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Abstract—A single nonconvex optimization is NP-hard in
the worst case, and so is a sequence of nonconvex problems
viewed separately. For online nonconvex optimization (ONO)
problems, widely used local search algorithms are guaranteed
to track a sequence of local optima, but offer no promises about
global optimality. In this paper, we introduce the concept of
nonconvexity regret to measure the performance of a local search
method against a global optimization solver for ONO. We define
the notion of depth of a global minimum, and show that memory
and random explorations drive the nonconvexity regret to zero
if the variability of the objective function is low compared to the
depth of the global minima. We prove probabilistic guarantees on
the regret bound that depend on the evolution of the landscapes of
the time-varying objective functions. Then, based on the notions
of missing mass and 1-occupancy set, we develop a practical
algorithm that works even when there is no such information on
the landscapes. The theoretical results imply that the existence
of a low-complexity optimization at any arbitrary time instance
of ONO can nullify the NP-hardness of the entire ONO problem.
The results are verified through numerical simulations.

I. INTRODUCTION

Nonconvex optimization is ubiquitous in real-world appli-
cations, such as the training of deep neural nets [1], matrix
sensing/completion [2], [3], state estimation of dynamic sys-
tems [4], and the optimal power flow problem [5]. Moreover,
most of these practical problems are solved sequentially over
time with time-varying input data, leading to online (real-time)
versions of the aforementioned examples [4], [6], [7].

In this paper, we study an online optimization problem
whose objective function changes over discrete time periods,
namely,

minimize  fi(x) (D
z€eS

where ¢ € ZT denotes the time and S C R” is the time-
invariant feasible region. At each time ¢, the objective function
ft is coercive and differentiable but could be nonconvex
in x with non-unique local minima. In general, nonconvex
optimization problems are NP-hard and the commonly used
local search algorithms such as gradient descent method or
Newton-Raphson method may converge to a spurious local
minimum (i.e., a local minimum that is not globally optimal).
In other words, at each instance of time, the sub-optimality
gap incurred between the obtained solution and the globally
optimal solution, hereafter called nonconvexity regret, could be
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nonzero. The main goal of this paper is to analyze how this
nonconvexity regret evolves over time in the ONO setting.
Specifically, we study algorithms with memory and random
exploration and connect the complexity of ONO with the
evolution of the landscapes of f; over time.

Our first main result shows that the proposed algorithm will
stop accumulating nonconvexity regret with a high probability
under the condition that the variability of the objective function
over time is low compared to the depth of the global minima.
This probability depends on the volume ratio of the region
of attraction (RoA) of the global minimum over the problem
sequence. The results imply that the existence of a single low-
complexity problem (among the sequence of nonconvex prob-
lems) can lower the complexity of the entire ONO problem,
which is also verified through simulations.

The second main result extends the earlier idea to the case
where the global solution’s region of attraction has unknown
volume. This contributes to designing a practical algorithm
that takes random samples until the missing mass is below
a certain threshold with high probability. By analyzing the 1-
occupancy set, we draw a connection between the diminishing
rate of nonconvexity regret and the landscape of ONO.

A. Problem Setup

In the ONO framework, the decision maker at each time ¢
chooses z; € S in order to minimize the nonconvex objective
function f; : S — R. Unlike in some online learning settings
where an adversary also chooses the function f; at time ¢,
we assume that the sequence of objective functions f1, fs,. ..
is fixed ahead of the decision making process. However, a
decision maker at time ¢ does not have information about
the future objective functions. At time ¢, the system accrues
(instantaneous) regret of the following form:

fe(we) — inf fi(2)  (2)

[Nonconvexity regret]

This regret is mainly due to the fact that f; is non-convex and
the decision maker may fail to find the global optimum at each
time step. We assume that f; has a unique global minimum
but the results of this paper can readily be generalized to
multiple global minima. It is straightforward to verify that the
nonconvexity regret can be arbitrarily high in a general setting.
Therefore, existing works in the literature have derived regret
bounds in terms of various quantities such as the regularity of
the comparator sequence [8] and the temporal variability of the
objective functions [9]. We take a slightly different approach
and consider the case when the global minimum is sufficiently
superior compared to the variability of the objective function.



