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ABSTRACT 

Soil health testing provides an integrated assessment of biological, physical, and chemical 

attributes to inform the sustainable management of farm fields. However, it is unclear how 

tests reflect farmers’ own assessments of soil quality and agronomic performance, which 

may disproportionately influence farm management practices. We asked farmers in three 

regions of Michigan to identify three fields to compare their own assessments against soil 

health tests: a ‘best’, a ‘worst’, and a ‘non-row crop’ (NRC) reference field. Each field was 

tested for soil aggregate stability (AS), available water capacity (AWC), soil organic matter 

(SOM), mineralizable carbon (MinC), permanganate oxidizable carbon (POXC), pH, P, and K. 

We evaluated soil health scores using paired t-tests to compare results from contrasting 

fields with farmers’ assessments of each field. Across all farms, the overall soil health test 

score for cropped fields was significantly higher on fields farmers rated as ‘best’. This result 

was driven solely by physical and biological (including C) parameters; inorganic chemical 

tests did not distinguish among field types. On reference fields in all regions, biological 

parameters were consistently higher, but not inorganic chemical or physical measures. The 

performance of soil C measures was inconsistent: SOM and MinC consistently detected 

significant differences between ’best’ and ‘worst’ cropped fields, but POXC did not. Our 

results suggest that common soil health assays for physical and biological attributes 

generally align well with farmer assessments of their fields. That soil health tests match 

farmer experience reinforces the value of these tests as a meaningful guide for soil 

management decisions.  

 

 

INTRODUCTION 

The environmental and social costs of intensive agricultural production in the United States 

have led to calls for more ecologically-based approaches to management (Drinkwater and 

Snapp, 2007; Robertson et al., 2014; Schipanski et al., 2016). Ecological management 
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practices are designed to maintain crop productivity while also delivering a range of 

ecosystem services both on-farm and to society at large (Power, 2010; Robertson et al., 

2014). Soil health is broadly defined as the continued capacity of soil to function as a vital 

living system that sustains plants, animals, and humans (Doran and Parkin, 1994); thus, soil 

health has emerged as a framework for linking soil management practices to agronomic 

performance and ecosystem function (Karlen et al., 2008; Culman et al., 2013; Lal, 2016; 

Wade et al., 2020). In practice, the soil health paradigm has shaped a new soil testing 

regime, one that is more closely linked to principles of ecological management and that 

could potentially lead to outcomes such as improved crop growth, soil carbon (C) 

sequestration, and reduced nutrient leaching (Karlen et al., 2006; Cherry et al., 2008; 

Minasny et al., 2017).  

Farmers often have detailed knowledge of their  long-term managed fields (Gruver and 

Weil, 2007) and this knowledge logically informs management decisions related to 

nutrients, tillage, and residue. Soil testing is rightly seen as a tool used in conjunction with 

farmers’ own knowledge to guide field management (Andrews et al., 2003). As with other 

soil tests, farmers require actionable management decisions to be based on acceptance of 

soil health test results. If specific test parameters accord with farmer experience for a given 

field, this may advance farmer acceptance of testing results and ultimately translate into 

ecological management practices. In turn, understanding how soil health test results align 

with farmer assessments of a field’s agronomic performance can inform recommendations 

that follow from testing results.  

Traditional soil testing for row crops is primarily focused on soil inorganic chemistry and in 

particular pools of plant nutrients – N, P, K and micronutrients – and soil pH. Soil health 

tests include these parameters but also include them with key measures of biological and 

physical properties that together drive ecosystem functions such as soil C accumulation and 

aggregation. Integrated measures may better correspond to characteristics that farmers use 

to describe their own fields. For example, farmers often describe physical features such as 

how fields respond to precipitation, cultivation, or seed set. The advancement of integrated 

soil health indicators such as available water capacity (AWC) and aggregate stability (AS) and 

surface hardness is an acknowledgment of this disconnect in soil testing approaches 

(Moebius-Clune et al., 2016; Fine et al., 2017).  

Even total soil organic matter (SOM), which is often measured in standard soil tests, may 

not align with farmer field assessments. Soil organic matter, comprised mostly of older, 

stable fractions of C may impart soil qualities such as greater cation exchange capacity (CEC) 

and water holding capacity. Yet while farmers may recognize and value the importance of 
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maintaining SOM, standard SOM measures do not typically inform yearly management 

decisions and may not explain variation in field performance (Sprunger, 2015; O’Neill, 2017). 

Indeed, measures of dynamic C fractions often correspond better to fertility status than do 

measures of total SOM (Wander, 2004; Culman et al., 2013) and can be more sensitive to 

management, and thus potentially provide farmers with a more integrated assessment of 

soil functioning. For example, physical metrics, like AS, are intricately linked to biological 

indicators because stable aggregates emerge from microbial activity and root production 

(Chantigny et al., 1997; Tiemann and Grandy, 2015). While research has shown that 

integrated metrics of soil function distinguish between management practices (Idowu et al., 

2009; Morrow et al., 2016), we lack understanding as to how these measures accord with 

farmers’ knowledge of their fields.    

To date, much of the validation of soil health indicators has occurred on controlled 

experimental field trials (e.g., Culman et al., 2013; Hurisso et al., 2016; Morrow et al., 2016; 

Roper et al., 2017; Sprunger et al., 2019) and less so on farmer fields (e.g., Williams et al., 

2020), which limits our understanding of how soil health indicators can guide farmers as 

they make critical management decisions (Karlen et al., 2017). Many row-crop growers in 

the United States farm over 180 hectares, often on multiple fields that are miles apart. 

Generally, this means that each field presents unique challenges based on field-by-field 

variation in soil quality and management history.  

