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SPNL, Plant, Soil and Nutrient Laboratory; SR, surface resistance; SSR, subsurface resistance.

ABSTRACT

Soil health testing provides an integrated assessment of biological, physical, and chemical
attributes to inform the sustainable management of farm fields. However, it is unclear how
tests reflect farmers’ own assessments of soil quality and agronomic performance, which
may disproportionately influence farm management practices. We asked farmers in three
regions of Michigan to identify three fields to compare their own assessments against soil
health tests: a ‘best’, a ‘worst’, and a ‘non-row crop’ (NRC) reference field. Each field was
tested for soil aggregate stability (AS), available water capacity (AWC), soil organic matter
(SOM), mineralizable carbon (MinC), permanganate oxidizable carbon (POXC), pH, P, and K.
We evaluated soil health scores using paired t-tests to compare results from contrasting
fields with farmers’ assessments of each field. Across all farms, the overall soil health test
score for cropped fields was significantly higher on fields farmers rated as ‘best’. This result
was driven solely by physical and biological (including C) parameters; inorganic chemical
tests did not distinguish among field types. On reference fields in all regions, biological
parameters were consistently higher, but not inorganic chemical or physical measures. The
performance of soil C measures was inconsistent: SOM and MinC consistently detected
significant differences between ’'best’ and ‘worst’ cropped fields, but POXC did not. Our
results suggest that common soil health assays for physical and biological attributes
generally align well with farmer assessments of their fields. That soil health tests match
farmer experience reinforces the value of these tests as a meaningful guide for soil
management decisions.

INTRODUCTION

The environmental and social costs of intensive agricultural production in the United States
have led to calls for more ecologically-based approaches to management (Drinkwater and
Snapp, 2007; Robertson et al., 2014; Schipanski et al., 2016). Ecological management
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practices are designed to maintain crop productivity while also delivering a range of
ecosystem services both on-farm and to society at large (Power, 2010; Robertson et al.,
2014). Soil health is broadly defined as the continued capacity of soil to function as a vital
living system that sustains plants, animals, and humans (Doran and Parkin, 1994); thus, soil
health has emerged as a framework for linking soil management practices to agronomic
performance and ecosystem function (Karlen et al., 2008; Culman et al., 2013; Lal, 2016;
Wade et al., 2020). In practice, the soil health paradigm has shaped a new soil testing
regime, one that is more closely linked to principles of ecological management and that
could potentially lead to outcomes such as improved crop growth, soil carbon (C)
sequestration, and reduced nutrient leaching (Karlen et al., 2006; Cherry et al., 2008;
Minasny et al., 2017).

Farmers often have detailed knowledge of their long-term managed fields (Gruver and
Weil, 2007) and this knowledge logically informs management decisions related to
nutrients, tillage, and residue. Soil testing is rightly seen as a tool used in conjunction with
farmers’ own knowledge to guide field management (Andrews et al., 2003). As with other
soil tests, farmers require actionable management decisions to be based on acceptance of
soil health test results. If specific test parameters accord with farmer experience for a given
field, this may advance farmer acceptance of testing results and ultimately translate into
ecological management practices. In turn, understanding how soil health test results align
with farmer assessments of a field’s agronomic performance can inform recommendations
that follow from testing results.

Traditional soil testing for row crops is primarily focused on soil inorganic chemistry and in
particular pools of plant nutrients — N, P, K and micronutrients — and soil pH. Soil health
tests include these parameters but also include them with key measures of biological and
physical properties that together drive ecosystem functions such as soil C accumulation and
aggregation. Integrated measures may better correspond to characteristics that farmers use
to describe their own fields. For example, farmers often describe physical features such as
how fields respond to precipitation, cultivation, or seed set. The advancement of integrated
soil health indicators such as available water capacity (AWC) and aggregate stability (AS) and
surface hardness is an acknowledgment of this disconnect in soil testing approaches
(Moebius-Clune et al., 2016; Fine et al., 2017).

Even total soil organic matter (SOM), which is often measured in standard soil tests, may
not align with farmer field assessments. Soil organic matter, comprised mostly of older,
stable fractions of C may impart soil qualities such as greater cation exchange capacity (CEC)
and water holding capacity. Yet while farmers may recognize and value the importance of
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maintaining SOM, standard SOM measures do not typically inform yearly management
decisions and may not explain variation in field performance (Sprunger, 2015; O’Neill, 2017).
Indeed, measures of dynamic C fractions often correspond better to fertility status than do
measures of total SOM (Wander, 2004; Culman et al., 2013) and can be more sensitive to
management, and thus potentially provide farmers with a more integrated assessment of
soil functioning. For example, physical metrics, like AS, are intricately linked to biological
indicators because stable aggregates emerge from microbial activity and root production
(Chantigny et al., 1997; Tiemann and Grandy, 2015). While research has shown that
integrated metrics of soil function distinguish between management practices (Idowu et al.,
2009; Morrow et al., 2016), we lack understanding as to how these measures accord with
farmers’ knowledge of their fields.

To date, much of the validation of soil health indicators has occurred on controlled
experimental field trials (e.g., Culman et al., 2013; Hurisso et al., 2016; Morrow et al., 2016;
Roper et al., 2017; Sprunger et al., 2019) and less so on farmer fields (e.g., Williams et al.,
2020), which limits our understanding of how soil health indicators can guide farmers as
they make critical management decisions (Karlen et al., 2017). Many row-crop growers in
the United States farm over 180 hectares, often on multiple fields that are miles apart.
Generally, this means that each field presents unique challenges based on field-by-field
variation in soil quality and management history.

