to analyze this optimization problem theoretically,
it is desirable to convert it to an unconstrained problem. First,
we enforce the inequality constraints (1c) through a penalty
in the objective function:

min
x∈Rp

f(x) + β
m∑
i=1

(
[gi(x)]+

)2
(2a)

s.t. h(x) = d ∈ Rn (2b)

where β > 0 serves as the penalization parameter, gi(·) is
the ith element of g(·), and [y]+ denotes max(y, 0). This
choice of quadratic penalty function is inexact, meaning that
problem (2) is an approximation of problem (1). However,
as β increases, each global minimizer of (1) approaches a
global minimizer of (2) under mild regularity conditions [25].
Second, we use the implicit function theorem [25] to complete
the transformation to an unconstrained model. Consider a
feasible point x? satisfying the Karush-Kuhn-Tucker (KKT)
conditions for (2). Assuming that constraint qualifications
hold at x?, this vector can be partitioned into two sub-
vectors x?

B ∈ Rn and x?
R ∈ Rp−n such that the Jacobian

of h(x?) with respect to xB is invertible. Therefore, the
implicit function theorem guarantees the existence of a unique
differentiable function φ(·) such that xB = φ(xR) in a local
neighborhood of x?. Given such function, Problem (2) can be
re-written as (see [25]):

min
xR∈Rp−n

f(φ(xR),xR) + β
m∑
i=1

(
[gi(φ(xR),xR)]+

)2
(3)

Enforcing the equality constraint (1b) directly using the im-
plicit function theorem instead of through penalization will
be advantageous when we move to the time-varying setting.
Namely, it avoids amplifying the demand variation as scaling
by a large penalization parameter would do. This is not an
issue for the inequality constraint (1c) because it does not
vary in time.

Remark 1: Note that (3) cannot be formulated explicitly, due
to the unknown nature of the local solution x? and the function
φ(xR). Instead, this formulation serves as an intermediate step
to analyze the behavior of discrete local trajectories over time.
In other words, one would solve the OPF problem directly
in practice, and the surrogate problem (3) is designed to
understand the properties of OPF.

B. Unconstrained Model for Time-Varying OPF

The above analysis reveals that, under some technical con-
ditions, the OPF problem with fixed load can be modeled
as an unconstrained optimization problem (with a control-
lable approximation error). In this subsection, we extend our
analysis to time-varying OPF where demand changes over
time and the problem must respect ramping constraints. As
previously stated, ramping constraints ensure that the solution
does not change too drastically from one time step to the next.
One way to softly impose ramping constraints is through a
proximal method, which penalizes the distance between the
current and previous solutions in the objective function of the
optimization [26]. Time-varying OPF with K equally-spaced
time steps t0 = 0, t1 = ∆t, ..., tK = K∆t (∆t > 0) can be
written as the following sequence of optimization problems:

min
xRk∈Rp−n

ftk(φtk(xRk),xRk) + α
∥∥∥xRk − x?

Rk
tk−1

∥∥∥2

2

+ β
m∑
i=1

([gi
(
φtk(xRk),xRk

)
]+)2 (4)

for k = 1, ...,K , where α > 0 is a penalization parameter and

x?tk−1
=

[(
x?

Bk
tk−1

)> (
x?

Rk
tk−1

)>]>
denotes an arbitrary

local solution to Problem (4) obtained at time tk−1. In light
of its dependence on xRk , xBk is not regularized in this
approximated model. Due to the time-varying nature of the
demand, the functions ftk(·) and φtk(·) may change over time,
hence they are indexed by time step.
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To simplify the analysis, assume that the partition (Bk, Rk)
does not change over time, i.e., we have Bk = B and Rk = R
for k = 1, ...,K . Then problem (4) can be written as

min
z∈Rp−n

Fk(z) + β
m∑
i=1

(
[Gk,i(z)]+

)2
︸ ︷︷ ︸

Γk(z)

+α ‖z− zk−1‖22 (5)

for k = 1, ...,K , where z = xRk , zk−1 = x?
Rk
tk−1

,
Fk(z) := ftk(φtk(z), z), and Gk,i(z) := gi (φtk(z), z). If the
partition changes, then the time interval [0,K∆t] should be
divided into sub-intervals, each with a constant partitioning of
x. In this case, the argument presented in Section IV applies
to each sub-interval.

C. Backward-In-Time Mapping

The above analysis reveals that a local-search algorithm
used to solve the time-varying OPF implicitly aims to recover
a stationary point of the unconstrained problem (5). Therefore,
we focus on (5) in our subsequent analysis. Consider a given
time step T∆t, representing the end of the escaping period.
Then, a sequence of stationary points {zk}Tk=1 for (5) satisfies

0 = ∇Γk(zk) + 2α(zk − zk−1) (6)

for every k = 1, 2, . . . , T (where ∇ is the gradient operator).
Note that Γk(·) is differentiable. Therefore, given the solution
zk−1, this equation defines an implicit nonlinear formula for
obtaining zk which cannot be written in closed form. However,
going backward in time, one can express zk−1 in terms of zk:

zk−1 = zk +
1

2α
∇Γk(zk) := Mk(zk) (7)