In contrast to experimental field trials, farmers’ field management is often dynamic with 

multiple management practices implemented season to season over several decades, based 

on a range of practical considerations that are tailored to specific fields. Yet to our 

knowledge, dynamic measures of soil C, such as mineralizable C (minC) and permanganate 

oxidizable carbon (POXC), have not been assessed in relation to how farmers rate field 

performance. Farmers are usually knowledgeable of their fields and commonly  label them 

as ‘good’ or ‘poor,’ indicative of factors such as agronomic performance and soil quality 

(Gruver and Weil, 2007). The alignment of farmers’ knowledge of soil characteristics and 

function to the interpretation of soil health tests results is important for the implementation 

and adoption of soil health management practices. 

Here we address this knowledge gap by asking how well – if at all – soil health indicators 

reflect farmer knowledge and assessments of their fields. Additionally, testing soil health on 

working farms provides an opportunity to assess the sensitivity of soil health tests indicators 

to detect variability across fields and on a range of soil types, which can ultimately guide 

new research questions and inform outreach and farmer recommendations.  
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We combined biophysical data with qualitative data from farmer interviews to assess how 

chemical, physical, and biological metrics of soil health align with farmer knowledge of their 

fields. Our specific research objectives were: (1) to quantify variability in on-farm soil health 

scores across three agricultural regions in Michigan; and (2) to evaluate the degree to which 

soil health parameters align with farmers’ assessments of field performance. We 

hypothesize that physical and biological soil health indicators will better align with farmer 

field assessments than will chemical assessments, due to a better ability to differentiate 

among fields that lack measurable nutrient deficiencies. 

MATERIALS AND METHODS 

Participant Selection  

Our study is grounded in a participatory research framework that included MI farmers, 

Michigan State University (MSU) Extension staff, and MSU researchers. We asked staff from 

MSU extension and conservation districts in each region to recommend farmers who might 

be willing to be interviewed in exchange for free soil testing. Eligibility was limited to 

farmers with conventionally managed row-crops in order to best represent regional 

agricultural land use. Median farm size was 172 ha, and none of the participants had 

previously undertaken soil health testing on their fields. The participating farms were 

operations that primarily grow grains and some cover crops.  

Once selected, we asked each participating farmer to identify three fields, including a Best 

field, a Worst field, and a reference field that was currently not in row crops (NRC), such as a 

pasture, land under conservation, or a buffer strip field margin. The NRC field served as a 

within-farm, low management intensity reference field as compared to cropped fields. 

Fields under perennial vegetation typically score higher on soil health metrics (De et al., 

2020), and thus can be useful for comparing metrics across cropped fields, and as well for 

comparing differences across regions. 

In total we evaluated 40 fields from three field types, Best, Worst and NRC. These represent 

thirteen farms representing north, central, and southwestern regions of Michigan, which 

have distinct climates and soil types (Fig. 1, Table 1). This yielded a broad range of fields on 

which to test and compare soil health parameters while allowing for a participatory 

approach to engage directly with farmers. After asking farmers to identify these fields and 

sampling each, we met with individual farmers to discuss what properties defined their 

characterization of each field and gather management histories. Research activities were 

compliant with the MSU Human Research Protection Program and was classified as exempt 

(IRB #i046108). 
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Field Sampling  

The cropped fields sampled ranged in area from 2 to 28 ha with a median field size of 12 ha. 

We measured management-sensitive parameters of soil health to examine how well soil 

health tests and specific metrics characterized the soils on farm fields, as compared to 

standard soil fertility tests offered by the MSU Plant, Soil and Nutrient Laboratory. This 

objective informed our sampling approach. Soil samples were removed according to  the 

Cornell Soil Health Assessment guidelines (Moebius-Clune et al., 2016), which includes 

assessment of field variability or anomalies, soil conditions, and crop management. In each 

field, five representative locations were selected; at each location, bulk soil samples (~4 x 9 

cm to 15 cm depth) were excavated from the sides of each of two shovel-dug pits. At each 

location two penetrometer readings (Imants, Reusel, Netherlands) at 15 and 45-cm depths 

were taken to assess surface and subsurface compaction, respectively. For a given field, 

each of the ten bulk soil samples was composited, thoroughly mixed, subsampled (~ 2 kg), 

placed in a plastic bag, and stored on ice until further processing. We noted each field 

location, and sampling locations were identified by use of NRCS Web Soil Survey, 

https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. All samples were collected on 

the same day for each region, between May 26 and June 12, 2014, and maintained at 4° C 

until processed.  

Soil Testing 

Samples were sieved to < 8 mm to remove stones, and a sub-sample of sieved soil was 

submitted to the MSU Plant, Soil and Nutrient Laboratory for analysis. Soil pH was 

determined in a 1:1 soil and water solution, total SOM by loss on ignition, and P with Bray 1 

extractant. Soil K+ was extracted with 1N ammonium acetate and all cation concentrations 

were determined via flame emission spectroscopy. Cation exchange capacity was calculated 

through summation of cations plus the contribution of pH (buffer index + meq of K+). We 

group these parameters into chemical measures. We analyzed remaining soil for soil 

texture, AS, AWC (physical parameters) and POXC, MinC, and potentially mineralizable 

nitrogen (PMN) (biological parameters). 

Soil texture was determined using a rapid method (Kettler et al., 2001) on soil dried overnight at 60° 

C. A 14-g portion of soil was weighed into a 50-mL Falcon tube containing 42 mL of 3% 

hexametaphosphate solution; tubes were placed on their side on a shaker at 120 rpm for 2 h.  

Contents of each tube were poured through a 0.053-mm sieve and thoroughly washed with 600 mL 

deionized water into a catch basin.  The sand fraction on the sieve was washed into a previously 

https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
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tared drying tin.  Particles in the catch basin were thoroughly re-suspended and allowed to settle for 

4 to 6 h, after which the clay particles in suspension were decanted. The settled silt particles were 

washed into another tared drying tin.  All tins were dried overnight at 105° C and contents were 

weighed.  Texture was calculated as: sand % = (oven dry sand mass / original sample mass) x 100%; 

silt % = (oven dry silt mass / original sample mass) x 100%; and clay % = 100 - (sand % + silt %). 

