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Abstract  

Nitrogen fertilizer results in the release of nitrous oxide (N2O), a concern because N2O is an 

ozone-depleting substance and a greenhouse gas. Although the reduction of N2O to nitrogen gas 

can control emissions, the factors impacting the enzymes involved have not been fully explored. 

The current study investigated the abundance and diversity of genes involved in nitrogen cycling 

(primarily denitrification) under four agricultural management practices (no tillage [NT], 

conventional tillage [CT], reduced input, biologically based). The work involved examining soil 

shotgun sequencing data for nine genes (napA, narG, nirK, nirS, norB, nosZ, nirA, nirB, nifH). 

For each gene, relative abundance values, diversity and richness indices and taxonomic 

classification were determined. Additionally, the genes associated with nitrogen metabolism 

(defined by the KEGG hierarchy) were examined. The data generated were statistically 

compared between the four management practices. The relative abundance of four genes (nifH, 

nirK nirS and norB) were significantly lower in the NT treatment compared to one or more of the 

other soils. The abundance values of napA, narG, nifH, nirA and nirB were not significantly 

different between NT and CT. The relative abundance of nirS was significantly higher in the CT 

treatment compared to the others. Diversity and richness values were higher for four of the nine 

genes (napA, narG, nirA, nirB). Based on nirS/nirK ratios, CT represents the highest N2O 

consumption potential in four soils. In conclusion, the microbial communities involved in 

nitrogen metabolism were sensitive to different agricultural practices, which in turn, likely has 

implications for N2O emissions.  

 

 

Key Points 

Four genes were less abundant in NT compared to one or more of the others soils (nifH, nirK 

nirS, norB). 

The most abundant sequences for many of the genes classified within the Proteobacteria. 

Higher diversity and richness indices were observed for four genes (napA, narG, nirA, nirB). 

Based on nirS/nirK ratios, CT represents the highest N2O consumption potential. 
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Introduction 

An understanding of the terrestrial nitrogen cycle is important both for optimizing agricultural 

productivity as well as for minimizing environmental impacts, such as water pollution or global 

warming. Nitrous oxide (N2O) is a predominant ozone-depleting substance and an important and 

potent greenhouse gas with a global warming potential over 100 years of ~298 and 11.9 times 

that of CO2 and CH4, respectively (Domeignoz-Horta et al. 2018; Ravishankara et al. 2009). The 

majority (almost 70%) of the total global N2O atmospheric loading can be accounted for by 

terrestrial ecosystems, and at least 45% of this has been attributed to microbial cycling of 

nitrogen in agricultural systems (Rudy et al. 2008; Syakila and Kroeze 2011). The increasing use 

of nitrogen fertilizer in agricultural practice has accordingly increased N2O production 

(Davidson, 2009). The nitrogen cycle involves two key microbial processes for the emission of 

N2O from soils. During nitrification, bacteria produce N2O during the first step, when ammonia 

is oxidized to nitrite via hydroxylamine (Prosser and Nicol 2012). Denitrification is another key 

microbial process for the release of N2O, involving the respiratory reduction of nitrate (NO3
-) to 

nitrite (NO2
-) and their subsequent reduction to gaseous forms (NO, N2O, N2). Although the 

microbial reduction of N2O to nitrogen gas is vital for controlling emissions from terrestrial 

ecosystems, the determinants for a soil to act as a source or a sink remain uncertain (Butterbach-

Bahl et al. 2013). Although the importance of nitrification is recognized for nitrous oxide 

emissions, the current work focused primarily on the enzymes involved in denitrification to favor 

content depth over breadth. 

A number of enzymes are associated with denitrification, including those encoded by nitrate 

reductases (napA/narG), nitrite reductases (nirk/nirS); nitric oxide reductase (norB) and nitrous 

oxide reductase (nosZ) (Philippot et al. 2007). Many researchers have suggested that the 

abundance and diversity of such genes can impact N2O emission rates. For instance, researchers 

found corrections between the relative abundance of nosZ and the potential N2O production 

(Domeignoz-Horta et al. 2016). In another study, low N2O emission rates were explained by 

soils properties (up to 59%), whereas high rates were explained by the abundance and diversity 

of the microbial communities (up to 68%) (Domeignoz-Horta et al. 2018). The same study found 

that the diversity of nosZ was important to explain the variation in N2O emissions (Domeignoz-

Horta et al. 2018). Others found that nirK gene copy numbers correlated with potential 
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denitrification, but nirS gene copy numbers did not (Attard et al. 2011). Further, researchers have 

provided evidence of higher nirS/nirK ratios and higher N2O consumption (Jones et al. 2014).  

Agricultural practices are also known to influence denitrification trends. Although the impact of 

no tillage (NT) on N2O emissions has been widely investigated, the results have been varied. 

Some studies reported minimal differences of N2O emissions between NT and conventional 

tillage (CT) soil (Kaharabata et al. 2003; Lee et al. 2006; Melero et al. 2011). For example, the 

potential denitrification rates and the ratios of N2O/N2 were similar in NT and CT after 

harvesting in a rainfed crop rotation system in Spain (Melero et al. 2011). Others found that NT 

stimulates denitrification (Baudoin et al. 2009; Calderon et al. 2001; Wang and Zou 2020). The 

denitrification enzyme activity and denitrification gene abundances (nirK and nosZ) were 

enhanced in NT in a soybean/rice crop system in Madagascar (Baudoin et al. 2009). Similar 

results for the increase of denitrification gene abundance in NT was also observed under sub-

zero temperatures (Tatti et al. 2015). The general trend that NT favored the denitrification rates, 

the abundance of denitrifying genes and N2O emission was demonstrated at a global scale (Wang 

and Zou 2020). 

Research has also addressed the differential consequences of tillage management on the 

microbial community structure and diversity. CT has a positive influence on the bacterial 

richness and diversity in clay soil in central Italy (Pastorelli et al. 2013). However, some studies 

found opposite results. Minimal tillage enriched the microbial population and diversity relative 

to CT in a recent global meta-analysis  (Li et al. 2020). The bacteria diversity (represented by all 

the alpha-diversity indices) was higher in the NT soils compared to CT soils in a winter wheat 

cropping system in northern China (Dong et al. 2017). They also found that Actinobacteria, 

Alphaproteobacteria, Gammaproteobacteria and Betaproteobacteria were more abundant at 

class level in NT whereas CT had more sequences belong to Acidobacteria. In an experiment 

conducted in the agricultural fields in Indiana (USA), more DNA sequences related to the 

nitrogen metabolism were observed in the NT soils compared to CT soils, indicating the higher 

potential of nitrogen cycling (Smith et al. 2016).  

Although researchers have previously studied the impacts of various agricultural management 

practices on denitrification and N2O emission, the information on the taxonomic distributions 

and functional sequences related to nitrogen metabolism under different managements in the 
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field-crop ecosystems is still limited, especially in the U.S Midwest. The objective of this 

research was to investigate the impact of four agricultural management on the abundance and 

diversity of microbial communities regulating nitrogen cycling (primarily denitrification). The 

work focused on the agricultural sites at the Long Term Ecological Research (LTER) Site at 

Kellogg Biological Station (KBS), in southwest Michigan, southwest of the campus of Michigan 

State University (MSU). This LTER has field-crop ecosystems typical of the U.S. Midwest. The 

work is unique because it examines the key functional genes for nitrogen cycling over four long-

term systems and detects a wider range of sequences through high throughput shotgun 

sequencing.  

 

Methods 

 

Sample Collection, DNA Extraction and Shotgun Sequencing 

The DNA examined in the current work was generated from a previous study by our group 

(Thelusmond et al. 2019), involving an examination of the genes associated with xenobiotic 

biodegradation. Our previous work did not investigate the genes involved in nitrogen cycling. 