This gives rise to the following end-to-end backward mapping
from zT to the initial point z0 via the composition operator ◦:

z0 = M1 ◦M2 ◦ · · · ◦MT (zT ) (8)

Provided that the mapping M1 ◦ · · · ◦MT (zT ) is expansive
enough when applied to a small neighborhood of a global
solution of OPF at time T∆t, a large set of initial points (even
multiple local solutions of OPF at time 0) are guaranteed to
converge to that small neighborhood of the globally optimal
solution of the problem at time T∆t. This expansive nature
of the mapping implies the escape of spurious local solutions
between time 0 and time T∆t. The global solutions at future
times after T∆t will be tracked successfully if the data
variation is not too high [23]. This expansive property can
be observed in the empirical study conducted in Section II
on the modified IEEE 39-bus and 9-bus system under both
California load data and synthetic sinusoidal loads.

IV. CONNECTION TO STOCHASTIC GRADIENT ASCENT

This section aims to explain how data variation plays a
key role in escaping spurious local solutions of time-varying
OPF. Specifically, we will show that the backward mapping (7)
can be treated as a variant of stochastic gradient ascent on a
smoothed version of the function ΓT (z). This gives rise to the
following important observation:

A certain level of stochasticity in {Γk(z)}Tk=1 over time may
enable the stationary points {zk}Tk=1 to escape “sharp” local
minima over time.
To explain this phenomenon, we first introduce the smoothing
property of the stochastic gradient descent (SGD) algorithm.

Smoothing property of SGD: Recently, [27] proposed an
alternative viewpoint to SGD and its ability to avoid spurious
sharp local minima. Given an initial point z0, suppose our goal
is to find a global minimum of a (time-invariant) function Γ(z)
using SGD. Accordingly, the iterations of SGD can be written

zk+1 = zk − η(∇Γ(zk) + ωk) ∀k ∈ {0, 1, 2, . . . } (9)

where ωt is a bounded random variable with zero mean and η
is a predefined step size. Upon defining z̃k = zk − η∇Γ(zk),
one can write the above iterations (9) in terms of the interme-
diate sequence {z̃k}:

z̃k+1 = z̃k−ηωk−η∇Γ(z̃k−ηωk), ∀k ∈ {0, 1, 2, . . . } (10)

To analyze the average behavior of SGD, consider the evo-
lution of Eωk(z̃k+1), where the expectation is taken over ωk
conditioned on {ω0, . . . , ωk−1}. Hence,

Eωk [z̃k+1]= z̃k−η∇Eωk [Γ(z̃k−ηωk)], ∀k∈{0,1,2,. . .} (11)

Therefore, on average, SGD acts as the exact gradient de-
scent on the surrogate function Eωk [Γ(z̃k − ηωk)]. Comparing
this function with Γ(z), one can verify that the former is
a smoothed version of the latter, where the smoothness is
due to the convolution of Γ(z) with the probability density
function of the random variable ωk. As illustrated in [27],
such convolution may give rise to (one-point) strong convexity
of Eωk [Γ(z̃k − ηωk)] with respect to the globally optimal
solution, which in turn guarantees the convergence of {z̃k}
(and hence {zk}) to a small neighborhood around the global
solution, even in the presence of sharp local minima. A
key takeaway from this observation is that Γ(z) can possess
multiple sharp, poor local minima, and yet its smoothed
version Eωk [Γ(z̃k − ηωk)] may be devoid of such solutions.

Time-varying optimization and time-varying OPF: Re-
turning to time-varying OPF and the backward mapping (7),
we assume that the variation in {∇Γk(z)}Tk=1 follows a
stochastic process indexed by the time k. In particular, we
write ∇Γk(z) − ∇Γk+1(z) = ζk(z) + ωk, where ζk(z) is
a deterministic, time-varying function and ωk is a bounded
random variable with zero mean. Such assumption is realistic
in power systems, where demand can be modeled as a deter-
ministic, time-varying function capturing the average demand
behavior, together with an additive stochastic term accounting
for its random nature. The iteration (7) is equivalent to

zk =zk+1 +
1

2α
∇ΓT (zk+1)

+
1

2α

T−1∑
τ=k+1

(∇Γτ (zk+1)−∇Γτ+1(zk+1))︸ ︷︷ ︸
ζτ (zk+1)−ωτ

(12)

which can be written as the following dynamical model:

zk = zk+1 +
1

2α
∇ΓT (zk+1) +

1

2α
νk+1(zk+1) (13a)

