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We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and

Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-

dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the pro-

hibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art

scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators,

notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that
the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is

independent of the parameter dimension. Themean of the posterior is approximated by theMAP point, which

is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The pos-

terior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the

MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approxi-

mation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib
makes all of these advanced algorithms easily accessible to domain scientists and provides an environment

that expedites the development of new algorithms.
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1 INTRODUCTION

Recent years have seen tremendous growth in the volumes of observational and experimental data
that are being collected, stored, processed, and analyzed. The central question that has emerged is:
How do we extract knowledge and insight from all of this data? When the data correspond to ob-
servations of (natural or engineered) systems and these systems can be represented by mathemat-
ical models, this knowledge-from-data problem is fundamentally a mathematical inverse problem.
That is, given (possibly noisy) data and (a possibly uncertain) model, the goal becomes to infer pa-
rameters that characterize the model. Inverse problems abound in all areas of science, engineering,
technology, and medicine. As just a few examples of model-based inverse problems, we may infer
the initial condition in a time-dependent partial differential equation (PDE) model, a coefficient
field in a subsurface flow model, the ice sheet basal friction field from satellite observations of sur-
face flow, the earth structure from reflected seismic waves, subsurface contaminant plume spread
from crosswell electromagnetic measurements, internal structural defects from measurements of
structural vibrations, ocean state from surface temperature observations, and so on.
Typically, inverse problems are ill-posed and suffer from nonunique solutions; simply put, the

data—even when they are large-scale—do not provide sufficient information to fully determine
the model parameters. This is the usual case with PDE models that have parameters representing
fields such as boundary conditions, initial conditions, source terms, or heterogeneous coefficients.
Nonuniqueness can stem from noise in the data or model, from sparsity of the data, from
smoothing properties of the map from input model parameters to output observables or from its
nonlinearity, or from intrinsic redundancy in the data. In such cases, uncertainty is a fundamental

feature of the inverse problem. Therefore, not only do we wish to infer the parameters, but also we
must quantify the uncertainty associated with this inference, reflecting the degree of “confidence”
we have in the solution.
Methods that facilitate the solution of Bayesian inverse problems governed by complex PDE

models require a diverse and advanced background in applied mathematics, scientific computing,
and statistics to understand and implement, e.g., Bayesian inverse theory, computational statis-
tics, inverse problems in function space, adjoint-based first- and second-order sensitivity analysis,
and variational discretization methods. In addition, to be efficient, these methods generally require
first and second derivative (of output observables with respect to input parameters) information
from the underlying forward PDE model, which can be cumbersome to derive. In this article, we
present hIPPYlib, an Inverse Problems Python library (hIPPYlib), an extensible software frame-
work aimed at overcoming these challenges and providing capabilities for additional algorithmic
developments for large-scale deterministic and Bayesian inversion.
hIPPYlib builds on FEniCS (a parallel finite element element library) [Logg et al. 2012] for the

discretization of the PDEs, and on PETSc [Balay et al. 2014] for scalable and efficient linear al-
gebra operations and solvers. Hence, it is easily applicable to medium- to large-scale problems.
One of the main features of this library is that it clearly displays and utilizes specific aspects from
the model setup to the inverse solution, which can be useful not only for research purposes but
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also for learning and teaching.1 In the hIPPYlib examples, we show how to handle various PDE
models and boundary conditions and illustrate how to implement prior and log-likelihood terms
for the Bayesian inference. hIPPYlib is implemented in a mixture of C++ and Python and has been
released under the GNU General Public License version 2 (GPL). The source codes can be down-
loaded from https://hippylib.github.io. Below we summarize the main algorithmic and software
contributions of hIPPYlib.

Algorithmic contributions.

(1) A single-pass randomized eigensolver for generalized symmetric eigenproblems that is
more accurate than the one proposed in Saibaba et al. [2016].

(2) A new scalable sampling algorithm for Gaussian random fields that exploits the structure
of the given covariance operator. This extends the approach proposed in Croci et al. [2018]
to covariance operators defined as the inverse of second-order differential operators as
opposed to the identity operator.

(3) A scalable algorithm to estimate the pointwise variance of Gaussian random fields us-
ing randomized eigensolvers. For the same computational cost this algorithm allows for
more accurate estimates than the stochastic estimator proposed in Bekas et al. [2007]. Our
method drastically reduces the variance of the estimator at a cost of introducing a small
bias.

Software contributions.

(1) A modular approach to define complex inverse problems governed by (possibly nonlinear
or time-dependent) PDEs. hIPPYlib automates the computation of higher-order deriva-
tives of the parameter-to-observable map for forward models and observation processes
defined by the user through FEniCS.

(2) Implementation of adjoints and Hessian actions needed to solve the deterministic inverse
problem and to compute the maximum a posteriori (MAP) point of the Bayesian inverse
problem. In addition, to test gradients and theHessian action, hIPPYlib incorporates finite
difference tests, which is an essential component of the verification process.

(3) A robust implementation of the inexact Newton-conjugate gradient (Newton-CG)
algorithm together with line search algorithms to guarantee global convergence of the
optimizer.

(4) Implementation of randomized algorithms to compute the low-rank factorization of the
misfit part of the Hessian.

(5) Scalable algorithms to construct and evaluate the Laplace approximation of the posterior.
(6) Sampling capabilities to generate realizations of Gaussian random fields with a prescribed

covariance operator.
(7) An estimation of the pointwise variance of the prior distribution and Laplace approxima-

tion to the posterior.

Numerous toolkits and libraries for finite element computations based on variational forms are
available, for instance, COMSOL Multiphysics [COMSOL AB 2009], deal.II [Bangerth et al.
2007], dune [Bastian et al. 2008], FEniCS [Langtangen and Logg 2017; Logg et al. 2012], and

1hIPPYlib is currently used to teach several graduate-level classes on inverse problems at various universities, includ-

ing the University of Texas at Austin, University of California, Merced, Washington University in St. Louis, New York

University, and North Carolina State. hIPPYlib has also been demonstrated with hands-on interactive sessions at work-

shops and summer schools, such as the 2015 ICERM IdeaLab, the 2016 SAMSI Optimization Program Summer School, and

the 2018 Gene Golub SIAM Summer School.
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Sundance, a package from Trilinos [Heroux et al. 2005]. While these toolkits are usually tailored
towards the solution of PDEs and systems of PDEs, they cannot be used straightforwardly for the
solution of inverse problems with PDEs. However, several of them are sufficiently flexible to be
extended for the solution of inverse problems governed by PDEs. Nevertheless, some knowledge
of the structure underlying these packages is required since the optimality systems arising in in-
verse problems with PDEs often cannot be solved using generic PDE solvers, which do not exploit
the optimization structure of the inverse problems. Farrell et al. [2013] present dolfin-adjoint, a
project that also builds on FEniCS and derives discrete adjoints from a forwardmodel written in the
Python interface to dolfin using a combination of symbolic and automatic differentiation. While
dolfin-adjoint could be used to solve deterministic inverse problems, it lacks the framework for
Bayesian inversion. In addition, we avoid using the adjoint capabilities of dolfin-adjoint since
this does not allow the user to have full control over the construction of derivatives. Ruthotto et al.
[2017] present jInv, a flexible parallel software for parameter estimation with PDE forward mod-
els. The main limitations of this software are that it is restricted to deterministic inversion and that
the user needs to provide the discretization for both the forward and adjoint problems. Finally, the
Rapid Optimization Library (ROL) [Kouri et al. 2018] is a flexible and robust optimization pack-
age in Trilinos for the solution of optimal design, optimal control, and deterministic inverse
problems in large-scale engineering applications. ROL implements state-of-the-art algorithms for
unconstrained optimization, constrained optimization, and optimization under uncertainty, and
exposes an interface specific for optimization problems with PDE constraints. The main limitation
is that the user has to interface with other software packages for the definition and implementation
of the forward and adjoint problems. There also exist several general purpose libraries addressing
uncertainty quantification (UQ) and Bayesian inverse problems. Among the most prominent we
mention QUESO [McDougall et al. 2017; Prudencio and Schulz 2012], DAKOTA [Adams et al. 2009;
Eldred et al. 2002], PSUADE [Tong 2017], and UQTk [Debusschere et al. 2017]. All of these libraries
provide Bayesian inversion capabilities, but the underlying methods do not fully exploit the struc-
ture of the problem or make use of derivatives and as such are not intended for high-dimensional
problems. Finally, MUQ [Parno et al. 2015] provides powerful Bayesian inversion models and algo-
rithms but expects forwardmodels to come equippedwith gradients/Hessians to permit large-scale
solution.
In summary, to the best of our knowledge, there is no available software (open source or oth-

erwise) that provides all the discretization, optimization, and statistical tools to enable scalable
and efficient solution of deterministic and Bayesian inverse problems governed by complex PDE
forward models. hIPPYlib is the first software framework that allows to tackle this specific class
of inverse problems by facilitating the construction of forward PDE models equipped with ad-
joint/derivative information, providing state-of-the-art scalable optimization algorithms for the
solution of the deterministic inverse problem and/or MAP point computation, and integrating
tools for characterizing the posterior distribution.
The article is structured as follows. Section 2 gives a brief overview of the deterministic and

Bayesian formulation of inverse problems in an infinite-dimensional Hilbert space setting and
addresses the discretization of the underlying PDEs using the finite element method. Section 3
contains an overview of the design of the hIPPYlib software and of its components. Section 4
provides a detailed description of the algorithms implemented in hIPPYlib to solve the deter-
ministic and linearized Bayesian inverse problem, namely the inexact Newton-CG algorithm, the
single- and double-pass randomized algorithms for the solution of generalized hermitian eigen-
problems, scalable sampling techniques for Gaussian random fields, and stochastic algorithms to
approximate the pointwise variance of the prior and posterior distributions. Section 5 demon-
strates hIPPYlib’s capabilities for deterministic and linearized Bayesian inversion by solving two
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representative inverse problems: inversion for the coefficient field in an elliptic PDE model and for
the initial condition in an advection-diffusion PDE model. Last, Section 6 contains our concluding
remarks.

2 INFINITE-DIMENSIONAL DETERMINISTIC AND BAYESIAN INVERSE

PROBLEMS IN HIPPYLIB

In what follows, we provide a brief account of the deterministic [Engl et al. 1996; Vogel 2002] and
Bayesian formulation [Kaipio and Somersalo 2005; Tarantola 2005] of inverse problems. Specifi-
cally, we adopt the infinite-dimensional Bayesian inference framework [Stuart 2010], and we refer
to [Alexanderian et al. 2014, 2016; Bui-Thanh et al. 2013; Petra et al. 2014] for elaborations associ-
ated with discretization issues.

