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Abstract—Sonification is the science of communication of data
and events to users through sounds. Auditory icons, earcons,
and speech are the common auditory display schemes utilized
in sonification, or more specifically in the use of audio to
convey information. Once the captured data are perceived, their
meanings, and more importantly, intentions can be interpreted
more easily and thus can be employed as a complement to visu-
alization techniques. Through auditory perception it is possible
to convey information related to temporal, spatial, or some other
context-oriented information. An important research question
is whether the emotions perceived from these auditory icons
or earcons are predictable in order to build an automated
sonification platform. This paper conducts an experiment through
which several mainstream and conventional machine learning
algorithms are developed to study the prediction of emotions
perceived from sounds. To do so, the key features of sounds
are captured and then are modeled using machine learning
algorithms using feature reduction techniques. We observe that
it is possible to predict perceived emotions with high accuracy. In
particular, the regression based on Random Forest demonstrated
its superiority compared to other machine learning algorithms.

Index Terms—FEmotion prediction, perceived emotion, sound,
machine learning, Emo-Soundscape

I. INTRODUCTION

Affective Computing is a multidisciplinary field including
computer science, cognitive science, and psychology [1].
From the computer science perspective, it can be considered
as a subfield of artificial intelligence also called “artificial
emotional intelligence” that focuses on natural interactions
between humans and machines. It aids development of tools
to recognize affective states and express emotions [2].

Affect representation can be modeled in a 2D space of
1) arousal (A), which is the level of eventfulness from
bored to excited, and 2) valence (V), which is the level of
pleasantness from sad to happy representing the AV space
as proposed by Russell [3]. There is also a third dimension
called “dominance” which is the level of control from weak to
empowered [3]. The dominance dimension in excluded from
this work. The emotions can be acquired by self-assessment
questionnaires using Self-Assessment Manikins (SAM) [4]
or physiological signals such as heart rate, skin temperature
(SKT) or brain signals using Brain Computer Interfaces (BCIs)
such as Electroencephalogram (EEG).

Emotion recognition is a task in affective computing, which
studies the techniques for identifying emotions from stimuli
such as text, picture, audio and video. These artifacts along
with their annotations such as emotion and semantics are
usually stored in affective datasets. Audio Emotion Recognition
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(AER) is a subfield of emotion recognition and includes
emotion recognition from music, speech/voice and sample
sound/sound event. Sound emotion recognition is a relatively
new field of research and has broad applications from auto-
matic sound design systems to designing robots, as affective
companions. Two types of emotions can be considered when
someone is listening to a soundscape: “Perceived Emotion,”
the emotion expressed by the sound source, and “Induced
Emotion,” the emotion invoked in the listener.

Audio emotion recognition helps to understand the char-
acteristics of audio samples (e.g. music and soundscapes)
regarding the emotions which are induced or perceived and
therefore, is useful for designing automated sonification frame-
works. Sonification is a field of research that aims to convey
information using sound which has been applied in Cyber
Physical Systems (CPS) [5], [6] or it can be applied in disaster
management [7]. Auditory representation of emotion, which is
also called “sonification of emotion”, is done by two methods
of mapping sounds to an emotion space (e.g. AV space) [8]:
Ecological design, which uses acoustic features suggested
by the psychological study of musical emotion such as [9];
and computational design, which utilizes automatic feature
extraction methods, such as the MIRToolbox [10]. Considering
emotion recognition, sonification and Cyber Physical Systems,
a novel area of research called “sonification of emotion in
CPSs and IoTs” can be explored.

In designing such sonification-based systems for emotion
recognition in CPS and IoT platforms, it is important to
represent operational events through meaningful sounds that
reflect the emotions perceived or induced by the events. The
automatic and effective selection of proper sounds in order
to represents events in CPSs depends on whether there are
common psychoacoustic features of sounds that could reliably
express emotions represented in a dimensional model of affect.
More specifically, the objective is to explore the possibility
of utilizing sound features in predicting induced or perceived
emotions.