νk+1(zk+1) = νk+2(zk+1) + ζk+1(zk+1)− ωk+1 (13b)
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where νk+1(zk+1) is referred to as the variation process. In
particular, (13b) defines explicit dynamics for the variation
process comprised of three parts. The first term νk+2(zk+1)
captures the correlation between the variation processes at
times tk+1 and tk+2. The second term ζk+1(zk+1) captures
the bias that is added to the variation process at time tk+1.
Lastly, the third term ωk+1 ∼ W (zk+1) is an independent
noise injected into the variation process at time tk+1 (also
referred to as effective noise). Comparing (13) with (9), one
can verify that (13) reduces to stochastic gradient ascent if
νk+2(zk+1) + ζk+1(zk+1) = 0. Therefore, if ωk+1 dominates
the first two terms, (13) resembles an approximate version of
stochastic gradient ascent applied to ΓT (z); otherwise, it is a
biased and correlated version of SGD [28]. Similar to (11),
this implies that, on average, the points generated via the
backward mapping (7) would be close to the iterations of
the gradient ascent on the smoothed version of ΓT (z). Now,
assume that despite the possible existence of multiple spurious
and sharp local minima in {Γk(z)}Tk=1, the smoothed version
of ΓT (z) after convolution is strongly convex. This together
with the expansive nature of gradient ascent on strongly
convex functions [29] yields that the end-to-end backward
mapping (8) is expansive, and the discrete local trajectories
can escape poor local solutions over time. We formalize and
rigorously analyze this intuition in the next subsection.

A. Theoretical analysis of dynamics

For simplicity of notation, we define η = 1
2α . Furthermore,

suppose that z∗ denotes the globally minimum point of ΓT (z).
Without loss of generality, ‖v‖ is used to refer to the 2-norm
of the vector v. We make the following assumptions for the
dynamical model (13):

Assumption 1 (Smoothness): The following statements hold:
- The function ΓT (z) is L-smooth, i.e., we have

‖∇ΓT (x)−∇ΓT (y)‖ ≤ L‖x− y‖ ∀x,y ∈ Rp−n. (14)

- The functions ζτ (z) are l-Lipschitz for τ = 1, · · · , T −1,
i.e., we have

‖ζk(x)− ζk(y)‖ ≤ l‖x− y‖ ∀x,y ∈ Rp−n. (15)

Assumption 2 (Implicit Convexity): There exists z∗ such that
the following statements hold:

- (One-point strong convexity of convolution) For every y,
there exists c > 0 such that

〈z∗ − y,−∇Eω∼W (y) [ΓT (y − ηω)]〉 ≥ c‖y − z∗‖2 (16)

- (Bounded one-point curvature of convolution) For every
y, there exists c′ > 0 such that

〈z∗−y,−
T−1∑
τ=k+1

Eω∼W (y) [ζτ (y−ηω)]〉≥−c′‖y − z∗‖2

(17)

for every k ∈ {0, . . . , T − 2}.
The existence of L and l which satisfy Assumption 1 can be
verified for the unconstrained model of the time-varying OPF.
Meanwhile, Assumption 2 implies that the convoluted variant

of the objective function at time T is one-point strongly con-
vex. We note that such assumption may not be easily verifiable
for the time-varying OPF. However, our simulations strongly
support the fact that most of the spurious local solutions in
time-varying OPF have a sharp nature, and therefore, they are
likely to be absent in the convoluted (smoothed) landscape of
the problem.

Under these two assumptions, we present the main theorem
of this paper.

Theorem 1: Suppose that c ≥ c′ and there exists r ≥ 1
such that ‖ωt‖ ≤ r for every t. Define λ := η(c − c′), and
assume that 2η2L < 1. Then, under Assumptions 1 and 2, the
following inequality holds:

‖zT−z∗‖2≤
1

1−2η2L

D+
E
[
‖z0 − z∗‖2

]
(1 + λ)T−1

+
8η2r2T 2

(1 + λ)T−1


(18)

where

D =

(
4

λ
+

4

λ2

)
η3r2l + 16

(
1 +

1

λ

)2
η2r2(1 + 2λ)2

λ2
(19)

A sketch of the proof for Theorem 1 is provided in the
appendix. A number of observations can be made based on this
theorem. Not surprisingly, the provided bound on ‖zT−z∗‖
depends on the accuracy of the initial point ‖z0 − z∗‖. How-
ever, the effect of this initial accuracy diminishes exponentially
fast with respect to T . Moreover, as T → ∞, the following
asymptotic inequality holds:

‖zT−z∗‖2 ≤
D

1− 2η2L
(20)

which is independent of the initial point. Another implication
of this asymptotic bound is that, for any value of T , Theorem 1
can only guarantee the convergence of zT to a neighborhood
of z∗. This is not surprising if we consider the non-diminishing
nature of η and its connection to SGD, as delineated in the
introduction of Section IV. Indeed, similar results on SGD
show that, with non-diminishing step-sizes, the iterations of
the algorithm may only converge to a neighborhood of the
globally optimal solution [27]. Finally, it is worthwhile to
study how D depends on different parameters of problem,
namely η, r, l, L, and c− c′. Equation (19) reveals that D is
a decreasing function of c−c′. Combined with Assumption 2,
this implies that one-point strong convexity of Γt(z) for
t = 1, . . . , T has a favorable effect on ‖zT−z∗‖. Similarly, it
can be seen from (18) and (19) that ‖zT−z∗‖ decreases as l,
L, and the noise values’ magnitude (characterized by r) shrink.
However, notice that Assumption 2 may not be satisfied for
small values of noise. Finally, D does not have a monotone
behavior with respect to η. In particular, it can be verified that
D → ∞ if η → ∞ or η → 0+. Recalling (5) and η = 1

2α ,
this implies that over- or under-regularization may lead to large
values for ‖zT−z∗‖. This observation is in line with Example
1 of [19], which shows that both small and large regularization
may cause the solution trajectory to remain trapped at spurious
local solutions of a time-varying optimization.
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Fig. 7: The 2-bus system. Here, i =
√
−1.