2.1 Deterministic Inverse Problems Governed by PDEs

The inverse problem consists of using available observations d to infer the values of the unknown
parameter field2m that characterize a physical process modeled by PDEs. Mathematically this in-
verse relationship is expressed as

d = F (m) + η, (1)

where the map F :M → Rq is the so-called parameter-to-observable map. This mapping can be
linear or nonlinear. In the applications targeted in hIPPYlib M ⊆ L2 (D), where D ⊂ Rd is a
bounded domain, and evaluations of F involve the solution of a PDE given m, followed by the
application of an observation operator to extract the observations from the state. That is, intro-
ducing the state variable u ∈ V for a suitable Hilbert spaceV of functions defined onD, the map
F is defined as

F (m) = B (u), s.t. r (u,m) = 0, (2)

where B : V → Rq is a (possibly nonlinear) observation operator, and r : V ×M → V∗—
referred as the forward problem from now on—represents the PDE problem. The observations d
contain noise due tomeasurement uncertainties andmodel errors [Tarantola 2005]. In Equation (1),
this is captured by the additive noise η, which in hIPPYlib is modeled as η ∼ N (0, Γnoise),
i.e., a centered Gaussian at 0 with covariance Γnoise. A significant difficulty when solving
infinite-dimensional inverse problems is that typically these are not well posed (in the sense of
Hadamard [Tikhonov and Arsenin 1977]). To overcome the difficulties due to ill-posedness, we
regularize the problem; i.e., we include additional assumptions on the solution, such as smooth-
ness. The deterministic inverse problems in hIPPYlib are regularized via Tikhonov regulariza-
tion, which penalizes oscillatory components of the parameterm, thus restricting the solution to
smoothly varying fields [Engl et al. 1996; Vogel 2002].

A deterministic inverse problem is therefore formulated as follows: given finite-dimensional
noisy observations d ∈ Rq , one seeks to find the unknown parameter fieldm that best reproduces
the observations. Mathematically this translates into the following nonlinear least-squares mini-
mization problem:

min
m∈M

J (m) :=
1

2
��F (m) − d��2Γ−1noise

+ R (m), (3)

where the first term in the cost functional, J (m), represents the misfit between the observations,
d , and that predicted by the parameter-to-observable map F (m), weighted by the inverse noise
covariance Γ−1noise. The regularization term, R (m), imposes regularity on the inversion fieldm, such

2hIPPYlib also supports deterministic and Bayesian inversion for a finite-dimensional set of parameters; however, for ease

of notation, in the present work we only present the infinite-dimensional case.
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as smoothness. As explained above, in the absence of such a term, the inverse problem is ill-posed;
i.e., its solution is not unique and is highly sensitive to errors in the observations [Engl et al. 1996;
Vogel 2002].
As we will explain in Section 4.1, to efficiently solve the nonlinear least-squares problem (Equa-

tion (3)) with parameter-to-observable-map F implicitly defined as in Equation (2), first and sec-
ond derivative information are needed. Using the Lagrangian formalism [Tröltzsch 2010], abstract
expressions for the gradient and Hessian action are obtained below, and we refer to Section 5 for
concrete examples. To this aim, we introduce an auxiliary variable p ∈ V , from here on referred
to as the adjoint, and write the Lagrangian functional

LG (u,m,p) := 1

2
‖B (u) − d ‖2

Γ−1noise

+ R (m) + V〈p, r (u,m)〉V∗ ,

where V〈·, ·〉V∗ denotes the duality pair between V and its adjoint. The gradient for the cost
functional (Equation (3)) in an arbitrary direction m̃ ∈ M evaluated atm =m0 ∈ M is the Gâteaux
derivative of L with respect tom, and reads

(G (m0),m̃) = (Rm (m0),m̃) + V〈p0, rm (u0,m0)[m̃]〉V∗ , ∀m̃ ∈ M, (4)

where (Rm (m0),m̃) ∈ R denotes the Gâteaux derivative of R with respect tom in the direction m̃
evaluated atm =m0, and rm (u0,m0)[m̃] ∈ V∗ the Gâteaux derivative of r with respect tom in the
direction m̃ evaluated at u = u0,m =m0. Here u0, p0 are obtained by setting to zero the derivatives
of L with respect to p and u; specifically, u0 solves the forward problem

V〈p̃, r (u0,m0)〉V∗ = 0 ∀p̃ ∈ V, (5)

and p0 solves the adjoint problem

V〈p0, ru (u0,m0)[ũ]〉V∗ + 〈Bu (u0)[ũ],B (u) − d〉Rq = 0, ∀ũ ∈ V . (6)

In a similar way, to derive the expression for the Hessian action in an arbitrary direction m̂ ∈ M,
we introduce the second-order Lagrangian functional

LH (u,m,p; û,m̂, p̂) := (G (m),m̂)

+V 〈p̂, r (u,m)〉V∗
+V 〈p, ru (u,m)[û]〉V∗ + 〈Bu (u)[û],B (u) − d〉Rq ,

(7)

where the first term is the gradient expression, the second term stems from the forward problem,
and the last two terms represent the adjoint problem. Then, the action of the Hessian in a direction

m̂ ∈ M evaluated atm =m0 is the variation of LH with respect tom and reads

(m̃,H (m0)m̂) = (m̃,Rmm (m0)[m̂]) + (p0, rmm (u0,m0)[m̃,m̂])

+V 〈p̂, rm (u0,m0)[m̃]〉V∗ +V 〈p0, rum (u0,m0)[û,m̃]〉V∗ , ∀m ∈ M .
(8)

Here u0, p0 are the solution of the forward and adjoint problems (Equations (5) and (6)), respec-
tively. The incremental state û and incremental adjoint p̂ solve the so-called incremental forward

and incremental adjoint problems, which are obtained by setting to zero variations of LH with
respect to p and u, respectively. In Appendix A, we present a Newton-type algorithm to minimize
Equation (3) that uses the expression for the gradient (Equation (4)) and Hessian action (Equa-
tion (8)) derived here.
Finally, we note that the solution of a deterministic inverse problem based on regularization is a

point estimate ofm, which solves Equation (1) in a least-squares sense. A systematic integration of
the prior information on the model parameters and uncertainties associated with the observations
can be achieved using a probabilistic point of view, where the prior information and noise model
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are represented by probability distributions. In the following section, we describe the probabilis-
tic formulation of the inverse problem via a Bayesian framework, whose solution is a posterior
probability distribution form.

2.2 Bayesian Inversion in Infinite Dimensions

In the Bayesian formulation in infinite dimensions, we state the inverse problem as a problem of
statistical inference over the space of uncertain parameters, which are to be inferred from data
and a physical model. In this setup, in contrast to the finite-dimensional case, there is no Lebesgue
measure onM; the infinite-dimensional Bayes formula is given by

dμpost

dμprior
∝ πlike (d |m). (9)

Here, dμpost/dμprior denotes the Radon-Nikodym derivative [Williams 1991] of the posterior mea-
sure μpost with respect to μprior, and πlike (d |m) denotes the data likelihood. Conditions under which
the posterior measure is well defined and Equation (9) holds are given in detail in Stuart [2010].

The noise model and the likelihood. In our hIPPYlib framework, we assume an additive noise
model, d = F (m) + η, where η ∼ N (0, Γnoise) is a centered Gaussian on Rq . This implies

πlike (d |m) ∝ exp{−Φ(m)}, (10)

where Φ(m) = 1
2 ‖F (m) − d ‖2

Γ−1noise

denotes the negative log-likelihood.

The prior. For many problems, it is reasonable to choose the prior to be Gaussian, i.e., m ∼
N (mpr,Cprior). This implies

dμprior (m) ∝ exp
{
− 1

2
‖m −mpr‖2C−1prior

}
. (11)

If the parameter represents a spatially correlated field defined on D ∈ Rd , the prior covariance
operator Cprior usually imposes smoothness on the parameter. This is because rough components
of the parameter field typically cannot be inferred from the data and must be determined by the
prior to result in a well-posed Bayesian inverse problem.
In hIPPYlib we use elliptic PDE operators to construct the prior covariance, which allows

us to capitalize on fast, optimal complexity solvers. More precisely, the prior covariance opera-

tor is the inverse of the ν th power (ν > d
2 ) of a Laplacian-like operator, namely Cprior := A−ν =

(−γ Δ + δI )−ν , where γ and δ > 0 control the correlation length ρ and the pointwise variance σ 2

of the prior operator. Specifically, ρ—empirically defined as the distance ρ for which the two-point

correlation coefficient is 0.1—is proportional to
√
γ/δ , and σ 2 is proportional to δ−ν ρ−d (see, e.g..

Lindgren et al. [2011], where exact expressions for ρ and σ 2 as functions of γ and δ are derived
under the assumption of unbounded domainD and constant coefficients γ and δ ). The coefficients
γ and δ can be constant (in which case the prior is stationary) or spatially varying. In addition, one
can consider an anisotropic diffusion operator A = −γ ∇ · (Θ∇) + δI , with Θ a symmetric posi-
tive definite (s.p.d.) tensor that models, for instance, stronger correlations in a specific direction.
These choices of prior ensure that Cprior is a trace-class operator, guaranteeing bounded pointwise
variance and a well-posed infinite-dimensional Bayesian inverse problem [Bui-Thanh et al. 2013;
Stuart 2010].
The posterior. Using the expression for the likelihood function (Equation (10)) and prior distri-

bution (Equation (11)) , the posterior distribution in Equation (9) reads

dμpost ∝ exp
{
− 1

2
‖F (m) − d ‖2

Γ−1noise

− 1

2
‖m −mpr‖2C−1prior

}
. (12)
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The MAP pointmMAP is defined as the parameter field that maximizes the posterior distribution. It
can be obtained by solving the following deterministic optimization problem:

mMAP := argmin
m∈M

(− logdμpost (m)) = argmin
m∈M

1

2
‖F (m) − d ‖2

Γ−1noise

+
1

2
‖m −mpr‖2C−1prior

. (13)

We note that the prior information plays the role of Tikhonov regularization in Equation (3); in fact,
the deterministic optimization problem (Equation (3)) is the same as Equation (13) for the choice
R(m) = 1

2 ‖m −mpr‖2C−1prior

. The Hessian H (mMAP) of the negative log-posterior evaluated at mMAP

plays a fundamental role in quantifying the uncertainty in the inferred parameter. In particular,
this indicates which directions in the parameter space are most informed by the data [Bui-Thanh
et al. 2013]. We note that when F is linear, due to the particular choice of prior and noise model,
the posterior measure is Gaussian, N (mMAP,Cpost) with [Stuart 2010, Section 6.4],