This paper intends to investigate the prediction of emo-
tions in AV space perceived from soundscapes with machine
learning techniques and reports the best features that can be
used in sonification of emotion with application in computer
science and more importantly CPSs. The key contributions of
this paper are as follows:

— Compare the performance of several machine learning
algorithms to the emotion recognition problem,
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— Perform feature reductions and capture the accuracy of
the models based on the selected features, and

— Identify common features deemed to be important for
modeling both arousal and valence (AV space).

The remainder of this paper is organized as follows: the
related work is reviewed in Section II. Section III briefly
represents the dataset used for this experiment. In Section IV,
machine learning techniques studied in this work are briefly
explained. In Section V, results obtained by models with and
without feature reduction/selection are presented. Section VI
concludes the paper and highlights the future directions.

II. RELATED WORK

Fan et al. [11] created the Emo-soundscape dataset of audio
samples and their perceived emotion to provide a benchmark
for Soundscape Emotion Recognition (SER). They evaluated
the dataset using Support Vector Regression (SVR) models.
For the feature extraction phase, both YAAFE [12] and
MIRToolbox [10] tools were utilized. Using the mean and
standard deviation of the features, they extracted 122 audio
features. Finally, they removed the features whose variances
were lower than 0.02 and thus obtained 39 features. They used
this 39-D vector of features to train the SVR models to predict
arousal and valence and assess them through MSFE and R?
as performance metrics. They reported MSFE = 0.048 and
R? = 0.855 for arousal and M SE = 0.124 and R?> = 0.629
for valence, respectively.

Improving their work, Fan et al. [13] used deep learning
techniques to predict arousal and valence independently. They
used the Emo-Soundscapes dataset for their framework. Given
that deep learmning methods need great amounts of data, they
augmented the dataset using a windowing method to increase
the number of samples. By using 30 consecutive windows for
each augmented sound sample, they ended up with 8,491
samples, cach being 1.393 seconds long. They used two
different techniques for feature extraction. The the first set
of features obtained from a deep CNN model applied in audio
classification [14]. For generating the second set of features,
they utilized YAAFE [12] and MIRToolbox [10] and extracted
54 features including: loudness, energy, perceptual spread,
perceptual sharpness, spectral flatness, spectral rolloff, spectral
flux, spectral slop, spectral variation, spectral shape, temporal
shape, zero cross rate, and 13 MFCCs. They extracted features
for each window and because there were 30 windows for
each augmented sound sample, they had 54x30 features for
each augmented sample. Furthermore, they used five differ-
ent models including: 1) CNN trained through supervised
fine-tuning, 2) CNN trained from scratch that included two
convolutional layers followed by one dense layer and 54x30
input features, 3) LSTM-RNN trained from scratch with two
stacked L.STM units and 54x30 input features, 4) standard
SVR, which uses the first set of features as the input, and
5) Radial Basis Function (RBF) kernel and a combination of
CNN and SVR, where VGG-like CNN is used as the feature
extractor, and its output was fed into the SVR with RBF kernel.
They achieved the best arousal prediction with M SFE = 0.035
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and R? = 0.892 using the CNN trained from scratch and the
best valence prediction with MSE = 0.078 and R?> = 0.759
using fined-tuned CNN.

Ntalampiras [15] provided a comparison between emotion
prediction from singleton soundscapes and mixed soundscapes
using a CNN model. The author used Emo-Soundscape dataset
and extracted the features from sound samples using log-Mel
spectrum [16] which is a spectrogram that the frequencies
are converted to the Mel scale. He showed that if the feature
vectors of mixed soundscapes and its components (singleton
soundscapes) are reduced to their three principal components,
most mixed soundscapes are located between its original
soundscapes. Ntalampiras conducted the experiment using 2D-
CNN models first on a subset of the dataset only containing
singleton soundscapes, and then on the whole dataset with
mixed soundscapes. Ntalampiras reported the best prediction
on the dataset containing both original and mixed samples with
MSFE scores of 0.010 and 0.016 for arousal and valence.