Definition 1. For an ONO of the form in (1), let us define the
notions of instant variability (V') and depth of global (G) as:

V= max sug | fee1(z) — fi(2)] 3)
xc
G:=max inf |fi(z7) - fo(2)] 4)

where x} is the global minimum and R, is the set of stationary
points for (1).

In essence, V' captures the maximum amount of variation
allowed for the objective function over consecutive time steps,
and G captures the maximum difference between the global
minimum and the next best stationary point. If f; is convex
for all time, then G = oo and there is no restriction on
the variability V. In this paper, we say that the global is
sufficiently superior if the condition 2V < G is met. However,
this condition alone does not necessarily promise an efficient
algorithm to find and track the global minima of a sequence
of nonconvex optimization problems. Therefore, we consider
memory and random explorations, which we describe in Sec-
tion III. We will show that random explorations help with
finding the global solution at some point in time, and memory
enables the tracking of the global solution once it is found.

B. Related Work

Parametric optimization and homotopy methods provide
one of the tools for analyzing ONO problems. In the classic
work of [10], the authors lay out the theories behind the
structure and singularity of the Karush-Kuhn-Tucker (KKT)
trajectories for time-varying optimization problems. Taking
a different type of approach, [11] presents conditions under
which the solution of some ordinary differential equation
(ODE) is close to the KKT trajectory (of ONO) and presents
a predictor-corrector method to tract the ODE solution. Using
similar approaches, [12] studied a gradient flow system with
inertia, as a continuous-time limit of the proximal algorithm
and developed sufficient conditions under which the solution
trajectory would escape spurious local solutions and begin
tracking time-varying global solutions. Recently, [13] and [14]
explored how variability in the input data can help ONO
solution trajectories escape non-global local solutions.

In the machine learning community, the performance of
online optimization schemes is often analyzed through the
notion of stationary (or static) regret [15], which is the
comparison to a single best action in hindsight. In this paper,
we analyze the regret against a more stringent comparator,
which we call the nonconvexity regret. A related notion named
dynamic regret is studied in the literature [9], [15], [16]. Most
of the existing works on online optimization with provable
guarantees have been focused on the convex setting, where
the objective is to minimize a sequence of convex functions
over a convex domain [17]-[21]. Unlike convex optimization
for which there is no distinction between global and local
minima, it is impossible to design an efficient algorithm that
always converges to a global minimum even in hindsight under
the nonconvex setting. Therefore, the papers [22]-[24] utilize
an alternate concept of local regret that is based on stationary

points. Contrary to this line of research, we study the global
regret and establish probabilistic guarantees using memory and
random explorations.

Randomization is a useful tool for solving nonconvex opti-
mization problems. It can be employed within the algorithm
itself or when initializing a local search algorithm. In both
cases, the goal is to facilitate exploration of the solution space
and avoid poor local minima. Simulated annealing [25] is one
such approach in which a random move is chosen at each
iteration. Multi-start methods address algorithm initialization
by repeatedly constructing an initial point, applying a local
search method to obtain a solution based on said point, and
comparing with past solutions, until specified stopping cri-
terion are satisfied. Using the terminology of [26], multi-start
methods rely on a combination of three key elements: memory
(using knowledge of previous good solutions), randomization
(degree to which initial points are generated in a random
versus deterministic way), and the degree of rebuild (whether
or not some elements are fixed for a number of iterations). This
paper adapts the multi-start techniques to the online setting,
focusing on the history and randomization elements. [27]-[29]
are a few key works on this topic, and we refer the reader
to [26], [30] for a more extensive review.

In optimization, the connection between the convergence
of an algorithm and the stability of a dynamical system has
been long known, where the region of attraction around an
equilibrium point is related to the convergence region for a
local optimum [31], [32]; recently, there are also renewed
interests in optimizing the hyper-parameters for convergence
rate [33]-[35]. However, these results are only for the opti-
mization of a single problem, rather than a sequence of time-
varying problems as considered in this study. Existing works
often assume that there exists a reasonably large region of
attraction around the global optimum in order to guarantee the
successful convergence of the iterative methods like gradient
descent [36]. The regret analysis made in this paper using the
volume of RoA is conceptually similar but extends to the ONO
framework.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we provide some notations and preliminaries. In
Section III, we develop an online optimization algorithm
and derive regret bounds under the assumption that the RoA
volumes are known for all local minima. In Section IV, we
extend the results to the case where the volumes are un-
known. Section V supports the theoretical results by numerical
simulations and analyses. Finally, we conclude the paper in
Section VI.