Cpost = H−1 = (F ∗Γ−1noiseF + C
−1
prior)

−1, mMAP = Cpost (F ∗Γ−1noised + C
−1
priormpr), (14)

where F ∗ : Rq →M is the adjoint of F .
In the general case of nonlinear parameter-to-observable map F , the posterior distribution is

not Gaussian. However, under certain assumptions on the noise covariance Γnoise, the number q of
observations, and the regularity of the parameter-to-observable map F , the Laplace approximation

[Evans and Swartz 2000; Press 2003; Stigler, S. M. 1986; Tierney and Kadane 1986; Wong 2001]
can be invoked to estimate posterior expectations of functionals of the parameterm. Specifically,
assuming that the negative log-likelihood Φ(m) is strictly convex in a neighborhood ofmMAP

3, the
Laplace approximation to the posterior constructs a Gaussian distribution μ̂post,

μ̂post ∼ N
(
mMAP,H (mMAP)

−1
)
, (15)

centered atmMAP and with covariance operator

H (mMAP)
−1 = (Hmisfit (mMAP) + C−1prior)

−1. (16)

Here Hmisfit denotes the Hessian of the negative log-likelihood evaluated at mMAP (see Section 5
for examples of the derivation of the action of Hmisfit using variational calculus and Lagrangian
formalism).
The Laplace approximation above is an important tool in designing scalable and efficient meth-

ods for Bayesian inference and UQ implemented in hIPPYlib. It has been studied in the context
of PDE-based inverse problems to draw approximate samples and compute approximate statis-
tics (such as the pointwise variance) in Bui-Thanh et al. [2013]. Likewise, it has been exploited in
Petra et al. [2014] to efficiently explore the true posterior distribution by generating high-quality
proposals for Markov chain Monte Carlo algorithms, in Cui et al. [2014] to construct likelihood
informed subspaces that allow for optimal dimension reduction in Bayesian inference problems,
and in Chen et al. [2017] and Schillings et al. [2016] to construct a dimension-independent sparse
grid to evaluate posterior expectations. It has also been invoked in Isaac et al. [2015] for scalable
approximation of the predictive posterior distribution of a scalar quantity of interest. Finally, its
use was advocated in Alexanderian et al. [2016] and Long et al. [2013, 2015a, 2015b] to approximate
the solution of Bayesian optimal experimental design problems.

3To guarantee a positive definite posterior covariance operator also in the case of nonlocally convex negative log-likelihood

Φ(m), the inverse of the Gauss-Newton Hessian of the negative log-posterior can be used instead. This corresponds to

linearizing the parameter-to-observable map F aroundmMAP.
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2.3 Discretization of the Bayesian Inverse Problem

We present a brief discussion of the finite-dimensional approximations of the prior and the pos-
terior distributions; a lengthier discussion can be found in Bui-Thanh et al. [2013]. We start with
a finite-dimensional subspaceMh ofM ⊆ L2 (D) originating from a finite element discretization
with continuous Lagrange basis functions {ϕ j }nj=1 [Becker et al. 1981; Strang and Fix 1988]. The

approximation of the inversion parameter functionm ∈ M is thenmh =
∑n

j=1mjϕ j ∈ Mh , and, in

what follows,m = (m1, . . . ,mn )
T ∈ Rn denotes the vector of the coefficients in the finite element

expansion ofmh .
The finite-dimensional spaceMh inherits the L2-inner product. Thus, inner products between

nodal coefficient vectors must be weighted by amassmatrixM ∈ Rn×n to approximate the infinite-
dimensional L2-inner product. ThisM-weighted inner product is denoted by 〈· , ·〉M, where

〈
y,z
〉
M
=

yTMz andM is the (symmetric positive definite) mass matrix

Mi j =

∫
D
ϕi (x )ϕ j (x ) dx , i, j = 1, . . . ,n.

To distinguish Rn equipped with the M-weighted inner product with the usual Euclidean space
Rn , we denote it byRn

M
. For an operatorB : Rn

M
→ Rn

M
, we denote thematrix transpose byBT with

entries (BT )i j = Bji . In contrast, theM-weighted inner product adjoint B∗ satisfies, for y,z ∈ Rn ,

〈
By,z

〉
M
=
〈
y,B∗z

〉
M
,

which implies that B∗ is given by

B∗ = M−1BTM. (17)

With these definitions, the matrix representation of the bilinear form involving the elliptic PDE
operator An defined in Section 2.2 is given by R whose components are

Ri j =

∫
D
ϕi (x )Aνϕ j (x ) dx , i, j ∈ {1, . . . ,n} . (18)

Finally, restating Bayes’ theorem with Gaussian noise and prior in finite dimensions, we obtain

πpost (m) ∝ exp
(
− 1

2
‖F(m) − dobs‖2Γ−1noise

− 1

2
‖m −mpr‖2Γ−1prior

)
, (19)

where mpr is the mean of the prior distribution, Γprior := R−1M ∈ Rn×n is the covariance matrix
for the prior that arises upon discretization of Cprior, and Γnoise ∈ Rq×q is the covariance matrix
for the noise. The method of choice to explore the full posterior is Markov chain Monte Carlo
(MCMC), which samples the posterior so that sample statistics can be computed. MCMC for large-
scale inverse problems is still prohibitive for expensive forward problems and high-dimensional
parameter spaces; here we make a quadratic approximation of the negative log of the posterior
(Equation (19)), which results—as discussed in Section 2.2 in the continuous setting—in the Laplace
approximation of the posterior given by

πpost (m) ∝ N (mMAP, Γpost). (20)

The mean of this approximate posterior distribution,mMAP, is the parameter vector maximizing
the posterior (Equation (19)) and is known as the MAP point. It can be found by minimizing the
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negative log-posterior,4 which amounts to solving the following optimization problem:

mMAP := argmin
m

(− logπpost (m)) = argmin
m

1

2
‖F(m) − dobs‖2Γ−1noise

+
1

2
‖m −mpr‖2Γ−1prior

, (21)

which is the discrete counterpart of Equation (13). Denoting with H̃(mMAP) and H̃misfit (mMAP) the
matrix representations of, respectively, the second derivative of negative log-posteriorH and log-
likelihoodHmisfit (i.e., the data misfit component of the Hessian) in theM-weighted inner product,

and assuming that H̃misfit (mMAP) is positive definite, the covariance matrix Γpost in the Laplace
approximation is given by

Γpost = H̃−1 (mMAP) =
(
H̃misfit (mMAP) + Γ−1prior

)−1
. (22)

For simplicity of the presentation, in the following we will let H = MH̃ and Hmisfit = MH̃misfit be
the matrix representation of the Hessian with respect to the standard Euclidean inner product.
Using this notation, and recalling that Γprior = R−1M, we rewrite Equation (22) as

Γpost = H−1 (mMAP)M = (Hmisfit (mMAP) + R)
−1 M. (23)

Equations (21) and (23) define the mean and covariance matrix of the Laplace approximation to
the posterior in the discrete setting. In Section 4, we present scalable (with respect to the parameter
dimension) algorithms to compute the discrete MAP pointmMAP and to efficiently manipulate the
covariance matrix Γpost.

3 DESIGN AND SOFTWARE COMPONENTS OF HIPPYLIB

hIPPYlib implements state-of-the-art scalable algorithms for PDE-based deterministic and
Bayesian inverse problems. It builds on FEniCS (a parallel finite element library) [Langtangen and
Logg 2017; Logg et al. 2012] for discretization of PDEs and on PETSc [Balay et al. 2014] for scalable
and efficient linear algebra operations and solvers. In hIPPYlib the user can express the forward
PDE and the likelihood in variational form using the friendly, compact, near-mathematical nota-
tion of FEniCS, which will then automatically generate efficient code for the discretization. Linear
and nonlinear, stationary and time-dependent PDEs are supported in hIPPYlib. For stationary
problems, gradient and Hessian information can be automatically generated by hIPPYlib using
FEniCS symbolic differentiation of the relevant variational forms. For time-dependent problems,
instead, symbolic differentiation can only be used for the spatial terms, and the contribution to
gradients and Hessians arising from the time dynamics needs to be provided by the user. Noise
and prior covariance operators are modeled as inverses of elliptic differential operators, allowing
us to build on fast multigrid solvers for elliptic operators without explicitly constructing the dense
covariance operator. The main components, classes, and functionalities of hIPPYlib are summa-
rized in Figure 1. These include:

(1) The hIPPYlib model component describes the inverse problem, i.e., the data misfit func-
tional (negative log-likelihood), the prior information, and the forward problem. More
specifically, the user can select from among a library of data misfit functionals—such as
pointwise observations or continuous observations in the domain or on the boundary—or
implement new ones using the prescribed interface. hIPPYlib offers a library of priors
the user can choose from and allows for user-provided priors as well. Finally, the user
needs to provide the forward problem either in the form of a FEniCS variational form or

4For simplicity, we assume that the negative log-posterior has a unique minimum. In general, the negative log-posterior is

not guaranteed to be convex and may admit multiple minima; in this case domain-specific techniques should be exploited

to locate the global minimum.
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Fig. 1. Design of the hIPPYlib framework. Red dotted connectors represent inheritance and blue solid con-
nectors represent collaborations among the main components (black dashed boxes), classes (blue solid boxes
and red dashed boxes), and functionalities (green dotted boxes) of hIPPYlib. The legend is shown on the
bottom.

(for more complicated or time-dependent problems) as a user-defined object. When us-
ing FEniCS variational forms, hIPPYlib is able to derive expressions for the gradient and
Hessian-apply automatically using FEniCS’ symbolic differentiation. This means that for
stationary problems the user will only have to provide the variational form of the forward
problem. For more complex problems (e.g., time-dependent problems), hIPPYlib allows
the user to implement their own derivatives.

(2) The hIPPYlib algorithms component contains the numerical methods needed for solv-
ing the deterministic and linearized Bayesian inverse problems, i.e., the globalized inexact
Newton-CG algorithm, randomized generalized eigensolvers, scalable sampling of Gauss-
ian fields, and trace/diagonal estimators for large-scale not-explicitly-available covariance
matrices. These algorithms are described in detail in Section 4.

(3) ThehIPPYlib outputs component includes the parameter-to-observable map (and its lin-
ear approximation), gradient evaluation and Hessian action, and Laplace approximation
of the posterior distribution (MAP point and low-rank-based representation of the pos-
terior covariance operator). The hIPPYlib outputs can be utilized as inputs to other UQ
software, e.g., the MIT Uncertainty Quantification Library (MUQ), to perform a full char-
acterization of the posterior distribution using advanced dimension-independent Markov
chain Monte Carlo simulation, requiring derivative information.