In contrast to experimental field trials, farmers’ field management is often dynamic with
multiple management practices implemented season to season over several decades, based
on a range of practical considerations that are tailored to specific fields. Yet to our
knowledge, dynamic measures of soil C, such as mineralizable C (minC) and permanganate
oxidizable carbon (POXC), have not been assessed in relation to how farmers rate field
performance. Farmers are usually knowledgeable of their fields and commonly label them
as ‘good’ or ‘poor,” indicative of factors such as agronomic performance and soil quality
(Gruver and Weil, 2007). The alignment of farmers’ knowledge of soil characteristics and
function to the interpretation of soil health tests results is important for the implementation
and adoption of soil health management practices.

Here we address this knowledge gap by asking how well —if at all — soil health indicators
reflect farmer knowledge and assessments of their fields. Additionally, testing soil health on
working farms provides an opportunity to assess the sensitivity of soil health tests indicators
to detect variability across fields and on a range of soil types, which can ultimately guide
new research questions and inform outreach and farmer recommendations.
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We combined biophysical data with qualitative data from farmer interviews to assess how
chemical, physical, and biological metrics of soil health align with farmer knowledge of their
fields. Our specific research objectives were: (1) to quantify variability in on-farm soil health
scores across three agricultural regions in Michigan; and (2) to evaluate the degree to which
soil health parameters align with farmers’ assessments of field performance. We
hypothesize that physical and biological soil health indicators will better align with farmer
field assessments than will chemical assessments, due to a better ability to differentiate
among fields that lack measurable nutrient deficiencies.

MATERIALS AND METHODS
Participant Selection

Our study is grounded in a participatory research framework that included Ml farmers,
Michigan State University (MSU) Extension staff, and MSU researchers. We asked staff from
MSU extension and conservation districts in each region to recommend farmers who might
be willing to be interviewed in exchange for free soil testing. Eligibility was limited to
farmers with conventionally managed row-crops in order to best represent regional
agricultural land use. Median farm size was 172 ha, and none of the participants had
previously undertaken soil health testing on their fields. The participating farms were
operations that primarily grow grains and some cover crops.

Once selected, we asked each participating farmer to identify three fields, including a Best
field, a Worst field, and a reference field that was currently not in row crops (NRC), such as a
pasture, land under conservation, or a buffer strip field margin. The NRC field served as a
within-farm, low management intensity reference field as compared to cropped fields.
Fields under perennial vegetation typically score higher on soil health metrics (De et al.,
2020), and thus can be useful for comparing metrics across cropped fields, and as well for
comparing differences across regions.

In total we evaluated 40 fields from three field types, Best, Worst and NRC. These represent
thirteen farms representing north, central, and southwestern regions of Michigan, which
have distinct climates and soil types (Fig. 1, Table 1). This yielded a broad range of fields on
which to test and compare soil health parameters while allowing for a participatory
approach to engage directly with farmers. After asking farmers to identify these fields and
sampling each, we met with individual farmers to discuss what properties defined their
characterization of each field and gather management histories. Research activities were
compliant with the MSU Human Research Protection Program and was classified as exempt
(IRB #i046108).
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Field Sampling

The cropped fields sampled ranged in area from 2 to 28 ha with a median field size of 12 ha.
We measured management-sensitive parameters of soil health to examine how well soil
health tests and specific metrics characterized the soils on farm fields, as compared to
standard soil fertility tests offered by the MSU Plant, Soil and Nutrient Laboratory. This
objective informed our sampling approach. Soil samples were removed according to the
Cornell Soil Health Assessment guidelines (Moebius-Clune et al., 2016), which includes
assessment of field variability or anomalies, soil conditions, and crop management. In each
field, five representative locations were selected; at each location, bulk soil samples (~4 x 9
cm to 15 cm depth) were excavated from the sides of each of two shovel-dug pits. At each
location two penetrometer readings (Imants, Reusel, Netherlands) at 15 and 45-cm depths
were taken to assess surface and subsurface compaction, respectively. For a given field,
each of the ten bulk soil samples was composited, thoroughly mixed, subsampled (~ 2 kg),
placed in a plastic bag, and stored on ice until further processing. We noted each field
location, and sampling locations were identified by use of NRCS Web Soil Survey,
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. All samples were collected on

the same day for each region, between May 26 and June 12, 2014, and maintained at 4° C
until processed.

Soil Testing

Samples were sieved to < 8 mm to remove stones, and a sub-sample of sieved soil was
submitted to the MSU Plant, Soil and Nutrient Laboratory for analysis. Soil pH was
determined in a 1:1 soil and water solution, total SOM by loss on ignition, and P with Bray 1
extractant. Soil K" was extracted with 1N ammonium acetate and all cation concentrations
were determined via flame emission spectroscopy. Cation exchange capacity was calculated
through summation of cations plus the contribution of pH (buffer index + meq of K*). We
group these parameters into chemical measures. We analyzed remaining soil for soil
texture, AS, AWC (physical parameters) and POXC, MinC, and potentially mineralizable
nitrogen (PMN) (biological parameters).

Soil texture was determined using a rapid method (Kettler et al., 2001) on soil dried overnight at 60°
C. A 14-g portion of soil was weighed into a 50-mL Falcon tube containing 42 mL of 3%
hexametaphosphate solution; tubes were placed on their side on a shaker at 120 rpm for 2 h.
Contents of each tube were poured through a 0.053-mm sieve and thoroughly washed with 600 mL

deionized water into a catch basin. The sand fraction on the sieve was washed into a previously
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tared drying tin. Particles in the catch basin were thoroughly re-suspended and allowed to settle for
4 to 6 h, after which the clay particles in suspension were decanted. The settled silt particles were
washed into another tared drying tin. All tins were dried overnight at 105° C and contents were
weighed. Texture was calculated as: sand % = (oven dry sand mass / original sample mass) x 100%;

silt % = (oven dry silt mass / original sample mass) x 100%; and clay % = 100 - (sand % + silt %).

