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Abstract— Sonification is the science of communication of data 
and events to users through sounds. Auditory icons, earcons, 
and speech are the common auditory display schemes utilized 
in sonification, or more specifically in the use of audio to 
convey information. Once the captured data are perceived, their 
meanings, and more importantly, intentions can be interpreted 
more easily and thus can be employed as a complement to visu­
alization techniques. Through auditory perception it is possible 
to convey information related to temporal, spatial, or some other 
context-oriented information. An important research question 
is whether the emotions perceived from these auditory icons 
or earcons are predictable in order to build an automated 
sonification platform. This paper conducts an experiment through 
which several mainstream and conventional machine learning 
algorithms are developed to study the prediction of emotions 
perceived from sounds. To do so, the key features of sounds 
are captured and then are modeled using machine learning 
algorithms using feature reduction techniques. We observe that 
it is possible to predict perceived emotions with high accuracy. In 
particular, the regression based on Random Forest demonstrated 
its superiority compared to other machine learning algorithms.

Index Terms—Emotion prediction, perceived emotion, sound, 
machine learning, Emo-Soundscape

I. INTRODUCTION

Affective Computing is a multidisciplinary field including 
computer science, cognitive science, and psychology [1]. 
From the computer science perspective, it can be considered 
as a subfield of artificial intelligence also called “artificial 
emotional intelligence” that focuses on natural interactions 
between humans and machines. It aids development of tools 
to recognize affective states and express emotions [2].

Affect representation can be modeled in a 2D space of
1) arousal (A), which is the level of eventfulness from 
bored to excited, and 2) valence (V), which is the level of 
pleasantness from sad to happy representing the AV space 
as proposed by Russell [3]. There is also a third dimension 
called “dominance” which is the level of control from weak to 
empowered [3]. The dominance dimension in excluded from 
this work. The emotions can be acquired by self-assessment 
questionnaires using Self-Assessment Manikins (SAM) [4] 
or physiological signals such as heart rate, skin temperature 
(SKT) or brain signals using Brain Computer Interfaces (BCIs) 
such as Electroencephalogram (EEG).

Emotion recognition is a task in affective computing, which 
studies the techniques for identifying emotions from stimuli 
such as text, picture, audio and video. These artifacts along 
with their annotations such as emotion and semantics are 
usually stored in affective datasets. Audio Emotion Recognition

(AER) is a subfield of emotion recognition and includes 
emotion recognition from music, speech/voice and sample 
sound/sound event. Sound emotion recognition is a relatively 
new field of research and has broad applications from auto­
matic sound design systems to designing robots, as affective 
companions. Two types of emotions can be considered when 
someone is listening to a soundscape: “Perceived Emotion,” 
the emotion expressed by the sound source, and “Induced 
Emotion,” the emotion invoked in the listener.

Audio emotion recognition helps to understand the char­
acteristics of audio samples (e.g. music and soundscapes) 
regarding the emotions which are induced or perceived and 
therefore, is useful for designing automated sonification frame­
works. Sonification is a field of research that aims to convey 
information using sound which has been applied in Cyber 
Physical Systems (CPS) [5], [6] or it can be applied in disaster 
management [7]. Auditory representation of emotion, which is 
also called “sonification of emotion”, is done by two methods 
of mapping sounds to an emotion space (e.g. AV space) [8]: 
Ecological design, which uses acoustic features suggested 
by the psychological study of musical emotion such as [9]; 
and computational design, which utilizes automatic feature 
extraction methods, such as the MIRToolbox [10]. Considering 
emotion recognition, sonification and Cyber Physical Systems, 
a novel area of research called “sonification o f emotion in 
CPSs and IoTs” can be explored.

In designing such sonification-based systems for emotion 
recognition in CPS and IoT platforms, it is important to 
represent operational events through meaningful sounds that 
reflect the emotions perceived or induced by the events. The 
automatic and effective selection of proper sounds in order 
to represents events in CPSs depends on whether there are 
common psychoacoustic features of sounds that could reliably 
express emotions represented in a dimensional model of affect. 
More specifically, the objective is to explore the possibility 
of utilizing sound features in predicting induced or perceived 
emotions.