We refer to Villa et al. [2020] for a detailed description of the modules, classes, and functions
implemented in hIPPYlib.

4 HIPPYLIB ALGORITHMS

In this section we describe the main algorithms implemented in hIPPYlib for solution of deter-
ministic and linearized Bayesian inverse problems. Specifically, we focus on computation of the
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MAP point and various operations on prior and posterior covariance matrices. In the linear case
(and under the assumption of Gaussian noise and Gaussian prior) the posterior distribution is also
Gaussian, and therefore is fully characterized once the MAP point and posterior covariance matrix
are computed. In the nonlinear case, efficient exploration of the posterior distribution for large-
scale PDE problems will require the use of an MCMC sampling method enchanted by Hessian
information (see, e.g., [Beskos et al. 2017; Bui-Thanh and Girolami 2014; Cui et al. 2016, 2014c;
Martin et al. 2012]). In this case hIPPYlib provides the tools to generate proposals for MCMC.

4.1 Deterministic Inversion and MAP Point Computation Via Inexact Newton-CG

hIPPYlib provides a robust implementation of the inexact Newton-CG algorithm (e.g., [Akçelik
et al. 2006; Borzì and Schulz 2012]) to solve the deterministic inverse problem and, in the Bayesian
framework, to compute theMAPpoint (seeAlgorithm 1). The gradient andHessian actions—whose
expressions are given in Equations (4) and (8), respectively—are automatically computed via their
variational form specification in FEniCS by constraining the state and adjoint variables to sat-
isfy the forward and adjoint problem in Equations (5) and (6), respectively. The Newton system is
solved inexactly using early termination of CG iterations using Eisenstat–Walker [Eisenstat and
Walker 1996] (to prevent oversolving) and Steihaug [Steihaug 1983] (to avoid negative curvature)
criteria. Specifically, the choice of the tolerance ηi in Algorithm 1 leads to superlinear convergence
of Newton’s method and represents a good compromise between the number of Newton iterations
and the computational effort to compute the search direction. Globalization is achieved with an
Armijo backtracking line search; we choose the Armijo constant carmijo in the interval [10−5, 10−4].
For a wide class of nonlinear inverse problems, the number of outer Newton iterations and inner
CG iterations is independent of the mesh size and hence parameter dimension [Heinkenschloss
1993]. This is a consequence of using Newton’s method, the compactness of the Hessian (of the
data misfit term), and preconditioning with the inverse regularization operator. We note that the
resulting preconditioned Hessian is a compact perturbation of the identity, for which Krylov sub-
space methods exhibit mesh-independent iterations [Campbell et al. 1996].

4.2 Low-Rank Approximation of the Hessian

The Hessian (of the negative log-posterior) plays a critical role in inverse problems. First, its spec-
tral properties characterize the degree of ill-posedness. Second, the Hessian is the underlining
operator for Newton-type optimization algorithms, which are highly desirable when solving in-
verse problems due to their dimension-independent convergence property. Third, the inverse of
the Hessian locally characterizes the uncertainty in the solution of the inverse problem; under
the Laplace approximation, it is precisely the posterior covariance matrix. Unfortunately, after
discretization, the Hessian is formally a large, dense matrix; forming each column requires incre-
mental forward and adjoint solves (see Section 2.1). Thus, construction of the Hessian is prohibitive
for large-scale problems since its dimension is equal to the dimension of the parameter. To make
operations with the Hessian tractable, we exploit the fact that, in many cases, the eigenvalues col-
lapse to zero rapidly, since the data contain limited information about the (infinite-dimensional)
parameter field. Thus, a low-rank approximation of the data misfit component of the Hessian,
Hmisfit, can be constructed. This can be proven analytically for certain linear forward PDE problems
(e.g., advection-diffusion [Flath et al. 2011], Poisson [Flath 2013], Stokes [Worthen 2012], acous-
tics [Bui-Thanh and Ghattas 2012, 2013], electromagnetics [Bui-Thanh and Ghattas 2013]) and
demonstrated numerically for more complex PDE problems (e.g., seismic wave propagation [Bui-
Thanh et al. 2012, 2013], mantle convection [Worthen et al. 2014], ice sheet flow [Isaac et al. 2015;
Petra et al. 2014], poroelasticity [Hesse and Stadler 2014], and turbulent flow [Chen et al. 2019]).
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ALGORITHM 1: The inexact Newton-CG algorithm to find the MAP point

i ← 0

Givenm0 solve the forward problem (5) to obtain u0
Givenm0 and u0 compute the cost functional J0 using (3)
while i < max_iter do

Givenmi and ui solve the adjoint problem (6) to obtain pi
Givenmi , ui and pi evaluate the gradient дi using (4)
if ‖дi ‖ ≤ τ then

break

end if

Givenmi , ui , and pi define a linear operator Hi that implements the Hessian action (8)

Using conjugate gradients, find a search direction m̂i such that

‖Him̂i + дi ‖ ≤ ηi ‖дi ‖, with ηi =
( ‖дi ‖
‖д0‖

) 1
2

j ← 0, α (0) ← 1

while j < max_backtracking_iter do

Setm(j ) =mi + α
(j )m̂i

Givenm(j ) solve the forward problem (5) to obtain u (j )

Givenm(j ) and u (j ) compute the cost J (j ) using (3)

if J (j ) < Ji + α (j )carmijo д
T
i m̂i then

mi+1 ←m(j ) , Ji+1 ← J (j )

break

end if

α (j+1) ← α (j )/2, j ← j + 1
end while

if j = max_backtracking_iter then

break

end if

i ← i + 1
end while

The end result is that manipulations with the Hessian require a number of forward PDE solves
that are independent of the parameter and data dimensions.
More specifically, to compute the low-rank factorization of the data misfit component of the

Hessian, we consider the following generalized symmetric eigenproblem:

Hmisfitvi = λiRvi , λ1 ≥ λ2 ≥ . . . ≥ λn , (24)

where R stems from the discretization (with respect to the Euclidean inner product) of the inverse
of the prior covariance (i.e., the regularization operator). We then choose r � n such that λr+i ,
0 < i ≤ n − r , is small relative to 1, and we define

Vr = [v1,v2, . . .vr ] and Λr = diag([λ1, λ2, . . . , λr ]),

where the matrix Vr has R-orthonormal columns, that is, VTr RVr = Ir . As in Isaac et al. [2015], by
using the Sherman-Morrison-Woodbury formula, we write

H−1 = (R + Hmisfit)
−1 = R−1 − VrDrV

T
r + O ��

n∑
i=r+1

λi
1 + λi

�� , (25)

where Dr = diag(λ1/(λ1 + 1), . . . , λr /(λr + 1)) ∈ Rr×r . As can be seen from the form of the re-
mainder term above, to obtain an accurate low-rank approximation of H−1, we can neglect eigen-
vectors corresponding to eigenvalues that are small compared to 1. This result is used to efficiently
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apply the inverse and square-root inverse of the Hessian to a vector, as needed for computing
the pointwise variance and when drawing samples from a Gaussian distribution with covariance
H−1, as will be shown in Sections 4.3.2 and 4.4.2, respectively. Efficient algorithms implemented in
hIPPYlib for solving eigenproblems using randomized linear algebra methods are described next.

4.2.1 Randomized Algorithm for the Generalized Eigenvalue Problem. Randomized algorithms
for eigenvalue computations have proven to be extremely effective for matrices with rapidly
decaying eigenvalues [Halko et al. 2011]. For this class of matrices, in fact, randomized algorithms
present several advantages compared to Krylov subspace methods. Krylov subspace methods
require sophisticated algorithms to monitor restart, orthogonality, and loss of precision. On the
contrary, randomized algorithms are easy to implement, can be made numerically robust, and ex-
pose more opportunities for parallelism since matrix-vector products can be done asynchronously
across all vectors. The flexibility in reordering the computation makes randomized algorithms
particularly well suited for modern parallel architectures with many cores per node and deep
memory hierarchies.
In hIPPYlib we apply randomized algorithms to compute the low-rank factorization of the

misfit part of the Hessian Hmisfit. With a change of notation, we write the generalized eigenvalue
problem (Equation (24)) as

Av = λBv, (26)

where A ∈ Rn×n is symmetric, B ∈ Rn×n is symmetric positive definite, and v ∈ Rn . Here we
present an extension of the randomized eigensolvers in Halko et al. [2011] to the solution of the
generalized symmetric eigenproblem (Equation (26)). Randomized algorithms for generalized sym-
metric eigenproblemswere first introduced in Saibaba et al. [2016] and are revisited herewith some
modifications.
The main idea behind randomized algorithms is to construct a matrix Q ∈ Rn×(r+l ) with B-

orthonormal columns that approximates the range of B−1A. Here, r represents the number of
eigenpairs we wish to compute, and l is an oversampling factor. More specifically, we have

‖ (I − QQT )A‖B ≤ ϵ, (27)

where ϵ is a random variable whose distribution depends on the generalized eigenvalues of Equa-

tion (26) with index greater than r + l . To construct Q, we let Ω ∈ Rn×(r+l ) be a Gaussian random
matrix—whose entries are independent identically distributed (i.i.d.) standard Gaussian random
variables—and we compute a B-orthogonal basis for the range of Y = B−1AΩ using the so-called
PreCholQR algorithm (Lowery and Langou [2014], see Algorithm 4). The main computational cost
is the construction of Y, which requires (r + l ) applications of the operator A and (r + l ) linear
solves to apply B−1. In contrast, the computation of the matrixQwith B-orthonormal columns us-
ing PreCholQR requires only an additional (r + l ) applications of B and O (n(r + l )2) dense linear
algebra operations for the QR factorization. Using Equation (27), it can be shown (see Halko et al.
[2011]) that A ≈ (BQ) (QTAQ) (BQ)T = (BQ)T(BQ)T , where we have defined T := QTAQ. Then
we compute the eigendecomposition T = SΛST (ST S = Ir+l ), and we approximate the r dominant
eigenpairs (Λr ,Vr ) of Equation (26) by

Λr = Λ(1 : r , 1 : r ), Vr = QS(:, 1 : r ). (28)

Algorithms 2 and 3 summarize the implementation of the double-pass and single-pass random-
ized algorithms [Halko et al. 2011]. The main difference between these two algorithms is how the
small matrix T is computed. In the double-pass algorithm, T is computed directly by performing
a second round of multiplication AQ with the operator A. In the single-pass algorithm, T is ap-
proximated from the information contained in Ω and Y. In particular, generalizing the single-pass
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Fig. 2. Log-linear plot of first 30 out of 4,225 generalized eigenvalues of the data misfit Hessian in Section 5.1.
A deterministic eigensolver (Exact), Algorithm 2, Algorithm 3, and the single-pass algorithm in Saibaba et al.
[2016] are compared for different choices of the oversampling parameter l (left l = 5, center l = 10, right
l = 20). Note that Algorithm 3 is more accurate for the single-pass algorithm in Saibaba et al. [2016] for all
choices of l .