III. DATASET DESCRIPTION AND ANALYSIS

In order to conduct our experiment, we used the Emo-
Soundscape dataset [11], which consists of two subsets. The
first subset contains 600 audio samples categorized into 6
families, 100 samples each based on Schafer’s soundscape tax-
onomy [17] including: natural sounds, human sounds, sounds
and society, mechanical sounds, quiet and silence, and sounds
as indicators. The second subset contains 613 samples, each
being a combination of soundscapes from two or three classes
out of the first subset. All these soundscapes are annotated
with their perceived emotion. We used the first subset of this
dataset for our experiment. As to the features, we extracted
68 features using MATLLAB MIRToolbox [10].

The MIRToolbox extracts the (psycho)acoustic and mu-
sically related features from databases of audio files for
statistical analysis [18]. Following Lange and Frieler [19], a
total of 68 features were extracted from each sound sample that
represent either the arithmetic mean or the sample standard
deviation of the frame-based features computed over default
window sizes (typically 50 ms for low-level, and 2-3 seconds
for medium level features) and a 50% overlap. These features
can be classified according to their (psycho)acoustic family
(dynamics, rhythm, timbre/spectrum, pitch, and tonality).

Figure 1 shows the scatter plot of normalized values of
arousal versus valence for the Emo-Soundscape dataset. There
exists a visible trend that suggests a negative correlation be-
tween values for arousal and valence. This trend is confirmed
after calculating the Pearson correlation r between the two
series of values, resulting » = —0.711 (p-value < 0.01). This
correlation suggests that in this dataset, sound stimuli that
express excitement are likely to be perceived as unpleasant.

Figure 2 shows the heatmap of all pairwise correlations
for the 68 features. The heatmap shows that there are more
features with positive correlations than negative ones. Also,
there exists a very high positive correlation between features
dealing with MFCC spectral measures.
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Fig. 1: Scatter plot of Emo-Soundscape normalized data points
on AV space. The circumplex model is adapted from [20].

IV. PREDICTION MODELS

We used different regression models to predict arousal and
valence separately, including four linear models:

Linear Regression(), an ordinary least squares linear
regression model,

Lasso(), a linear model with L1 regularization,
ElasticNet(), a linear model with L1 and L2 regular-
ization, and

SV R(kernel =" linear’), an Epsilon-Support Vector
regression model with linear kernel.

In addition to these linear models, we explored four non-linear
regression models, bringing the total number of prediction
models to eight:

2 — layer M LP, a shallow Neural Network model,

SV R(kernel =" rbf’), an Epsilon-Support Vector re-
gression model with RBF kernel,

SV R(kernel =" poly’), an Epsilon-Support Vector re-
gression model with polynomial kernel, and
RandomForestRegressor(), an ensemble estimator
that fits a number of decision trees on different subsets
of samples.

It should be noted that although deep models such as CNN
succeed in achieving remarkable outcomes in the literature
(e.g., sequence modeling [21]), we did not examine deep
models in our experiment for two reasons. Firstly, the size of
the Emo-Soundscape dataset is not large enough (i.e., only 600
samples) for such models and deep models need a fairly large
amount of data to perform well. Secondly our feature vector
is a 1D vector containing 68 features, which is not suitable to
feed into a 2D CNN model. In addition, augmenting data using
windowing technique violates the assumption of independence
between samples since each of the component sounds from a
given sound sample will receive the same rating. Therefore, we
decided to examine the dataset without any data augmentation
and without any changes in the feature vector using the models
explained above.
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A. Feature Reduction/Selection

Feature reduction and feature selection help to reduce the
number of features and thus the dimensionality of data.
Feature selection aims to select a subset of features that
represents the entire set of features and helps us to interpret
the model. However, feature reduction converts features to a
lower dimension. After examining the models using all 68
features, we applied “Principal component analysis” (PCA)
and “Univariate linear regression test” (KBest) for feature
reduction and feature selection, respectively. PCA is a linear
dimensionality reduction technique that uses Singular Value
Decomposition (SVD) to project the given data to a lower
dimensional space. Given that we did not have any estimation
for the amount of feature reduction, we decided to consider the
90% of explained variance of the dataset as the dimension of
PCA. KBest is a univariate linear regression tests for selecting
k best features using a scoring function. We considerd 25Best
features using F statistic as the statistical test between outputs
and features for regression.