Briefly, four soils were collected from 5 sampling stations in 6 replicate plots for Treatments 1, 

2, 3 and 4 within the Michigan State University Main Cropping System Experiment at Kellogg 

Biological Station Long-Term Ecological Research (KBS LTER) (42o24'N, 85o23'W). The 

agricultural management practices for each Treatment are illustrated in Table 1 and for 

additional information see https://lter.kbs.msu.edu/research/site-description-and-maps/. The 

physical and chemical characteristics of the soils were previously determined (A & L Great 

Lakes Laboratories, Inc., Fort Wayne, IN) with all being classified as loam soils. DNA extraction 

was completed using the DNA extraction kit (DNeasy PowerLyzer PowerSoil Kit, Mo Bio, 

USA) according to the manual protocol. Shotgun sequencing was performed with the Illumina 

HiSeq 4000 (2 × 150 bp) platform at the Research Technology Support Facility (RTSF) at 

Michigan State University (MSU), as previously described (Thelusmond et al. 2019). 

 

Processing, DIAMOND Alignment, Diversity Analysis and Enrichments in Each Soil  

Low quality sequences and Illumina adapters were removed from the HiSeq fastq.gz files using 

Trimmomatic with the Paired End Mode settings (Bolger et al. 2014) (Version 0.36). Protein 

https://lter.kbs.msu.edu/research/site-description-and-maps/
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sequences for each of the nine genes were collected from the FunGene website 

(http://fungene.cme.msu.edu/) using a filter minimum HMM coverage of 70% (Cole et al. 2011; 

Fish et al. 2013). Following this, the FunGene Pipeline Dereplicator tool was used to dereplicate 

these sequences (Cole et al. 2011; Fish et al. 2013). Table S1 provides a summary of the 

sequences obtained at each step.  

 

The dereplicated sequences were then aligned against the trimmomatic files using DIAMOND 

(double index alignment of next-generation sequencing data) (Version 2.0.1) (Buchfink et al. 

2015). Only reads that exhibited an identity of ≥ 60 % and an alignment length ≥ 49 amino acids 

to the reference sequences were retained. For each, relative abundance values were calculated 

using the number of aligned reads divided by the total number of sequences for each sample. The 

relative abundance values were then normalized by (divided by) the number of dereplicated 

reference sequences for each gene. Diversity indices (Chao 1, Chao2, Inverse Simpson and 

Shannon values) were determined (using the number of aligned reads for each gene) using 

EstimateS (Version 8.2.0) (Colwell 2006). The accession numbers of sequences statistically 

enriched in each soil (as described below) were determined. The R package Taxonomizr 

(Sherrill-Mix 2009) was used with R (Version 3.5.1) (R_Core_Team 2018) in RStudio (Version 

0.9.24) (RStudio_Team 2020) to determine the taxonomic classification of each sequence. The 

data were illustrated with bar charts in Excel (Version 2010). 

 

Phylogenetic Trees 

The 50 most abundant sequences for each gene, averaged across all samples, were determined in 

Excel. The list of accession number for each were uploaded to COBALT: constraint-based 

alignment tool for multiple protein sequences 

(https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi) (Papadopoulos and Agarwala 2007). The 

downloaded alignments (fasta plus gaps) from COBALT were then submitted for MAFFT 

(multiple alignment using fast Fourier transform) alignment using an online server 

(https://mafft.cbrc.jp/alignment/server/) (Katoh et al. 2019) (Version 7). Trees, also obtained 

from the same website, by the Neighbor-Joining method were exported in Newick format. The 

downloaded tree files were uploaded to the Interactive Tree of Life (https://itol.embl.de) (Letunic 

http://fungene.cme.msu.edu/
https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi
https://mafft.cbrc.jp/alignment/server/
https://itol.embl.de)/
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and Bork 2019) (Version 5.5.1). Sequences were colored depending on their classification and 

relative abundance values were added using the Datasets function called simple bar chart.  

 

MG-RAST Analysis 

Shotgun sequences were also analyzed by MG-RAST (Meta Genome Rapid Annotation using 

Subsystem Technology, Version 4.0.2) (Meyer et al. 2008). The processing pipeline includes 

removing artificial replicate sequences by dereplication and removing low quality sequencing by 

using SolexaQA (Cox et al. 2010). The taxonomic analysis included RefSeq (Pruitt et al. 2005) 

database and the KEGG (Kanehisa 2002) database. The sequences are available publicly on the 

MG-RAST and the summary of the MG-RAST data is presented in Table S2. 

 

Statistical Analysis  

RStudio was used to perform a number of statistical tests, as follows (Version 0.9.24) 

(RStudio_Team 2020). One-way ANOVA or Kruskal-Wallis tests were performed using the 

“aov” or “kruskal.test” functions as implemented in R package “car” (Fox et al. 2020) to 

determine if there were statistically significant differences between 1) relative abundance of 

functional genes obtained by DIAMOND and 2) richness and diversity values (Chao 1, Chao2, 

Inverse Simpson and Shannon values). First, Levene’s test was carried out to assess the 

homogeneity of variance of the data using the “leveneTest” function in the R package “car” (Fox 

et al. 2020). The Shapiro-Wilk test was conducted to evaluate the normality of the data using the 

“shapiro_test” function in the R package ‘rstatix’ (Kassambara 2020). When the p values from 

both of the Levene’s and the Shapiro-Wilk tests were more than 0.05, the differences between 

the means were determined by one-way ANOVA. When the p values from the one-way ANOVA 

were less than 0.05, multiple pairwise comparison between the means were performed using 

Tukey’s Honest Significant Difference test using the “TukeyHSD” function in the “stats” R 

package. When the p values from the Shapiro-Wilk test were less than 0.05, the non-parametric 

alternative to a one-way ANOVA, the test Kruskal-Wallis (function “kruskal.test” in the “stats” 

package), was used. When p values were less than 0.05 for the Kruskal-Wallis text, Dunn’s test, 

using the “dunnTest” function in the R package “FSA”, (Ogle   et al. 2020)) was utilized to 

determine differences between means. Spearman’s Rank Correlation test was carried out to 
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explore the strength of correlation between the relative abundance of different genes using the 

“cor.test” function (with method = “spearman”) in the R package “stats”. 

 

Principle component analysis (PCA) was performed within Microsoft Excel using XLSTAT 

(Addinsoft 2020) (Version 2020.3.1) to visualize the effect of the addition of pharmaceuticals on 

the gene relative abundance in different managed soils. STAMP (Statistical Analysis of 

Taxonomic and Functional Profiles, Version 2.1.3) (Parks et al. 2014) was used to statistically 

analyze the MG-RAST data. Specifically, extended error bars were generated to illustrate 

significant differences (Welch’s two-sided t-test, two group analysis option, p < 0.05) in the gene 

relative abundance for the genes associated with nitrogen metabolism (as defined by the KEGG 

hierarchy). The data (generated in MG-RAST, six metagenomes for each soil) were analyzed 

using STAMP with the two group analysis option (each soil compared to the other three soils) 

and Welch’s two sided t-test (p<0.05). 

 

Analysis of Assembled Sequences  

Shotgun sequences processed by Trimmomatic were assembled with Megahit (Li et al. 2016) 

(Version 1.2.4) with the pair end plus single end option (minimum and maximum kmer size were 

27 and 127 with a kmer size step of 10). TaxIds for the FunGene nifH database (as described 

above, except no dereplication occurred) were obtained with the R package taxonomizr (Sherrill-

Mix 2009), RStudio (Team 2020) (Version 0.9.24) and R (Team 2018) (Version 3.5.1). The 

analysis targeted nifH because no significant differences were found between soils in the analysis 

described above (before assembly). Following the deletion of duplicate values, the taxids 

obtained were used to analyze the assembled reads using the NCBI nucleotide database (nt) with 

the taxids option in BLASTN (Altschul et al. 1990) (Version 2.10.0-Linux_x86_64). BLASTN 

command lines also included the following options: identity ≥ 60 %, evalue ≤ 1× 10-5. The txt 

files generated from BLASTN were imported into Megan (Huson et al. 2016) (community 

edition Version 6.19.7). In Megan, the option “Compare” was used to combine all twenty-four 

data sets and then the combined dataset (at species level) was exported (using the STAMP export 

option) for analysis in STAMP. Additionally, the assembled contigs were aligned against the 

entire nt database using BLASTN without the taxids option (identity ≥ 60 %, evalue ≤ 1× 10-5). 
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The output files were first imported and then in Megan, following this, the file was exported into 

STAMP to compare the communities between soils.  

