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Abstract. We revisit the basic variational formulation of the minimization problem associated
with the micromagnetic energy, with an emphasis on the treatment of the stray field contribution
to the energy, which is intrinsically nonlocal. Under minimal assumptions, we establish three dis-
tinct variational principles for the stray field energy: a minimax principle involving magnetic scalar
potential and two minimization principles involving magnetic vector potential. We then apply our
formulations to the dimension reduction problem for thin ferromagnetic shells of arbitrary shapes.
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1. Introduction. Ferromagnetism is a striking and subtle phenomenon. Ob-
servable on the macroscopic scale, ferromagnetism has its origins from the two quintes-
sentially quantum mechanical properties of matter, namely, the electron spin and the
Pauli exclusion principle [1]. The quantum mechanical origin of ferromagnetism ac-
counts for the existence of a multitude of intriguing spin textures, from macroscopic
down to single nanometer scales [4, 22, 26, 32]. The small size of the magnetiza-
tion patterns, along with the modest energy required to manipulate them, has pro-
duced and is continuing to lead to far-reaching applications in information technol-
ogy [3, 6, 8, 47].

There is a well-established and extremely successful continuum theory of micro-
magnetism, the micromagnetic variational principle, that describes the equilibrium
and dynamic magnetization configurations [10, 27, 32, 38, 39, 43]. In this theory,
magnetization is described by a spatially varying vector field M, and stable magneti-
zation configurations correspond to global and local minimizers of the micromagnetic
energy—a nonconvex, nonlocal functional involving multiple length scales. The mi-
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cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain © (Q C R?) is [7, 32, 38]

A/ 2 33 / <M> 3
EM)=— VMP“dr+ K [ & — |d°r

(1.1)
- @/ Hd~Md3r—u0/ H, Mdr,
2 Ja Q

where M = (Mj, My, M3) is the magnetization vector that satisfies M| = My in Q
and M = 0 in R3\Q (i.e., outside the domain ), the positive constants M, A, and K
are the saturation magnetization and exchange and anisotropy constants, respectively,
H, is the applied magnetic field, and g is the permeability of vacuum. Here we use
the standard notation |[VM|? = |V M; |2 +|V My |2 + |V M3|? for the Euclidean norm of
gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hq is determined via the magnetic induction B = B, + By,
where B, = ugH, is the induction in the absence of the ferromagnet due to permanent
external field sources, and

(1.2) Ba = po(Ha + M).

The pair (Hg,Bg) solves the following system obtained from the time-independent
Maxwell’s equations:

(1.3) divBgq =0, curlHyq = 0,

where we noted that by definition divB, = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, F.y, magnetocrystalline anisotropy, E,, stray field,
Es, and Zeeman, E7, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Uy : R? — R associated with the demagnetizing field, such
that Hq = —V Uy, and Uy satisfies the following equation in the sense of distributions:

(1.4) AUy = divM,

and vanishes at infinity. The stray field energy can be rewritten in terms of Uy as [9)
_ Mo 3, Mo 2 13
(1.5) EM)=— [ M-VUyd’r = — VU4~ d°r.
2 0 2 R3

Using the fundamental solution of the Laplace equation in R?, one can also rewrite
the stray field energy in the following way:

. o
(1.6) Ey(M) = @/ / div M(r) div M(r) s s
8 R3 JR3

v — |

reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain £, its divergence div M has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curl A = curl (A, + Aq), where A, and Ay are the
contributions associated with B, and By, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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potential is contained in the momentum operator for a charged particle and, therefore,
plays a crucial role in the description of superconductivity and the Ehrenberg—Siday—
Aharonov—Bohm effect underlying the method of electron holography [40]. In the
Coulomb gauge one sets div A, = div Aq = 0, leading to the following equation for
A4 understood in the sense of distributions [9]:

(1.7) curl (curl Aq) = —AA4 = po curl M,

where we used the identity V(divA) — curl (curl A) = AA. In a similar way to
the use of magnetostatic potential Uy, we can rewrite the demagnetizing field Hy =
o Leurl Ag — M to represent the stray field energy as

1 1
(1.8) E (M) = 7/ (o|M|? =M - curl Ag) d®r = — [ |ewl Ay — poM|* dr.