B. Hyperparameter Tuning

Hyperparameter tuning is the process of selecting the best
parameters for a model to obtain the optimal results. Grid
search is a technique that can be employed to find the optimal
parameters of the model through which all combinations of the
determined values for parameters are examined. We performed
a grid search for hyperparameter tuning on the Random Forest
model to find the optimal values. Here is the list of parameters
that were tuned for the Random Forest model:
n_estimators : [50, 100, 150, 200, 250, 300], number of
trees in the forests,
max_depth : [5,10,20,30,50], maximum number of
levels in each decision tree,
min_samples_split : [2,3,4,5,6,7], minimum number
of data points placed in a node before the node is split,
min_samples_leaf : [1,2,3,5], minimum number of
data points allowed in a leaf node,

k : range(10,30), number of features selected using
KBest.

C. Evaluation Metrics

In order to measure the performance of the regression mod-
els, RMSE and R? were chosen to evaluate the performance
of each regression model.

R? provides a comparison of total sum of squares of
prediction error with total sum of squares of error with mean.
The closer the value of R? to 1 is, the better the regression
model will be. It should be mentioned that 22 is less common
used metric for assessing non-linear models [22].

RMSE can be considered as the standard deviation of the
prediction errors. Because it applies a high penalty on large
errors, it is beneficial when large errors are unwanted.

V. PREDICTION RESULTS

This section reports the results of our analysis on building
models for predicting perceived emotions. As discussed earlier,
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Fig. 2: Correlation heatmap between features.

emotions perceived or induced from sounds are quantified in
terms of two factors: 1) arousal, and 2) valence. We first
present the performance of predicting models for arousal, and
then discuss our results for predicting valence.

A. Predicting Perceived Arousal of Sounds

The barplots shown in Figure 3 summarize the results for
predicting arousal. We report the results for all features, PCA
90, and 25 Best.

1) All Features: Using the MIR toolbox in Matlab, we ex-
tracted 68 acoustic features from the Emo-Soundscape dataset.
As illustrated in Figure 3a, the RM SFE values for the train
dataset (i.e., the blue bars) are around 0.09 and 0.39 obtained
by Random Forest and Linear-Lasso, respectively. Likewise,
the RMSFE values for test dataset (i.e., the red bars) are
around 0.24 for Random Forest and 0.56 for Support Vector
Regression (Polynomial) (SVR-Poly), respectively.

Similarly for R’ values and according to Figure 3b, for
the training datasets the highest value is obtained by Random
Forest (0.98), and the lowest value is offered by Linear-
Lasso (0.61). For the test datasets, the highest B> value was
achieved by Random Forest (0.85), and the lowest is achicved
by Support Vector Regression (Polynomial) (SVR-Poly) (0.1).

According to our results, the Random Forest-based mod-
els outperformed other models with respect to RMSE and
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R?. The Support Vector Regression (Polynomial) (SVR-Poly)
clearly suffered from an overfitting problem because the
metrics calculated for the test datasets are very poor.

2) PCA 90: The application of PCA with 90% variations
of the dataset yielded 28 features. Figures 3¢ and 3d illustrate
the RMSE and R? values when PCA with 90% variation is
utilized for prediction of arousal.

According to Figure 3¢, the minimum and maximum
RMSFE values were obtained for the training dataset by
Random Forest (0.12) and Linear-Lasso (0.42), respectively.
Furthermore, for the test dataset, the minimum and maximum
RMSFE values were obtained by Random Forest (0.34) and
Linear-Lasso (0.42). The results indicate that, even with the
reduced number of features using PCA 90%, the ensemble-
based Random Forest models outperformed the other machine
learning estimators.

In terms of R?, we obtained similar results for both training
and testing datasets when the features extracted by PCA
90% are utilized for prediction of arousal. For the training
dataset, the Random Forest offered 0.97 (the highest of all
R? calculated); whereas, Linear-Lasso exhibited a very poor
result, R?2 = 0.54. On the other hand, the maximum R? for
the test dataset is achieved by MLP 2-layer with 0.8 and the
poorest result is obtained by SVR-Poly (R? = 0.27). The
Random Forest exhibits a competitive estimate of R> = 0.7
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Fig. 3: Arousal prediction.

for the test dataset.