 

 

Results 

Abundance and Diversity of Functional Genes 

The relative abundance of genes associated with nitrogen fixation, denitrification or dissimilatory 

nitrate reduction in all four management systems are presented (Figure 1A), with the lowest 

abundance for nifH and highest for nirK. Two sets of genes were observed to have the 

approximately same level of abundance in the soils: the nitrate reductase genes napA and narG; 

and the nitrite reductase genes nirA and nirB. The distribution of the relative abundance of nirK, 

norB and nosZ were not as tightly grouped compared to the other genes, suggesting a greater 

spread in abundance of these genes across the metagenomes. 

Principle component analysis of the functional genes (Figure 1B) indicated the nitrite reductase 

gene nirK was positively correlated with the nitrite reductase gene nirS, nitric oxide reductase 

gene norB and nitrous oxide reductase gene nosZ. Further, the nitrate reductase gene napA was 

positively correlated with the nitrite reductase gene nirA. In contrast, the nitrite reductase gene 

nirB did not appear to correlate with any other gene. The addition of pharmaceuticals impacted 

the functional genes in two treatments (conventional tillage and reduced input soils).  

The average relative abundance of the twelve genes across the four management systems is 

displayed in Figure 2. Four genes (nifH, nirK nirS and norB) were significantly lower in the NT 

treatment compared to one or more of the other treatments. The average relative abundance of 

nirS was significantly higher in the CT treatment compared to the other treatments. It was also 

interesting to note that the average relative abundance of nosZ was approximately 50% lower in 

the NT soil compared to the other soils, although the difference was not statistically confirmed. 

The results of the statistical analysis tests (Levene’s test, Shapiro-Wilk, One-way ANOVA, 

Tukey’s Honest Significant Difference, Kruskal-Wallis, Dunn’s test) on these data sets are 

summarized (Tables S3-S5). 
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Figure 3 illustrates correlations between gene relative abundance percentages across all samples 

with all statistically significant positive correlations (Spearman’s rank test) being boxed in red. 

The abundance napA significantly correlated with six genes (narG, nirA, nirB, nirK, norB, 

nosZ), as did the abundance of narG (napA, nifH, nirA, nirB, nirK, norB). In contrast, nifH 

correlated with two genes (narG and nirK). The abundance of both nirA and nirB correlated with 

napA, narG and to each other. Additionally, nirK, nirS, norB, nosZ all correlated positively to 

each other. The p-values and Spearman’s correlation coefficients for the Spearman’s rank tests 

are shown in Tables S6 & S7. 

The values of richness estimators (Chao 1 and Chao 2) and diversity indexes (Shannon and 

Inverse Simpson) determined by EstimateS are summarized (Figure 4). The results of the 

statistical analysis (Levene’s test, Shapiro-Wilk, One-way ANOVA, Tukey’s Honest Significant 

Difference, Kruskal-Wallis, Dunn’s test) on this data set are also summarized (Tables S8-S17).  

Overall, higher Chao 1 and Chao2 values (~8000-9000) were found for four genes (napA, narG, 

nirA, nirB), whereas lower values (~500-1500) were estimated for the five other genes (nifH, 

nirK, nirS, norB, nosZ). For Chao 2 no significant differences were found between the four 

treatments for all genes. The only significant difference for Chao 1 between treatments was for 

nirS, nirK and nifH. Chao1 values were higher in both the CT treatment and the biological based 

treatment compared to the NT treatment for nirS. For nirK, Choa 1 was lower for the CT 

treatment compared to the reduced input treatment. For nifH, the Choa 1 value in the reduced 

input treatment was lower than the biological based treatment. 

Overall, the average values for Shannon and Inverse Simpson were higher (~1000-2000 and 

~7.2-8.1) for four genes (napA, narG, nirA, nirB) compared to the rest (~100-400 and ~5.4-6.4). 

For the Inverse Simpson values, at least one significant difference between treatments was noted 

for six genes (napA, nirA, nirB, nirK, nirS, norB), with the most notable number of differences 

between treatments being for nirK, nirS and norB. For nirK and norB, Inverse Simpson values 

were significantly higher in the NT treatment compared to the other treatments. For nirA and 

nirB, Inverse Simpson values were significantly higher in the reduced input treatment compared 

to the CT and NT treatments. For the Shannon Index values, at least one significant difference 

was found between at least two treatment for all genes except nifH and nirB. For napA, Shannon 

Index (and Inverse Simpson) values were significantly higher in the reduced input treatment 
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compared to the CT and NT treatments. For nosZ, Shannon values were significantly lower in 

CT treatment compared to the other treatments. It was also interesting to note that the Shannon 

values of nirA were higher in the reduced input treatment than in the conventional and no tillage 

treatments.  

The abundance of the genes associated with the nitrogen metabolism (as defined in the KEGG 

hierarchy) were investigated to determine if there were significant differences between 

management systems. For this, each dataset was compared individually with the other three 

datasets (Figure 5). Only one gene (norF; nitric-oxide reductase NorF protein) was more 

abundant in the CT soil compared to the other three (Figure 5A). In contrast, six genes were 

more abundant in the NT soil compared to the other three soils (nirA; ferredoxin-nitrite 

reductase, cynT, can; carbonic anhydrase, nitronate monooxygenase, nitrate reductase (NADH), 

nrfD; protein NrfD and hao; hydroxylamine oxidase) (Figure 5B). Three genes (nirB; nitrite 

reductase (NAD(P)H) large subunit, nosZ; nitrous-oxide reductase, and nirD; nitrite reductase 

(NAD(P)H) small subunit (Figure 5C)) and one gene (nitronate monooxygenase) were dominant 

in the reduced input soil and biological based soil, respectively (Figure 5D). 

Phylotypes Associated with Nitrogen Metabolism  

The phylotypes (at the class level) associated with the nitrogen metabolism genes have been 

summarized (Figures 6 and 7). The CT soil was dominated by Betaproteobacteria for napA, 

narG, nirA, nirB, nirK, nirS and norB and by Cytophagia for nosZ. Further, in many cases 

(napA, narG, nirA, nirB, nirK, norB) Betaproteobacteria were more abundant in the CT soil 

compared to the other three soils. For several genes (napA, narG, nirK, nosZ), 

Alphaproteobacteria were more abundant in the NT soil compared to the other soils. While for 

nirA and nirB, Alphaproteobacteria were more abundant in the biological based soil compared to 

the other three soils. For the genes napA, narG, nirK and norB, Actinobacteria were more 

abundant in the NT soil compared to the other three soils. For nirA and nirB, Actinobacteria was 

approximately at the same level in biological based soil compared to the NT soil while somewhat 

lower in the conventional tillage and reduced input soils. Additional trends included the 

dominance of the Gammaproteobacteria for two of the four soils for norB as well as the 

dominance of unclassified sequences and Flavobacteriia across various soils for nosZ. 
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As no significant differences were noted for nifH for the above analysis, differences were 

investigated for this gene within the assembled contigs. Significant differences at the genera 

level associated with nifH gene between the CT and the other three soils are shown (Figure S1). 

The genus Frankia was significantly more abundant in the NT, reduced input and biological 

based soils compared to the CT soils. Several genera were enriched for this gene in the CT soil 

compared to the NT soil (e.g. Rubrivivax, Leptothrix, Cupriavidus). Also, two 

(Paraburkholderia and Burkholderia) were more enriched in the CT compared to the reduced 

input soils (Figure S1B). Four genera were more highly enriched in the comparison between the 

CT and the biological based soil for this gene (Figure S1C). 