Wet AS was determined from soil dried to constant weight at 40° C for 1-2 days in the oven 

followed by isolation of aggregate size fractions from 0.25 mm to 2 mm (Moebius et al., 

2007). Ten g of soil aggregates were spread evenly on a 0.25-mm mesh, 125-mm diameter 

sieve. The sieve was placed on a funnel containing previously weighed filter paper, all atop a 

ring stand. Sieves were exposed to a rain simulator (rate previously calibrated) for 5 min, 

after which material retained on the sieve was thoroughly washed through the sieve. 

Remaining particles (e.g. small stones) were washed off the sieve surface into a drying tin. 

The tin and filter paper with slaked soil were oven-dried for 1 d at 105° C, and AS was 

calculated as the percentage of soil retained on the sieve (difference from what was not 

slaked onto the filter) and adjusting for the mass of un-sieved particles.  

To determine AWC, another portion of soil dried to 60° C was sieved to < 2 mm. Two 15-g portions 

were spread evenly inside brass rings situated on ceramic plates with known porosity under water 

saturation. Plates were placed into high pressure chambers: 10 kPa (field capacity) and 1500 kPa 

(permanent wilting point). After equilibration, soils were weighed, dried at 105° C and then re-

weighed. Available water capacity was calculated as soil water loss between samples at 10 and 1500 

kPa and reported as g water per g soil. 

To determine labile C as POXC, duplicate 2.5-g samples of air-dried soil were mixed with 

buffered 0.02 M KMnO4 solution in 50-mL conical tubes, shaken at 120 rpm for 2 min and 

allowed to settle for 8 min (Weil et al., 2003).  From this reaction, 0.5 mL of supernatant was 

diluted with 49.5 mL of deionized water.  The degree of oxidation was measured 

colorimetrically at 550 nm on a Fisher Scientific Thermo Multiskan microplate reader 

(Waltham, MA) and standardized to a series of known KMnO4 standards.   
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To determine MinC, 10 g of air-dried soil for each field sample was  placed in loosely capped 

Mason jars and brought to 50% water-filled pore-space (Robertson et al., 1999; 

Franzluebbers et al., 2000). The jars were then incubated for 24 h at 25o C after which they 

were capped tightly. A CO2 reading was taken immediately by injecting 0.5 mL of headspace 

gas into a LI-CO7R LI-820 infrared gas absorption analyzer (LI-COR Biosciences, Lincoln, NE). 

Three subsequent readings were taken over the following 90 min and a flux was calculated 

by regressing the change in CO2 against the incubation period. Two analytical replicates 

were used for each field sample. Final fluxes were calculated by averaging analytical 

replicates.  

PMN was determined from field-moist soil sieved to < 2 mm (Drinkwater et al., 1996). For 

each of the 5 field samples, NH4
+ was extracted from duplicate, 8 g soil aliquots using  1M 

KCl while  shaking (rotary shaker) at 120 rpm for 1 h. Two additional 8 g replicates of soil 

were placed in conical tubes; 10 mL of deionized water was added; and dinitrogen gas was 

used to replace tube headspace air and bubbled into the slurry for 1 min prior to sealing 

with butyl rubber stoppers. Sealed tubes were incubated at 25 °C. After 7 days, the stoppers 

were removed; buffer was added to bring the slurry to 1M KCl; and samples were shaken, 

filtered, and stored on ice. Concentrations of NH4
+ were determined colorimetrically at 630 

nm (Sinsabaugh et al., 2000). Potentially mineralizable C was determined from the 

concentration of NH4
+ from incubated soil minus NH4

+ from an initial soil extraction of the 

same soil. 

Farmer Interviews 

After compiling all soil testing data, we conducted interviews with participant growers. In 

the first phase of the interview, we discussed the management history of each field type, 

including crop rotation, tillage, farmer-specific management decisions, and criteria used to 

categorize fields (i.e. Best and Worst). In the second phase, we discussed specific test results 

for all fields and held open discussions aimed at integrating soil test results with farmer 

knowledge and practical experience for each field type. All of the interviews were recorded, 

and notes were transcribed within 24 h of each interview.  Recordings were transcribed, 

analyzed for common themes, and coded based on specific soil test parameters; different 

approaches to soil management for each field type; and on the influence of soil testing on 

management practices (Saldaña, 2015).  

Scoring and Statistical Analysis 

We used the mean and standard deviation for each parameter measured to calculate 

normal distributions in R (R Core Team, 2020). These were calculated from the Best, Worst, 

[1] 
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and NRC fields, plus an additional field for which farmers desired soil health results, for a 

total of 52 fields across 13 farms. For parameters that indicate greater health with a higher 

value (AS, AWC, SOM, POXC, MinC, PMN, CEC) we used a cumulative normal distribution 

(CND): 

   (     )  
 

 √  
∫  

 (   ) 

   
  

  

  

 

where   is the probability (between 0 and 1) that the indicator value   falls within the 

distribution with mean   and standard deviation  . The probability was multiplied by 100 to 

scale indicator scores from 0 to 100 for each soil health metric (Fine et al., 2017). For 

indicators where greater values reflect decreased soil health (surface and subsurface 

hardness), we calculated 1-CND for the score. For parameters with optimum values, we 

followed guidelines from MSU’s Soil and Plant Nutrient Laboratory, 

https://www.canr.msu.edu/spnl/.  Specifically, soil pH values between 6.0 and 6.8 were 

rated as optimum and received a score of 100, while values ≤ 5.5 or ≥ 7.75 received a score 

of 0 with linear interpolation of intermediate values between optimums and extremes. For 

soil P, values between 20 to 30 mg kg-1 received scores of 100, with scores falling at 

concentrations above or below this optimum range determined by linear interpolation to 

MSU recommendations. For soil K, a CND was calculated for increasing soil health scores 

with higher ppm K+, with ≥ 100 mg kg-1 K+ set to a score of 100.  Virtually all concentrations 

of soil Ca+2 and Mg+2 met optimum values based on state recommendations; thus these 

cations were omitted from soil health scoring and analysis.  We used ANOVA in R to 

compare differences in percent sand in soils from different regions and test parameter score 

differences across field types within each region. Where an effect was significant, Tukey’s 

HSD was used to compare treatments. Paired t-tests in R were used to compare results 

between field types (i.e. between Best and Worst, and between each cropped field and the 

NRC field) across all farms for both raw indicator values and for soil health scores 

determined from Eq. [1]. 