ALGORITHM 2: The double-pass randomized algorithm for the solution of the generalized sym-
metric eigenproblem.

Let r be the number of eigenpairs to compute and l an oversampling factor

Let Ω ∈ Rn×(r+l ) be a Gaussian random matrix

Ȳ← AΩ, Y = B−1Ȳ
Use PreCholQR to factorize Y = QR such that QT BQ = Ir+l
T← QTAQ

Compute the eigenvalue decomposition T = SΛST

Keep the r largest eigenmodes and let Sr ← S(:, 1 : r ), Λr ← Λ(1 : r , 1 : r )
Return: Vr ← QSr , and Λr

algorithm in Halko et al. [2011] to Equation (26), we approximate T as the least-squares solution
of

T = argmin
X∈R(r+l )×(r+l ),s .s .p .d

‖X(QTBΩ) − QTBY‖22 . (29)

For this reason, the single-pass algorithm has a lower computational cost compared to the double-
pass algorithm; however, the resulting approximation is less accurate. We remark that Algo-
rithm 3 is more accurate than the single-pass algorithm presented in Saibaba et al. [2016]. The
key difference between the two algorithms is in the definition of T. Saibaba et al. [2016] define
T = (QTBΩ)−1 (QTBY) (QTBΩ)−1, while in Algorithm 3 we define T as the least-squares solution
of Equation (29). Figure 2 numerically illustrates the higher accuracy of the proposed approach
when computing the first 30 eigenvalues of the data misfit Hessian discussed in Section 5.1.

ALGORITHM 3: The single-pass randomized algorithm for the solution of the generalized sym-
metric eigenproblem.

Let r be the number of eigenpairs to compute and l an oversampling factor

Let Ω ∈ Rn×(r+l ) be a Gaussian random matrix

Ȳ← AΩ, Y = B−1Ȳ
Use PreCholQR to factorize Y = QR such that QT BQ = Ir+l and Q̄ such that Q̄T B−1Q̄ = Ir+l
Find T s.s.p.d such that ‖T(Q̄T Ω) − Q̄T Y‖22 → min

Compute the eigenvalue decomposition T = SΛST

Keep the r largest eigenmodes and let Sr ← S(:, 1 : r ), Λr ← Λ(1 : r , 1 : r )
Return: Vr ← QSr , and Λr
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ALGORITHM 4: PreCholQR

Require: Y ∈ Rn×(r+l ) , and B ∈ Rn×n

[Z,RY]← qr(Y)
Z̄← BZ

RZ = chol(ZT Z̄)
Return: Q = ZR−1

Z
, Q̄ = Z̄R−1

Z
, and R = RZRY

4.3 Sampling from Large-Scale Gaussian Random Fields

Sampling techniques play a fundamental role in exploring the posterior distribution and in quanti-
fying the uncertainty in the inferred parameter; for example, Markov chain Monte Carlo methods
often use the prior distribution (assumed Gaussian in our settings) or some Gaussian approxima-
tion to the posterior to generate proposals for the Metropolis-Hastings algorithm. In this section,
we describe the sampling capabilities implemented in hIPPYlib to generate realizations of Gauss-
ian random fields with a prescribed covariance operator C. Then we describe how the low-rank
factorization of the data misfit part of the Hessian in Section 4.2 can be exploited to generate sam-
ples from the Laplace approximation of the posterior distribution in Equation (15). In what follows,
wewill denote the expected value (mean) of a randomvectorx with the symbol E[x], and its covari-
ance with the symbol cov(x ) := E[(x − E[x]) (x − E[x])T ]. We will also denote with Γ the matrix
representation of the covariance operator C with respect to the standard Euclidean inner product.5

To sample from a small-scale multivariate Gaussian distribution, it is common to resort to a
Cholesky factorization of the covariance matrix Γ = CCT . In fact, if η is a vector of independent
identically distributedGaussian variablesηi with zeromean (E [η] = 0) and unit variance (cov(η) =
I), then x = Cη is such that

cov(x ) = E[xxT ] = E[CηηTCT ] = CE[ηηT ]CT = CCT = Γ.

Since an affine transformation of a Gaussian vector is still Gaussian, we have that x ∼ N (0, Γ).
This approach is not feasible for large-scale problems since it requires computing the Cholesky

factorization of the covariance matrix. However, note that a decomposition of the form Γ = CCT

can be obtained using a matrix C other than the Cholesky factor. In particular, the matrix C need
not be a triangular, or even square, matrix. In Appendix C, we exploit this observation and show a
scalable sampling technique based on a rectangular decomposition of R = Γ−1, for the case when
R is a finite element discretization of a differential operator. We note that a similar approach was,
independently, investigated in [Croci et al. 2018] to sample realizations of white noise by exploiting
a rectangular decomposition of the finite element mass matrix. Our approach is more general as it
allows for decomposing matrices stemming from finite element discretization of operators other
than identity.

4.3.1 Sampling from the Prior. Sampling from a Gaussian distribution with a prescribed
covariance matrix Γ is a difficult task for large-scale problems. Different approaches have been
investigated, but how to make these algorithms scalable is still an active area of research. Parker
and Fox [2012] introduce a conjugate gradient sampler that is a simple extension of the conjugate
gradient method for solving linear systems. However, loss of orthogonality in finite arithmetic
and the need for a factorized preconditioner limit the efficiency of this sampler for large-scale
applications. Chow and Saad [2014] consider a preconditioned Krylov subspace method to ap-

proximate the action of Γ
1
2 on a generic vector z. Chen et al. [2011] discuss a method to compute

f (Γ)b via least-squares polynomial approximations for a generic matrix function f (x ) =
√
x . To

5Note that Γ differs from Γprior and Γpost, which are defined in terms of the M-weighted inner product.
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this aim the authors approximate the function by a spline of a desired accuracy on the spectrum
of Γ and introduce a weighted inner product to simplify the computation.
hIPPYlib implements a new sampling algorithm that strongly relies on the structure of the

covariance matrix and on the assembly procedure of finite element matrices. In particular, we
restrict ourselves to the class of priors described in Section 2.2. For this class of priors, the inverse
of the covariancematrix admits a sparse representation as a finite elementmatrixR stemming from
the finite element discretization of a coercive symmetric differential operator. To draw a sample x
from the distribution N (0,R−1), we solve the linear system

Rx = Cη, where η ∼ N (0, Iq ), (30)

where C ∈ Rn×q (q ≥ n) is the rectangular factor of R described in Appendix C. In particular, we
have

E[xxT ] = R−1CE[ηηT ]CTR−1 = R−1 RR−1 = R−1,

where we exploited the fact that E[ηηT ] = Iq and CC
T = R. This method is particularly efficient at

large scale since: (1) the matrix C is sparse and can be computed efficiently by exploiting the finite
element assembly routine; (2) the dominant cost is the solution of a linear system with coefficient
matrix R, for which efficient and scalable methods are available (e.g., conjugate gradients with
algebraic multigrid preconditioner); and (3) the stochastic dimension of η also scales linearly with
the size of the problem.

4.3.2 Sampling from the Laplace Approximation of the Posterior. To sample from the Laplace
approximation of the posterior, we assume that the posterior covariance operator can be expressed
as a low-rank update of the prior covariance, i.e., in the form of Equation (25). This assumption is
often verified for many inverse problems as we discussed in Section 4.2. Then, given a sample from
the prior distribution x ∼ N (0,R−1), a sample from the Laplace approximation of the posterior
N (0, (Hmisfit + R)

−1) can be computed as

y =
(
In − Vr SrV

T
r R
)
x , (31)

where Sr = Ir − (Λr + Ir )
− 1

2 = diag(1 − 1/
√
λ1 + 1, . . . , 1 − 1/

√
λr + 1) ∈ Rr×r . This can be veri-

fied by the following calculation:

cov(y) = E[yyT ] = E
[(
In − Vr SrV

T
r R
)
xxT
(
In − Vr SrV

T
r R
)T ]

=
(
In − Vr SrV

T
r R
)
E[xxT ]

(
In − Vr SrV

T
r R
)T

=
(
In − Vr SrV

T
r R
)
R−1
(
In − Vr SrV

T
r R
)T

= R−1 − Vr (2Sr − S2r )VTr
= R−1 − VrDrV

T
r ≈ H−1,

where we have used the definition of Dr , the R-orthogonality of the eigenvectors matrix Vr (i.e.,
VTr RVr = Ir ), and the fact that

2

(
1 − 1
√
1 + λi

)
−
(
1 − 1
√
1 + λi

)2
=1 −

[(
1 − 1
√
1 + λi

)
−1

]2
=

λi
1 + λi

.
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4.4 Pointwise Variance of Gaussian Random Fields

Consider a Gaussian randomfieldm ∼ N (0,C) and its discrete counterpartm ∼ N (0,Q−1), where
Q is the precision matrix. Here C = Cpr and Q = R if we are interested in the prior distribution;
C = Cpost and Q = H for the posterior distribution. Then we define the pointwise variance ofm as

the field σ 2 (x ) such that

σ 2 (x ) = Var[m(x )], ∀x ∈ D .
In this section, we present an efficient numerical method to compute a finite element approxima-
tion σ 2

h
of σ 2 (x ). As shown in Bui-Thanh et al. [2013], the diagonal of Q−1 (i.e., diag(Q−1)) is the

vector corresponding to the coefficients of the expansion of σ 2
h
in the finite element basis. A naïve

approach would require solution of n linear systems with Q. This is not feasible for large-scale
problems: even for the case when an optimal (i.e., O (n)) solver forQ is available, the complexity is
at least O (n2) operations. In what follows we discuss stochastic estimators and probing methods
to efficiently estimate the pointwise variance of the prior distribution and we explore how the
low-rank representation of the data misfit component of the Hessian can be efficiently exploited
to compute the pointwise variance of the Laplace approximation of posterior distribution.