Wet AS was determined from soil dried to constant weight at 40° C for 1-2 days in the oven
followed by isolation of aggregate size fractions from 0.25 mm to 2 mm (Moebius et al.,
2007). Ten g of soil aggregates were spread evenly on a 0.25-mm mesh, 125-mm diameter
sieve. The sieve was placed on a funnel containing previously weighed filter paper, all atop a
ring stand. Sieves were exposed to a rain simulator (rate previously calibrated) for 5 min,
after which material retained on the sieve was thoroughly washed through the sieve.
Remaining particles (e.g. small stones) were washed off the sieve surface into a drying tin.
The tin and filter paper with slaked soil were oven-dried for 1 d at 105° C, and AS was
calculated as the percentage of soil retained on the sieve (difference from what was not
slaked onto the filter) and adjusting for the mass of un-sieved particles.

To determine AWC, another portion of soil dried to 60° C was sieved to < 2 mm. Two 15-g portions
were spread evenly inside brass rings situated on ceramic plates with known porosity under water
saturation. Plates were placed into high pressure chambers: 10 kPa (field capacity) and 1500 kPa
(permanent wilting point). After equilibration, soils were weighed, dried at 105° C and then re-
weighed. Available water capacity was calculated as soil water loss between samples at 10 and 1500
kPa and reported as g water per g soil.

To determine labile C as POXC, duplicate 2.5-g samples of air-dried soil were mixed with
buffered 0.02 M KMnQy, solution in 50-mL conical tubes, shaken at 120 rpm for 2 min and
allowed to settle for 8 min (Weil et al., 2003). From this reaction, 0.5 mL of supernatant was
diluted with 49.5 mL of deionized water. The degree of oxidation was measured

colorimetrically at 550 nm on a Fisher Scientific Thermo Multiskan microplate reader
(Waltham, MA) and standardized to a series of known KMnQ, standards.
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To determine MinC, 10 g of air-dried soil for each field sample was placed in loosely capped
Mason jars and brought to 50% water-filled pore-space (Robertson et al., 1999;
Franzluebbers et al., 2000). The jars were then incubated for 24 h at 25° C after which they
were capped tightly. A CO, reading was taken immediately by injecting 0.5 mL of headspace
gas into a LI-CO7R LI-820 infrared gas absorption analyzer (LI-COR Biosciences, Lincoln, NE).
Three subsequent readings were taken over the following 90 min and a flux was calculated
by regressing the change in CO, against the incubation period. Two analytical replicates
were used for each field sample. Final fluxes were calculated by averaging analytical
replicates.

PMN was determined from field-moist soil sieved to < 2 mm (Drinkwater et al., 1996). For
each of the 5 field samples, NH;" was extracted from duplicate, 8 g soil aliquots using 1M
KCl while shaking (rotary shaker) at 120 rpm for 1 h. Two additional 8 g replicates of soil
were placed in conical tubes; 10 mL of deionized water was added; and dinitrogen gas was
used to replace tube headspace air and bubbled into the slurry for 1 min prior to sealing
with butyl rubber stoppers. Sealed tubes were incubated at 25 °C. After 7 days, the stoppers
were removed; buffer was added to bring the slurry to 1M KCI; and samples were shaken,
filtered, and stored on ice. Concentrations of NH," were determined colorimetrically at 630
nm (Sinsabaugh et al., 2000). Potentially mineralizable C was determined from the
concentration of NH,* from incubated soil minus NH," from an initial soil extraction of the
same soil.

Farmer Interviews

After compiling all soil testing data, we conducted interviews with participant growers. In
the first phase of the interview, we discussed the management history of each field type,
including crop rotation, tillage, farmer-specific management decisions, and criteria used to
categorize fields (i.e. Best and Worst). In the second phase, we discussed specific test results
for all fields and held open discussions aimed at integrating soil test results with farmer
knowledge and practical experience for each field type. All of the interviews were recorded,
and notes were transcribed within 24 h of each interview. Recordings were transcribed,
analyzed for common themes, and coded based on specific soil test parameters; different
approaches to soil management for each field type; and on the influence of soil testing on
management practices (Saldafia, 2015).

Scoring and Statistical Analysis

We used the mean and standard deviation for each parameter measured to calculate
normal distributions in R (R Core Team, 2020). These were calculated from the Best, Worst,
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and NRC fields, plus an additional field for which farmers desired soil health results, for a
total of 52 fields across 13 farms. For parameters that indicate greater health with a higher
value (AS, AWC, SOM, POXC, MinC, PMN, CEC) we used a cumulative normal distribution
(CND):

p= f(x/w)—m/_ Md

where p is the probability (between 0 and 1) that the indicator value x falls within the
distribution with mean u and standard deviation o. The probability was multiplied by 100 to
scale indicator scores from 0 to 100 for each soil health metric (Fine et al., 2017). For
indicators where greater values reflect decreased soil health (surface and subsurface
hardness), we calculated 1-CND for the score. For parameters with optimum values, we
followed guidelines from MSU’s Soil and Plant Nutrient Laboratory,
https://www.canr.msu.edu/spnl/. Specifically, soil pH values between 6.0 and 6.8 were

rated as optimum and received a score of 100, while values < 5.5 or > 7.75 received a score
of 0 with linear interpolation of intermediate values between optimums and extremes. For
soil P, values between 20 to 30 mg kg™ received scores of 100, with scores falling at
concentrations above or below this optimum range determined by linear interpolation to
MSU recommendations. For soil K, a CND was calculated for increasing soil health scores
with higher ppm K*, with > 100 mg kg'1 K" set to a score of 100. Virtually all concentrations
of soil Ca* and Mg+2 met optimum values based on state recommendations; thus these
cations were omitted from soil health scoring and analysis. We used ANOVA in R to
compare differences in percent sand in soils from different regions and test parameter score
differences across field types within each region. Where an effect was significant, Tukey’s
HSD was used to compare treatments. Paired t-tests in R were used to compare results
between field types (i.e. between Best and Worst, and between each cropped field and the
NRC field) across all farms for both raw indicator values and for soil health scores
determined from Eq. [1].