RESULTS 

Soil texture and farmer field descriptions 

The regions sampled (Fig. 1) represent distinct zones of Michigan in terms of climate and soil 

series (Table 1). Soils in the North region experience frigid temperature regimes and are 

characterized by greater alkalinity, while soils in the Central region are poorly drained and 

semi- active in cation exchange. Soils in the South region are well-drained outwash plains or 

beach ridges with slight acidity. On paired cropped field types, soil classifications differed on 

https://www.canr.msu.edu/spnl/
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4 out of 13 farms sampled (farms 6, 8, 9, 10), though at least 2 of 3 field types shared a 

common soil classification on all farms (Table 1). The sand content differed significantly by 

region (P<0.001). Fields in the Central region had a mean sand content of 64% (± 4 SD), 

while farms in the North and South regions had nearly the same mean sand contents of 79% 

(± 2 SD) and 80% (± 2 SD), respectively. 

In comparing field types, the Best, Worst and NRC fields had mean sand contents of 72% (± 

13 SD), 72% (± 14 SD), and 76% (± 13 SD), respectively, with paired t-test comparisons (not 

shown) showing no difference in sand contents between field types across sampled farms.  

Farmers were asked why they designated a field as either a Best or Worst field. For the Best 

field, 10 of 13 farmers stated this field had high crop yields, while 5 farmers commented on 

both how the soil ‘worked’ and their efforts to take care of this field; 4 farmers commented 

on their the field’s ‘reliability’ and field drainage (Fig. 2, Supplemental Table 2). In 

designation of the Worst field, 9 out of 13 farmers stated both that yields were lower and 

that the soil ‘worked poorly’. Other reasons included poor field drainage, low reliability, soil 

compaction                  (e.g., describing a field that is "hard to work” or stating a field requires 

occasional deep tillage), known poor management history (e.g., stating a field had excessive 

tillage, or many seasons in a single crop), poor soil ‘chemistry,’ and disease problems (Fig. 2, 

Supplemental Table 2). Best and Worst fields on each farm nearly all experienced the same 

crop rotation, though tillage practice (no-till or chisel plow) and manure input tended to 

differ more between field types (Fig. 3). 

Soil health test results by field type 

The overall soil health score for Best fields was significantly higher than for Worst fields with 

a mean difference of 6.9 units (Table 2). Overall, physical and biological soil health      

parameters had significantly higher scores on Best fields as compared to Worst fields (Table 

2). For chemical soil health, Best fields rated higher on 7 of 13 farms but there were no 

significant differences between the means of aggregated chemical parameters by each field 

comparison (Supplemental Fig. S1, Table 2). 

The mean soil health scores by parameter category, and overall scores, were driven by clear 

patterns in individual soil health metrics. The Best fields had a significantly higher rating for 

AS and AWC compared to Worst fields (Table 2). Measures of SR and SSR, while generally 

more favorable on Best fields (Supplemental Fig. S1), did not differ significantly when 

comparing Best and Worst fields (Table 2). The significantly higher mean biological soil 

health score on Best compared to Worst fields reflected significantly greater values for SOM 
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and MinC on Best fields (Table 2). Both PMN and POXC were not significantly different in 

cropped field comparisons. 

For the chemical category of soil health, no significant differences were observed between 

Best and Worst fields (Table 2), and generally these parameters had greater variability 

among field types and by region. For example, soil pH did not strongly differentiate between 

Best and Worst field types in the South region relative to other parameters, while in the 

Central region the large magnitude in differences between cropped fields was due to higher 

than optimal pH values on Worst fields compared to Best (Supplemental Fig. S1). Scores for 

soil inorganic P and K+ did not differ significantly between any paired field types (Table 2) 

and were not limiting on most fields; instead, they were often well in excess of optimal 

concentrations based on MSU testing guidelines. Excess P inputs to cropped fields were 

evidenced by higher concentrations compared to NRC fields (Supplemental Table S1), 

resulting in lower soil health P scores on cropped fields (Table 2) and contributing to lower 

overall soil health scores on Best fields compared to Worst for farms 8 and 9 in the Central 

region (Supplemental Fig. S1). 

Overall soil health scores for NRC fields when compared to Best and Worst were numerically 

higher and significantly higher, respectively (Table 2). This was driven chiefly by soil 

biological parameters, especially significantly higher SOM, POXC and PMN, which scored 

higher on NRC fields compared to cropped fields (Table 2). High levels of significance were 

found between Worst vs NRC field types for all biological measures, with NRC fields having 

higher scores. Among physical soil health parameters, NRC fields also scored significantly 

greater in AWC than Best and Worst fields. Although NRC fields scored numerically lower for 

SSR and significantly lower for SR compared to Best fields (Table 2), the NRC fields had living 

plant material and dense roots at sampling, making comparisons to cropped fields 

inappropriate. For chemical soil health parameters, no clear trend distinguished NRC fields 

from cropped fields, except higher CEC, which was only significantly different from the 

Worst fields (Table 2). 