Comparison of Microbial Communities 

When the entire microbial community from the assembled contigs was compared between 

treatments significant differences were found and are illustrated at the genus level (Figure S2). 

No enriched genera were found in the NT soil compared to the CT soil. Four genera 

(Nocardioides, Mycobacterium, Nakamurella and Microvirga) were enriched in both the reduced 

input and biological based compared to the CT soil. The other more abundant genera identified 

in the reduced input compared to the CT soil were Pseudonocardia and Archangium. The other 

enriched genera identified in the biological based compared to the CT soil included Candidatus 

Nitrosotalea, Nitrospira, Bradyrhizobium, Actinoplanes, Nonomuraea, Skermanella, 

Sulfuritortus, Pigmentiphaga and Variibacter.  

Phylogeny of Most Abundant Sequences 

The phylogenetic relationships of the representative sequences (fifty most abundant sequences, 

before contigs were assembled) for the genes related to nitrogen metabolism in the four soils are 

shown (Figure 8). The three most abundant sequences for napA and narG were the same 

sequences and classified as Betaproteobacteria and Alphaproteobacteria. Similarly, the three 

most abundant sequences for nirA and nirB were the same and belonged to Deltaproteobacteria, 

Opitutae and the unclassified. The three most abundant sequences for norB belonged to 

Alphaproteobacteria and were phylogenetically close to each other. For nirK and nirS, both the 

majority of the fifty most abundant sequences and the three most abundant sequences belonged 

to Betaproteobacteria. Moreover, the predominant representative sequences belonged to 
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Betaproteobacteria for nirB, nirK and nirS and belonged to Alphaproteobacteria, and 

Flavobacteriia for nifH and nosZ, respectively.   

 

 

 

Discussion 

The influence of different agricultural management practices on nitrogen metabolism is 

important for understanding N2O emissions from agricultural soils. Here, the taxonomic and 

functional profiles of the soil microbial communities associated with nitrogen metabolism, 

primarily denitrification, were characterized in Mid-West agricultural soils under four different 

management practices. From the nine nitrogen metabolism genes examined in the soil 

metagenomes, the most abundant was nirK. Denitrifying microorganisms contain either a Cu-

nitrite reductase or a cytochrome cd1 nitrite reductase, encoded by nirK and nirS respectively 

(Zumft 1997). In the current study, nirK was approximately 17.9 times more abundant than nirS 

when all of the soil metagenomes were considered together. Further, consistent with other 

researchers, nirK and nirS gene abundance were significantly correlated (Enwall et al. 2010). 

Others have also reported higher levels of nirK compared to nirS in soil metagenomes, for 

example, nirK was up to 3.8 times more abundant than nirS in 35 from 37 soils (Jones et al. 

2014). Additionally, nirK was more abundant compared to nirS during agricultural waste 

composting (Zhang et al. 2015a). In another study, nirK copy numbers were approximately two 

orders of magnitude higher than nirS, regardless of tillage treatment (Kim et al. 2021). These two 

genes are considered to be mutually exclusive, representing two ecologically distinct denitrifying 

communities (Enwall et al. 2010; Jones and Hallin 2010). To date, no microorganism has been 

reported to contain both types of reductases. It has been suggested that higher nirS/nirK ratios 

may indicate higher N2O consumption trends (Jones et al. 2014). Based on this, in the current 

study, CT represents the highest N2O consumption potential in four soils examined. Specifically, 

the average nirS/nirK ratios were 0.074, 0.045, 0.045 and 0.056 for CT, NT, reduced input and 

biological based, respectively.   
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Concerning other genes impacting N2O depletion and formation, here, nosZ was less abundant 

compared to norB and (nirK+nirS). Others have also reported that nir gene abundance can 

exceed that of nosZ by up to one order of magnitude (Garcia-Lledo et al. 2011; Hallin et al. 

2009; Philippot et al. 2011). This may be explained by the absence of nosZ in nearly one-third of 

genomes which contained nir and nor genes (Jones et al. 2008) and because nosZ has been found 

on plasmids (Zumft 1997).  

When considering the different management practices, the abundance of napA, narG, nifH, nirA 

and nirB was not significantly different between NT and CT. The same trend was reported for 

nifH and narG by others (Liu et al. 2016). In contrast, we found that nirK, nirS and norB were 

statistically significantly lower in the NT compared to the CT treatment. Others have reported an 

increase in the abundance of denitrifying genes in response to NT (Baudoin et al. 2009; Wang 

and Zou 2020) or minimal tillage (Kaurin et al. 2018). However, in an experiment across arable 

soils, the abundance of nirS- and nirK- denitrifiers were not significantly different between 

agricultural practices (Domeignoz-Horta, Philippot et al. 2018). Similarly, in another study, the 

abundance of nirK and nirS did not differ between NT and CT (Puerta et al. 2019). The authors 

speculated that NT could have promoted denitrification in the form of higher activity but not the 

abundance of denitrifying genes. NT was reported to greatly increase the RNA/DNA ratios for 

nirS and nosZ denitrifiers (Tatti et al. 2015). They hypothesized that anoxic conditions (e.g., 

water content) contributed more to the nirS and nosZ transcription under NT compared to CT 

(Tatti et al. 2015). NT tends to reduce the oxygen level below the surface (Pastorelli et al. 2013) 

and increase the water-filled pore space because of greater soil moisture and bulk density (Wang 

and Zou 2020). These two factors may contribute to the potential enhanced anaerobic 

denitrification in NT soil. No correlation was found between denitrification enzyme activity and 

the abundances of nirK- and nirS- denitrifiers (Yin et al. 2014). More information is needed to 

determine the real impact of lower nirK, nirS and norB gene abundances in NT in the current 

system.  

The microbial community richness (Chao1 and Chao2) and diversity (Shannon index and Inverse 

of Simpson) indices were generally higher for the genes associated with nitrate reduction (napA 

and narG) and dissimilatory nitrite reduction (nirA and nirB) compared to the other genes. For 

nirK, norB and nosZ for at least one and up to three richness and diversity indexes were 
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significantly greater in NT soil compared to CT soil, indicating a potential higher species 

richness and diversity in the current NT soil for these genes. In other research, higher alpha 

diversity of soil bacterial community was found in NT treatment compared to tilled treatment 

(Dong et al. 2017; Liu et al. 2020). Similarly, the richness and diversity of bacteria 

(characterized by phospholipid fatty acids analysis) were greater in NT over CT soil (Zhang et al. 

2015b). This may be due to crop residues under the soil surface in NT soils being utilized as food 

sources (Zhang et al. 2015b). Another possible reason is that NT soil contains larger soil 

aggregates which could provide more organic matter for the microorganisms, therefore 

enhancing the bacterial diversity (Peixoto et al. 2006). It was demonstrated that denitrification 

activity was greatly influenced by denitrifier diversity but not the abundance. Using a dilution 

approach to manipulate the soil microbial community, researchers found that a decrease in the 

potential denitrification activity could be a result of denitrifier diversity loss and not the lower 

denitrifier biomass (Philippot et al. 2013). These trends could suggest that the NT examined in 

the current study may have a higher denitrification potential due to higher norB and nosZ 

diversity, although more research is needed to confirm this hypothesis. 

It is interesting to note that Chao 1, Shannon and Inverse of Simpson were significantly higher in 

CT soil compared to NT soils for nirS. Inversely, for nirK, Shannon and Inverse of Simpson 

were significantly higher in NT soil over CT soil. A previous study reported that diversity 

indices targeting nirS were more sensitive to environmental factors compared to nirK (e.g., 

ammonium content, total organic carbon and total N) (Li et al. 2017). It was also found that nirS- 

denitrifiers rely more on the full anaerobic conditions than nirK-denitrifiers (Yuan et al. 2012). 