4.4.1 Pointwise Variance of the Prior. Estimating the pointwise variance of the prior reduces to
the well-studied problem of estimating the diagonal of the inverse of a matrix R. Recall that in our
case, R arises from finite element discretization of an elliptic differential operator. Two commonly
used methods to solve this task are the stochastic estimator in Bekas et al. [2007] and the probing
method in Tang and Saad [2012]. Specifically, the unbiased stochastic estimator for the diagonal
of the inverse of R in Bekas et al. [2007] reads

diag(R−1) ≈
⎡⎢⎢⎢⎢⎢⎣

s∑
j=1

z j �w j

⎤⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎣

s∑
j=1

z j � z j
⎤⎥⎥⎥⎥⎥⎦ , (32)

where w j solves Rw j = z j and z j are random i.i.d. vectors. Here � and � represent the element-
wise multiplication and division operators of vectors, respectively. The convergence of the method
is independent of the size of the problem, but convergence is in general slow. The probing method
in Tang and Saad [2012], on the other hand, leads to faster convergence in the common situation in
which R−1 exhibits a decay property; i.e., the entries far away from the diagonal are small. Probing
vectors are determined by applying some coloring algorithm to the graph G whose adjacency
matrix is the sparsity pattern of some power k of R. More specifically, there are as many probing
vectors as the number of colors in the graph G and the probing vector associated to color i is
the binary vector whose nonzero entries correspond to the nodes of G colored with color i . The
higher the powerk , themore accuratewill be the estimation, but also themore expensive due to the
increased number of colors (and, therefore, of probing vectors to solve for). The main shortcoming
of this approach is that it is not mesh independent; i.e., as we refine the mesh, we need to increase
the power k and therefore the number of probing vectors.
To overcome these difficulties, hIPPYlib implements, in addition to the methods mentioned

above, a novel approach based on a randomized eigendecomposition of R−1, taking advantage of
the fact that R is the discretization of an elliptic differential operator. Specifically, we write

diag(R−1) ≈
⎡⎢⎢⎢⎢⎣

r∑
i=1

μivi � vi

⎤⎥⎥⎥⎥⎦ , (33)

where {(μi ,vi )}r1 denote the approximation of the r dominant eigenpairs of thematrixR−1 obtained
by using the double-pass randomized eigensolver (Algorithm 2) with l = 0, A = R−1, and B the
identity matrix. The main advantage of this approach is that, thanks to the rapid decay of the
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Fig. 3. The L2 (Ω) relative error for the estimation of the marginal variance for the prior distribution in
Section 5.1 as a function of number of covariance operator applied (a) and number of parameters (b).

eigenvalues μi (R
−1 is compact), r is much smaller than the number of samples s necessary for

the stochastic estimator in Equation (32) to achieve a given accuracy and that, in contrast to the
probing algorithm, it is independent of the mesh size.
To illustrate the convergence properties of the proposed method, we estimate the marginal vari-

ance of the Gaussian prior distribution in Equation (37) for the model problem in Section 5.1.
Figure 3(a) shows the superior accuracy of our method when compared to the stochastic estimator
in Bekas et al. [2007] for a given number of covariance operators applied. Figure 3(b) numerically
demonstrates the mesh independence of the proposed method.

4.4.2 Pointwise Variance of the Posterior. We resort to the low-rank representation of the data
misfit component of the Hessian and the Woodbury formula to obtain the approximation

diag(H−1) ≈ diag(R−1 − VrDrV
T
r ) = diag(R−1) − diag(VrDrV

T
r ). (34)

In hIPPYlib, the first term is approximated using Equation (33), while the data-informed correc-
tion diag(VrDrV

T
r ) can be explicitly computed in O (n) operations as follows

diag(VrDrV
T
r ) =

r∑
i=1

[(
λi

1 + λi
vi

)
� vi

]
.

5 MODEL PROBLEMS

In this section we apply the inversion methods discussed in previous sections to two model prob-
lems: inversion for the log coefficient field in an elliptic partial differential equation and inver-
sion for the initial condition in a time-dependent advection-diffusion equation. The main goal
of this section is to illustrate the deterministic inversion and linearized Bayesian analysis capa-
bilities of hIPPYlib for the solution of these two representative types of inverse problems. The
numerical results shown below were obtained using hIPPYlib version 2.3.0 and FEniCS 2017.2.
A Docker image [Merkel 2014] containing the preinstalled software and examples can be down-
loaded at https://hub.docker.com/r/hippylib/toms. For a line-by-line explanation of the source code
for these two model problems, we refer the reader to the Python Jupyter notebooks available at
https://hippylib.github.io/tutorial_v2.3.0/.

5.1 Coefficient Field Inversion in a Poisson PDE Problem

In this section we study the inference of the log coefficient fieldm in a Poisson partial differential
equation from pointwise state observations. In what follows we describe the forward and inverse
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Fig. 4. Prior meanmpr (a), and samples drawn from the prior distribution (b)–(d).

problem setup, present the prior and the likelihood distributions for the Bayesian inverse problem,
and derive the expressions for the gradient and Hessian action using the standard Lagrangian
approach as described in Section 2. The forward model is formulated as follows:

−∇ · (em∇u) = f in D,
u = д on ΓD ,

em∇u · n = h on ΓN ,

(35)

whereD ⊂ Rd (d = 2, 3) is an open bounded domain with sufficiently smooth boundary Γ = ΓD ∪
ΓN , ΓD ∩ ΓN = ∅. Here, u is the state variable, f ∈ L2 (D) is a source term, and д ∈ H 1/2 (ΓD ) and
h ∈ L2 (ΓN ) are Dirichlet and Neumann boundary data, respectively. We define the spaces,

Vд = {v ∈ H 1 (D) : v ���ΓD = д}, V0 = {v ∈ H 1 (D) : v ���ΓD = 0},

where H 1 (D) is the Sobolev space of functions whose derivatives are in L2 (D). Then, the weak
form of Equation (35) reads as follows: find u ∈ Vд such that

〈
em∇u,∇p〉 = 〈f ,p〉 + 〈h,p〉ΓN , ∀p ∈ V0. (36)

Here 〈·, ·〉 and 〈·, ·〉ΓN denote the standard inner products in L2 (D) and L2 (ΓN ), respectively.

5.1.1 Prior and Noise Models. We take the prior as a Gaussian distributionN (mpr,Cprior), with
meanmpr and covariance Cprior = A−2 following Stuart [2010]. A is a differential operator with

domainM := H 1 (D) and action

Am =
{
−γ∇ · (Θ∇m) + δm in D
Θ∇m · n + βm on ∂D, (37)

where β ∝
√
γδ is the optimal Robin coefficient derived in Daon and Stadler [2018] and Roininen

et al. [2014] to minimize boundary artifacts, and Θ is an s.p.d. anisotropic tensor of the form

Θ =

[
θ1 sin(α )

2 (θ1 − θ2) sin(α ) cosα
(θ1 − θ2) sin(α ) cosα θ2 cos(α )

2

]
.

In Figure 4, we show the prior meanmpr and three random draws from the prior distribution with
γ = 0.1, δ = 0.5, α = π

4 , θ1 = 2, θ2 = 0.5.
Next, we specify the log-likelihood (data misfit) functional. We denote with d ∈ Rq the vector

of (noisy) pointwise observations of the state u at q = 50 random locations uniformly distributed
in Dobs := [0.1, 0.9] × [0.1, 0.5] (Dobs ⊂ D). That is,

d = Bu + η,
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Fig. 5. The true parameter field mtrue (a) and the state u obtained by solving the forward PDE with mtrue

(b). The squares in (b) represent locations of the q = 50 randomly chosen observation points and their color
corresponds to the observed noisy data d .

where B : Vд �→ Rq is a linear observation operator, a sum of delta functions to be specific, that
extracts measurements fromu. Themeasurement noise vectorη is amultivariate Gaussian variable
with mean 0 and covariance Γnoise = σ 2I, where σ = 0.01, and I ∈ Rq×q .

5.1.2 TheMAP Point. To find theMAP point we solve the following variational nonlinear least-
squares optimization problem:

min
m∈M

J (m) :=
1

2
��Bu (m) − d��2Γ−1noise

+
1

2
���m −mpr

���2C−1prior

, (38)

where the state variableu is the solution to Equation (35),mpr is the priormean of the log coefficient
fieldm, and d ∈ Rq is a given data vector. To solve this optimization problem we use the inexact
Newton-CG algorithm in Algorthim 1, which requires gradient andHessian information. These are
automatically computed by hIPPYlib applying symbolic differentiation to the variational form of
the forward problem (Equation (36)); we also refer to Appendix A where the gradient and Hessian-
apply expressions are derived using the Lagrangian formalism. We note that the use of CG to solve
the resulting Newton system does not require computing the Hessian operator by itself but only
its action in a given direction.

5.1.3 Numerical Results. For the forward Poisson problem (Equation (35)), no source term (i.e.,
f = 0) and no normal flux on ΓN := {0, 1} × (0, 1) (i.e., the homogeneousNeumann condition em∇u ·
n = 0 on ΓN ) are imposed. Dirichlet conditions are prescribed on the top and bottom boundaries,
in particular, u = 1 on (0, 1) × {1} and u = 0 on (0, 1) × {0}. This Dirichlet part of the boundary is
denoted by ΓD := (0, 1) × {0, 1}. In Figure 5, we show the true parameter field used in our numerical
tests and the corresponding state field. We used quadratic finite elements to discretize the state and
adjoint variables and linear elements for the parameter. The degrees of freedom for the state and
parameter were 16,641 and 4,225, respectively.
Next we study the spectrum of the data misfit Hessian evaluated at the MAP point. Figure 6

(left) shows a logarithmic plot of the eigenvalues of the generalized symmetric eigenproblem

Hmisfitvi = λiRvi , λ1 ≥ λ2 ≥ . . . ≥ λn ,

whereHmisfit and R stem from the discretization (with respect to the Euclidean inner product of the
datamisfit Hessian and prior precision (cf. Equation (24)). This plot shows that the spectrum decays
rapidly. As seen in Equation (25), an accurate low-rank-based approximation of the inverse Hessian
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Fig. 6. Left: Log-linear plot of first 30 out of 4,225 eigenvalues of the data misfit Hessian for the generalized
eigenproblem (Equation (24)). The low-rank based approximation captures the dominant, data-informed por-
tion of the spectrum. The eigenvalues are truncated at 0.07. Right: Prior-orthogonal eigenvectors of the data
misfit Hessian corresponding (from left to right) to the 1st, 3rd, 8th, and 27th eigenvalues. Note that eigenvec-
tors corresponding to smaller eigenvalues are increasingly more oscillatory (and thus inform smaller-length
scales of the parameter field) but are also increasingly less informed by the data.

can be obtained by neglecting eigenvalues that are small compared to 1. Thus, retaining around
r = 30 eigenvectors out of 4,225 (i.e., the dimension of parameter space) appears to be sufficient.
We stress that r is strictly less than the number q = 50 of observation, reflecting redundancy in
the data. We note that the cost of obtaining this low-rank-based approximation, measured in the
number of forward and adjoint PDE solves, is 2(r + l ), where r + l is the number of random vectors.
Here, l = 20 is an oversampling parameter used to ensure the accurate computation of the most
significant eigenvalues/eigenvectors. The corresponding retained eigenvectors are those modes in
parameter space that are simultaneously well informed by the data and assigned high probability
by the prior. Figure 6 (right) displays several of these eigenvectors.