Soil health test results by region 

Patterns in soil health scores differed by region (Fig. 4). The overall mean and the mean   

biological soil health scores among the three field types differed significantly in the North 

and Central regions. Means of physical parameters also differed significantly in the Central 

region. In both the North and Central regions, differences in overall soil health reflected 

those found in biological and physical categories. No differences occurred in overall or 

category means in the South (Fig. 4).  
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In the North region, Best fields scored significantly higher in biological and overall soil health 

than Worst fields (Fig.4). Among individual parameters, only PMN scored significantly higher 

on the Best field type compared to the Worst field (Fig. 5). However, the significantly higher 

overall score of Best compared to Worst fields resulted from numerically higher means for 

all other parameters for Best Fields in the North compared to Worst fields (Fig. 5).   

In the Central region between cropped field types, Best fields scored significantly higher for 

PMN and numerically higher for AS, AWC, SOM, and MinC (Fig. 5); however, overall soil 

health scores between these two field types were similar (Fig. 4). In the South, no 

differences occurred between means of cropped field types for any individual soil health 

parameter, parameter category or the overall soil health score (Figs. 4 and 5). Between 

cropped fields, AS, SSR, SR, and MinC were numerically greater on Best fields, while most 

biological and chemical parameters showed a less consistent contrast between these two 

field types.   

Across all regions, only PMN was significantly higher on Best Fields compared to Worst 

(Table 2). This difference in PMN scores was present in the North and Central regions but 

not in the South region. Contrasts between PMN on paired cropped fields for individual 

farms followed farmer field assessments except in the South (Supplemental Fig. S1), leading 

to no significant difference in the paired contrast for PMN overall (Table 2). 

The lowest scoring fields for overall soil health across all regions were the Worst fields in the 

North region (Fig. 4). All Worst fields of the North region scored in the bottom 25th 

percentile for AWC, SR, SSR, MinC and PMN (Fig. 5). Across all regions, AS, AWC, SOM and 

MinC were significantly higher on Best fields compared to Worst (Table 2), and among these 

parameters, MinC reflected the most consistent contrast between these field types (Fig.5, 

Supplemental Fig. S1).   

Across all regions, the NRC fields scored significantly higher in paired comparisons with Best 

and Worst fields for AWC, SOM, POXC, and PMN, and the NRC field also scored significantly 

higher than Worst field for MinC (Table 2). The NRC fields in the Central region had the 

highest overall soil health scores among all fields, which was mirrored in physical and 

biological categories (Fig. 4). For this region physical parameters AS and AWC, NRC fields 

scored significantly higher than Worst fields (Fig. 5). Biological metrics were numerically 

higher on NRC fields, with SOM and POXC significantly higher than both cropped field types 

(Fig. 5). In the North region, NRC fields scores were similar to Best fields in overall soil health 

but significantly higher than Worst fields (Fig. 4) with physical measurements of AS and 

AWC, and biological parameters SOM, POXC, and PMN, following this pattern (Fig. 5). In the 
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South region, overall soil health scores of NRC fields were not different than Best or Worst 

fields (Fig. 4).   

Soil carbon metrics 

Paired t-test analyses revealed that the Best fields had significantly greater SOM contents 

compared to the Worst fields when all regions were included in the analysis (p<0.01, Table 

2). On average, SOM values in Best fields were 13% greater than in the Worst fields (not 

shown). Similarly, MinC was significantly greater in the Best fields compared to the Worst 

fields when all regions were considered (p<0.05, Table 2), with MinC 45% greater in the Best 

fields compared to the Worst fields (not shown). In contrast, POXC values were similar 

between the Best and Worst fields in all regions. Thus, SOM and MinC results coincided with 

farmer-defined Best and Worst fields, while POXC did not distinguish between the two types 

of fields (Table 2).   

We calculated percent difference between Best and Worst fields to further compare the 

response of three different soil C tests (SOM, MinC, POXC) among the 3 regions (Fig. 6). 

Indicators with positive values matched farmers’ perceptions, based on their Best versus 

Worst field assessments. For a negative value, the indicator differed from the farmer field 

designation. Of the three metrics, SOM had the smallest mean percent difference between 

Best and Worst fields, where mean differences ranged from 2.1% (± 4.0) to 16.0% (± 2.3) 

across the three regions. The most sensitive test appeared to be MinC, with mean percent 

differences ranging from 1.6% (± 33.9) to 48.1% (±4.9). The small mean percent difference 

and large standard error in the Central region for MinC are the result of a large negative 

percent difference at farm 8 (Supplemental Fig. S2), while positive percent differences were 

reported at the other farms in the region. The poorest match with farmer perceptions 

occurred with POXC, with generally negative and small mean percent differences.   

DISCUSSION 

The development and validation of soil health metrics have occurred primarily in controlled 

field studies, with a focus on metrics’ sensitivities to different soil management practices. To 

serve as tools for farmers to manage for soil health, these tests should also capture 

meaningful differences across farmer fields. We sought to understand how soil health test 

results compared with farmer field assessments across three regions of Michigan with 

distinct soil types. We hypothesized that that physical and biological measures of soil health 

would better align with farmer field assessments compared to inorganic chemical 

parameters.     
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In general, on-farm soil health scores corresponded well with farmers’ assessments 

of their soil’s characteristics and performance, though specific soil health parameters varied 

in their capacity to distinguish between contrasting fields. Physical soil health indicators, 

particularly AS and AWC, successfully distinguished between farmer assessments of their 

cropped fields, with Best fields having significantly higher scores (Table 2 and S1). Biological 

indicators, which include soil C, also supported farmer assessments in discriminating among 

contrasting cropped fields, significantly so for measures of SOM and MinC. Inorganic 

chemical parameters related little if any to farmer field assessments. Our results show how 

specific sets of soil health metrics align with farmer knowledge, demonstrating how testing 

implementation and interpretation can better guide soil health management. 