B. Illustrative Example on a 2-bus System

In this subsection, we analyze the effect of the load variation
on the landscape of a 2-bus system. Our goal is to visualize
the smoothing effect of the load variation on the objective
function, thereby verifying the assumption on the implicit one-
point strong convexity of the convoluted objective function.
Consider the simple 2-bus system illustrated in Figure 7.
Assume that both buses are equipped with generators, and
they are connected via a single line with admittance g − ib.
The time-varying load connected to the first bus has both
active and reactive power demands, while the time-varying
load connected to the second bus is purely active. At any given
time k, the point-wise OPF (without ramping constraints) can
be formulated as follows5:

min f1(P g1 ) + f2(P g2 ) (21a)
s.t. (21b)

P g1 −P l1;k= |v1|2g+|v1||v2|(b sin(∆θ)−g cos(∆θ)) (21c)

P g2 −P l2;k= |v2|2g+|v1||v2|(b sin(∆θ)−g cos(∆θ)) (21d)

Qg1−Ql1;k= |v1|2g−|v1||v2|(g sin(∆θ)+b cos(∆θ)) (21e)

Qg2 = |v2|2g−|v1||v2|(g sin(∆θ)+b cos(∆θ)) (21f)

V min ≤ |v1| ≤ V max, V min ≤ |v2| ≤ V max (21g)

Pmin
1 ≤ P g1 ≤ Pmax

1 , Pmin
2 ≤ P g2 ≤ Pmax

2 (21h)

Qmin
1 ≤ Qg1 ≤ Qmax

1 , Qmin
2 ≤ Qg2 ≤ Qmax

2 (21i)

where P gi , Qgi , |vi|, ∆θ are the variables for active power
generation, reactive power generation, voltage magnitude at
bus i, and angle difference between buses 1 and 2 respec-
tively. Moreover, P li;k, Qli;k are the active and reactive load
parameters at bus i and time k, respectively. To simplify our
subsequent analysis, we assume that the voltage magnitudes
at both buses are equal to the their nominal values, i.e.,
|v1| = |v2| = 1. Therefore, according to (21c)-(21f), the
variables (P g1 , P

g
2 , Q

g
1, Q

g
2) can be written in terms of the

angle differences ∆θ. In other words, P g1 = p1(∆θ, P l1;k),
P g2 = p2(∆θ, P l2;k), Qg1 = q1(∆θ,Ql1;k), Qg2 = q2(∆θ) where

p1(∆θ, P l1;k) = P l1;k + g + b sin(∆θ)− g cos(∆θ)

p2(∆θ, P l2;k) = P l2;k + g + b sin(∆θ)− g cos(∆θ)

q1(∆θ,Ql1;k) = Ql1;k + g − g sin(∆θ)− b cos(∆θ)

q2(∆θ) = g − g sin(∆θ)− b cos(∆θ)

5For simplicity, we omit the apparent power flow limits on the line
connecting the two buses. Moreover, to streamline our subsequent analysis,
we avoid the index k for the variables.

Based on these simplifications, the OPF at time k can be re-
written as

min f1(p1(∆θ, P l1;k)) + f2(p2(∆θ, P l2;k)) (22a)

s.t. Pmin
1 ≤ p1(∆θ, P l1;k) ≤ Pmax

1 , (22b)

Pmin
2 ≤ p2(∆θ, P l2;k) ≤ Pmax

2 (22c)

Qmin
1 ≤ q1(∆θ,Ql1;k) ≤ Qmax

1 , (22d)

Qmin
2 ≤ q2(∆θ,Ql2;k) ≤ Qmax

2 (22e)

Moreover, suppose that the upper and lower bounds on the
active and reactive power generations are chosen such that
all inequality constraints in (22) remain inactive, except for
lower bound on the reactive power generation, i.e., Qmin

1 ≤
q1(∆θ,Ql1;k). Similar to (1), we convert (22) to an uncon-
strained optimization by removing this constraint, and instead,
penalizing its violation in the objective function. Based on
these modifications, we arrive at the following nonconvex and
unconstrained optimization problem:

min
∆θ

Γk(∆θ) =f1(p1(∆θ, P l1;k)) + f2(p2(∆θ, P l2;k))

+ β
([
Qmin − q1(∆θ,Ql1;k)

]+)2

(23)

Suppose that g − ib = 0.01 − i0.1 and Qmin = −0.181.
Moreover, suppose that f1(P g1 ) = 2(P g1 )2 + 2P g1 + 1 and
f2(P g2 ) = 0.1(P g2 )2 + 0.1P g2 + 1. Finally, the penalization
parameter β is set to 500. Figure 8a illustrates the objective
function at the final time T as a function of ∆θ for the choices
of P l1;T = P l2;T = 0.5, and Ql1;T = Ql2;T = 0. Note that
the objective function has one global minimum, one strict
local minimum, and one local maximum within the interval
−2 ≤ ∆θ ≤ 1.5.