The greater diversity of nirK in NT in the current study could indicate oxygen levels and other 

environmental conditions in NT soil may be more favorable for nirK-denitrifiers than nirS-

denitrifiers.  

Several trends were noted concerning the taxonomy of the microorganisms associated with the 

functional genes studied. For example, the most abundant sequences classified within the 

Proteobacteria (primarily Betaproteobacteria) for nirK and nirS. Further, NT illustrated equal or 

more abundant levels of Betaproteobacteria (phylum Proteobacteria) compared to CT soil for a 

number of the genes examined (nirK, nirS, norB and nosZ). In other systems, Betaproteobacteria 

often dominates microbial populations due to high growth rates under available carbon substrates 
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(Jenkins et al. 2010). For nifH, Frankia (phylum Actinobacteria) was enriched in NT reduced 

input and biologically based soils compared to the CT soil. Frankia is a typical nitrogen-fixed 

organism both in free-living and symbiotic conditions (Sellstedt and Richau 2013).  

Two phyla, Actinobacteria and Acidobacteria, were notably less enriched or absent in CT for 

several genes (napA, narG, nirA, nirB and nirK) compared to the other three soils. Relating these 

results to previous research, others have examined soil microbial communities under different 

management systems. For example, one-time tillage increased the abundance of Actinobacteria 

and Acidobacteria in an acidic Solonetz with a 19-year NT management in Australia (Liu et al. 

2016). In another study, the abundance of Acidobacteria was higher in CT over NT, with the pH 

of 7.4 and 7.5, respectively (Dong et al. 2017). Acidobacteria are acidophilic and could be 

favored by slightly to moderately acidic growth conditions (Sait et al. 2006). Moreover, 

Acidobacteria exhibit the functional ability of the degradation of plant-derived organic matter 

(Naumoff and Dedysh 2012) and thus play an important role in the decomposition of organic 

matter (Rampelotto et al. 2013).  

For nosZ, the most abundant sequences belonged to the Bacteroidetes (with the dominant class 

of Flavobacteria). Others have reported Bacteroidetes display copiotrophic characteristics and 

are favored by increased nutrient availability (McHugh and Schwartz 2015). We found 

Flavobacteria was absent in NT soil but dominated in CT soil for nosZ. Consistent with these 

results, microbial community studies have reported more Bacteroidetes in CT compared to NT 

soil (Yin et al. 2017). Bacteroidetes were also more dominant in one soil compared to the same 

soil under non-disturbed grass systems (Acosta-Martinez et al. 2008). However, others have 

reported that Bacteroidetes were more abundant under NT compared to CT in winter wheat 

cropping system (Dong et al. 2017) and non-disturbed grass system in comparison with 

agricultural rotation system (Zhang et al. 2014). Besides, NT increased the abundance of 

Flavobacteria compared to the tilled treatment under semi-arid conditions (Liu et al. 2020). 

Notably, the above studies did not examine the taxonomy of the microorganisms linked with 

nosZ and so it is difficult to conclude if our results are typical of NT compared to CT soils.  

Recommended future research to build on the current genomic analysis should include 

correlations between gene and transcript counts and nitrous oxide emissions. As with all 

molecular methods, the genomic analysis approach used in the current work has several notable 
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limitations. One shortcoming involves the analysis of genomic DNA rather than messenger 

RNA, which would indicate actual activity instead of potential activity. Future research 

involving transcriptomics to confirm the results of the current study would be beneficial. 

Additionally, the results obtained are dependent on the analysis thresholds for example, protein 

sequences for each of the nine genes were collected from the FunGene using a filter minimum 

HMM coverage of 70%. Increasing or decreasing this threshold would have impacted the 

downstream analysis. Also, changes in the read alignment identity (set at ≥ 60 %) and alignment 

length (≥ 49 amino acids) will also effect the results obtained. It is also important to note that the 

current analysis did not involve nitrification enzymes, which are also highly relevant for an 

understanding of nitrous oxide emissions. 

In conclusion, the agricultural management practices investigated here impacted gene abundance 

as well as the taxonomy of microorganisms associated with the nitrogen metabolism. From the 

nine genes examined, nirK was the most abundant and nifH was the least abundant. The 

nirS/nirK ratios were highest for the CT system, which may indicate a greater potential for N2O 

consumption. Three genes (nirK, nirS and norB) were statistically significantly lower in the NT 

compared to the CT treatment. The microbial community richness and diversity indices were 

generally higher for the genes associated with nitrate reduction (napA and narG) and 

dissimilatory nitrite reduction (nirA and nirB) compared to the other genes. For nirK, norB and 

nosZ a number of the richness and diversity indexes were significantly greater in NT soil 

compared to CT soil, indicating a potentially a higher denitrification potential. A number of 

trends were noted for the taxonomy of the functional genes across agricultural systems. The 

genus Frankia was significantly more abundant in the NT, reduced input and biological based 

soils compared to the CT soils. The CT soil was dominated by Betaproteobacteria for seven 

genes and by Cytophagia for nosZ. Also, for six of these genes, Betaproteobacteria were more 

abundant in the CT soil compared to the other three soils. Alphaproteobacteria were more 

abundant in the NT soil compared to the other soils for several genes. While for nirA and nirB, 

Alphaproteobacteria were more abundant in the biological based soil compared to the other three 

soils. For napA, narG, nirK and norB, Actinobacteria were more abundant in the NT soil 

compared to the other three soils. Overall, these results suggest microbial communities involved 

in nitrogen metabolism are sensitive to varying soil conditions, which in turn, likely has 

important implications for N2O emissions.  
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Table and Figure Legends 

Table 1. Summary of the KBS agricultural management approaches for the four soils examined. 

Figure 1. Box and whisker plot of relative abundance of genes (A) and Principle Component 
Analysis of the genes across the four management practices (with or without pharmaceuticals 
added) (B). 
 
Figure 2. Average relative abundance values (%, as determined by DIAMOND) for each soil 
(n=6) with standard deviations illustrated with the bars. Values that are statistically significantly 
different (ANOVA or Kruskal-Wallis test, p<0.05) are shown with different letters. Letters are 
missing for nosZ because the statistical assumptions were not met for either test (unequal 
variance). Note, all y-axis have different scales. 
 
Figure 3. Scatterplots comparing relative abundance values of all genes across all samples. 
Correlations that were statistically significant (Spearman’s rank test, p<0.05) are boxed in red. 
 
Figure 4. Average index diversity values and richness estimators for each soil (as determined by 
EstimateS, n=6) with standard deviations. Values that are statistically significantly different 
(ANOVA or Kruskal-Wallis test, p<0.05) are shown with different letters. In some cases, letters 
are missing because the statistical assumptions were not met for either test. Note, the scale on the 
y-axis differs between graphs. 
 
Figure 5. Extended error bars illustrating the differences between each treatment compared to 
the other three treatments for the genes associated with nitrogen metabolism (as defined by the 
KEGG hierarchy). The data (generated in MG-RAST, six metagenomes for each soil) were 
analyzed using STAMP with the two group analysis option (each soil compared to the other three 
soils) and Welch’s two sided t-test (p<0.05). 
 
Figure 6. Phylotypes enriched in each soil associated with the genes napA, narG, nirA and nirB 
at the level of class. All y-axis have the same scale. 

Figure 7. Phylotypes enriched in each soil associated with the genes nirK, nirS, norB and nosZ 
at the level of class. Note, the y-axis scales on each are different. There was minimal enrichment 
for any soil for nifH, therefore no graph was generated. 

https://doi.org/10.1016/j.still.2015.01.001


Page 24 of 24 
 

Figure 8. Neighbour-Joining phylogenetic trees of fifty most abundant sequences in each soil 
associated with the genes napA, narG, nifH, nirA, nirB, nirK, nirS, norB and nosZ. Note, the bar 
charts illustrate the relative abundance (%) of the sequences in each soil. The three most 
abundant sequences are highlighted in yellow. 
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The legends for the tables and figures are listed after the references in the manuscript 
document (as requested by the journal) 

 

Table 1.  