This paper intends to investigate the prediction of emo­
tions in AV space perceived from soundscapes with machine 
learning techniques and reports the best features that can be 
used in sonification of emotion with application in computer 
science and more importantly CPSs. The key contributions of 
this paper are as follows:

-  Compare the performance of several machine learning 
algorithms to the emotion recognition problem,
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-  Perform feature reductions and capture the accuracy of 
the models based on the selected features, and

-  Identify common features deemed to be important for 
modeling both arousal and valence (AV space).

The remainder of this paper is organized as follows: the 
related work is reviewed in Section II. Section III briefly 
represents the dataset used for this experiment. In Section IV, 
machine learning techniques studied in this work are briefly 
explained. In Section V, results obtained by models with and 
without feature reduction/selection are presented. Section VI 
concludes the paper and highlights the future directions.

II. Re l a t e d  W o r k

Fan et al. [11] created the Emo-soundscape dataset of audio 
samples and their perceived emotion to provide a benchmark 
for Soundscape Emotion Recognition (SER). They evaluated 
the dataset using Support Vector Regression (SVR) models. 
For the feature extraction phase, both YAAFE [12] and 
MIRToolbox [10] tools were utilized. Using the mean and 
standard deviation of the features, they extracted 122 audio 
features. Finally, they removed the features whose variances 
were lower than 0.02 and thus obtained 39 features. They used 
this 39-D vector of features to train the SVR models to predict 
arousal and valence and assess them through M S E  and R2 
as performance metrics. They reported M S E  = 0.048 and 
R 2 =  0.855 for arousal and M S E  =  0.124 and R2 =  0.629 
for valence, respectively.

Improving their work, Fan et al. [13] used deep learning 
techniques to predict arousal and valence independently. They 
used the Emo-Soundscapes dataset for their framework. Given 
that deep learning methods need great amounts of data, they 
augmented the dataset using a windowing method to increase 
the number of samples. By using 30 consecutive windows for 
each augmented sound sample, they ended up with 8,491 
samples, each being 1.393 seconds long. They used two 
different techniques for feature extraction. The the first set 
of features obtained from a deep CNN model applied in audio 
classification [14]. For generating the second set of features, 
they utilized YAAFE [12] and MIRToolbox [10] and extracted 
54 features including: loudness, energy, perceptual spread, 
perceptual sharpness, spectral flatness, spectral rolloff, spectral 
flux, spectral slop, spectral variation, spectral shape, temporal 
shape, zero cross rate, and 13 MFCCs. They extracted features 
for each window and because there were 30 windows for 
each augmented sound sample, they had 54x30 features for 
each augmented sample. Furthermore, they used five differ­
ent models including: 1) CNN trained through supervised 
fine-tuning, 2) CNN trained from scratch that included two 
convolutional layers followed by one dense layer and 54x30 
input features, 3) LSTM-RNN trained from scratch with two 
stacked LSTM units and 54x30 input features, 4) standard 
SVR, which uses the first set of features as the input, and 
5) Radial Basis Function (RBF) kernel and a combination of 
CNN and SVR, where VGG-like CNN is used as the feature 
extractor, and its output was fed into the SVR with RBF kernel. 
They achieved the best arousal prediction with M S E  =  0.035

and R2 =  0.892 using the CNN trained from scratch and the 
best valence prediction with M S E  =  0.078 and R 2 =  0.759 
using fined-tuned CNN.

Ntalampiras [15] provided a comparison between emotion 
prediction from singleton soundscapes and mixed soundscapes 
using a CNN model. The author used Emo-Soundscape dataset 
and extracted the features from sound samples using log-Mel 
spectrum [16] which is a spectrogram that the frequencies 
are converted to the Mel scale. He showed that if the feature 
vectors of mixed soundscapes and its components (singleton 
soundscapes) are reduced to their three principal components, 
most mixed soundscapes are located between its original 
soundscapes. Ntalampiras conducted the experiment using 2D- 
CNN models first on a subset of the dataset only containing 
singleton soundscapes, and then on the whole dataset with 
mixed soundscapes. Ntalampiras reported the best prediction 
on the dataset containing both original and mixed samples with 
M S E  scores of 0.010 and 0.016 for arousal and valence.