Next, we illustrate the effect of load variation on
the landscape of this optimization problem and ver-
ify Assumption 2. We empirically compute the function
Eω∼W (∆θ) [ΓT (∆θ − ηω)] introduced in Assumption 2 when
the active and reactive loads are chosen according to the
following rules:

- P l1;k and P l2;k are chosen uniformly at random from the
interval [0.005, 0.55].

- Ql2;k = 0 and Ql1;k is chosen uniformly at random from
the interval [−0.02, 0.18].

Setting η = 2, for every k = 0, 1, . . . , N = 10, 000 we
randomly generate the active and reactive load values based on
the aforementioned rules, and compute Γk(∆θ) and∇Γk(∆θ).
Figure 8b shows realizations of Γk(∆θ) for different values
of k. Then, for every k = 0, 1, . . . , N − 1, we compute the
gradient difference ∇Γk(∆θ)−∇Γk+1(∆θ), capturing the ef-
fects of the bias ζk(∆θ) and the effective noise wk ∼W (∆θ).
Since the load distribution is the same at every time, we
have E[Γk(∆θ)] = E[Γk+1(∆θ)]. Hence ζk(∆θ) = 0 for
every k. Finally, we approximate Eω∼W (∆θ) [ΓT (∆θ − ηω)]

with its empirical counterpart 1
N

∑N−1
k=0 ΓT (∆θ−ηωk(∆θ)).6

The resulting function for −2 ≤ ∆θ ≤ 1.5 is depicted in
Figure 8c. It can be seen that, unlike ΓT (∆θ), the convoluted

6Note that, due to the law of large numbers, the empirical average converges
to the expected value as N tends to infinity.
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Fig. 8: (a) The objective function at t = T , (b) instances of the objective function for different values of the load, (c) the convoluted and pointwise objective
functions, (d) realizations of ∆θ − ηω showing the effective noise of the load variation at different ∆θ points.

function is devoid of spurious local minimum. In fact, it is
one-point strongly convex, thereby verifying Assumption 2 on
the implicit convexity of the convoluted objective function.

C. The effect of expected gradient on the noise variance

Another interpretation of the smoothing effect of the noise
is based on the average behavior of the objective function.
The expected objective function takes the expectation directly
over the load’s randomness, whereas the convoluted objective
function’s expectation is taken over a random perturbation of
the variables. Because the demand distribution has a direct
and immediate physical interpretation, while the effective
noise does not, the expected objective function and its gra-
dient are easier to compute or approximate. We will show
that the variance of the effective noise Eω∼W (∆θ)[‖w‖2]

at a given point ∆̂θ depends on the gradient of the ex-
pected objective function. In other words, a large gradient
of the expected objective function at ∆̂θ leads to a high
variance E

ω∼W (∆̂θ)
[‖w‖2], which in turn yields a smoother

E
ω∼W (∆̂θ)

[
ΓT (∆̂θ − ηω)

]
. Figure 8d precisely shows this

behavior. In particular, the local minimum ∆θ = 0.6 of
ΓT (∆θ) disappears in Eω∼W (∆θ) [ΓT (∆θ − ηω)] due to the
high variance of the additive noise ω at ∆θ = 0.6 (shown
with red circles). On the other hand, the additive noise at the
global minimum ∆θ = −1.4 is infinitesimal due to the fact
that the gradient of the average function remains close to zero
at ∆θ = −1.4. We will now formalize this intuition.

To better elucidate the relationship between the effective
noise variance and the expected gradient of the objective func-
tion, consider an n-bus system with the following properties:

- Every bus i is equipped with a generator.
- The upper and lower bound constraints on the reactive

power generations, and the upper bound constraints on
the apparent power flows at different lines are inactive.

- The voltage magnitudes are set to their nominal values.
The above assumptions are made to simplify our subsequent
presentation. Note that the problem is still highly noncon-
vex due to the nonconvex power balance equations and the
upper and lower bounds on the active power generations.
Let pi;k(θ) = P gi − P li;k be the net power injection at
bus i at time k, where θ ∈ RN−1 is a vector collect-
ing the angles at different buses, except for the slack bus.
Then the unconstrained objective function can be defined as

Γk(θ) =
∑ng
i ci(pi;k(θ) + P li;k), where ci(pi;k(θ) +P li;k) is a

linear combination of the cost of generation and the penalties
on the violation of the lower and upper bound constraints on
the active power generation at generator i. Moreover, suppose
that P li;k = P̄i+γi, where P̄ is a vector collecting the nominal
loads, and γ is an isotropic random vector with a known
distribution P such that E[γ1] = · · · = E[γn] = γ̄ 6= 0.
In other words, the variations in the load are biased. For
simplicity of presentation, we abuse the notation and write
Γ(θ; P̄ + γk) = Γk(θ), where γk ∼ P is a realization of the
randomness in the load at time k. Define the linearization of
Γ(θ; P̄ + γ) around P̄ as