II. NOTATIONS AND PRELIMINARIES

Let ||-]| indicate the 2-norm of a vector and |-| represent the
cardinality of a set. The symbols R™ and Z* denote the space
of n-dimensional real vectors and the set of positive integers,
respectively. In this paper, we assume that S = {z | g(x) < 0}
is a compact set of dimension n, where all entries of g(x) :



R™ — R™ are convex functions. The global optimum of the
optimization problem at time ¢ is denoted by

x; = arginf fi(x) &)
€S

If the global minimum is not unique, x; denotes a particular
global solution for which the assumptions of this paper hold.
Finally, P{-} denotes the probability of the argument.

Definition 2. Given an arbitrary T € 7™, define the cumula-
tive nonconvexity regret up to time T as follows:

T
(T) = Z (ft(mt) - ;Iéfsft(x)) (6)
t=1
where x; is the solution obtained by a given algorithm. In
addition, @ is regarded as the average nonconvex regret
over time period [1,T). It is said that the nonconvexity regret
is a (e, 0)-regret if, for any € > 0 and § € [0, 1], the following
relation holds:

P{@ge}zka (7

Observe that the notion of nonconvexity regret is algorith-
mic dependent. In this work, we equip local search methods
with memory and randomization, and study their effect on the
nonconvexity regret. To proceed with the paper, it is necessary
to define a region of attraction (RoA) for each local minimum
of f:(z), which includes the set of all initial points that can be
used to find that particular local minimum. Since RoA would
be a chaotic set if the step sizes of a gradient-based method are
allowed to vary arbitrarily, we circumvent the issue by using
sufficiently small step sizes. This allows us to define RoA via
ordinary differential equations.

Definition 3. (Region of attraction) Let projg(x, —V fi(x)) be
the solution to the following quadratic program:

min [|lw + Vi@)|?* st Vgg(z)'w<0

where NV 7g(x) is the Jacobian of the active constraints at .
Given a local minimum or a saddle point T of the optimization
problem min,cs fi(x), define the region of attraction of T as
follows:

RA(Z) = {xo : kl;r& x(k) =z, where (8)

dx(k .
d(k )  projs(a(k), ~ fu((k)), #(0) = 2o
We have defined the RoA based on a continuous version of
the projected gradient method as introduced in [37], but one
can use other first-order methods to refine this. Next, we make
a standard assumption that the optimization problem (1) has

a finite number of stationary points. The volume of the set
RA(Z) is defined as

Vol(RA(#)) = / /72 PREE ©)

where Vol(-) indicates the volume of a set. At each time ¢,
we make the mild assumption that the sum of Vol(R.A(x))
over all = that is either a local minimum or a saddle point
is equal to the volume of the entire domain (this means that

the algorithm must always converge to a stationary point, and
is satisfied if the problem has a finite number of stationary
points).

III. ONLINE ALGORITHM WITH RANDOM EXPLORATIONS

In this section, we introduce a general framework for online
algorithms with memory and random explorations, and prove
bounds on the average regret, which are dependent on the
volumes of the RoAs for the global minima at different times.
We also derive a hitting time for the time-horizon length such
that the desired precision level for the probabilistic guarantee
is achieved.

Let y,...,y™ be independent and identically distributed
samples from a fixed distribution P (over S) at time ¢ and
define the set Y; = {y},...,y"}. Let hy : S™*1 — S be an
operator that takes in the current solution x; along with the
m random initial points and outputs the best local minimum
or saddle point resulting from these points. In other words,