RESULTS
Soil texture and farmer field descriptions

The regions sampled (Fig. 1) represent distinct zones of Michigan in terms of climate and soil
series (Table 1). Soils in the North region experience frigid temperature regimes and are
characterized by greater alkalinity, while soils in the Central region are poorly drained and
semi- active in cation exchange. Soils in the South region are well-drained outwash plains or
beach ridges with slight acidity. On paired cropped field types, soil classifications differed on
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4 out of 13 farms sampled (farms 6, 8, 9, 10), though at least 2 of 3 field types shared a
common soil classification on all farms (Table 1). The sand content differed significantly by
region (P<0.001). Fields in the Central region had a mean sand content of 64% (+ 4 SD),
while farms in the North and South regions had nearly the same mean sand contents of 79%
(+ 2 SD) and 80% (+ 2 SD), respectively.

In comparing field types, the Best, Worst and NRC fields had mean sand contents of 72% (+
13 SD), 72% (+ 14 SD), and 76% (+ 13 SD), respectively, with paired t-test comparisons (not
shown) showing no difference in sand contents between field types across sampled farms.

Farmers were asked why they designated a field as either a Best or Worst field. For the Best
field, 10 of 13 farmers stated this field had high crop yields, while 5 farmers commented on
both how the soil ‘worked’ and their efforts to take care of this field; 4 farmers commented
on their the field’s ‘reliability’ and field drainage (Fig. 2, Supplemental Table 2). In
designation of the Worst field, 9 out of 13 farmers stated both that yields were lower and
that the soil ‘worked poorly’. Other reasons included poor field drainage, low reliability, soil
compaction (e.g., describing a field that is "hard to work” or stating a field requires
occasional deep tillage), known poor management history (e.g., stating a field had excessive
tillage, or many seasons in a single crop), poor soil ‘chemistry,” and disease problems (Fig. 2,
Supplemental Table 2). Best and Worst fields on each farm nearly all experienced the same
crop rotation, though tillage practice (no-till or chisel plow) and manure input tended to
differ more between field types (Fig. 3).

Soil health test results by field type

The overall soil health score for Best fields was significantly higher than for Worst fields with
a mean difference of 6.9 units (Table 2). Overall, physical and biological soil health
parameters had significantly higher scores on Best fields as compared to Worst fields (Table
2). For chemical soil health, Best fields rated higher on 7 of 13 farms but there were no
significant differences between the means of aggregated chemical parameters by each field
comparison (Supplemental Fig. S1, Table 2).

The mean soil health scores by parameter category, and overall scores, were driven by clear
patterns in individual soil health metrics. The Best fields had a significantly higher rating for
AS and AWC compared to Worst fields (Table 2). Measures of SR and SSR, while generally
more favorable on Best fields (Supplemental Fig. S1), did not differ significantly when
comparing Best and Worst fields (Table 2). The significantly higher mean biological soil
health score on Best compared to Worst fields reflected significantly greater values for SOM
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and MinC on Best fields (Table 2). Both PMN and POXC were not significantly different in
cropped field comparisons.

For the chemical category of soil health, no significant differences were observed between
Best and Worst fields (Table 2), and generally these parameters had greater variability
among field types and by region. For example, soil pH did not strongly differentiate between
Best and Worst field types in the South region relative to other parameters, while in the
Central region the large magnitude in differences between cropped fields was due to higher
than optimal pH values on Worst fields compared to Best (Supplemental Fig. S1). Scores for
soil inorganic P and K" did not differ significantly between any paired field types (Table 2)
and were not limiting on most fields; instead, they were often well in excess of optimal
concentrations based on MSU testing guidelines. Excess P inputs to cropped fields were
evidenced by higher concentrations compared to NRC fields (Supplemental Table S1),
resulting in lower soil health P scores on cropped fields (Table 2) and contributing to lower
overall soil health scores on Best fields compared to Worst for farms 8 and 9 in the Central
region (Supplemental Fig. S1).

Overall soil health scores for NRC fields when compared to Best and Worst were numerically
higher and significantly higher, respectively (Table 2). This was driven chiefly by soil
biological parameters, especially significantly higher SOM, POXC and PMN, which scored
higher on NRC fields compared to cropped fields (Table 2). High levels of significance were
found between Worst vs NRC field types for all biological measures, with NRC fields having
higher scores. Among physical soil health parameters, NRC fields also scored significantly
greater in AWC than Best and Worst fields. Although NRC fields scored numerically lower for
SSR and significantly lower for SR compared to Best fields (Table 2), the NRC fields had living
plant material and dense roots at sampling, making comparisons to cropped fields
inappropriate. For chemical soil health parameters, no clear trend distinguished NRC fields
from cropped fields, except higher CEC, which was only significantly different from the
Worst fields (Table 2).

Soil health test results by region

Patterns in soil health scores differed by region (Fig. 4). The overall mean and the mean
biological soil health scores among the three field types differed significantly in the North
and Central regions. Means of physical parameters also differed significantly in the Central
region. In both the North and Central regions, differences in overall soil health reflected
those found in biological and physical categories. No differences occurred in overall or
category means in the South (Fig. 4).
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In the North region, Best fields scored significantly higher in biological and overall soil health
than Worst fields (Fig.4). Among individual parameters, only PMN scored significantly higher
on the Best field type compared to the Worst field (Fig. 5). However, the significantly higher
overall score of Best compared to Worst fields resulted from numerically higher means for
all other parameters for Best Fields in the North compared to Worst fields (Fig. 5).