2 Ja 2u0 Jgs
Again, using the fundamental solution of the Laplace equation in R? we obtain another
representation of the stray field energy:

1 1M(r) - curl M(r’
(1.9) E\(M) = = uoM2|Q| — @/ / curl M(r) - curl M(r’) &Prdr,
2 8T R3 JR3 |

r—r/|

where |Q] is the volume of 2. Note that since M has a jump at the boundary of
domain 2, curl M has a singularity and, therefore, must again be understood in a
formal sense through its Fourier symbol.

The multiscale complexity of the micromagnetic energy allows for a variety of
distinct regimes characterized by different relations between material and geometrical
parameters, and makes the micromagnetic theory very rich and challenging [16, 32].
One of the most powerful analytical approaches to study the equilibria of the micro-
magnetic energy is the investigation of its I'-limits in various asymptotic regimes. To
achieve this, one needs to obtain asymptotically matching lower and upper bounds for
the micromagnetic energy. Typically, the construction of the upper bounds is done
using appropriate test functions; the lower bound constructions are more difficult and
require a careful analysis of the specific problem under consideration. We point out,
however, that in the case of the stray field energy, even constructing the upper bounds
might present a significant challenge due to the nonlocal and singular behavior of the
demagnetizing field Hy.

In this paper, we revisit the variational formulation associated with the micro-
magnetic energy, emphasizing the treatment of the stray field energy to obtain efficient
upper and lower bounds. To this aim, we formulate three distinct variational princi-
ples for local minimizers of the micromagnetic energy. The first variational principle
can be stated as a minimax problem for the magnetization M and the scalar potential
U. Specifically, for M fixed, the stray field energy may be expressed as

1
(1.10) Es(M) = max ,Mo/ (M -VU — |VU|2) dBr
UeHl(]R:}) R3 2

and, therefore, yields convenient lower bounds on the stray field energy via the use
of test functions for U (recall that H 1(R3) denotes the space of functions whose first
derivatives are square integrable; see section 2 for the precise definitions of the function
spaces).

The second variational principle is a joint minimization problem for the magneti-
zation M and the vector potential A subject to the Coulomb gauge (div A = 0) with
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the stray field energy expressed as

1
(1.11) E,M)= min — lcurl A — poM|? d*r
AR P S

and is useful in constructing upper bounds for the stray field energy via suitable test
functions for A.

Finally, we introduce the third variational principle closely linked to the second
one that amounts to a joint minimization for the magnetization M and the vector
potential A in the absence of the constraint on div A. It allows us to express the
stray field energy in the form

(1.12) E,(M) = 1,Joijju min / (1|VA|2 -M- curlA) d>r.
2 AcHL(R3;R3) Jrs \ 210

This formula gives a novel representation of the magnetostatic energy, which is par-
ticularly convenient both for obtaining localized upper bounds for the micromagnetic
energy and the numerical implementation of the stray field.

The variational principle in (1.10) leading to (1.5) is well known. In the context
of micromagnetics, where one needs to minimize the energy in (1.1) with respect to M
with Hg determined by the unique solution of (1.3), it results in a minimax problem
in terms of the pair (M, U). As such, this minimax principle has not been precisely
formulated in the literature, although it has long existed in the micromagnetics folklore
(see, e.g., [9, 10, 34]). Here we establish the validity of this variational principle under
minimal assumptions that arise naturally in the context of micromagnetics.