Figure 7 depicts the prior and posterior pointwise variances computed using Equations (33) and
(34) with r = 300 and r = 50, respectively. One observes that the uncertainty is vastly reduced in
the bottom half of the domain, which is expected given that observations are present only on the
lower half of D. In Figure 8 we show the MAP point (a) and samples from the Laplace approxi-
mation (Equation (20)) of the posterior probability density function (b)–(d). These samples were
obtained by first computing samples from the prior distribution—shown in Figure 4—according
to Equation (30), and then applying Equation (31). The variance reduction between posterior sam-
ples in Figure 8 and prior samples in Figure 4 reflects the information gained from the data in
solving the inverse problem. In addition, we note that the MAP point resembles the truth better
in the lower half of the domain where data are available. The presence (or absence) of data also
affects the posterior samples; in fact, we observe higher variability in the upper half of the domain,
where there is no data.

5.2 Inversion for the Initial Condition in an Advection-Diffusion PDE

Here we consider a time-dependent advection-diffusion equation for which we seek to infer an un-
known initial contaminant field from pointwise measurements of its concentration. The problem
description below closely follows the one in Petra and Stadler [2011]. The PDE in the parameter-
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Fig. 7. Pointwise variance of the prior distribution (left) and the Laplace approximation of the posterior
distribution (right). Note that uncertainty is mostly reduced in the lower half of the domain where data is
measured.

Fig. 8. The MAP point (a) and samples drawn from the Laplace approximation of posterior distribution (b)–
(d).

to-observable map models diffusive transport in a domain D ⊂ Rd , which is depicted in Figure 9.
The domain boundaries D include the outer boundaries as well as the internal boundaries of
the rectangles, which represent buildings. The parameter-to-observable map F maps an initial
condition m ∈ L2 (D) to pointwise spatiotemporal observations of the concentration field u (x,t )
through solution of the advection-diffusion equation given by

ut − κΔu +v · ∇u = 0 in D × (0,T ),

u (·, 0) =m in D,
κ∇u · n = 0 on ∂D × (0,T ).

(39)

Here, κ > 0 is a diffusivity coefficient, andT > 0 is the final time of observations. The velocity field
v , shown in Figure 9 (right), is computed by solving the steady-state Navier-Stokes equations for a
two-dimensional flow with Reynolds number 50 and boundary conditions as in Figure 9 (left); see
Petra and Stadler [2011] for details. The time evolution of the state variable u from a given initial
conditionm is illustrated in Figure 10 (top).

To derive the weak formulation of Equation (39), we define the spaces

V := {v ∈ H 1 (D), for each t ∈ (0,T )}, andM := H 1 (D).

Then, the weak form of Equation (39) reads as follows: Find u ∈ V such that∫ T

0

∫
D
(ut +v · ∇u)p dx dt +

∫ T

0

∫
D
κ∇u · ∇p dx dt +

∫
D
(u (x , 0) −m)p0 dx = 0, (40)
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Fig. 9. Left: Sketch of domain for the advective-diffusive inverse transport problem (Equation (39)) showing
imposed velocities used to compute the velocity fieldv . Right: The velocity field computed from the solution
of the Navier-Stokes equations and subsampled on a coarser grid for visualization purposed.

Fig. 10. Forward advective-diffusive transport estimate of the inverse solution at initial time t = 0 (a, d),
at t = 1 (b, e) and t = 2 (c, f), and at final time t = 4 (d) with the “true” (top) and MAP (bottom) as initial
conditions.

∀p ∈ V, p0 ∈ M. Above, the initial condition u (x , 0) =m is imposed weakly by means of the test
function p0 ∈ M.

5.2.1 The Noise and Prior Models. We consider the problem of inferring the initial condition
m in Equation (39) from pointwise noisy observations di ∈ Rnt (i = 1, . . . ,ns ) of the state u at ns
discrete time samples ti in interval [T1,T ] ⊂ [0,T ], and nt locations in space. We assume that the
observationsdi are perturbed with i.i.d.Gaussian additive noise with variance σ 2. To construct the
prior, we assume a constant mean and define Cprior := A−2 = (−γΔ + δI )−2, equipped with Robin
boundary conditions γ∇m · n + βm on ∂D. The parameters γ ,δ > 0 control the correlation length
and variance of the prior operator; here we take γ = 1 and δ = 8. The Robin coefficient β is chosen
as in [Daon and Stadler 2018; Roininen et al. 2014] to reduce boundary artifacts.
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Fig. 11. Left: Log-linear plot of the truncated spectrum of prior-preconditioned data misfit Hessian for ob-
servation times (sampled every 0.2 time units) in the intervals [1, 4] (blue), [2, 4] (red), and [3, 4] (green). The
low-rank approximation captures the dominant, data-informed portion of the spectrum. The eigenvalues are
truncated at around 0.06. Right: Prior-orthogonal eigenvectors of the prior-preconditioned data misfit Hes-
sian corresponding (from left to right) to the 1st, 4th, 7th, and 60th eigenvalues. Eigenvectors corresponding
to smaller eigenvalues are increasingly more oscillatory (and thus inform smaller-length scales of the initial
concentration) but are also increasingly less informed by the data.

5.2.2 The MAP Point. To compute the MAP point, we minimize the negative log-posterior,
defined in general in Equation (13), which—for Gaussian prior and noise—is analogous to the
least-squares functional minimized in the solution of a deterministic inverse problem. For this
particular problem, this reads

J (m) :=
1

2σ 2

ns∑
i=1

∫ T

T1

(Bu − di )2δti dt +
1

2
���A (m −mpr)‖2L2 (D), (41)

where B : V0 �→ Rnt is the interpolation operators at the observation locations, δti is the Dirac
delta functions at the observation time sample t = ti (i = 1, . . . ,ns ), and σ 2 represents the noise
level in the observations di , here taken 2.45 × 10−7, and mpr = 0 is the prior mean. We use the
conjugate gradient method to solve this (linear) inverse problem. The derivation of the gradient
and Hessian-apply is given in Appendix B.

5.2.3 Numerical Results. Next, we present numerical results for the initial condition inverse
problem. The discretization of the forward and adjoint problems uses an unstructured triangular
mesh, Galerkin finite elements with piecewise-quadratic globally continuous polynomials, and
an implicit Euler method for the time discretization. Galerkin Least-Squares stabilization of the
convective term [Hughes et al. 1989] is added to ensure stability of the discretization. The space-
time dimension of the state variable is 433,880 (10,847 spatial degree of freedom times 40 time
steps), and the dimension of the parameter space is 10,847. The data dimension q is 1,200 with
nt = 80 measurement locations and ns = 15 time samples.

To illustrate properties of the forward problem, Figure 10 shows three snapshots in time of
the field u, using the advective velocity v from Figure 9 with the “true” initial condition (top
row) and its MAP point estimate (bottom row), respectively. Next we study the numerical rank
of the prior-preconditioned data misfit Hessian. Note that due to linearity of the parameter-to-
observable map F , the prior-preconditioned data misfit Hessian is independent of m. Figure 11
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Fig. 12. This figure shows the pointwise variance of the prior (left) and posterior (right) distributions.

Fig. 13. Top: Prior mean initial concentrationmpr (a) and samples drawn from the prior distribution (b)–(d).
Bottom: The MAP point (e) and samples drawn from the posterior distribution (f)–(h).

(left) shows a logarithmic plot of the truncated spectra of the prior-preconditioned data misfit
Hessians for several observation time horizons. This plot shows that the spectrum decays rapidly
and, as expected, the decay is faster when the observation time horizon is shorter (i.e., there are
fewer observations). As seen in Equation (25), an accurate low-rank-based approximation of the
inverse Hessian can be obtained by neglecting eigenvalues that are small compared to 1. Thus,
retaining around 70 eigenvectors out of 10,847 appears to be sufficient for the target problem
with spatial and temporal observation points in the interval [1, 4]. These eigenvalues and the
corresponding prior-orthogonal eigenvectors (see the right panel in Figure 11) were computed
using the double-pass algorithm Algorithm 2 with r = 50 and oversampling parameter l = 10.
Due to the linearity of the parameter-to-observable map and the choice of a Gaussian prior

and noise model, the posterior distribution is also Gaussian whose mean coincides with the MAP
point and the covariance with the inverse of the Hessian evaluated at the MAP point. Thus, for
this problem, the Laplace approximation is the posterior distribution. Figure 12 depicts the prior
and posterior pointwise variances. This figure shows that the uncertainty is reduced everywhere
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in the domain, and that the reduction is greatest near the observations (at the boundaries of the
interior rectangles). In Figure 13 we show samples (of the initial condition) from the prior and from
the posterior, respectively. The difference between the two sets of samples reflects the information
gained from the data in solving the inverse problem. The small differences in the parameter field
m across the posterior samples (other than near the external boundaries) demonstrate that there
is small variability in the inferred parameters, reflecting large uncertainty reduction.

6 CONCLUSIONS

We have presented an extensible software framework for large-scale deterministic and linearized
Bayesian inverse problems governed by partial differential equations. The main advantage of
this framework is that it exploits the structure of the underlying infinite-dimensional PDE-based
parameter-to-observable map, in particular the low effective dimensionality, which leads to
scalable algorithms for carrying out the solution of deterministic and linearized Bayesian inverse
problems. By scalable, we mean that the cost—measured in number of (linearized) forward
(and adjoint) solves—is independent of the state, parameter, and data dimensions. The cost
depends only on the number of modes in parameter space that are informed by the data. We
have described the main algorithms implemented in hIPPYlib, namely the inexact Newton-CG
method to compute the MAP point (Section 4.1), randomized eigensolvers to compute the
low-rank approximation of the Hessian evaluated at the MAP point (Section 4.2), and algorithms
for sampling and computing the pointwise variance from large-scale Gaussian random fields
(Sections 4.3 and 4.4). To illustrate their use, we applied these methods to two model problems:
inversion for the log coefficient field in a Poisson equation and inversion for the initial condition
in a time-dependent advection-diffusion equation.
The contributions of ourwork are as follows. On the algorithm side, our framework incorporates

modifications of state-of-the-art algorithms to ensure consistency with infinite-dimensional set-
tings and a novel square-root-free implementation of the low-rank approximation of the Hessian,
sampling strategies, and pointwise variance field computation. On the software side, we created a
library for the solution of deterministic and linearized Bayesian inverse problems that allows re-
searchers who are familiar with variational methods to solve inverse problems under uncertainty
even without possessing expertise in all of the necessary numerical optimization and statistical
aspects. Our framework provides dimension-independent algorithms for finding the MAP point,
constructing a low-rank-based approximation of the Hessian and its inverse at the MAP, sampling
from the prior and posterior distributions, and computing pointwise variance fields. hIPPYlib
is easily extensible; that is, if a user can express the forward problem in variational form using
FEniCS, hIPPYlib effortlessly allows solving the inverse problem, exploring and testing various
priors, observation operators, noise covariance models, and so forth.
The framework presented here relies on a second-order Taylor expansion of the negative log-

likelihood with respect to the uncertain parameter centered at the MAP point, which leads to
the Laplace approximation of the posterior distribution. Ultimately, one would like to relax this
approximation and fully explore the resulting non-Gaussian distributions. Ongoing work includes
the implementation of scalable, robust, Hessian-based MCMCmethods capitalizing on hIPPYlib’s
capabilities to build local Laplace approximations of the posterior based on gradient and Hessian
information as described here.