In the Central region between cropped field types, Best fields scored significantly higher for
PMN and numerically higher for AS, AWC, SOM, and MinC (Fig. 5); however, overall soil
health scores between these two field types were similar (Fig. 4). In the South, no
differences occurred between means of cropped field types for any individual soil health
parameter, parameter category or the overall soil health score (Figs. 4 and 5). Between
cropped fields, AS, SSR, SR, and MinC were numerically greater on Best fields, while most
biological and chemical parameters showed a less consistent contrast between these two
field types.

Across all regions, only PMN was significantly higher on Best Fields compared to Worst
(Table 2). This difference in PMN scores was present in the North and Central regions but
not in the South region. Contrasts between PMN on paired cropped fields for individual
farms followed farmer field assessments except in the South (Supplemental Fig. S1), leading
to no significant difference in the paired contrast for PMN overall (Table 2).

The lowest scoring fields for overall soil health across all regions were the Worst fields in the
North region (Fig. 4). All Worst fields of the North region scored in the bottom 25™
percentile for AWC, SR, SSR, MinC and PMN (Fig. 5). Across all regions, AS, AWC, SOM and
MinC were significantly higher on Best fields compared to Worst (Table 2), and among these
parameters, MinC reflected the most consistent contrast between these field types (Fig.5,
Supplemental Fig. S1).

Across all regions, the NRC fields scored significantly higher in paired comparisons with Best
and Worst fields for AWC, SOM, POXC, and PMN, and the NRC field also scored significantly
higher than Worst field for MinC (Table 2). The NRC fields in the Central region had the
highest overall soil health scores among all fields, which was mirrored in physical and
biological categories (Fig. 4). For this region physical parameters AS and AWC, NRC fields
scored significantly higher than Worst fields (Fig. 5). Biological metrics were numerically
higher on NRC fields, with SOM and POXC significantly higher than both cropped field types
(Fig. 5). In the North region, NRC fields scores were similar to Best fields in overall soil health
but significantly higher than Worst fields (Fig. 4) with physical measurements of AS and
AWC, and biological parameters SOM, POXC, and PMN, following this pattern (Fig. 5). In the
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South region, overall soil health scores of NRC fields were not different than Best or Worst
fields (Fig. 4).

Soil carbon metrics

Paired t-test analyses revealed that the Best fields had significantly greater SOM contents
compared to the Worst fields when all regions were included in the analysis (p<0.01, Table
2). On average, SOM values in Best fields were 13% greater than in the Worst fields (not
shown). Similarly, MinC was significantly greater in the Best fields compared to the Worst
fields when all regions were considered (p<0.05, Table 2), with MinC 45% greater in the Best
fields compared to the Worst fields (not shown). In contrast, POXC values were similar
between the Best and Worst fields in all regions. Thus, SOM and MinC results coincided with
farmer-defined Best and Worst fields, while POXC did not distinguish between the two types
of fields (Table 2).

We calculated percent difference between Best and Worst fields to further compare the
response of three different soil C tests (SOM, MinC, POXC) among the 3 regions (Fig. 6).
Indicators with positive values matched farmers’ perceptions, based on their Best versus
Worst field assessments. For a negative value, the indicator differed from the farmer field
designation. Of the three metrics, SOM had the smallest mean percent difference between
Best and Worst fields, where mean differences ranged from 2.1% (£ 4.0) to 16.0% (+ 2.3)
across the three regions. The most sensitive test appeared to be MinC, with mean percent
differences ranging from 1.6% (+ 33.9) to 48.1% (+4.9). The small mean percent difference
and large standard error in the Central region for MinC are the result of a large negative
percent difference at farm 8 (Supplemental Fig. S2), while positive percent differences were
reported at the other farms in the region. The poorest match with farmer perceptions
occurred with POXC, with generally negative and small mean percent differences.

DISCUSSION

The development and validation of soil health metrics have occurred primarily in controlled
field studies, with a focus on metrics’ sensitivities to different soil management practices. To
serve as tools for farmers to manage for soil health, these tests should also capture
meaningful differences across farmer fields. We sought to understand how soil health test
results compared with farmer field assessments across three regions of Michigan with
distinct soil types. We hypothesized that that physical and biological measures of soil health
would better align with farmer field assessments compared to inorganic chemical
parameters.
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In general, on-farm soil health scores corresponded well with farmers’ assessments
of their soil’s characteristics and performance, though specific soil health parameters varied
in their capacity to distinguish between contrasting fields. Physical soil health indicators,
particularly AS and AWC, successfully distinguished between farmer assessments of their
cropped fields, with Best fields having significantly higher scores (Table 2 and S1). Biological
indicators, which include soil C, also supported farmer assessments in discriminating among
contrasting cropped fields, significantly so for measures of SOM and MinC. Inorganic
chemical parameters related little if any to farmer field assessments. Our results show how
specific sets of soil health metrics align with farmer knowledge, demonstrating how testing
implementation and interpretation can better guide soil health management.

The degree to which different soil health metrics followed farmer field assessments
varied by region and thus soil type. Soil texture has a strong influence on the magnitude of
some soil health parameters and thus how they are scored. For instance soils with 3% SOM
may score near 100 if they are coarse but below 50 if fine-textured (Fine et al., 2017). In this
survey, 92% of soils were coarse textured (Table 1), classified as sands, sandy loams, or
loamy sands (Soil Survey Division Staff, 1993), yet differences in soil texture and soil type
still influenced soil health scores across regions. For example, regional differences in soil
type affected the sensitivity of some parameters, such as compaction. On finer-textured
soils in the Central region, cropped fields scored in the top half of the distribution (Fig. 5) for
soil compaction, (i.e. SR and SSR reflected low compaction), but these two parameters
poorly reflected farmer field assessments. By contrast, in the North and South, soils were
more compacted, but SR and SSR corresponded better with farmer field assessments
(Supplemental Fig. 1). Therefore, the usefulness of compaction scores to assess soil health
differed by region.