III. DATASET DESCRIPTION AND ANALYSIS

In order to conduct our experiment, we used the Emo- 
Soundscape dataset [11], which consists of two subsets. The 
first subset contains 600 audio samples categorized into 6 
families, 100 samples each based on Schafer’s soundscape tax­
onomy [17] including: natural sounds, human sounds, sounds 
and society, mechanical sounds, quiet and silence, and sounds 
as indicators. The second subset contains 613 samples, each 
being a combination of soundscapes from two or three classes 
out of the first subset. All these soundscapes are annotated 
with their perceived emotion. We used the first subset of this 
dataset for our experiment. As to the features, we extracted 
68 features using MATLAB MIRToolbox [10].

The MIRToolbox extracts the (psycho)acoustic and mu­
sically related features from databases of audio files for 
statistical analysis [18]. Following Lange and Frieler [19], a 
total of 68 features were extracted from each sound sample that 
represent either the arithmetic mean or the sample standard 
deviation of the frame-based features computed over default 
window sizes (typically 50 ms for low-level, and 2-3 seconds 
for medium level features) and a 50% overlap. These features 
can be classified according to their (psycho)acoustic family 
(dynamics, rhythm, timbre/spectrum, pitch, and tonality).

Figure 1 shows the scatter plot of normalized values of 
arousal versus valence for the Emo-Soundscape dataset. There 
exists a visible trend that suggests a negative correlation be­
tween values for arousal and valence. This trend is confirmed 
after calculating the Pearson correlation r  between the two 
series of values, resulting r  =  -0.711 (p-value < 0.01). This 
correlation suggests that in this dataset, sound stimuli that 
express excitement are likely to be perceived as unpleasant.

Figure 2 shows the heatmap of all pairwise correlations 
for the 68 features. The heatmap shows that there are more 
features with positive correlations than negative ones. Also, 
there exists a very high positive correlation between features 
dealing with MFCC spectral measures.
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Fig. 1: Scatter plot of Emo-Soundscape normalized data points 
on AV space. The circumplex model is adapted from [20].

IV. Prediction  M odels

We used different regression models to predict arousal and 
valence separately, including four linear models:

-  LinearRegression(), an ordinary least squares linear 
regression model,

-  Lasso(), a linear model with L1 regularization,
-  E lasticN et(), a linear model with L1 and L2 regular­

ization, and
-  SV R (kern el = ' linear ' ), an Epsilon-Support Vector 

regression model with linear kernel.

In addition to these linear models, we explored four non-linear 
regression models, bringing the total number of prediction 
models to eight:

-  2 — layer M L P , a shallow Neural Network model,
-  SV R (kern el = ' r b f '), an Epsilon-Support Vector re­

gression model with RBF kernel,
-  SV R (kern el = ' poly ' ), an Epsilon-Support Vector re­

gression model with polynomial kernel, and
-  R andom F orestR egressor(), an ensemble estimator 

that fits a number of decision trees on different subsets 
of samples.

It should be noted that although deep models such as cNN 
succeed in achieving remarkable outcomes in the literature 
(e.g., sequence modeling [21]), we did not examine deep 
models in our experiment for two reasons. Firstly, the size of 
the Emo-Soundscape dataset is not large enough (i.e., only 600 
samples) for such models and deep models need a fairly large 
amount of data to perform well. Secondly our feature vector 
is a 1D vector containing 68 features, which is not suitable to 
feed into a 2D CNN model. In addition, augmenting data using 
windowing technique violates the assumption of independence 
between samples since each of the component sounds from a 
given sound sample will receive the same rating. Therefore, we 
decided to examine the dataset without any data augmentation 
and without any changes in the feature vector using the models 
explained above.