Tip1 = heg1(ze,Y:) = argmin [ () (10

z0€x,UY;

where [, takes in 2 as the initial point and outputs a limit point
of the following continuous-time projected gradient algorithm:

dfi(km = projg(z(k), =V fi(z(k)), z(0) = z° (11)
In [37], it is shown that the above projected gradient descent
asymptotically converges to an equilibrium point under the
assumption that there exists a unique solution for the ODE
(Note that if the initial point is a local maximum, the algorithm
will stay at that point). The current solution x; plays the role of
memory and the new random points play the role of random
explorations. At times, we will simply use h(:) instead of
ht(-). For each time t, let X; define the set of local minima
and saddle points of the optimization problem (1). Then, since
we utilize the solution found at the previous time step as the
initial point of the current time step in the proposed algorithm,
the above mapping generates a sequence of stationary points
over time. We denote this sequence by

¢(170) = {(950,3317--

More generally, we can define a forward solution sequence at
time ¢ given zg:

' (x0) = {(xt, Tos1s- -y 27) | Tigr = hipa (2, Y2)} (13)

Note that ¢(zg) = ¢°(x¢). For a set of initial conditions Xg,
we define a ser of forward solution sequences at time t as
P'(Xo) = {¢"(z0) | zo € Xo}.

The above procedure for solving the online optimization (1)
is summarized in Algorithm 1. This algorithm is the natural
counterpart of the classical gradient descent method for time-
invariant (static) optimization, but is enhanced by incorporat-
ing memory and random exploration, meaning that: (i) the
solution at each time is used as a memory to guide the
algorithm in solving the problem at the next time instance,
(ii) the landscape of the problem at each time instance is
explored via m random points. In this section, the objective
is to understand how the memory and the number of random
points affect the nonconvexity regret as a function of time.

Sxr) | g = hig (2, Y3)} (12)



Algorithm 1 Online Local Search with Random Exploration

Given: 2° € S and {f,}?°,
for t =0,2,... do
o Create Y; = {y},...,y"} by sampling m random
points from S using the probability distribution P
e Observe fiy1. Set xy11 = hev1(xe, Ye)
end for

Definition 4. (Volume ratio of global optimum) Let p; sym-
bolize the fraction of the entire solution space belonging to
the RoA of the global minimum xi at time t. That is,

= WI(RA(x}))/Vol(S)

Note that Vol(S) < oo since S is assumed to be compact.
In this paper, any time ¢ for which the optimization problem
has a large p; is regarded as a time with a low-complexity
optimization. An example showing low-complexity and high-
complexity problems is shown in Fig. 1. The first main
result of this paper provides a probabilistic guarantee, which
depends on the values of p;, that the sequence of online
optimization solutions generated by Algorithm 1 will find and
keep tracking the global optimum over time. This is formalized
in Theorem 1.

(14)

Theorem 1. Suppose that 2V < G. Consider two arbitrary
natural numbers T and T with the property that T < T. Let
the set Yy be generated by sampling m points according to a
uniform distribution on the set S. Then, for any ¢°(x¢) €
®0(S), the following statement holds true when the online
optimization is solved via Algorithm 1:

i~

(L=p)™ (5

t=1
Proof. First, we show that the event of finding the global
minimum at some time ¢ < 7T via Algorithm 1 leads to the
event of finding the global minimum at all time ¢ > 7. Due
to Lemmas 3 and 4 in [37], the set M = {x | firi(x) <
fe1(xy)} is invariant (and compact because f;41 is coercive)
with respect to the projected gradient descent system (11).
This means that the limit point z of the ODE solution is an
element of M such that V f;;(Z) = 0. Also, we know that
fi+1(Z) < G + fip1(xf, ). This follows from

Jer1(2y) = fira(@y) — fe@p) + fe(@]) — froa(zipg)+
fer1(zir) < fera(@y) = fexr) + fel@i) — fera(ziig)
+ fir1(@i) SV AV + fira(@i) < G+ fip(zig)

Now, since the gap between the global minimum and the
second best stationary point is at least G, we can conclude
that z = xf,,. Using an induction process, it holds that all
solutions returned by Algorithm 1 after time ¢ are also globally
optimal: z; = 2} = 2 = af Vt € {t+1,...,T}.
This implies that the regret will stop accumulating after T’

and accordingly,

£ 3 (- ) = 13 1t )

fis(z)

50 1

fs (z)
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Fig. 1. Top and bottom plots show examples of a problem with high and low
complexity, respectively.