Γlin(θ; P̄ + γ) = Γ(θ; P̄ ) +∇PΓ(θ; P̄ )
>
γ (24)

For small values of γ, the linearized function Γlin(θ; P̄ + γ)
is a good approximation of Γ(θ; P̄ + γ). In particular, under
mild conditions on Γ, the Mean Value theorem implies that
Γ(θ; P̄ +γ) = Γlin(θ; P̄ +γ) +O(γ2). Note that while Γlin is
linear in terms of γ, it is potentially nonconvex with respect
to θ. Define effective noise of the linearized functions as

ωklin(θ; P̄ , γk, γk−1) = ∇θΓ(θ; P̄ + γk)−∇θΓ(θ; P̄ + γk−1)
(25)

for every k = 1, . . . , T . Again, ωklin is an accurate approxima-
tion of the true effective noise, provided γ is sufficiently small.
The bias term in (25) is zero since the right-hand side of (25)
has zero mean. Moreover, we can drop the time index k, since
the distribution of ωklin(θ; P̄ , γk, γk−1) does not depend on k,
as γk and γk−1 are independent and identically distributed.
With these definitions, we present our next proposition.

Proposition 1: Suppose that at time T , the objective function
of the time-varying OPF corresponds to Γ(θ; P̄ ) with an
stationary point θ̃. Then,

Eγ,γ̃∼P
[
‖ωlin(θ̃; P̄ , γ, γ̃)‖2

]
≥ 2Varγ∼P(γ)

∥∥∥Eγ∼P [∇θΓlin(θ̃; P̄ + γ)
]∥∥∥2 /

(Nγ̄2) (26)

Due to the space restrictions, the proof of this propo-
sition is deferred to the extended version of the paper
(https://lavaei.ieor.berkeley.edu/DOPF 2020 2.pdf). Note that
a larger variance of the effective noise leads to a higher
smoothing effect, which in turn facilitates the satisfaction of
Assumption 2. In essence, Proposition 1 implies that this
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smoothing effect (captured by the variance of the effective
noise) is controlled by the average behavior of the objective
function. In particular, suppose that the point θ̃ is not a
stationary point of the expected objective function. Therefore,
we have

∥∥∥Eγ∼P [∇θΓlin(θ̃; P̄ + γ)
]∥∥∥ > 0, and the above

proposition implies that the generalized variance of the effec-
tive noise at θ̃ increases with the norm of the gradient of the
expected function at θ̃, thereby leading to a higher smoothing
effect of the load variation and the elimination of the spurious
local minima. This partly explains the high variance of the
effective noise at the local minimum of the objective function
for the 2-bus system described in Subsection IV-B, and the
elimination of its spurious local minimum.

Based on our results, it is possible to eliminate spurious
local solutions in a point-wise OPF problem by adding a
synthetically generated noise to the load, thereby elevating the
data variation in the problem. This effect can be observed in
Fig. 8c, where it is shown that randomness in the load can
eliminate the spurious local minimum and maximum, while
keeping the global minimum intact.

However, in practice deriving a class of variation sequences
which guarantee convergence is not tractable, due to the
nonconvex relationship between the load variation and the
“effective noise”. This is not surprising, considering the NP-
hardness of the time-varying OPF in its worst case. However,
even without such a guarantee, computing a discrete OPF
trajectory for a load sequence which starts and ends with
the load of the target problem may often succeed for a
straightforward choice of load variation such as a sinusoidal
function, uniform variation, or random walk. Fig. 9 shows two
examples on the modified 39-bus system of scaling load by a
uniform random walk for 100 time steps with a 20% ramping
constraint. As with the sinusoidal load in Fig. 6, we observe
that some or all initializations lead to the optimal solution over
time, depending on the specific variation.
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Fig. 9: Numerical studies on the modified 39-bus system with a synthetic load
created by a uniform random walk. This type of noise injection could be used
to help find the global solution to a static OPF problem.

V. CONCLUSION

This paper studies time-varying optimal power flow (OPF)
problems, in which a set of optimization problems are solved
sequentially due to load data variation over time. The solution
to each OPF is obtained using local search initialized at the
solution to the previous OPF. We offer a case study on a 39-
bus system under California data, where the OPF at the initial
time has 16 locally optimal solutions leading to 16 solution

trajectories. We show that, in this experiment, all trajectories
converge to the best solution trajectory, even though OPF has
many local minima at most times.

To understand this highly desirable property, we analyze
the optimization landscape of the time-varying OPF. Our
developed theory is based on the underlying structure of
time-varying OPF problems. Despite the generality of our
theoretical results, its application relies on assumptions which
may not be satisfied for all power systems. Developing a more
interpretable set of conditions for our developed theory is left
as an important direction of future research. In this work, we
introduce the notions of escaping period and tracking period,
examine the role of data variation and the easiest intermediate
problem, study the behavior of the time-varying OPF during
the escaping period via a backward-in-time mapping, and
relate it to the SGD algorithm. By modeling the data variation
as a biased noise, we prove that enough data variation enables
escaping poor solutions of time-varying OPF over time.
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APPENDIX
PROOF OF THEOREM 1