A. Feature Reduction/Selection
Feature reduction and feature selection help to reduce the 

number of features and thus the dimensionality of data. 
Feature selection aims to select a subset of features that 
represents the entire set of features and helps us to interpret 
the model. However, feature reduction converts features to a 
lower dimension. After examining the models using all 68 
features, we applied “Principal component analysis” (PCA) 
and “Univariate linear regression test” (KBest) for feature 
reduction and feature selection, respectively. PCA is a linear 
dimensionality reduction technique that uses Singular Value 
Decomposition (SVD) to project the given data to a lower 
dimensional space. Given that we did not have any estimation 
for the amount of feature reduction, we decided to consider the 
90% of explained variance of the dataset as the dimension of 
PCA. KBest is a univariate linear regression tests for selecting 
k best features using a scoring function. We considerd 25Best 
features using F statistic as the statistical test between outputs 
and features for regression.

B. Hyperparameter Tuning
Hyperparameter tuning is the process of selecting the best 

parameters for a model to obtain the optimal results. Grid 
search is a technique that can be employed to find the optimal 
parameters of the model through which all combinations of the 
determined values for parameters are examined. We performed 
a grid search for hyperparameter tuning on the Random Forest 
model to find the optimal values. Here is the list of parameters 
that were tuned for the Random Forest model:

-  n_estim ators : [50,100,150, 200, 250,300], number of 
trees in the forests,

-  max_depth  : [5,10, 20,30, 50], maximum number of 
levels in each decision tree,

-  m in_sam ples_split : [2,3,4, 5, 6, 7], minimum number 
of data points placed in a node before the node is split,

-  m in_sam ples_leaf : [1,2,3,5], minimum number of 
data points allowed in a leaf node,

-  k : range(10,30), number of features selected using 
KBest.

C. Evaluation Metrics
In order to measure the performance of the regression mod­

els, R M S E  and R 2 were chosen to evaluate the performance 
of each regression model.

R 2 provides a comparison of total sum of squares of 
prediction error with total sum of squares of error with mean. 
The closer the value of R 2 to 1 is, the better the regression 
model will be. It should be mentioned that R 2 is less common 
used metric for assessing non-linear models [22].

R M S E  can be considered as the standard deviation of the 
prediction errors. Because it applies a high penalty on large 
errors, it is beneficial when large errors are unwanted.

V. Prediction  Results

This section reports the results of our analysis on building 
models for predicting perceived emotions. As discussed earlier,
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Fig. 2: Correlation heatmap between features.

emotions perceived or induced from sounds are quantified in 
terms of two factors: 1) arousal, and 2) valence. We first 
present the performance of predicting models for arousal, and 
then discuss our results for predicting valence.

A. Predicting Perceived Arousal o f Sounds
The barplots shown in Figure 3 summarize the results for 

predicting arousal. We report the results for all features, PCA 
90, and 25 Best.

1) All Features: Using the MIR toolbox in Matlab, we ex­
tracted 68 acoustic features from the Emo-Soundscape dataset. 
As illustrated in Figure 3a, the R M S E  values for the train 
dataset (i.e., the blue bars) are around 0.09 and 0.39 obtained 
by Random Forest and Linear-Lasso, respectively. Likewise, 
the R M S E  values for test dataset (i.e., the red bars) are 
around 0.24 for Random Forest and 0.56 for Support Vector 
Regression (Polynomial) (SVR-Poly), respectively.

Similarly for R 2 values and according to Figure 3b, for 
the training datasets the highest value is obtained by Random 
Forest (0.98), and the lowest value is offered by Linear­
Lasso (0.61). For the test datasets, the highest R 2 value was 
achieved by Random Forest (0.85), and the lowest is achieved 
by Support Vector Regression (Polynomial) (SVR-Poly) (0.1).