Now, it is desirable to calculate the probability that Algo-
rithm 1 will find the global minimum of one of the functions
fi,..., f7. Recall that at each time ¢, the previous solution
x;—1 and m random points represented by the set YV;_; =
{y{_1,...,y™,} are fed into Algorithm 1. The probability
of failing to find the global minimum x7 at time T is then
less than or equal to the probability that none of the random
points up until time 7" belongs to the regions of attraction of

the respective solutions z7, ..., x7%:

P{h(_xf—lv Yr_q) # 95;‘“}

T
< [IP{yici ¢ RAGT), 1<i<m
t=1

T
H l_pt 777.

Therefore, the probability of arriving at the global minimum
up until time T is

P{h(zp_1,Yp_1) = x*T—} =1- P_{h(ZUT—hYT—ﬂ # x*T}

T
t=1
It can be inferred from the above arguments that

{24

T T

(1 — pt)m O

=

>P{I<T st ap=aj) =1
Theorem 1 states that the regret stops accumulating after
any arbitrary time 7' < T with a probability that depends on
the volume of RA(z}) for t = 1,...,T. In the special case
when pr = 1 (e.g. when f7(z) is convex), inequality (15)
holds with probability one. This implies that the existence
of a single convex problem, in between the sequence of
numerous nonconvex problems, is enough to break down the
NP-hardness of solving a nonconvex problem for all future
times, under the memory and low-variability assumptions.
Notice that «(7T') itself is a random variable because it is based
on the random sampling of initial points. To refine the result of
this theorem, the next corollary provides a deterministic upper-
bound that is based on the maximum difference between any
stationary point and the best global optimum over time.

t=1

Corollary 1. Under the assumptions of Theorem 1, define

Cp += max { sup [fi(x) — inf fi(x)] }

t< reXy

(16)



The following statement holds true:

AP 5T =1

T = a7

T

H 1 - pt
Proof. Due to Theorem 1, it is enough to prove that v(T') <
C#T'. This follows by definition:

y(T) < T max { sup [fi(z) — inf f,(x)}} =CyT O
t<T \ zes zes

Given a pair (¢,0), it is essential to estimate the earliest
time at which the average nonconvexity regret associated with
Algorithm 1 is a (e, §)-regret. Such time is called the (¢, 0d)-
hitting time and is denoted by 7.

In what follows, we will study the case where there is a
time 7" at which the global solution a7, dominates other local
minima and saddle points in terms of the volumes of their
RoA. A special case of this scenario corresponds to having at
least one convex function in the sequence fi(x),..., fr(z).

Corollary 2. Suppose that 2V < G. Given an arbitrary
constant q¢ > 0, let T be the first time such that |Xg| < q
and

Vol(RA(x%)) > Vol(RA(x)),

VzeXy  (18)

(set T to infinity if such number does not exist). Then, the
(€,0)-hitting time T", for Algorithm 1, is upper bounded by

C}T)

19)

nmx(T,
€

if m is chosen to be greater than %.
Proof. 1t follows from (18) that

Vol(RA(x%.)) Vol(RA(z7))

T=7VoIS)  Soen, Vol(RT;l(w))
Vol(RA(3) 1 1
“VOl(RA(z:)) - X7~ Xz ~ ¢

. In(s .
Furthermore, since we have m > ﬁ, one can write:

ﬁ(lpt)m >1—(1—pp)" > 1<1l>m215

t=1 q

As a result,
TI

1_H(1_Pt >1

T
H 1—p)" >1-6, VI'>T
t=1 t=1

Now, it results from Theorem 1 that
T/

{1 > (Fulw) = it fi@) <} 21—,

%. Therefore,

) is an upper bound on the (e, §)—hitting time.
O

From Corollary 2, one can analyze the role that a “low-
complexity problem” at some time 7" plays in determining the
complexity of the entire online nonconvex optimization. As
an extreme but important case, suppose that there is a finite
time 7" such that |[X7| < ¢ = 1, and let T denote the smallest

as long as € > T,T, or equivalently 77 >

max (7T, CiT

Algorithm 2 Online Local Search with Random Exploration
and Dynamic Stopping Rule
Given: 2° € S, m € Z*, a,6 € [0,1] and {f,}5°,
fort=1,2,... do

Set: m —1and|W‘f|:O
while 4 '+5\/%>5 and m < m do

e Sample y;* € S using P
e Update [W7*| based on I;(y}),. ..
eSetm=m+1
end while
Set: m; = m and z;11 = h(z, {y;,. ..
end for

) lt(y;n)

Yt t})

number with this property. Then, Algorithm 1 at any time
after T~ O(1/¢) provides the desired level of confidence
on nonconvexity regret. Note that there is no need for using
random initial points in this scenario (i.e., m = 0).