The degree to which different soil health metrics followed farmer field assessments 

varied by region and thus soil type. Soil texture has a strong influence on the magnitude of 

some soil health parameters and thus how they are scored. For instance soils with 3% SOM 

may score near 100 if they are coarse but below 50 if fine-textured (Fine et al., 2017). In this 

survey, 92%  of soils were coarse textured (Table 1), classified as sands, sandy loams, or 

loamy sands (Soil Survey Division Staff, 1993), yet differences in soil texture and soil type 

still influenced soil health scores across regions. For example, regional differences in soil 

type affected the sensitivity of some parameters, such as compaction. On finer-textured 

soils in the Central region, cropped fields scored in the top half of the distribution (Fig. 5) for 

soil compaction, (i.e. SR and SSR reflected low compaction), but these two parameters 

poorly reflected farmer field assessments. By contrast, in the North and South, soils were 

more compacted, but SR and SSR corresponded better with farmer field assessments 

(Supplemental Fig. 1). Therefore, the usefulness of compaction scores to assess soil health 

differed by region.   

In addition, biological indicators differed in their ability to discriminate between 

farmer fields in different regions. For soils in the North and Central region, which had higher 

SOM (Fig. 5), this parameter better corresponded with cropped field assessments compared 

to the South region with lower SOM. Similarly, PMN scores aligned with farmer field 

assessments in North and Central regions, which had soils higher in SOM, but not in the 

South. Furthermore, even though PMN scores differed by field type in all three regions, it 

only reflected farmers’ field designations in the North and Central regions. This underscores 

the need to identify the specific parameters that are most useful for assessing soil health 

based on regional conditions. 

Comparing paired fields within a farm minimized variability due to soil type, and to some 

extent variable management of cropped fields across farms. Often, soil health parameter 
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comparisons are made among explicitly tested management factors (such as tillage practice 

or rotation) within one site. Paired contrasts of cropped fields across widely varying sites 

revealed the relative ability of parameters to distinguish soil health and correspond to 

farmer assessments of field performance. The NRC field served as a reference for 

characterizing soil health parameters of background soils as these farms had no previous 

soil health testing and experienced a range of soil management practices across farms 

(Fig.3). For example, the NRC paired comparisons indicated highly significant differences in 

soil health compared to cropped fields for AWC, SOM, POXC and PMN, and less clear 

differences for AS and MinC (Table 2). Even without the power of paired comparisons across 

farms, the NRC fields also reflected magnitude differences in parameters scores across 

regions (Fig. 5). 

For soil health assessments to be meaningful, they must reflect farmers’ 

understandings of field performance. Our results suggest that chemical soil health metrics 

do not align with farmers’ perceptions of field performance, in that P, K, pH and CEC did not 

significantly differ between Best and Worst fields (Fig. 5). One explanation is that these 

farmers already typically test and directly manage inputs to adjust soil pH, P and K levels. In 

fact on two farms excess P inputs contributed strongly to poorer overall soil health scores 

(Supplemental Fig. 1).  In contrast, physical and biological metrics significantly differed 

between Best and Worst fields and thus strongly aligned with farmer field assessments 

(Table 2). Every farmer in this study described some aspect of physical soil health, such as 

‘how the soil works,’ drainage, or soil compaction, to describe either favorable 

characteristics of Best fields or problematic conditions of Worst fields (Fig. 2). Across all 

regions, our results indicated that AWC best distinguished between cropped fields for 

physical soil health (Table 2), and in two regions, measures of soil compaction (SR and SSR) 

closely followed farmer assessments. Thus, in contrast to chemical metrics, physical soil 

health parameters offer commonalities between farmer experience and soil health testing 

by accurately distinguishing cropped fields, even when both fields scored relatively poorly. 

Biological indicators of soil health also strongly reflected farmers’ assessments of cropped 

fields (Table 2). The differences in field performance noted by farmers in our study support 

considerable research that has highlighted the importance of biological indicators for 

defining soil health (Culman et al., 2013; Veum et al., 2014; Wander et al., 2019). Our results 

demonstrate that some biological soil health parameters provide sufficient sensitivity to 

distinguish between field types, and align with farmer experience. 

Soil organic matter corresponded significantly with farmer field assessments, with 

differences of up to 16% between cropped field comparisons (Fig. 6), though less so in the 
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South region. Contrasts between cropped fields were even greater for MinC, with 

differences of up to 48% between the Best and Worst fields (Fig. 6), including on cropped 

fields in the South region. Indeed, MinC on Best fields did not differ from NRC fields in 

paired field comparisons, but was significantly lower on Worst fields (Table2). Notably, 

POXC was poorest at distinguishing between paired crop fields even though paired 

comparisons with NRC fields suggested highly significant sensitivity to contrasting 

management (Table 2).  

The greater contrast in MinC values across cropped field types could reflect its sensitivity to 

management practices, which can increase MinC (Caudle et al., 2020). Practices such as 

addition of composted material and conservation tillage can favor C stabilization and higher 

POXC, while increased tillage, cover cropping, and manure addition favor MinC (Hurisso et 

al., 2016). During in-depth interviews, farmers noted their use of a variety of these 

practices, with some trends by region; for instance, manure addition and reduced tillage 

were present in the Central region, while there was comparatively more tillage and use of 

cover crops in the North and South regions (Figure 3). Indeed, variable practices occurred 

within farms on different field types, indicating distinct management decisions for separate 

fields. Complex interactions between field management decisions, soil type and different 

indicators of soil C, highlight the need to increase precision of MinC by standardizing 

measurement protocols (Wade et al., 2018). Our results indicate that the alignment of soil 

health metrics such as MinC with farmer assessments of field performance make this an 

important soil health indicator on farms especially in coarse textured soils. 