According to our results, the Random Forest-based mod­
els outperformed other models with respect to R M S E  and

R 2. The Support Vector Regression (Polynomial) (SVR-Poly) 
clearly suffered from an overfitting problem because the 
metrics calculated for the test datasets are very poor.

2) PCA 90: The application of PCA with 90% variations 
of the dataset yielded 28 features. Figures 3c and 3d illustrate 
the R M S E  and R 2 values when PCA with 90% variation is 
utilized for prediction of arousal.

According to Figure 3c, the minimum and maximum 
R M S E  values were obtained for the training dataset by 
Random Forest (0.12) and Linear-Lasso (0.42), respectively. 
Furthermore, for the test dataset, the minimum and maximum 
R M S E  values were obtained by Random Forest (0.34) and 
Linear-Lasso (0.42). The results indicate that, even with the 
reduced number of features using PCA 90%, the ensemble- 
based Random Forest models outperformed the other machine 
learning estimators.

In terms of R 2 , we obtained similar results for both training 
and testing datasets when the features extracted by PCA 
90% are utilized for prediction of arousal. For the training 
dataset, the Random Forest offered 0.97 (the highest of all 
R 2 calculated); whereas, Linear-Lasso exhibited a very poor 
result, R 2 =  0.54. On the other hand, the maximum R 2 for 
the test dataset is achieved by MLP 2-layer with 0.8 and the 
poorest result is obtained by SVR-Poly (R2 =  0.27). The 
Random Forest exhibits a competitive estimate of R 2 =  0.7
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Fig. 3: Arousal prediction.

for the test dataset.
Overall, the results indicate that reducing the number of 

features to 28 by PCA 90%, the Random Forest model still 
offers the best results in predicting arousal; whereas, other 
models such as Linear-Lasso and SVR-Poly produce poor 
estimates of model fit.

3) 25 Best: Furthermore, we studied the performance of the 
prediction models when the 25 best features were utilized for 
building the models. Figures 3e and 3f depict the prediction 
results through R M S E  and R 2 values.

For the training, the best R M S E  value is offered by 
Random Forest (0.09); whereas, the worst performance is

exhibited by Linear-Lasso (0.41). For the test dataset, the best 
R M S E  value is again provided by Random Forest (0.24); 
whereas, the worst R M S E  value is calculated by SVR-Poly 
(0.63).

In terms of the R 2 values and for the training dataset, the 
best performer is again Random Forest with R 2 =  0.98 and the 
worse model is Linear-Lasso with R 2 =  0.57. Similarly, for 
the test dataset, the best performing model is Random Forest 
with R 2 =  0.84 and the worst performing model is again 
SVR-Poly with R 2 =  0.06.

In compliance with all features and PCA 90%, the results 
obtained by the 25 best features indicate that Random Forest is
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able to build a better prediction model for predicting arousal.

4) All-Features vs. PCA 90% vs. 25 Best: Taking the best 
evaluation values for R M S E  and R2 into consideration when 
applying all features, PCA 90%, and 25 Best, we observe 
that 1) Random Forest is the dominant model among all the 
regressors studied, and 2) all features and 25 best features 
exhibit similar results in predicting arousal, followed by PCA 
90%, which provided slightly weaker estimates when predict­
ing accuracy in comparison to all features and 25 best features. 
Given the cost of extracting features, the results indicate that 
building a prediction model based on 25 best features is a

better choice, yielding more accurate prediction models.

B. Predicting Valence Perceived from Sounds
As the second dimension of predicting perceived emotions, 

we built similar models for prediction of valence. Similar 
to the study we performed in the previous section, we built 
predictive models based on all features, PCA 90%, and 25 
Best features. The barplots shown in Figures 4 present the 
estimates of R M S E  and R2 for the valence predictions.