IV. MISSING MASS AND DYNAMIC STOPPING RULE

In practice, information on Vol(R.A(x%)) may be limited
and difficult to estimate. Therefore, we modify Algorithm 1 to
account for this fact and present a heuristic algorithm that does
not require knowledge of the volumes beforehand. In essence,
these results rely on the notion of missing mass.

Definition 5. Given m random points at time t and any
arbitrary point x € S, define c;(x) to be the number of samples
that lie in the RoA of x:

v) = Ty € RA(z)] (20)
i=1

where 1[] is the indicator function. For any integer k > 0, let

W! denote the set of local minima x € X, with the property

that ¢,(x) = k. Finally, define M}, to be the probability of

reaching a local minimum that belongs to Wt :

M} = Z Vol(RA(x))/Vol(S)

zeW!

2L

Note that M} depends on the random samples and therefore
is a random variable. The quantity M{ is the missing mass at
time ¢ and signifies the aggregate volume of the RoA(s) of
all the stationary points that have not yet been found. In [38],
the authors provide an upper-bound on the missing mass using
the Good-Turing estimator. We reformulate the result for our
purpose and state it without reiterating the proof.

Lemma 1. ([38], Theorem 9) For all « € (0, 1], the following
inequality holds with probability at least 1 — «:

+(2v2 +V3) (3/0‘)

From hereon, we will simplify the above 1nequality by the
approximation 2v/2 + /3 ~ 5. As mentioned before, the
volumes of the regions of attraction is difficult to estimate
in general. Therefore, an alternative implementation of Algo-
rithm 1 would be to adaptively change the number of samples
and yet keep it below a user-defined threshold m. At each time

Mg < W] (22)
m



period, Algorithm 2 continues taking one additional sample at
a time as long as two conditions are satisfied:

o The missing mass is not below the desired threshold;
o The maximum sample number is not exhausted.

In doing so, the algorithm attempts to explore until the missing
mass is small enough but also guards against taking many
samples when facing a high-complexity problem (e.g. when
the global minimum is sharp and has a small RoA [36]). Let
my denote the number of randomly chosen initial points at
each time t. It may seem plausible that the missing mass
provides an upper-bound of the probability of not being able
to find the global minimum. However, this is not true in
general because m;, W} and M are correlated variables. To
illustrate this, consider the probability of finding the global
minimum conditional on a given upper-bound of the missing
mass, i.e., P{z; = x} | M{(Y;) < }. Here, we use M{(Y;) to
clarify the dependence of the missing mass on random samples
Y; = {yt,...,y"*}. Then, the following always holds:

Pla, = 7 | My(Y;) < 6}
_P{o=ay, Y M(Y) > 16}
P M) 21—}
CP{Fist oy € RAG)), Sopey ME(Y;) > 1 -6}
a Pl Mi(Ye) > 16}
Pl st yi € RA(f), o, ME(Yy) > 10}
B P Mi(Ye) > 16}
_P{3istoy; € RA(w), Yoo Mi(Ye \ i) > 16— pi}
- P, Mi(Ye) > 16}

Let Q denote the event of that yi is the only sample that
belongs to the RoA of the global minimum. Then, the final
equation is equal to

PO MY \yi) >1 -0 —p, | Q} - P{Q}
P{> 22y M(Yy) 2 1 =6}

which provides a lower-bound on the probability of finding
the global minimum given that we have observed a total mass
greater than or equal to 1—4. We evaluate the above probability
for two scenarios: (i) p; is very small (e.g., exponentially
small in the dimension for a high-dimensional problem), and
(ii) Vol(RA(x)) is equal for every = € X;. In scenario (i),
(23) can be approximated by P{Q} = p;(1 — p;)™ 1, since
the other two probability terms are very close due to the
infinitesimal effect of 3! and p;. Thus, the missing mass reveals
little about the probability of finding a global minimum. In
scenario (ii), let d take on a value such that ¢ = (1 — §) - |X¢|
is an integer. Then, (23) can be approximated by

(/) =g

Thus, the missing mass is indeed informative on the probabil-
ity of finding a global minimum. Note that Algorithm 2 is a
heuristic in the sense that stopping when the missing mass is
small enough does not always guarantee that the global has
been found with high probability. However, it is speculated that
the connection holds as long as Vol(RA(z%)) is sufficiently
large as is in scenario (ii).