Overall, the results indicate that reducing the number of
features to 28 by PCA 90%, the Random Forest model still
offers the best results in predicting arousal; whereas, other
models such as Linear-Lasso and SVR-Poly produce poor
estimates of model fit.

3) 25 Best: Furthermore, we studied the performance of the
prediction models when the 25 best features were utilized for
building the models. Figures 3e and 3f depict the prediction
results through RMSE and R? values.

For the training, the best RAMSE value is offered by
Random Forest (0.09); whereas, the worst performance is

2061

exhibited by Linear-Lasso (0.41). For the test dataset, the best
RMSFE value is again provided by Random Forest (0.24);
whereas, the worst RMSE value is calculated by SVR-Poly
(0.63).

In terms of the R? values and for the training dataset, the
best performer is again Random Forest with 2% — 0.98 and the
worse model is Linear-Lasso with > = 0.57. Similarly, for
the test dataset, the best performing model is Random Forest
with R? = 0.84 and the worst performing model is again
SVR-Poly with R? = 0.06.

In compliance with all features and PCA 90%, the results
obtained by the 25 best features indicate that Random Forest is

Authorized licensed use limited to: Texas Tech University. Downloaded on July 15,2021 at 16:43:17 UTC from IEEE Xplore. Restrictions apply.



ALL FEATURES

mTrainRMSE  m Test RMSE

1
0.9
0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1

0

& & &
;-,\‘} q:\' v- ‘:\\o A\'\‘; ’V\? f—:\Q. \\@Q ‘<°
& & N A% & s &
& N & N 9
e ¥ Ba Q_x;\
\/\\\
(a) RMSE
PCA90

mTrain RMSE  mTest RMSE

1
0.9
0.8
07
0.6
0.5
0.4
0.3

landddl

4
s
& & & <8 &
;,\‘"\ ,\y «\o '\’\e ’vy c.ﬁ“\ fq ((ch
< i » & ] B Y
s ‘\% P S ““v o
\I\T\ S Y« K Q
&
\‘\t‘ <
(¢c) RMSE
25 BEST

m Train RMSE  mTest RMSE

07
06
05
04
03
02
01
0
& & & &
‘j\é\ ’3 & & o g & &bq &
& & R & Q s &
& & e A &
~ Ba W
8 B
(e) RMSE

ALL FEATURES

mTrainR2 mTestR2

DE
0.5
0.4
03
0.2
[}

01

&
\.\“ & e & & &
& ,\F < ) e 54‘* & &
‘78: QF? \?‘j N R s e
& o) < o ‘}\' (¢}
S F & &
~ B ‘?‘
\‘x L
N
(b) R?
PCAS0

mTrainR2 mTestR2

& o ~ > X < A
S 5 & < g & o &
N N & N pod & @ o
& Y ) P v B R &

IS Ba ¥ K & " S

& & < e + L
& i & 3
& &
>
) r®
mTrainR2 mTest R2

1
09
08
0.7
06
05
0.4
03
02
0.1

0

% o A < < €< A A
™ o & & X & & &
& N N & A & & @
& = ¥ N 2 5 &

ka < A3 B o S

& N & N S
O ' \’% v.e
& &
.\’\
(f) R®

Fig. 4: Valence prediction.

able to build a better prediction model for predicting arousal.

4) All-Features vs. PCA 90% vs. 25 Best: Taking the best
evaluation values for RM SE and R? into consideration when
applying all features, PCA 90%, and 25 Best, we observe
that 1) Random Forest is the dominant model among all the
regressors studied, and 2) all features and 25 best features
exhibit similar results in predicting arousal, followed by PCA
90%, which provided slightly weaker estimates when predict-
ing accuracy in comparison to all features and 25 best features.
Given the cost of extracting features, the results indicate that
building a prediction model based on 25 best features is a
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better choice, yielding more accurate prediction models.