1) All Features: Similar to the process employed in build­
ing models for predicting arousal, we first focused on all 68 
features for predicting valence. Figures 4a and 4b illustrate
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TABLE I: Exhaustive search results for the best A/V prediction.

output KBest ^estim ators max_depth min_samples_split min_samples_leaf Train
R M S E

Test
R M S E

Search
Time

Arousal 26 200 20 3 1 0.09 0.25 5:13:37
Valence 29 100 30 2 1 0.13 0.37 5:17:51

the barplots for R M S E  and R 2 values yielded by machine 
learning models. For the test data, the best R M S E  value was 
obtained by Random Forest (0.14) and the worst R M S E  value 
was offered by Linear-Lasso (0.46). Similarly, for the test 
data, the best performing model was Random Forest (0.37), 
whereas the worst prediction model was once again Linear­
Lasso (0.47).

In terms of utilizing R 2 for model assessment, for the 
train dataset, the best performing model was Random Forest, 
offering a high value of R 2 = 0.94; The worst prediction 
model was again Linear-Lasso. Similarly, for the test dataset, 
the best performing prediction model was Random Forest with 
R 2 = 0.59, whereas, the worst model was captured by Linear­
Lasso (R2 =  0.35).

2) PCA 90: Taking into account the 28 acoustic features of 
sounds for the purpose of predicting valence, we built similar 
prediction models whose performance are visualized through 
Figures 4c and 4d.

According to Figure 4c, Random Forest with 0.15 and 0.4 
R M S E  values outperformed other regression models for both 
training and testing datasets, respectively. The worst model 
fitting and predictions were produced once again by Linear­
Lasso, with 0.48 and 0.49 for R M S E  of training and testing 
datasets, respectively.

Similarly, we observe better performance pronounced in 
terms of R 2 by Random Forest. The R 2 values captured by 
Random Forest for the training and testing datasets are 0 .93 
and 0.53, respectively; whereas, the worst performing model 
is introduced again by Linear-Lasso with R 2 values of 0.29 
for both training and testing datasets, respectively.

3) 25 Best: We obtained similar results when building pre­
dictive models using the 25 best features. According to Figures 
4e and 4f, the best model achieving the lowest R M S E  values 
was Random Forest, with R M S E  values of 0.14 and 0.37 for 
both training and test datasets, respectively; whereas, the worst 
performing model is built by Linear-Lasso and SVR-Poly. The 
R M S E  values calculated by Linear-Lasso for training and 
testing datasets are 0.46 and 0.47, respectively. Furthermore, 
R M S E  values captured by SVR-Poly for training and testing 
datasets are 0.33 and 0.67, respectively.

A similar result is observed for R 2. The model built based 
on Random Forest provided the highest R 2 values for training 
and testing as 0.94 and 0.59, respectively. Whereas, the worst 
performing model is once again introduced by Linear-Lasso 
and SVR-Poly with 0.36 and 0.66 for training datasets, respec­
tively. Moreover, the R 2 values for test datasets computed by 
Linear-Lasso and SVR-Poly are 0.35 and 0.33, respectively.

4) All Features vs. PCA 90% vs. 25 Best: Looking at 
the performance of Random Forest-based prediction models 
depicted in Figure 4, we notice that the performance of models 
based on all features and 25 best features are competitive and

similar. As a result, we believe it would be a better option to 
build models based on a reduced set of acoustic features of 
25 than building models based on all features.

In compliance with the results we obtained for predicting 
arousal, we observe that models based on Random Forest 
also outperformed other regression algorithms with a better 
accuracy for predicting valence. Therefore, in the following 
sections, we compare the performance of Random Forest 
models built using 25 best features in predicting arousal and 
valence and investigate how different or difficult it is to predict 
these two dimensions of emotion.

C. Predicting Arousal vs. Valence
Arousal and valence are the two primary dimensions of 

emotions and thus are utilized in building models. In other 
words, the better the prediction for arousal and valence, 
the more accurate model is achieved for emotion prediction 
perceived from sounds. Given the fact that the best models 
are built using Random Forest on top of 25 best features, we 
compared the performance of predicting arousal and valence 
using the prediction data captured by Random Forest using 
25 best features. Figures 3e and 3f illustrate the prediction 
accuracy for arousal using Random Forest and 25 best fea­
tures; whereas, Figures 4e and 4f depict the same metrics for 
valence.