(23)

In the regime where the missing mass is closely related
to the probability of finding the global solution, the value of
|W?| plays an important role, especially because the number
of samples that we can take is limited. If |[W!| decays fast
with the number of samples taken, then the algorithm performs
better. This motivates a more careful analysis on the behavior
of |[W!| with respect to the landscape of ONO.

A. Analysis using I-occupancy Set

For each local minima = € X, the parameter c(z)
defined in (20) is sometimes called the occupancy count of
x. We call Wi the k-occupancy set. The analysis of the 1-
occupancy set can be performed under the setting of multi-
nomial allocations [39]. Let x; denote an arbitrary element
in X;. Denote p; as the proportion of the entire space that is
included in the region of attraction of the point x;, namely
pi = Vol(RA(z;))/Vol(S). It holds that )", p; = 1. The first
and second moments of |[W| can be obtained as

|X¢|
E[|W]] = m, Zpi(l —pi)™

i=1

1X¢|
E[[W{[*] = m, Zpi(l —pi)™

i=1
+my(my = 1)) pipi(1—pi —p))™ 2 (25)

i#j
The values of these moments depend on the distribution of the
p;’s and the magnitude of my. To illustrate this correlation,
consider an example where the set of {p;}, ordered from
largest to smallest, constitutes a probability mass function
(PMF) that is discretized from an exponential distribution
with parameter u. The probability density function (PDF) of
the exponential distribution is given by d(z) = pe **. For
each value of pu, the number of random initial points m; is
varied from 1 to 20, and then the corresponding moments
are calculated and plotted as heat maps in Fig. 2. It can be
observed that as {p;} move away from heavy tail (uniform)
to light tail, both the first and second moments decrease.

A more precise analysis would be based on the asymptotic
behavior of [W{| when m; and |X;| grow towards infinity. If
the {p;} change in an arbitrary fashion as |X;| increases, there
will be numerous types of asymptotic behavior. Therefore, we
impose some natural restrictions on the {p;} and analyze them
case by case.

(24)

Definition 6. Parameters m; — oo, |X¢| — oo and {p;}
are said to vary in the central domain if there exist positive
constants ¢ and By < (1 such that

my
Bo<B= <

X
Define p = max; p; and p = min; p;. It is said that m; — oo,
|X¢| = oo and {p;} vary in the left-hand 1-domain if

E[[W! ] — X < o0

X¢lpi < (26)

mp — 0, 27

Finally, we shall say that m; — oo,
in the right-hand 1-domain if

X¢| = oo and {p;} vary

mp — 00, E[[Wi[] = A < o0 (28)
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Fig. 2. Heat maps showing the first (left plot) and second (right plot) moments
of |W?|. The x-axis represents the number of random initial points and the
y-axis represents the exponential distribution parameter.

By adapting theories laid out in [39], the asymptotic behav-
ior of 1-occupancy set is described in the following lemma.

Lemma 2. In the central domain, the distribution of |W{|
approaches a Normal distribution with mean () and variance
(Jt2 ) as follows:

[Xe
Kt = Z v(pi)e @) (29)
IX¢] ||
Ut2 = Z V(pi)e_u(pi) — Z (l/(pi)e_l’(]?i))Q (30)
%) '
1 2
_m ( Z V(pi)e‘”(’”) (v(p;) — 1))

where v(p;) = B|X¢|ps. In the left-hand 1-domain, the distri-
bution of (my — |W'|)/2 approaches a Poisson distribution

nmp{w - k:} _ N

2 k! GD

2
where the parameter \ is given by A = lim % Zixtl p?. In
the right-hand 1-domain, the distribution of |W' | approaches
a Poisson distribution with parameter \ given by

|X¢]
A = limmy sz‘(l —pg)™e !
i=1

In all of the above, the probability mass of |W¢| is con-
centrated on some small values if the distribution of {p;} is
non-uniform. This explains the experimental analysis provided
in Fig. 2. In the context of Algorithm 2, this implies that a
low-complexity problem will once again drastically drive the
nonconvexity regret to zero, similar to what we observed for
Algorithm 1. This phenomenon is demonstrated in Section V.