Conventional  This system is practiced by most farmers in this region. Tilled corn–soybean–
winter wheat (c–s–w) rotation; standard chemical inputs, chisel-plowed, no 
cover crops, no manure or compost 

No-till  No-till c–s–w rotation; standard chemical inputs, permanent no-till, no cover 
crops, no manure or compost 

Reduced 
Input  

Biologically based c–s–w rotation managed to reduce synthetic chemical 
inputs; chisel-plowed, winter cover crop of red clover or annual rye, no 
manure or compost 

Biologically 
Based  

Biologically based c–s–w rotation managed without synthetic chemical 
inputs; chisel-plowed, mechanical weed control, winter cover crop of red 
clover or annual rye, no manure or compost; USDA-certified organic 
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Table S1. FunGene and DIAMOND sequence data summary. 
 
 On FunGene Minimum HMM Coverage 70% Dereplicated 
napA 74937 40226 11395 
narG 50753 49174 11395 
nosZ 5304 3787 1266 
norB 13238 7054 1778 
nifH 19514 3474 1562 
nirK 7988 3367 556 
nirS 25330 3020 993 
nirA 54085 51514 12955 
nirB 90760 45767 12955 
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Table S2 MG-RAST sequence data summary. 
 

Soil type MG-RAST ID Post QC: bp Count Post QC: Sequences Count Post QC: Mean Sequence Length bp 
Conventional tillage mgm4887245.3 1,049,991,462 bp 4,562,115 230 ± 37 bp 

Conventional tillage mgm4889385.3 865,087,512 bp 3,773,767 229 ± 38 bp 

Conventional tillage mgm4887247.3 873,760,585 bp 3,805,693 230 ± 38 bp 

Conventional tillage mgm4887261.3 1,042,733,021 bp 4,497,130 232 ± 37 bp 

Conventional tillage mgm4887259.3 1,186,811,683 bp 5,171,096 230 ± 37 bp 

Conventional tillage mgm4887263.3 1,049,806,246 bp 4,606,628 228 ± 38 bp 

No tillage mgm4887248.3 978,574,572 bp 4,289,260 228 ± 38 bp 

No tillage mgm4887249.3 1,021,883,457 bp 4,491,203 228 ± 38 bp 

No tillage mgm4887251.3 893,615,124 bp 3,901,326 229 ± 38 bp 

No tillage mgm4887262.3 1,052,482,005 bp 4,556,161 231 ± 37 bp 

No tillage mgm4887265.3 1,171,824,030 bp 5,106,093 229 ± 37 bp 

No tillage mgm4887264.3 1,151,447,486 bp 5,131,392 224 ± 39 bp 

Reduced input mgm4887252.3 

1,020,227,225 bp 4,473,295 228 ± 38 bp 

Reduced input mgm4887253.3 1,156,421,815 bp 5,084,544 227 ± 38 bp 

Reduced input mgm4887254.3 845,604,740 bp 3,689,278 229 ± 38 bp 

Reduced input mgm4887267.3 904,740,521 bp 3,896,151 232 ± 37 bp 

Reduced input mgm4887266.3 1,216,560,266 bp 5,320,030 229 ± 38 bp 

Reduced input mgm4887268.3 923,078,351 bp 4,016,875 230 ± 37 bp 

Biological based mgm4887255.3 1,070,768,940 bp 4,666,479 229 ± 38 bp 

Biological based mgm4887256.3 1,048,398,089 bp 4,589,220 228 ± 38 bp 

Biological based mgm4887258.3 

1,095,942,092 bp 4,834,482 227 ± 38 bp 

Biological based mgm4887270.3 1,410,382,064 bp 6,169,872 229 ± 38 bp 

Biological based mgm4887289.3 1,149,249,456 bp 5,008,186 229 ± 37 bp 

Biological based mgm4887290.3 1,303,754,397 bp 5,670,793 230 ± 37 bp 

 
 
 

https://www.mg-rast.org/mgmain.html?mgpage=overview&metagenome=mgm4887252.3
https://www.mg-rast.org/mgmain.html?mgpage=overview&metagenome=mgm4887258.3
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Table S3. P-values for statistical tests with the relative abundance of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Shapiro-Wilk test Levene's 
test 

One-way 
ANOVA 

Kruskal-Wallis 
test 

Null Hypothesis The sample distribution is normal σ1=σ2 μ1= μ2 Median1=Median2 

Soil groups Conventional 
tillage  

No 
tillage  

Reduced 
input  

Biological 
based     

napA 1.57E-01 7.77E-01 2.50E-04 7.69E-01 5.35E-01 N/A 6.02E-02 
narG 1.59E-01 7.66E-01 6.31E-01 1.71E-01 9.14E-02 2.74E-01 N/A 
nifH 6.03E-01 7.31E-01 2.20E-01 2.44E-01 8.27E-01 1.26E-02 N/A 
nirA 7.19E-02 2.20E-01 3.40E-04 5.73E-01 5.45E-01 N/A 4.81E-01 
nirB 8.65E-01 2.11E-02 1.34E-02 5.69E-01 3.49E-01 N/A 4.09E-01 
nirK 7.12E-01 3.27E-01 6.55E-01 5.24E-01 1.33E-01 1.61E-05 N/A 
nirS 9.31E-01 1.16E-01 3.44E-01 4.63E-02 4.37E-01 2.22E-05 N/A 
norB 5.97E-01 3.68E-01 8.43E-01 5.68E-01 3.81E-01 1.85E-02 N/A 
nosZ N/A N/A N/A N/A 5.81E-03 N/A N/A 

 
 
 
Table S4. P-values for Tukey HSD test with the relative abundance of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Tukey's HSD test 
Null Hypothesis μ1= μ2 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A 4.14E-01 N/A N/A 1.14E-05 2.07E-05 1.16E-02 N/A 

Conventional tillage - Reduced input N/A N/A 9.03E-01 N/A N/A 3.84E-01 2.33E-04 4.65E-01 N/A 
Conventional tillage - Biological based N/A N/A 1.89E-01 N/A N/A 1.79E-01 9.27E-03 1.65E-01 N/A 

No tillage - Reduced input N/A N/A 1.42E-01 N/A N/A 4.10E-04 6.94E-01 2.22E-01 N/A 
No tillage- Biological based N/A N/A 7.59E-03 N/A N/A 1.26E-03 5.82E-02 5.68E-01 N/A 

Reduced input - Biological based N/A N/A 5.06E-01 N/A N/A 9.60E-01 3.88E-01 9.00E-01 N/A 
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Table S5. P-values for Dunn’s test with the relative abundance of genes associated with nitrogen metabolism copies. “N/A” indicates 
the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Dunn's test 
Null Hypothesis μ1= μ2  

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Conventional tillage - Reduced input N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Conventional tillage - Biological based N/A N/A N/A N/A N/A N/A N/A N/A N/A 

No tillage - Reduced input N/A N/A N/A N/A N/A N/A N/A N/A N/A 
No tillage - Biological based N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Reduced input - Biological based N/A N/A N/A N/A N/A N/A N/A N/A N/A 
 