In addition, biological indicators differed in their ability to discriminate between
farmer fields in different regions. For soils in the North and Central region, which had higher
SOM (Fig. 5), this parameter better corresponded with cropped field assessments compared
to the South region with lower SOM. Similarly, PMN scores aligned with farmer field
assessments in North and Central regions, which had soils higher in SOM, but not in the
South. Furthermore, even though PMN scores differed by field type in all three regions, it
only reflected farmers’ field designations in the North and Central regions. This underscores
the need to identify the specific parameters that are most useful for assessing soil health
based on regional conditions.

Comparing paired fields within a farm minimized variability due to soil type, and to some
extent variable management of cropped fields across farms. Often, soil health parameter
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comparisons are made among explicitly tested management factors (such as tillage practice
or rotation) within one site. Paired contrasts of cropped fields across widely varying sites
revealed the relative ability of parameters to distinguish soil health and correspond to
farmer assessments of field performance. The NRC field served as a reference for
characterizing soil health parameters of background soils as these farms had no previous
soil health testing and experienced a range of soil management practices across farms
(Fig.3). For example, the NRC paired comparisons indicated highly significant differences in
soil health compared to cropped fields for AWC, SOM, POXC and PMN, and less clear
differences for AS and MinC (Table 2). Even without the power of paired comparisons across
farms, the NRC fields also reflected magnitude differences in parameters scores across
regions (Fig. 5).

For soil health assessments to be meaningful, they must reflect farmers’
understandings of field performance. Our results suggest that chemical soil health metrics
do not align with farmers’ perceptions of field performance, in that P, K, pH and CEC did not
significantly differ between Best and Worst fields (Fig. 5). One explanation is that these
farmers already typically test and directly manage inputs to adjust soil pH, P and K levels. In
fact on two farms excess P inputs contributed strongly to poorer overall soil health scores
(Supplemental Fig. 1). In contrast, physical and biological metrics significantly differed
between Best and Worst fields and thus strongly aligned with farmer field assessments
(Table 2). Every farmer in this study described some aspect of physical soil health, such as
‘how the soil works,” drainage, or soil compaction, to describe either favorable
characteristics of Best fields or problematic conditions of Worst fields (Fig. 2). Across all
regions, our results indicated that AWC best distinguished between cropped fields for
physical soil health (Table 2), and in two regions, measures of soil compaction (SR and SSR)
closely followed farmer assessments. Thus, in contrast to chemical metrics, physical soil
health parameters offer commonalities between farmer experience and soil health testing
by accurately distinguishing cropped fields, even when both fields scored relatively poorly.

Biological indicators of soil health also strongly reflected farmers’ assessments of cropped
fields (Table 2). The differences in field performance noted by farmers in our study support
considerable research that has highlighted the importance of biological indicators for
defining soil health (Culman et al., 2013; Veum et al., 2014; Wander et al., 2019). Our results
demonstrate that some biological soil health parameters provide sufficient sensitivity to
distinguish between field types, and align with farmer experience.

Soil organic matter corresponded significantly with farmer field assessments, with
differences of up to 16% between cropped field comparisons (Fig. 6), though less so in the
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South region. Contrasts between cropped fields were even greater for MinC, with
differences of up to 48% between the Best and Worst fields (Fig. 6), including on cropped
fields in the South region. Indeed, MinC on Best fields did not differ from NRC fields in
paired field comparisons, but was significantly lower on Worst fields (Table2). Notably,
POXC was poorest at distinguishing between paired crop fields even though paired
comparisons with NRC fields suggested highly significant sensitivity to contrasting
management (Table 2).

The greater contrast in MinC values across cropped field types could reflect its sensitivity to
management practices, which can increase MinC (Caudle et al., 2020). Practices such as
addition of composted material and conservation tillage can favor C stabilization and higher
POXC, while increased tillage, cover cropping, and manure addition favor MinC (Hurisso et
al., 2016). During in-depth interviews, farmers noted their use of a variety of these
practices, with some trends by region; for instance, manure addition and reduced tillage
were present in the Central region, while there was comparatively more tillage and use of
cover crops in the North and South regions (Figure 3). Indeed, variable practices occurred
within farms on different field types, indicating distinct management decisions for separate
fields. Complex interactions between field management decisions, soil type and different
indicators of soil C, highlight the need to increase precision of MinC by standardizing
measurement protocols (Wade et al., 2018). Our results indicate that the alignment of soil
health metrics such as MinC with farmer assessments of field performance make this an
important soil health indicator on farms especially in coarse textured soils.

To our knowledge, no prior study has compared the sensitivity of POXC and MinC to farmer
assessments of field performance. Of the three metrics related to soil C, POXC did not reveal
significant differences between the Best and Worst fields and also had the least accurate
correspondence among biological parameters for reflecting farmers’ field assessments. In
contrast, MinC best captured field variability and was well aligned with farmers’
characterizations of their fields, suggesting that MinC is a more meaningful metric for
assessing field management decisions in the regions sampled. This is not surprising
considering that recent research has demonstrated that MinC and POXC are indicators of

different soil C processes (Hurisso et al., 2016; Morrow et al., 2016; Sprunger et al., 2019).
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While both are considered indicators of different labile C fractions, MinC reflects microbial
stimulation of CO, production following the re-wetting of soils (Franzluebbers et al., 2000),
and thus it is a strong indicator of nutrient release and potential key predictor of agronomic
performance (Culman et al., 2013; Sprunger et al., 2019). In contrast, while POXC is strongly
correlated to SOM, it is associated with smaller and heavier particulate organic C fractions
(Culman et al., 2012), which are often physically protected from microbial decomposition,

and could demonstrate early indications of soil C stabilization.