To our knowledge, no prior study has compared the sensitivity of POXC and MinC to farmer 

assessments of field performance. Of the three metrics related to soil C, POXC did not reveal 

significant differences between the Best and Worst fields and also had the least accurate 

correspondence among biological parameters for reflecting farmers’ field assessments. In 

contrast, MinC best captured field variability and was well aligned with farmers’ 

characterizations of their fields, suggesting that MinC is a more meaningful metric for 

assessing field management decisions in the regions sampled. This is not surprising 

considering that recent research has demonstrated that MinC and POXC are indicators of 

different soil C processes (Hurisso et al., 2016; Morrow et al., 2016; Sprunger et al., 2019). 
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While both are considered indicators of different labile C fractions, MinC reflects microbial 

stimulation of CO2 production following the re-wetting of soils (Franzluebbers et al., 2000), 

and thus it is a strong indicator of nutrient release and potential key predictor of agronomic 

performance (Culman et al., 2013; Sprunger et al., 2019). In contrast, while POXC is strongly 

correlated to SOM, it is associated with smaller and heavier particulate organic C fractions 

(Culman et al., 2012), which are often physically protected from microbial decomposition, 

and could demonstrate early indications of soil C stabilization.  

CONCLUSIONS 

Soil health testing assesses biological, physical, and chemical attributes to ultimately guide 

the sustainable management of farm fields. Whether soil health tests align with farmers’ 

own experience of agronomic performance, may ultimately influence their impact on farm 

management practices. Results demonstrate that on-farm soil health testing can effectively 

distinguish differently performing fields across regions and can inform and strengthen 

farmers’ knowledge of their fields. While individual soil health parameters varied among 

regions, patterns of overall soil health scores were consistent with farmer assessments of 

Best versus Worst fields. That inorganic chemical test parameters did not track with other 

metrics of soil health or farmer assessments of their fields may in part be due to prior 

application of fertilizers and other inputs that remove most nutrient deficiencies and adjust 

pH. In contrast, physical and biological soil health parameters better captured variability in 

soil function and aligned with farmer perceptions, highlighting an entry point for ecological 

management strategies through testing.  

While SOM values were consistently greater for the Best fields for all regions, MinC showed 

a better capacity to distinguish between farmers’ field assessments of cropped fields, 

especially in coarser soils. Measures of POXC did not consistently align with farmer field 

designations. POXC is an indicator of more stabilized soil C fractions, and MinC of nutrient 

release, thus these metrics likely differ in their capacity to distinguish between a farmer’s 

Best and Worst fields. 

Soil health test results are more meaningful when merged with farmer knowledge. Given 

that soil health metrics vary by region and soil type, a participatory approach can inform 
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testing protocols and interpretation to improve management practices and target specific 

constraints on fields. Combining soil health test results and farmer knowledge should 

facilitate the implementation of soil health management practices, as well as guide outreach 

and on-farm research questions. 

SUPPLEMENTAL MATERIAL 

Table S1 presents mean and standard deviation of indicator values used to generate soil 

health scores, and results from t-tests used to compare means of different paired farmer 

fields for each soil health indicator. Table S2 present examples of direct quotes from farmer 

interviews used to summarize field assessments in Figure 2. Supplemental Figure S1 present 

differences in soil health scores on individual farms between Best and Worst fields, for each 

parameter tested and for means of physical, biological, chemical and overall mean soil 

health scores. Supplemental Figure S2 presents the SOM, MinC, and POXC values for the 

Best and Worst fields of each individual participant farm.  
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Fig. 1. Map of Michigan with sampled regions in North, Central and South shaded in dark 

gray. 



 

 

 

This article is protected by copyright. All rights reserved. 

24 

 

 

Fig. 2. Rationale stated by farmers characterizing Best fields (top, in black) and Worst fields 

(bottom, in gray) in each region, and the number of farmers (right column) who assessed 

each field type based on each select criterion.  
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Fig. 3. Management practices for Best fields (in black) and Worst fields (in gray) for each 

farm and region as stated by farmers. Where cells are split diagonally, both field types 

received the same management. Farmers used either no-till practices or chisel plow, or 

some combination depending on the crop and year.  C=corn, S=soybean, W=wheat. Cover 

crop use indicates regular use or some prior use of cover crops during recent management. 

Manure use indicates regularly used in current management or a known history of inputs. 

Hatched squares identify land use of not in row crop (NRC) field comparisons for each farm. 
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Fig. 4 Soil health parameter means with standard errors for field type and region, shown 

separately for biological, physical, chemical parameters, and the overall soil health score. 

Where field type was significant in ANOVA (P<0.05), different letters indicate significant 

differences between treatments using Tukey’s HSD. 
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Fig. 5 Soil health parameter means with standard error for field type and region by 

individual parameter (listed on right of panels). Where field type was significant in ANOVA 

(P<0.05), different letters indicate significant differences between treatments using Tukey’s 
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HSD. Abbreviation: AS, aggregate stability; AWC, available water capacity; SR, surface 

resistance; SSR, subsurface resistance; SOM, soil organic matter; POXC, permanganate 

oxidizable C; MinC, mineralizable carbon; PMN, potentially mineralizable N; CEC, cation 

exchange capacity.  

 

Fig 6. Mean percent difference in soil C indicators (percent OM, MinC, and POXC) between 

Best and Worst fields selected by farmers. 

Tables 

Table 1. Sand content, textural class designation, field area, soil series and soil classification 
for each field type (Best, Worst, NRC) in all regions with associated latitude and longitude. 

Region 

 

Far
m 

# 

 Field 
type 

Sa
nd 

% 

Textural 
class 

 

Ar
ea 

ha 

Soil 
Series 

† 

Soil Classification 

North  

45°42’N, 
83°81’W 

1 
 Best 88 

Loamy 
sand 

11 Emmet 
Coarse-loamy, mixed, active, frigid 
Inceptic Hapludalfs 

 Worst 82 Loamy 6 Emmet Coarse-loamy, mixed, active, frigid 



 

 

 

This article is protected by copyright. All rights reserved. 