 
Table S6. Summary of the p values from Spearman’s rank correlation tests with gene relative abundance data. Values in bold indicate 
a significant difference (p ≤ 0.05). 
 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
napA   1.66E-07 4.74E-01  < 2.2e-16 1.43E-08 2.30E-06 8.67E-02 1.28E-08 4.26E-06 
narG 1.66E-07   4.11E-02 2.74E-04 8.32E-03 3.30E-03 4.70E-01 3.12E-02 3.63E-01 
nifH 4.74E-01 4.11E-02   9.83E-01 7.64E-02 7.37E-03 2.02E-01 8.42E-01 2.86E-01 
nirA  < 2.2e-16 2.74E-04 9.83E-01   4.60E-02 5.80E-01 6.15E-01 1.08E-01 5.87E-01 
nirB 1.43E-08 8.32E-03 7.64E-02 4.60E-02   8.05E-01 6.89E-01 5.47E-01 9.87E-01 
nirK 2.30E-06 3.30E-03 7.37E-03 5.80E-01 8.05E-01   4.84E-03 1.98E-02 1.26E-02 
nirS 8.67E-02 4.70E-01 2.02E-01 6.15E-01 6.89E-01 4.84E-03   2.12E-04 1.76E-03 
norB 1.28E-08 3.12E-02 8.42E-01 1.08E-01 5.47E-01 1.98E-02 2.12E-04   7.65E-05 
nosZ 4.26E-06 3.63E-01 2.86E-01 5.87E-01 9.87E-01 1.26E-02 1.76E-03 7.65E-05   
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Table S7. Summary of Spearman’s correlation coefficient (rho) for Spearman’s rank correlation test with gene relative abundance 
data. Rho values in bold indicate a statistically significant correlation (p ≤ 0.05), as shown above. 
 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
napA   8.48E-01 1.54E-01 9.81E-01 8.80E-01 8.03E-01 3.57E-01 8.81E-01 7.91E-01 
narG 8.48E-01   4.20E-01 6.78E-01 5.26E-01 5.75E-01 1.55E-01 4.41E-01 1.94E-01 
nifH 1.54E-01 4.20E-01   -4.57E-03 3.69E-01 5.33E-01 2.70E-01 4.29E-02 2.27E-01 
nirA 9.81E-01 6.78E-01 -4.57E-03   4.11E-01 1.19E-01 -1.08E-01 3.37E-01 1.17E-01 
nirB 8.80E-01 5.26E-01 3.69E-01 4.11E-01   5.31E-02 -8.62E-02 1.29E-01 3.48E-03 
nirK 8.03E-01 5.75E-01 5.33E-01 1.19E-01 5.31E-02   5.55E-01 4.72E-01 5.01E-01 
nirS 3.57E-01 1.55E-01 2.70E-01 -1.08E-01 -8.62E-02 5.55E-01   6.87E-01 6.04E-01 
norB 8.81E-01 4.41E-01 4.29E-02 3.37E-01 1.29E-01 4.72E-01 6.87E-01   7.19E-01 
nosZ 7.91E-01 1.94E-01 2.27E-01 1.17E-01 3.48E-03 5.01E-01 6.04E-01 7.19E-01   

 

 
Table S8. P-values for statistical tests with the richness index Chao 1 of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Shapiro-Wilk test Levene's 
test 

One-way 
ANOVA 

Kruskal-Wallis 
test 

Null Hypothesis The sample distribution is normal σ1=σ2 μ1= μ2 Median1=Median2 

Soil groups Conventional 
tillage  

No 
tillage  

Reduced 
input  

Biological 
based     

napA 4.89E-01 6.42E-01 2.90E-01 2.63E-01 9.37E-01 3.56E-01 N/A 
narG 4.66E-01 5.43E-01 2.78E-01 2.82E-01 9.42E-01 9.37E-01 N/A 
nifH 9.76E-01 3.87E-03 6.53E-01 9.76E-01 7.80E-01 N/A 1.80E-02 
nirA 5.72E-01 4.34E-01 4.55E-01 5.53E-01 9.60E-01 2.65E-01 N/A 
nirB 4.85E-01 4.86E-01 3.71E-01 5.47E-01 9.99E-01 7.99E-01 N/A 
nirK 2.50E-01 3.67E-02 7.66E-02 1.05E-03 9.88E-01 N/A 1.68E-02 
nirS 8.12E-01 1.16E-01 3.55E-01 8.13E-01 6.72E-01 8.52E-04 N/A 
norB 9.10E-01 2.92E-03 9.44E-01 5.08E-01 2.25E-01 N/A 2.35E-01 
nosZ 7.47E-01 4.99E-01 8.99E-01 4.85E-01 5.12E-01 5.86E-01 N/A 
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Table S9. P-values for Tukey’s HSD test with the richness index Chao 1 of counts of genes associated with nitrogen metabolism 
copies. “N/A” indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Tukey's HSD test 
Null Hypothesis μ1= μ2 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A N/A N/A N/A N/A 7.37E-04 N/A N/A 

Conventional tillage - Reduced input N/A N/A N/A N/A N/A N/A 8.59E-03 N/A N/A 
Conventional tillage - Biological based N/A N/A N/A N/A N/A N/A 2.11E-01 N/A N/A 

No tillage - Reduced input N/A N/A N/A N/A N/A N/A 7.05E-01 N/A N/A 
No tillage- Biological based N/A N/A N/A N/A N/A N/A 6.50E-02 N/A N/A 

Reduced input - Biological based N/A N/A N/A N/A N/A N/A 4.07E-01 N/A N/A 
 
 
 
Table S10. P-values for Dunn’s test with the richness index Chao 1 of counts of genes associated with nitrogen metabolism copies. 
“N/A” indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Dunn's test 
Null Hypothesis μ1= μ2  

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A 1.00E+00 N/A N/A 1.00E+00 N/A N/A N/A 

Conventional tillage - Reduced input N/A N/A 1.33E-01 N/A N/A 2.91E-02 N/A N/A N/A 
Conventional tillage - Biological based N/A N/A 1.00E+00 N/A N/A 2.03E-01 N/A N/A N/A 

No tillage - Reduced input N/A N/A 5.39E-02 N/A N/A 1.65E-01 N/A N/A N/A 
No tillage - Biological based N/A N/A 1.00E+00 N/A N/A 7.85E-01 N/A N/A N/A 

Reduced input - Biological based N/A N/A 3.30E-02 N/A N/A 1.00E+00 N/A N/A N/A 
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Table S11. P-values for statistical tests with the richness index Chao 2 of counts of genes associated with nitrogen metabolism copies. 
“N/A” indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Shapiro-Wilk test Levene's 
test 

One-way 
ANOVA 

Kruskal-Wallis 
test 

Null Hypothesis The sample distribution is normal σ1=σ2 μ1= μ2 Median1=Median2 

Soil groups Conventio
nal tillage  No tillage  Reduced 

input  
Biological 

based     

napA 3.27E-01 4.60E-01 4.26E-01 2.38E-01 9.19E-01 4.17E-01 N/A 
narG 2.88E-01 4.18E-01 2.19E-01 2.26E-01 9.91E-01 9.51E-01 N/A 
nifH 7.54E-01 2.38E-01 1.62E-01 2.98E-01 5.93E-01 3.00E-01 N/A 
nirA 3.24E-01 2.55E-01 4.23E-01 3.80E-01 9.32E-01 4.55E-01 N/A 
nirB 2.55E-01 2.75E-01 2.57E-01 3.74E-01 9.98E-01 9.55E-01 N/A 
nirK 5.32E-02 7.63E-03 8.64E-03 6.93E-03 9.95E-01 N/A 2.18E-01 
nirS 3.70E-01 2.47E-01 2.80E-01 4.17E-01 9.87E-01 2.57E-01 N/A 
norB 3.29E-01 6.27E-02 7.21E-01 1.90E-01 8.45E-01 4.62E-01 N/A 
nosZ 2.30E-01 6.70E-01 7.22E-01 5.40E-01 6.34E-01 6.51E-01 N/A 

 
Table S12. P-values for statistical tests with the Inverse Simpson values of the counts of genes associated with nitrogen metabolism 
copies. “N/A” indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Shapiro-Wilk test Levene's 
test 