B. Predicting Valence Perceived from Sounds

As the second dimension of predicting perceived emotions,
we built similar models for prediction of valence. Similar
to the study we performed in the previous section, we built
predictive models based on all features, PCA 90%, and 25
Best features. The barplots shown in Figures 4 present the
estimates of RMSE and R? for the valence predictions.

1) All Features: Similar to the process employed in build-
ing models for predicting arousal, we first focused on all 68
features for predicting valence. Figures 4a and 4b illustrate
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TABLE I. Exhaustive search results for the best A/V prediction.
: i s " Train Test Search
output KBest | n_estimators | max_depth min_samples_split | min_samples_leaf RMSE | RMSE Time
Arousal | 26 200 20 3 1 0.09 0.25 5:13:37
Valence | 29 100 30 2 1 0.13 0.37 5:17:51

the barplots for RMSE and R? values yielded by machine
learning models. For the test data, the best RM SF value was
obtained by Random Forest (0.14) and the worst RA/ SE value
was offered by Linear-Lasso (0.46). Similarly, for the test
data, the best performing model was Random Forest (0.37),
whereas the worst prediction model was once again Linear-
Lasso (0.47).

In terms of utilizing R? for model assessment, for the
train dataset, the best performing model was Random Forest,
offering a high value of B> = 0.94; The worst prediction
model was again Linear-Lasso. Similarly, for the test dataset,
the best performing prediction model was Random Forest with
R? = 0.59, whereas, the worst model was captured by Linear-
Lasso (R? = 0.35).

2) PCA 90: Taking into account the 28 acoustic features of
sounds for the purpose of predicting valence, we built similar
prediction models whose performance are visualized through
Figures 4c¢ and 4d.

According to Figure 4¢, Random Forest with 0.15 and 0.4
RMSFE values outperformed other regression models for both
training and testing datasets, respectively. The worst model
fitting and predictions were produced once again by Linear-
Lasso, with 0.48 and 0.49 for RMSFE of training and testing
datasets, respectively.

Similarly, we observe better performance pronounced in
terms of R? by Random Forest. The R? values captured by
Random Forest for the training and testing datasets are 0.93
and 0.53, respectively; whereas, the worst performing model
is introduced again by Linear-Lasso with R’ values of 0.29
for both training and testing datasets, respectively.

3) 25 Best: We obtained similar results when building pre-
dictive models using the 25 best features. According to Figures
4¢ and 4f, the best model achieving the lowest RM SFE values
was Random Forest, with RM S'E values of 0.14 and 0.37 for
both training and test datasets, respectively; whereas, the worst
performing model is built by Linear-Lasso and SVR-Poly. The
RMSFE values calculated by Linear-Lasso for training and
testing datasets are 0.46 and 0.47, respectively. Furthermore,
RMSFE values captured by SVR-Poly for training and testing
datasets are 0.33 and 0.67, respectively.

A similar result is observed for 2. The model built based
on Random Forest provided the highest 2? values for training
and testing as 0.94 and 0.59, respectively. Whereas, the worst
performing model is once again introduced by Linear-Lasso
and SVR-Poly with 0.36 and 0.66 for training datasets, respec-
tively. Moreover, the R? values for test datasets computed by
Linear-Lasso and SVR-Poly are 0.35 and 0.33, respectively.

4) All Features vs. PCA 90% vs. 25 Best: Looking at
the performance of Random Forest-based prediction models
depicted in Figure 4, we notice that the performance of models
based on all features and 25 best features are competitive and
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similar. As a result, we believe it would be a better option to
build models based on a reduced set of acoustic features of
25 than building models based on all features.

In compliance with the results we obtained for predicting
arousal, we observe that models based on Random Forest
also outperformed other regression algorithms with a better
accuracy for predicting valence. Therefore, in the following
sections, we compare the performance of Random Forest
models built using 25 best features in predicting arousal and
valence and investigate how different or difficult it is to predict
these two dimensions of emotion.