For simplicity of notation, we reverse the order of time,
changing T−t to t. Then, the dynamics (13) can be written

zt = zt−1 + η∇Γ0(zt−1) + η
t−1∑
k=1

ζk(zt−1)− η
t−1∑
k=1

ωk (27)

We will extensively use the following sequences of interme-
diate points in our analysis:

yt = zt + η∇Γ0(zt) + η
∑t

k=1
ζk(zt) (28)

ỹt = yt − η
∑t−1

k=1
ωk (29)

It is easy to verify that the above definitions together with (27)
gives rise to the following recursive equation:

yt =yt−1 − η
∑t−1

k=1
ωk + η∇Γ0

(
yt−1 − η

∑t−1

k=1
ωk

)
+ η

∑t

k=1
ζk

(
yt−1 − η

∑t−1

k=1
ωk

)
(30)

which in turn implies

yt =ỹt−1 − ηωt−1 + η∇Γ0 (ỹt−1 − ηωt−1)

+ η
∑t

k=1
ζk (ỹt−1 − ηωt−1) (31)

Define the filtration Ft−1 = σ{ω1, . . . , ωt−2} and the follow-
ing stochastic process:

Gt = (1 + λ)−t
(
‖yt − z∗‖2 − 2(b1 + b2t+ b3t

2)

λ

)
(32)

where b1 := 2η3r2L, b2 := 2η3r2l, and b3 := 4η2r2(1+2λ)2

λ .
Our next lemma provides a lower bound on E[‖yt−z∗‖2|Ft−1]
in terms of ‖yt−1 − z∗‖2.

Lemma 1: The following inequality holds:
E[‖yt−z∗‖2|Ft−1]≥(1+λ)‖yt−1−z∗‖2−b1−b2t−b3t2 (33)

Proof. Based on (31), one can write

E[‖yt − z∗‖2|Ft−1]

=E[‖ỹt−1 − z∗ − ηωt−1 + η∇Γ0 (ỹt−1 − ηωt−1)

+ η
t∑

k=1

ζk (ỹt−1 − ηωt−1) ‖2|Ft−1]

≥‖ỹt−1 − z∗‖2 + η2E[‖ωt−1‖2|Ft−1]

+ E[‖η∇Γ0(ỹt−1−ηωt−1)+η
t∑

k=1

ζk(ỹt−1−ηωt−1)‖2|Ft−1]

−2ηE[〈ηωt−1,∇Γ0(ỹt−1 − ηωt−1)〉|Ft−1]

−2ηE[〈ηωt−1,
t∑

k=1

Γ0(ỹt−1 − ηωt−1)〉|Ft−1]

+2η〈z∗ − ỹt−1,−∇E[Γ0(ỹt−1 − ηωt−1)|Ft−1]〉

+2η〈z∗ − ỹt−1,−
t∑

k=1

E[ζk(ỹt−1 − ηωt−1)|Ft−1]〉

≥‖ỹt−1 − z∗‖2−2ηE[〈ηωt−1,∇Γ0(ỹt−1 − ηωt−1)〉|Ft−1]︸ ︷︷ ︸
A

−2ηE[〈ηωt−1,

t∑
k=1

Γ0(ỹt−1 − ηωt−1)〉|Ft−1]︸ ︷︷ ︸
B

+2η〈z∗ − ỹt−1,−∇E[Γ0(ỹt−1 − ηωt−1)|Ft−1]〉︸ ︷︷ ︸
C

+2η〈z∗ − ỹt−1,−
t∑

k=1

E[ζk(ỹt−1 − ηωt−1)|Ft−1]︸ ︷︷ ︸
D

〉 (34)

Next, we will provide a separate lower bound for each term
in the above inequality. First, due to Assumption 3, we have

C ≥ 2ηc‖ỹt−1 − z∗‖2 and D ≥ −2ηc′‖ỹt−1 − z∗‖2 (35)

Furthermore, one can write

A = −2ηE[〈ηωt−1,∇Γ0(ỹt−1 − ηωt−1)−∇Γ0(ỹt−1)〉|Ft−1]

≥ −2ηE[‖ηωt−1‖‖Γ0(ỹt−1 − ηωt−1)−∇Γ0(ỹt−1)‖|Ft−1]

≥ −2η3r2L (36)

where the first equality is due to the fact that
E[〈ηωt−1,Γ0(ỹt−1)〉|Ft−1] = 0. Similarly, we can write
B ≥ −2η3r2lt. This implies that

E[‖yt − z∗‖2|Ft−1] ≥(1 + 2η(c− c′))‖ỹt−1 − z∗‖2

− 2η3r2(L+ lt)

=(1+2λ)‖ỹt−1−z∗‖2−(b1+b2t) (37)

This together with the definition of ỹt−1 gives rise to the
following chain of inequalities

E[‖yt − z∗‖2|Ft−1]

≥(1 + 2λ)

∥∥∥∥∥yt−1 − η
t−2∑
k=1

ωk − z∗

∥∥∥∥∥
2

− (b1 + b2t)
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≥(1 + 2λ)‖yt−1 − z∗‖2−2(1 + 2λ)‖yt−1 − z∗‖