As seen in the figures and evident from model fitting 
evaluation metrics, we were able to fit a slightly more accurate 
model for arousal than valence. The numerical values for 
R M S E  values for training and testing as well as for R 2 values 
for training and testing captured for arousal are 0 .09, 0 .24, 
0.98, and 0.84. On the other hand, the R M S E  values for 
training and testing as well as for R 2 values for training and 
testing captured for valence are 0.14, 0.37, 0.94, and 0.59.

Overall the R M S E  values are smaller for models built for 
predicting arousal while the R 2 values are greater than those 
computed for valence. The results indicate that fitting a good 
model and predicting valence is harder than building a good 
model for predicting arousal. The results make intuitive sense 
because modeling and predicting pleasures (i.e., valence) is 
much harder than modeling excitements (i.e., arousal) [23]. 
More specifically, it is hard to infer whether a sound expresses 
a positive or negative affect, but it is much easier to conclude 
that the sound is exciting or dull.

D. Exhaustive Search for Hyperparameter Tuning
According to Figures 3 and 4, it is clear that the Random 

Forest outperforms other prediction models. Therefore, Ran­
dom Forest was selected as the ultimate model to be tuned. 
Table I reports the results of tuning five parameters separately 
for arousal and valence predictions. The best test R M S E  
value for arousal prediction is 0.25, which is captured using
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TABLE II: The best and common features for arousal/valence.

Arousal Valence
dynamics_rms_mean
dynamics_rms_std
rhythm_fluctuationmax_peakposmean
rhythm_pulseclarity_mean
spectral_centroid_std
spectral_flatness_mean
spectral_flatness_std
spectral_irregularity_mean
spectral_mfcc_mean_2
spectral_mfcc_mean_8
spectral_novelty_mean
spectral_novelty_std
spectral_rolloff85_mean
spectral_rolloff85_std
spectral_rolloff95_mean
spectral_roughness_mean
spectral_spread_mean
timbre_lowenergy_std
timbre_spectralflux_mean
timbre_spectralflux_std
spectral_mfcc_mean_4 spectral_mfcc_std_4
spectral_mfcc_std_10 spectral_mfcc_std_6
spectral_mfcc_std_12 spectral_centroid_mean
spectral_mfcc_std_13 spectral_kurtosis_mean
spectral_spread_std spectral_kurtosis_std
timbre_lowenergy_mean spectral_skewness_mean

tonal_hcdf_mean
tonal_mode_std
rhythm_tempo_std

26 Best features. These values are close to the results obtained 
by 25 Best features. Considering the valence prediction, the 
best performance achieved is 0.37 for R M S E  using 29 Best 
features. The 26 Best features for arousal prediction and 
29 Best features for valence are reported in Table II. It is 
noticeable that 20 features are common in best features for 
predicting arousal and valence.

VI. Conclusion  and Future W ork

This paper focuses on emotions perceived from sounds and 
explores whether it is possible to predict perceived emotions 
accurately through machine learning algorithms. To do so, we 
extracted acoustic features of a given repository of sounds, 
called Emo-Soundscape, using the MATLAB MIRtoolbox. We 
then built regression-based machine learning models in which 
the acoustic features were utilized to build the models.

Exploring possible regression machine learning algorithms, 
we observed that ensemble-based learning and in particular 
Random Forest offer better predictions for both arousal and 
valence. More specifically, for predicting arousal and for 
training and testing datasets, we obtained R M S E  values of 
0.09 and 0.25, respectively; whereas, for valence, the R M S E  
values were 0.13 and 0.37 for training and testing datasets.

This study is the first step towards modeling emotions 
perceived from sounds and through arousal and valence. 
Additional studies are needed to investigate whether other 
types of sound features other than acoustic features, could 
be also useful for prediction purposes. Furthermore, this 
paper explored conventional machine learning algorithms. The

emerging approaches in deep learning analysis might provide 
better predictions for perceived emotions.
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