29 

 

sand Inceptic Hapludalfs 

 NRC 85 
Loamy 
sand 

6 
Cheboy

gan 
Coarse-loamy, mixed, active, frigid Alfic 
Haplorthods 

2 

 Best 81 
Loamy 
sand 

12 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

 Worst 81 
Loamy 
sand 

10 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

 NRC 83 
Loamy 
sand 

6 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

3 

 Best 74 
Sandy 
loam 

6 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

 Worst 64 
Sandy 
loam 

16 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

 NRC 82 
Loamy 
sand 

5 Omena 
Coarse-loamy, mixed, active, frigid Haplic 
Glossudalfs 

4 

 Best 70 
Sandy 
loam 

3 
Ossine

ke 
Fine-loamy, mixed, semiactive, frigid 
Oxyaquic Glossudalfs 

 Worst 71 
Sandy 
loam 

2 
Ossine

ke 
Fine-loamy, mixed, semiactive, frigid 
Oxyaquic Glossudalfs 

 NRC 76 
Sandy 
loam 

5 Slade 
Fine-loamy, mixed, active, frigid Aquic 
Glossudalfs 

Central  

43°60’N, 
84°76’W 

5 

 Best 42 Loam  28 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

 Worst 38 Loam  26 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

 NRC 60 
Sandy 
loam 

1 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

6 

 Best 63 
Sandy 
loam 

21 
Conove

r 
Fine-loamy, mixed, active, mesic Aquic 
Hapludalfs 

 Worst 71 
Sandy 
loam 

17 Parkhill  
Fine-loamy, mixed, semiactive, nonacid, 
mesic Mollic Epiaquepts 

 NRC 71 
Sandy 
Loam 

2 Parkhill 
Fine-loamy, mixed, semiactive, nonacid, 
mesic Mollic Epiaquepts 
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7 

 Best 66 
Sandy 
loam 

5 
Conove

r 
Fine-loamy, mixed, active, mesic Aquic 
Hapludalfs 

 Worst 80 
Loamy 
sand 

12 
Conove

r 
Fine-loamy, mixed, active, mesic Aquic 
Hapludalfs 

 NRC 78 
Loamy 
sand 

7 Parkhill 
Fine-loamy, mixed, semiactive, nonacid, 
mesic Mollic Epiaquepts 

8 

 Best 66 
Sandy 
loam 

14 
Ziegenf

uss 
Fine, mixed, semiactive, nonacid, mesic 
Mollic Epiaquepts 

 Worst 64 
Sandy 
loam 

16 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

 NRC 91 Sand 
0.
5 

Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

9 

 Best 86 
Loamy 
sand 

12 
Oneka

ma 
Fine, mixed, active, mesic Haplic 
Glossudalfs 

 Worst 71 
Sandy 
loam 

16 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

 NRC 45 Loam 2 Ithaca 
Fine, mixed, semiactive, mesic Aquic 
Glossudalfs 

South  

42°21’N, 
85°89’W 

10 

 Best 82 
Loamy 
sand 

2 Coloma Mixed, mesic Lamellic Udipsamments 

 Worst 83 
Loamy 
sand 

6 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 NRC 83 
Loamy 
sand 

4 Coloma Mixed, mesic Lamellic Udipsamments 

11 

 Best 65 
Sandy 
loam 

12 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 Worst 63 
Sandy 
loam 

9 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 NRC 65 
Sandy 
Loam 

8 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

12 
 Best 85 

Loamy 
sand 

13 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 Worst 92 Sand 3 Oshte Coarse-loamy, mixed, active, mesic Typic 
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mo Hapludalf 

 NRC 86 
Loamy 
sand 

2 Riddles 
Fine-loamy, mixed, active, mesic Typic 
Hapludalfs 

13 

 Best 85 
Loamy 
sand 

15 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 Worst 81 
Loamy 
sand 

2 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

 NRC 86 
Loamy 
sand 

2 
Oshte

mo 
Coarse-loamy, mixed, active, mesic Typic 
Hapludalf 

† Represents the dominant soil series, by area, in each field.  

Table 2. Mean differences in soil health scores from paired t-tests between all combinations 
of field types (Best, Worst, Non Row Crop [NRC]) for all soil health parameters and means of 
overall physical, biological (including C) and inorganic chemical categories, and overall soil 
health.  

 

 Field Comparison  

Parameter†        Best vs. Worst          Best vs. NRC Worst vs. NRC 

 

AS 17.7* 1.5 -17.1 

AWC 34.3** -23.5*  -39.5** 

SR   8.8 18.3* 8.8 

SSR   3.3 16.4 7.3 

SOM 11.8** -15.1* -27.9** 

POXC   0.6 -30.2* -34.0** 

MinC 20.4* -3.8 -25.5** 

PMN 11.0 -30.2* -38.5** 

pH   4.0 3.9 3.9 

P             -10.2 -5.2 6.6 

K  -2.9 -12.5 -8.1 
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CEC   4.4 -8.5 -15.2* 

Physical 10.9** 3.2 -10.7 

Biological 11.0* -19.8*** -31.5*** 

Chemical  -1.2 -5.6 -3.2 

Overall Health   6.9* -7.4 -14.9*** 

†AS, aggregate stability; AWC, available water capacity; SR, surface resistance; SSR, 
subsurface resistance; SOM, soil organic matter; POXC, permanganate oxidizable carbon; 
MinC, mineralizable carbon; PMN, potentially mineralizable nitrogen CEC; cation exchange 
capacity. 

*Significant at the .05 probability level.  

**Significant at the .01 probability level.  

***Significant at the .001 probability level. 

 

 

 

 

 