∥∥∥∥∥η
t−2∑
k=1

ωk

∥∥∥∥∥
− (b1 + b2t) (38)

≥(1+2λ)‖yt−1−z∗‖2−2ηr(1+2λ)t‖yt−1−z∗‖−(b1+b2t)

Now we consider two cases:
- If ‖yt−1 − z∗‖ ≥ 2ηr(1+2λ)t

λ , then one can write

E[‖yt−z∗‖2|Ft−1]≥(1+λ)‖yt−1−z∗‖2−(b1+b2t) (39)

- If ‖yt−1 − z∗‖ < 2ηr(1+2λ)t
λ , then one can write

E[‖yt − z∗‖2|Ft−1] ≥ (1 + 2λ)‖yt−1 − z∗‖2 (40)

−(4η2r2(1+2λ)2t2)/λ−(b1+b2t)

Combining the above two inequalities leads to

E[‖yt−z∗‖2|Ft−1] ≥ (1+λ)‖yt−1−z∗‖2 −(b1+b2t+ b3t
2)�

(41)

The next lemma is at the crux of our proof for Theorem 1.
Lemma 2: The following two statements hold:
1) Gt is a submartingale with a vanishing drift. More

precisely, it satisfies the following inequality

E[Gt|Ft−1]≥Gt−1−
1

(1+λ)(t−1)

(
2b2+2b3(2t−1)

λ

)
(42)

2) E[Gt] ≥ G0 −
(

2
λ + 2

λ2

)
b2 −

(
4
λ

(
1 + 1

λ

)2)
b3

Proof. One can write

E[Gt|Ft−1] = (1 + λ)−t

×
(
E[‖yt − z∗‖2|Ft−1]− 2(b1 + b2t+ b3t

2)

λ

)
(43)

Invoking Lemma 1 leads to

E[Gt|Ft−1] ≥ (1 + λ)−t
(

(1 + λ)‖yt−1 − z∗‖2

− (b1 + b2t+ b3t
2)− 2(b1 + b2t+ b3t

2)

λ

)
=(1 + λ)−(t−1)‖yt−1 − z∗‖2

− (1 + λ)−(t−1)

(
2(b1 + b2t+ b3t

2)

λ

)
=(1 + λ)−(t−1)‖yt−1 − z∗‖2

− (1 + λ)−(t−1)

(
2(b1 + b2(t− 1) + b3(t− 1)2)

λ

)
− (1 + λ)−(t−1)

(
2(b2 + b3(2t− 1))

λ

)
=Gt−1 − (1 + λ)−(t−1)

(
2b2 + 2b3(2t− 1)

λ

)
(44)

This completes the proof of the first part. To prove the second
part, we use the result of the first part together with the tower
property of the expectation to write

E[Gt] ≥G0 −
(

2b2
λ

∑t−1

k=0
(1 + λ)−k

)
︸ ︷︷ ︸

A

−
(

4b3
λ

∑t−1

k=0
(k + 1)(1 + λ)−k

)
︸ ︷︷ ︸

B

(45)

It is easy to verify that

A ≤
(

2

λ
+

2

λ2

)
b2, B ≤

(
4

λ

(
1 +

1

λ

)2
)
b3 (46)

This completes the proof. �
Proof of Theorem 1: From the second statement of

Lemma 2, one can write

‖y0 − z∗‖2 ≤
(

2

λ
+

2

λ2

)
b2 +

(
4

λ

(
1 +

1

λ

)2
)
b3

+ (1 + λ)
−(t−1) E[‖yt−1 − z∗‖2] (47)

On the other hand, one can write

E[‖zt − z∗‖2] = E[‖yt−1 − z∗ − η
t−1∑
k=1

ωk‖2] (48)

≥ E[‖yt−1 − z∗‖2]− 2ηrtE[‖yt−1 − z∗‖]

Inequality (48) together with some simple algebra reveals that

E[‖yt−1 − z∗‖2] ≤ 2E[‖zt − z∗‖2] + 16η2r2t2 (49)

Combining the above inequality with (47) results in

‖y0 − z∗‖2 ≤
(

2

λ
+

2

λ2

)
b2 +

(
4

λ

(
1 +

1

λ

)2
)
b3

+ 2 (1 + λ)
−(t−1) E[‖zt − z∗‖2]

+ 16η2r2t2(1 + λ)−(t−1) (50)

Finally, it only remains to characterize the relationship be-
tween ‖y0−z∗‖2 and ‖z0−z∗‖2. To this goal, one can write

‖y0 − z∗‖2 = ‖z0 − z∗ + η∇f0(z0)‖2

≥‖z0 − z∗‖2 − 2η〈z0 − z∗, η∇f0(z0)〉
=‖z0 − z∗‖2 − 2η〈z0 − z∗, η∇f0(z0)− η∇f0(z∗)〉
≥‖z0 − z∗‖2 − 2η2‖z0 − z∗‖‖∇f0(z0)−∇f0(z∗)‖
≥(1− 2η2L)‖z0 − z∗‖2 (51)

where the last inequality is due to Assumption 1. Combin-
ing (51) with (50) concludes the proof. �
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