C. Predicting Arousal vs. Valence

Arousal and valence are the two primary dimensions of
emotions and thus are utilized in building models. In other
words, the better the prediction for arousal and valence,
the more accurate model is achieved for emotion prediction
perceived from sounds. Given the fact that the best models
are built using Random Forest on top of 25 best features, we
compared the performance of predicting arousal and valence
using the prediction data captured by Random Forest using
25 best features. Figures 3e and 3f illustrate the prediction
accuracy for arousal using Random Forest and 25 best fea-
tures; whereas, Figures 4¢ and 4f depict the same metrics for
valence.

As seen in the figures and evident from model fitting
evaluation metrics, we were able to fit a slightly more accurate
model for arousal than valence. The numerical values for
RM SE values for training and testing as well as for 2 values
for training and testing captured for arousal are 0.09, 0.24,
0.98, and 0.84. On the other hand, the RMSE values for
training and testing as well as for R? values for training and
testing captured for valence are 0.14, 0.37, 0.94, and 0.59.

Overall the RM SFE values are smaller for models built for
predicting arousal while the R? values are greater than those
computed for valence. The results indicate that fitting a good
model and predicting valence is harder than building a good
model for predicting arousal. The results make intuitive sense
because modeling and predicting pleasures (i.e., valence) is
much harder than modeling excitements (i.e., arousal) [23].
More specifically, it is hard to infer whether a sound expresses
a positive or negative affect, but it is much easier to conclude
that the sound is exciting or dull.

D. Exhaustive Search for Hyperparameter Tuning

According to Figures 3 and 4, it is clear that the Random
Forest outperforms other prediction models. Therefore, Ran-
dom Forest was selected as the ultimate model to be tuned.
Table I reports the results of tuning five parameters separately
for arousal and valence predictions. The best test RMSFE
value for arousal prediction is 0.25, which is captured using
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Arousal

Valence

dynamics_rms_mean

dynamics_rms_std

rhythm_fluctuationmax_peakposmean

rhythm_pulseclarity_mean

spectral_centroid_std

spectral_flatness_mean

spectral_flatness_std

spectral_irregularity_mean

spectral_mfcc_mean_2

spectral_mfcc_mean_8

spectral_novelty_mean

spectral_novelty_std

spectral_rolloff85_mean

spectral_rolloff85_std

spectral_rolloff95_mean

spectral_roughness_mean

spectral_spread_mean

timbre_lowenergy_std

timbre_spectralflux_mean

timbre_spectralflux_std

spectral_mfcc_mean_4

spectral_mfcc_std_4

spectral_mfcc_std_10

spectral_mfcc_std_6

spectral_mfcc_std_12

spectral_centroid_mean

spectral_mfcc_std_13

spectral_kurtosis_mean

spectral_spread_std

spectral_kurtosis_std

timbre_lowenergy_mean

spectral_skewness_mean

TABLE II: The best and common features for arousal/valence.

tonal_hcdf_mean
tonal_mode_std
rhythm_tempo_std

26 Best features. These values are close to the results obtained
by 25 Best features. Considering the valence prediction, the
best performance achieved is 0.37 for RAMSFE using 29 Best
features. The 26 Best features for arousal prediction and
29 Best features for valence are reported in Table IL It is
noticeable that 20 features are common in best features for
predicting arousal and valence.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on emotions perceived from sounds and
explores whether it is possible to predict perceived emotions
accurately through machine learning algorithms. To do so, we
extracted acoustic features of a given repository of sounds,
called Emo-Soundscape, using the MATLAB MIRtoolbox. We
then built regression-based machine learning models in which
the acoustic features were utilized to build the models.

Exploring possible regression machine learning algorithms,
we observed that ensemble-based learning and in particular
Random Forest offer better predictions for both arousal and
valence. More specifically, for predicting arousal and for
training and testing datasets, we obtained RM SFE values of
0.09 and 0.25, respectively; whereas, for valence, the RMSFE
values were 0.13 and 0.37 for training and testing datasets.

This study is the first step towards modeling emotions
perceived from sounds and through arousal and valence.
Additional studies are needed to investigate whether other
types of sound features other than acoustic features, could
be also useful for prediction purposes. Furthermore, this
paper explored conventional machine Iearning algorithms. The
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emerging approaches in deep learning analysis might provide
better predictions for perceived emotions.
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