APPENDICES

A GRADIENT AND HESSIAN ACTIONS COMPUTATION FOR THE INVERSE

PROBLEM GOVERNED BY THE POISSON PDE

In what follows, we apply the technique outlined in Section 2.1 and derive expressions for the
gradient and Hessian actions of the cost functional J (m) defined in Equation (38). The Lagrangian
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functional for this optimization problem is given by

LG (u,m,p) := J (m) +
〈
em∇u,∇p〉 − 〈f ,p〉 − 〈p,h〉ΓN , (42)

where the last three terms stem from the variational form (Equation (36)) of the forward problem
(Equation (35)). The formal Lagrange multiplier method [Tröltzsch 2010] requires that, at a min-
imizer of Equation (38), variations of the Lagrangian functional with respect to p and u vanish,
which yields to solving the forward and adjoint problems〈

em∇u,∇p̃〉 − 〈f , p̃〉 − 〈p̃,h〉ΓN = 0, ∀p̃ ∈ V0; (43a)〈
em∇ũ,∇p〉 + 〈B∗Γ−1noise (Bu − d ), ũ

〉
= 0, ∀ũ ∈ V0. (43b)

The strong form of the forward problem is given in Equation (35), while the strong form of the
adjoint problem reads

−∇ · (em∇p) = B∗Γ−1noise (Bu − d ) in D,
p = 0 on ΓD ,

em∇p · n = 0 on ΓN .

(44)

Finally, the gradient of the cost functional (Equation (38)) is given in weak form by

(G (m),m̃) = 〈m −mpr,m̃〉C−1prior
+
〈
m̃em∇u,∇p〉, ∀m̃ ∈ M, (45)

where u and p are solutions to the forward and adjoint problems (Equations (43a) and (43b)),
respectively [Borzì and Schulz 2012; Tröltzsch 2010]. In strong form this reads

G (m) =

{
C−1prior (m −mpr) + e

m (∇u · ∇p) in D,
γ (Θ∇m) · n + βm on ∂D . (46)

We note that to evaluate the gradient for a given parameter m, one needs to solve the forward
problem (Equation (43a)) for u, and then given m and u solve the adjoint problem for p. This
evaluation of the gradient costs one forward and one adjoint PDE solve.
Next, we derive the expression of the Hessian action following Section 2.1. The second-order

Lagrangian functional in this case reads

LH (u,m,p; û,m̂, p̂) := (G (m),m̂)

+
〈
em∇u,∇p̂〉 − 〈f , p̂〉 − 〈p̂,h〉ΓN

+
〈
em∇û,∇p〉 + 〈B∗Γ−1noise (Bu − d ), û

〉
.

To obtain the action of the Hessian in a direction m̂ we take the variation of LH with respect to
m, namely:

(m̃,H (m)m̂) =
〈
m̃em∇û,∇p〉 + 〈m̂,m̃〉C−1prior

(47)

+
〈
m̃m̂em∇u,∇p〉 + 〈m̃em∇u,∇p̂〉, ∀m̃ ∈ M, (48)

where as before u and p are the solutions of the forward and adjoint problems in Equations (43a)
and (43b)), respectively, and û and p̂ are the solutions of the incremental forward and adjoint
problems, respectively. These equations are given by〈

em∇û,∇p̃〉 + 〈m̂em∇u,∇p̃〉 = 0, ∀p̃ ∈ V0, (49)

and 〈
B∗Γ−1noiseBû, ũ

〉
+
〈
m̂em∇ũ,∇p〉 + 〈em∇ũ,∇p̂〉 = 0, ∀ũ ∈ V0. (50)

Once we have the gradient and Hessian action expressions, we can apply Algorithm 1 to solve
the optimization problem given by Equation (38).
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B GRADIENT COMPUTATION FOR INVERSE PROBLEM GOVERNED BY THE

ADVECTION-DIFFUSION PDE

To derive an expression for the gradient of J (m) in Equation (41), we define the Lagrangian func-
tional

LG (u,m,p,p0) := J (m) +

∫ T

0

∫
D
(ut +v · ∇u)p dx dt

+

∫ T

0

∫
D
κ∇u · ∇p dx dt +

∫
D
(u (x , 0) −m)p0 dx ,

where p ∈ V and p0 ∈ M are the Lagrangian multiplier, i.e., the adjoint variables, for, respectively,
the advection-diffusion PDE and initial condition in the forward problem (Equation (39)). Expres-
sions needed to compute the gradient of Equation (41) are obtained by setting variations of the
Lagrangian LG with respect to p, p0, and u to zero. Variations with respect to p and p0 recover
the variational form (Equation (40)) of the forward problem. The variation with respect to u in an
arbitrary direction ũ yields

1

σ 2

ns∑
i=1

∫ T

T1

(Bu − di )ũ δti dt +
∫ T

0

∫
D
(ũt +v · ∇ũ)p dx dt

+

∫ T

0

∫
D
κ∇ũ · ∇p dx dt +

∫
D
ũ (x , 0)p0 dx = 0 ∀ũ ∈ V .

Integration by parts in time for the term ũtp and in space for (v · ∇ũ)p and κ∇ũ · ∇p results in

1

σ 2

ns∑
i=1

∫ T

T1

(Bu − di )ũ δti dt −
∫ T

0

∫
D
(p̃t + ∇ · (vp) + κΔp)ũ dx dt +

∫
D
ũ (x ,T )p (x ,T )

− ũ (x , 0)p (x , 0) + ũ (x , 0)p0 dx +
∫ T

0

∫
∂D

(vp + κ∇p) · nũ dx dt = 0,

ũ ∈ V . This implies p0 = p (x , 0) and leads to the strong form of the adjoint problem:

−pt − ∇ · (pv ) − κΔp = −
1

σ 2
B∗

ns∑
i=1

(Bu − di ) δti in D × (0,T ),

p (·,T ) = 0 in D,
(vp + κ∇p) · n = 0 on ∂D × (0,T ).

(51)

Note that Equation (51) is a final value problem, since p is specified at t = T rather than at t = 0.
Thus, Equation (51) is solved backwards in time, which amounts to the solution of an advection-
diffusion equation with velocity −v .
Finally, the variation of the Lagrangian with respect to the initial conditionm in a direction m̃

gives the weak form of the gradient of the cost functional J (m):

(G (m),m̃) =

∫
D
(A (m −mpr)) (Am̃) − p (x , 0)m̃ dx , ∀m̃ ∈ M, (52)

where we used p0 = p (x , 0). The strong form of the gradient expression then reads

G (m) =

{
A2 (m −mpr) − p (x , 0) in D

γ∇m · n + βm in ∂D . (53)

Thus, the adjoint of the parameter-to-observable map F ∗ is defined by setting F ∗d = p (x , 0).
We note that the gradient expression in Equation (53) is linear in m, since p depends linearly
on u through the solution of the adjoint problem (Equation (51)), and u depends linearly on m
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through the solution of the forward problem (Equation (39)). Elimination of the forward and adjoint
equations for a givenm gives the action of the linear operator in Equation (53) in the direction of
that m. Thus, to compute the MAP point, we use CG to set G (m) = 0 with the inverse of the
regularization operator A2 as preconditioner.

C FINITE ELEMENT ASSEMBLY AND RECTANGULAR DECOMPOSITIONS

In this section, we describe a technique based on rectangular decompositions of finite element
matrices to efficiently generate large-scale samples from priors of the form described in Section 2.2.
A similar approach has been also proposed in Croci et al. [2018] to generate samples of white noise.
The method described here is more general as it can be applied to matrices stemming from finite
element discretization of any differential operator and not only mass matrices. More specifically,
we present a finite element assembly procedure to compute a rectangular decomposition of the
form

A = CCT , (54)

for any symmetric positive definite finite element matrix A. More specifically, consider the finite
element assembly procedure for a generic symmetric positive definite bilinear form a(uh ,vh ) on
Mh , a finite-dimensional subspace ofM ⊆ L2 (D). The entries (i, j ) of the matrix A, which stems
from finite element discretization of the bilinear form a(uh ,vh ), are given by

Ai, j = a(ϕi ,ϕ j ), i, j = 1, . . . ,n,

where {ϕi }ni=1 is the finite element basis of the spaceMh . In the finite element assembly procedure
we first compute the element matrices Ae , which correspond to the restriction of the bilinear form
a to each element e in the mesh. Then, using the global-to-local mapping of the degrees of freedom
(dof) Ge , the global matrix A is computed by summing all of the local contributions as follows:

A =
∑
e

GT
e AeGe =

∑
e

GT
e B

TDeBGe . (55)

Here we have written the element matrix Ae = BTDeB as the product of the element-independent
dof-to-quadrature point basis evaluation matrix B and the (block) diagonal matrix De ∈ Rq×q at
the quadrature points, where q denotes the total number of quadrature nodes over all elements,
which scales linearly with the number of elements in the mesh.
A rectangular decomposition of A can then be explicitly constructed from the matrices Ge , B,

and De as follows. For each element e of the mesh we define the matrix Ce = GT
e B

TD
1
2
e . Since, for

any two elements ei and ej (i � j) in the mesh, the sets of quadrature nodes relative to the elements
ei and ej are disjoint, we have that

CeiC
T
ej
= δi jAei . (56)

Then the rectangular matrix C ∈ Rn×q defined as

C =
∑
e

GT
e B

TD
1
2
e =
∑
e

Ce (57)

satisfies Equation (54). In fact, thanks to Equation (56), we have

CCT = ��
∑
e

Ce
�� ��
∑
e

Ce
��
T

=
∑
e

CeC
T
e =
∑
e

GT
e B

TDeBGe = A.
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