One-way 
ANOVA 

Kruskal-Wallis 
test 

Null Hypothesis The sample distribution is normal σ1=σ2 μ1= μ2 Median1=Median2 

Soil groups Conventio
nal tillage  No tillage  Reduced 

input  
Biological 

based     

napA 4.73E-01 6.37E-03 5.07E-03 6.37E-03 3.63E-01 N/A 6.96E-05 
narG N/A N/A N/A N/A 4.44E-05 N/A N/A 
nifH 1.27E-01 2.66E-01 2.08E-01 1.60E-01 2.00E-01 6.52E-01 N/A 
nirA 9.00E-02 1.25E-01 1.70E-01 2.87E-02 6.90E-01 N/A 8.84E-04 
nirB 1.49E-01 2.33E-01 9.44E-02 2.87E-02 6.16E-01 N/A 5.77E-04 
nirK 6.00E-02 9.95E-02 1.81E-01 2.05E-01 4.85E-01 <2e-16 N/A 
nirS 2.26E-01 7.08E-02 1.79E-01 1.15E-01 6.44E-01 1.57E-05 N/A 
norB 2.15E-01 7.04E-02 1.06E-01 8.94E-02 3.11E-01 8.76E-15 N/A 
nosZ N/A N/A N/A N/A 1.33E-04 N/A N/A 
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Table S13. P-values for Tukey’s HSD test with the Inverse Simpson values of genes associated with nitrogen metabolism copies. 
“N/A” indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Tukey's HSD test 
Null Hypothesis μ1= μ2 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A N/A N/A N/A 0.00E+00 2.73E-03 0.00E+00 N/A 

Conventional tillage - Reduced input N/A N/A N/A N/A N/A 0.00E+00 5.67E-02 5.00E-07 N/A 
Conventional tillage - Biological based N/A N/A N/A N/A N/A 0.00E+00 9.98E-01 2.62E-02 N/A 

No tillage - Reduced input N/A N/A N/A N/A N/A 0.00E+00 6.40E-06 0.00E+00 N/A 
No tillage- Biological based N/A N/A N/A N/A N/A 0.00E+00 4.18E-03 0.00E+00 N/A 

Reduced input - Biological based N/A N/A N/A N/A N/A 3.45E-01 3.86E-02 3.18E-04 N/A 
 
 
 
Table S14. P-values for Dunn’s test with the Inverse Simpson values of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Dunn's test 
Null Hypothesis μ1= μ2  

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage 8.35E-01 N/A N/A 1.00E+00 1.00E+00 N/A N/A N/A N/A 

Conventional tillage - Reduced input 1.86E-02 N/A N/A 1.00E+00 4.31E-01 N/A N/A N/A N/A 
Conventional tillage - Biological based 5.49E-05 N/A N/A 1.81E-01 1.12E-01 N/A N/A N/A N/A 

No tillage - Reduced input 8.35E-01 N/A N/A 2.87E-02 9.14E-03 N/A N/A N/A N/A 
No tillage - Biological based 1.86E-02 N/A N/A 6.14E-04 1.18E-03 N/A N/A N/A N/A 

Reduced input - Biological based 8.35E-01 N/A N/A 5.15E-01 1.00E+00 N/A N/A N/A N/A 
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Table S15. P-values for statistical tests with the Shannon diversity of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Shapiro-Wilk test Levene's 
test 

One-way 
ANOVA 

Kruskal-Wallis 
test 

Null Hypothesis The sample distribution is normal σ1=σ2 μ1= μ2 Median1=Median2 

Soil groups Conventio
nal tillage  No tillage  Reduced 

input  
Biological 

based     

napA 3.28E-02 3.17E-02 2.50E-01 3.28E-02 2.09E-01 N/A 2.03E-04 
narG 2.47E-02 1.55E-02 9.26E-01 6.07E-01 1.38E-01 N/A 1.90E-04 
nifH 2.08E-01 2.63E-01 3.25E-01 3.08E-01 6.31E-01 8.35E-01 N/A 
nirA 9.44E-02 6.95E-02 2.21E-01 1.31E-01 9.65E-01 3.55E-03 N/A 
nirB 5.13E-02 5.13E-02 6.92E-02 2.07E-01 9.59E-01 5.85E-02 N/A 
nirK 7.78E-02 5.51E-02 3.29E-02 9.11E-02 9.24E-01 N/A 1.77E-04 
nirS 1.88E-01 1.35E-01 1.73E-01 1.52E-01 8.03E-01 2.76E-03 N/A 
norB 1.61E-01 1.55E-02 7.96E-02 1.01E-02 9.52E-01 N/A 1.44E-03 
nosZ 7.63E-01 5.08E-02 1.61E-01 7.03E-02 8.11E-01  <2E-16 N/A 

 
Table S16.  P-values for Tukey’s HSD test with the Shannon diversity of genes associated with nitrogen metabolism copies. “N/A” 
indicates the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Tukey's HSD test 
Null Hypothesis μ1= μ2 

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage N/A N/A N/A N/A N/A 0.00E+00 2.73E-03 0.00E+00 N/A 

Conventional tillage - Reduced input N/A N/A N/A N/A N/A 0.00E+00 5.67E-02 5.00E-07 N/A 
Conventional tillage - Biological based N/A N/A N/A N/A N/A 0.00E+00 9.98E-01 2.62E-02 N/A 

No tillage - Reduced input N/A N/A N/A N/A N/A 0.00E+00 6.40E-06 0.00E+00 N/A 
No tillage- Biological based N/A N/A N/A N/A N/A 0.00E+00 4.18E-03 0.00E+00 N/A 

Reduced input - Biological based N/A N/A N/A N/A N/A 3.45E-01 3.86E-02 3.18E-04 N/A 
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Table S17. P-values for Dunn’s test with the Shannon diversity of genes associated with nitrogen metabolism copies. “N/A” indicates 
the test was not appropriate and p-values in bold indicate a significant difference (p ≤ 0.05). 
 

Test Dunn's test 
Null Hypothesis μ1= μ2  

Genes napA narG nifH nirA nirB nirK nirS norB nosZ 
Conventional tillage - No tillage 1.00E+00 1.00E+00 N/A N/A N/A 4.88E-05 N/A 0.00E+00 N/A 

Conventional tillage - Reduced input 1.37E-02 1.75E-01 N/A N/A N/A 1.63E-01 N/A 5.00E-07 N/A 
Conventional tillage - Biological based 1.77E-04 1.42E-01 N/A N/A N/A 1.46E-01 N/A 2.62E-02 N/A 

No tillage - Reduced input 9.11E-01 1.42E-01 N/A N/A N/A 1.46E-01 N/A 0.00E+00 N/A 
No tillage - Biological based 6.29E-02 1.75E-01 N/A N/A N/A 1.63E-01 N/A 0.00E+00 N/A 

Reduced input - Biological based 6.35E-01 5.27E-05 N/A N/A N/A 1.00E+00 N/A 3.18E-04 N/A 
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Figure S1. Genera with nifH genes significantly different between conventional tillage soil (in blue) and the 
other soils from the assembled contigs. Those enriched in no tillage soil compared to conventional tillage 
soil are shown in yellow (A), those enriched in reduced input soil compared to conventional tillage soil are 
shown in green (B) and those enriched in biologically based soil compared to conventional tillage soil are 
shown in purple (C). The data (generated in Megan, six metagenomes for each soil) were analyzed using 
STAMP with the two group analysis option (each soil compared to conventional tillage soil) and Welch’s 
two sided t-test (p<0.05).  
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Figure S2. Genera significantly different between conventional tillage (in blue) and the other three soils 
from the assembled contigs. Those enriched in soil 1 compared to no tillage soil are shown in blue (no 
genera were enriched in no tillage soil compared to conventional tillage soil) (A), those enriched in 
reduced input soil compared to conventional tillage soil are shown in green (B) and those enriched in 
biologically based soil compared to conventional tillage soil are shown in purple (C). The data (generated 
in Megan, six metagenomes for each soil) were analyzed using STAMP with the two group analysis option 
(each soil compared to conventional tillage soil) and Welch’s two sided t-test (p<0.05). 