CONCLUSIONS

Soil health testing assesses biological, physical, and chemical attributes to ultimately guide
the sustainable management of farm fields. Whether soil health tests align with farmers’
own experience of agronomic performance, may ultimately influence their impact on farm
management practices. Results demonstrate that on-farm soil health testing can effectively
distinguish differently performing fields across regions and can inform and strengthen
farmers’ knowledge of their fields. While individual soil health parameters varied among
regions, patterns of overall soil health scores were consistent with farmer assessments of
Best versus Worst fields. That inorganic chemical test parameters did not track with other
metrics of soil health or farmer assessments of their fields may in part be due to prior
application of fertilizers and other inputs that remove most nutrient deficiencies and adjust
pH. In contrast, physical and biological soil health parameters better captured variability in
soil function and aligned with farmer perceptions, highlighting an entry point for ecological
management strategies through testing.

While SOM values were consistently greater for the Best fields for all regions, MinC showed
a better capacity to distinguish between farmers’ field assessments of cropped fields,
especially in coarser soils. Measures of POXC did not consistently align with farmer field
designations. POXC is an indicator of more stabilized soil C fractions, and MinC of nutrient
release, thus these metrics likely differ in their capacity to distinguish between a farmer’s
Best and Worst fields.

Soil health test results are more meaningful when merged with farmer knowledge. Given
that soil health metrics vary by region and soil type, a participatory approach can inform
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testing protocols and interpretation to improve management practices and target specific
constraints on fields. Combining soil health test results and farmer knowledge should
facilitate the implementation of soil health management practices, as well as guide outreach
and on-farm research questions.

SUPPLEMENTAL MATERIAL

Table S1 presents mean and standard deviation of indicator values used to generate soil
health scores, and results from t-tests used to compare means of different paired farmer
fields for each soil health indicator. Table S2 present examples of direct quotes from farmer
interviews used to summarize field assessments in Figure 2. Supplemental Figure S1 present
differences in soil health scores on individual farms between Best and Worst fields, for each
parameter tested and for means of physical, biological, chemical and overall mean soil
health scores. Supplemental Figure S2 presents the SOM, MinC, and POXC values for the
Best and Worst fields of each individual participant farm.
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Fig. 1. Map of Michigan with sampled regions in North, Central and South shaded in dark

gray.
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Region
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Fig. 2. Rationale stated by farmers characterizing Best fields (top, in black) and Worst fields

(bottom, in gray) in each region, and the number of farmers (right column) who assessed

each field type based on each select criterion.
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Region North Central South
Farm # 2|3 6| 7|8 1011|1213
No-till . '
Tillage |Chisel B 4
No till and chisel
C-5-w
Crop &
Other (W, S, + hay)
Cover crop use _'
Manure |Currently
useé ||n past
Hay \
NRC |Field margin
field |Buffer strip
CRP/woodlot &\\“

Fig. 3. Management practices for Best fields (in black) and Worst fields (in gray) for each
farm and region as stated by farmers. Where cells are split diagonally, both field types

received the same management. Farmers used either no-till practices or chisel plow, or

some combination depending on the crop and year. C=corn, S=soybean, W=wheat. Cover

crop use indicates regular use or some prior use of cover crops during recent management.

Manure use indicates regularly used in current management or a known history of inputs.

Hatched squares identify land use of not in row crop (NRC) field comparisons for each farm.
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separately for biological, physical, chemical parameters, and the overall soil health score.

T | | T
Best Worst NRC

T T |
Best Worst NRC

Where field type was significant in ANOVA (P<0.05), different letters indicate significant

differences between treatments using Tukey’s HSD.
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HSD. Abbreviation: AS, aggregate stability; AWC, available water capacity; SR, surface

resistance; SSR, subsurface resistance; SOM, soil organic matter; POXC, permanganate

oxidizable C; MinC, mineralizable carbon; PMN, potentially mineralizable N; CEC, cation

exchange capacity.

Tables
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Best and Worst fields selected by farmers.

Fig 6. Mean percent difference in soil C indicators (percent OM, MinC, and POXC) between

Table 1. Sand content, textural class designation, field area, soil series and soil classification
for each field type (Best, Worst, NRC) in all regions with associated latitude and longitude.
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Region Far | Ffield | Sa | Textural | Ar Soil Soil Classification
m type | nd class ea | Series
1.
H % ha
North Best | 88 Loamy 11 | Emmet Coarsg-loamy, mixed, active, frigid
1 sand Inceptic Hapludalfs
45°42'N,
83°81'W Norst| 82 Loamy 6 | Emmet Coarse-loamy, mixed, active, frigid
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sand Inceptic Hapludalfs

Loamy Cheboy [Coarse-loamy, mixed, active, frigid Alfic
NRC | 85 6
sand gan Haplorthods
Best | 81 Loamy 12 | Omena Coarse-loamy, mixed, active, frigid Haplic
sand Glossudalfs
5 Worst| 81 Loamy 10 | Omena Coarse-loamy, mixed, active, frigid Haplic
sand Glossudalfs
NRC | 83 Loamy 6 | Omena Coarse-loamy, mixed, active, frigid Haplic
sand Glossudalfs
Best | 74 Sandy 6 | omena Coarse-loamy, mixed, active, frigid Haplic
loam Glossudalfs
3 Worst| 64 Sandy 16 | Omena Coarse-loamy, mixed, active, frigid Haplic
loam Glossudalfs
NRC | 82 Loamy 5 | omena Coarse-loamy, mixed, active, frigid Haplic
sand Glossudalfs
Best | 70 Sandy 3 Ossine Fme—loa.my, mixed, semiactive, frigid
loam ke  |Oxyaquic Glossudalfs
4 Worst| 71 Sandy 5 Ossine Flne—loa‘my, mixed, semiactive, frigid
loam ke  |Oxyaquic Glossudalfs
NRC | 76 Sandy 5 Slade Fine-loamy, mixed, active, frigid Aquic
loam Glossudalfs
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Fine, mixed, semiactive, mesic Aquic