(32)

V. NUMERICAL RESULTS

The objective of this section is to support the results of this
paper through numerical analysis and demonstrate the role that
a single comparatively low-complexity problem can play in a
sequence of nonconvex problems. First, we will illustrate the
performance of Algorithm 1 with respect to the parameters p;
and m, i.e., the fraction of the solution space belonging to the
region of attraction of the global minimum at time ¢ and the
number of random initial points, respectively. This analysis
considers two cases satisfying the conditions of Theorem 1
with V < 4 and G > 10:

s 1 s -
3 | E I
o= | T T 8- AL
T 2 e = > 0 et
g9 E2 | b
505 S 505[ &
z8 z8 :
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Fig. 3. Empirical validation of Theorem 1

- 6\25 - ,(325

9] 13}

= = m=1

gL gL =

=) =)

£815 £815 m=5

o o

g5 10 2510

9 c 9 c

o (]

58 5 <35

zE zE

0 0—

10 20 30 40 50
Time

o

10 20 30 40 50
Time

o

Fig. 4. Nonconvexity regret over time resulting from applying Algorithm 1
to Case 1 (left) and Case 2 (right).

1) “No low-complexity problem”: In this case, {f;}?2, are
deterministic nonconvex functions bounded between 0
and 61 with the number of local minima ranging from 23
to 157. While the number of local minima varies signifi-
cantly, p; remains between 0.02 and 0.03 for ¢t = 1, ..., 50.
A representative function from this sequence is shown on
the top plot of Fig. 1.

2) “Low-complexity problem at time 5”: This case {f;}2°;
is identical to Case 1 at every time period except for time
5. The bottom plot of Fig. 1 shows fs, which has three
local minima and p5 = 0.5.

We conducted 1000 trials of Algorithm 1 on Case 1 and
Case 2 in three scenarios of m = 1, m = 3, and m = 5. Fig. 3
plots the empirical probability that # < 7" versus the theoretical
lower bound provided in Theorem 1. Note that for the same
value of m, the two cases are identical until time 5. The results
support Theorem 1. The distribution of £ is a key driver of the
nonconvex regret over time, which is shown in Fig. 4. In Case
2 (right plot), the nonconvexity regret falls sharply at time 5
because the majority of trials achieve zero nonconvexity regret
at this time, if they had not before. However, even without such
“low-complexity problem” at time 5, the nonconvexity regret
still trends downward over time on average. Further, Fig. 4
highlights the role of increasing m in improving regret across
cases.

Now consider Algorithm 2. Again, we consider a “no low-
complexity problem” case (Case 1-b) and a “low-complexity
problem at time 5 (Case 2-b) case. However, the function
sequence {f;}?, is now more complex with the number of
local minima between 635 and 2265 and p; kept at 0.004 for
t = 1,...,50. The low-complexity problem f5 continues to
have ps = 0.5. Fig. 5 plots the observed nonconvexity regret
over time for these two cases under different parameter values.

VI. CONCLUSION

In this paper, we studied how the regret attributed to
the nonconvexity evolves over time in an online nonconvex
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a=0.1,§ =0.1,m =5 (top) and o = 0.1, = 0.9, m = 125 (bottom).

optimization (ONO) setting. Under the condition that the
variability of the objective function is low compared to the
depth of the global minima. We bound the probability of
finding and tracking the global solution over time via a local
search method that uses memory and random initialization
at each time instance, in terms of the volume of the RoA
corresponding to the global minimum. The results imply that
the existence of a single low-complexity problem (among the
sequence of nonconvex problems) breaks down the complexity
of the entire ONO problem. We developed various bounds to
quantify the nonconvexity regret and its asymptotic behavior.
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