Best | 42 | Loam | 28 | Ithaca Glossudalfs

5 Worst| 38 Loam 26 | Ithaca Fine, mixed, semiactive, mesic Aquic

Glossudalfs
Central NRe | 60 Sandy 1 lthaca Fine, mixed, semiactive, mesic Aquic
loam Glossudalfs
43°60’N, 5 ; - - .
34°76'W Best | 63 Sandy 91 Conove [Fine-loamy, mixed, active, mesic Aquic
loam r Hapludalfs
6 Worst| 71 Sandy 17 | Parkhil Flne.—loamy', m|x.ed, semiactive, nonacid,
loam mesic Mollic Epiaquepts
NRC | 71 Sandy 5> | parkhill Flne'-loamy‘, m|x'ed, semiactive, nonacid,
Loam mesic Mollic Epiaquepts
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Best | 66 Sandy 5 Conove [Fine-loamy, mixed, active, mesic Aquic
loam r Hapludalfs
7 Worst| 80 Loamy 12 Conove [Fine-loamy, mixed, active, mesic Aquic
sand r Hapludalfs
NRC | 78 Loamy 7 | parkhill Fme.—loamy_, mlx_ed, semiactive, nonacid,
sand mesic Mollic Epiaquepts
Best | 66 Sandy 14 Ziegenf Flne,' m|x§d, semiactive, nonacid, mesic
loam uss  [Mollic Epiaquepts
3 Worst| 64 Sandy 16 | Ithaca Fine, mixed, semiactive, mesic Aquic
loam Glossudalfs
_ = - — i Aqui
NRC | 91 sand 0 thaca ine, mixed, semiactive, mesic Aquic
5 Glossudalfs
Best | 86 Loamy 12 Oneka [Fine, mixed, active, mesic Haplic
sand ma  |Glossudalfs
9 Worst| 71 Sandy 16 | Ithaca Fine, mixed, semiactive, mesic Aquic
loam Glossudalfs
NRC | 45 Loam ) ithaca Fine, mixed, semiactive, mesic Aquic
Glossudalfs
L
Best | 82 s:rr:c]iy 2 | Coloma Mixed, mesic Lamellic Udipsamments
10 | Worst! 83 Loamy 6 Oshte [Coarse-loamy, mixed, active, mesic Typic
sand mo  [Hapludalf
L
NRC | 83 So::;y 4 | Coloma [Mixed, mesic Lamellic Udipsamments
South Best | 65 Sandy 12 Oshte [Coarse-loamy, mixed, active, mesic Typic
loam mo  Hapludalf
42°21'N,
85°89’'W 11 | Worst! 63 Sandy 9 Oshte |[Coarse-loamy, mixed, active, mesic Typic
loam mo  Hapludalf
NRC | 65 Sandy 8 Oshte |Coarse-loamy, mixed, active, mesic Typic
Loam mo  Hapludalf
Best | 85 Loamy 13 Oshte |Coarse-loamy, mixed, active, mesic Typic
12 sand mo  [Hapludalf
Norst| 92 Sand 3 Oshte |Coarse-loamy, mixed, active, mesic Typic
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mo  |[Hapludalf
NRC | 86 Loamy > | Riddles Fine-loamy, mixed, active, mesic Typic

sand Hapludalfs

Best | 85 Loamy 15 Oshte [Coarse-loamy, mixed, active, mesic Typic
sand mo  Hapludalf

13 | Worst| 81 Loamy 5 Oshte |Coarse-loamy, mixed, active, mesic Typic
sand mo  [Hapludalf

NRC | 86 Loamy 5 Oshte |Coarse-loamy, mixed, active, mesic Typic
sand mo  |[Hapludalf
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t Represents the dominant soil series, by area, in each field.

Table 2. Mean differences in soil health scores from paired t-tests between all combinations
of field types (Best, Worst, Non Row Crop [NRC]) for all soil health parameters and means of
overall physical, biological (including C) and inorganic chemical categories, and overall soil
health.

Field Comparison

Parametert Best vs. Worst Best vs. NRC | Worst vs. NRC
AS 17.7* 1.5 -17.1
AWC 34.3%* -23.5%* -39.5%*
SR 8.8 18.3* 8.8
SSR 3.3 16.4 7.3
SOM 11.8%* -15.1* -27.9**
POXC 0.6 -30.2* -34.0**
MinC 20.4* -3.8 -25.5%*
PMN 11.0 -30.2* -38.5%*
pH 4.0 3.9 3.9

P -10.2 -5.2 6.6

K -2.9 -12.5 -8.1
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CEC 4.4 -8.5 -15.2*
Physical 10.9** 3.2 -10.7
Biological 11.0* -19.8%** -31.5%%**
Chemical -1.2 -5.6 -3.2
Overall Health 6.9* -7.4 -14.9%**

tAS, aggregate stability; AWC, available water capacity; SR, surface resistance; SSR,
subsurface resistance; SOM, soil organic matter; POXC, permanganate oxidizable carbon;
MinC, mineralizable carbon; PMN, potentially mineralizable nitrogen CEC; cation exchange
capacity.

*Significant at the .05 probability level.
**Significant at the .01 probability level.

***Significant at the .001 probability level.
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