Similarly, the minimization principles for the micromagnetic energy, in which the
stray field energy is expressed through (1.11) or (1.12) appeared in some form in
the engineering literature in the context of finite element discretization of the mag-
netostatic problems for ferromagnets. Specifically, the energy functional in (1.11)
appeared in [5], and the associated problem is an extension of the well-known varia-
tional principles for Maxwell’s equations [36, 42]. In [9, 12, 15, 50], the minimization
principles rely on local constitutive relationships between the magnetic induction and
the magnetic field, which in the context of micromagnetics may be obtained by first
minimizing the micromagnetic energy written in terms of the pair (M, A) with re-
spect to M, provided the exchange energy is neglected [34, 45, 46]. However, in the
full micromagnetics formulation the exchange energy plays a crucial role and, there-
fore, the variational formulation must include a joint minimization of E in (M, A).
Note that while in the case of (1.11) the minimization in A requires an additional
constraint in the form of the Coulomb gauge, the minimization in (1.12) is uncon-
strained and automatically enforces the Coulomb gauge for the minimizers. In fact,
if one were to minimize the expression in (1.12) within the class in (1.11), one would
simply recover the problem in (1.11), since for div A = 0 the two energies coincide,
as can be easily seen via an integration by parts [23]. On the other hand, the absence
of the divergence-free constraint, first noted in [12], makes the formulation in (1.12)
clearly more attractive than that in (1.11) and opens up a way for an efficient numer-
ical treatment of minimizers of the micromagnetic energy. In this paper, we put the
above variational principles on a rigorous footing under natural assumptions.

Finally, we illustrate the usefulness of our results for analytical studies of micro-
magnetics by applying the obtained variational principles to the problem of finding
the I'-limit of the micromagnetic energy in curved thin ferromagnetic shells. These
problems are interesting due to intrinsic symmetry-breaking mechanisms coming from

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/02/20 to 128.250.144.144. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3584 DI FRATTA, MURATOV, RYBAKOV, AND SLASTIKOV

the nonzero curvature of the shell generating surfaces (see [20, 41]; see also the re-
cent review [51]). Some results on this problem have been previously obtained under
technical assumptions on the geometry of the domain occupied by the ferromagnet;
see [11, 18]. Here we show that using our approach these restrictions can be easily
removed, resulting in a leading-order two-dimensional local energy functional in the
spirit of Gioia and James [31] formulated on two-dimensional surfaces, in which the
stray field energy reduces to the effective shape anisotropy term.

The paper is organized as follows. In section 2 we provide the mathematical setup
of the problem defining appropriate functional spaces and proving some auxiliary
results. In section 3 we prove Theorem 2, providing various characterizations of the
stray field energy. Section 4 is devoted to the proof of Theorem 3, characterizing the
I'-limit of the micromagnetic energy of thin shells.

2. Mathematical setup. In this section, we introduce the definitions and some
useful facts about the basic function spaces that will be needed in our analysis. We
would like to point out that the vectorial nature of the problem associated with
the demagnetizing field presents some technical issues in the treatment of station-
ary Maxwell’s equations under minimal regularity assumptions on the magnetization.
Although some of the problems we are interested in can be investigated in a potential-
theoretic framework (see, e.g., [14, 28, 29, 48]), here we rely on their distributional
formulations. Another technical issue has to do with the fact that the problem is
considered in the whole space. For the sake of full generality, we consider the most
general distributional solutions of (1.2) and (1.3) and show that the resulting solutions
do indeed belong to the natural energy spaces, which is not obvious a priori.

We denote by D'(R3) the space of distributions on R3. Following [13, p. 230]
and [14, pp. 117-118], we define the homogeneous Sobolev space

(2.1) WHR?) = {u € D'(R?) : Vu € L*(R*;R%)}.
It is straightforward to show that the quotient space
(2.2) HY(R?) := W' (R®)/R

is a Hilbert space for the L? gradient norm u € H'(R?) — V| £2rs), and that
H'(R3) is isometrically isomorphic to the weighted Sobolev space {u € L2 (R3) : Vu €
L?(R3;R3)}, with

1

vaRar

In particular, up to an additive constant, every element of Wl(R?’) is in L2(R3) C
L . (R3). For further reference, we also define L?_,(R?) := {u € L (R) :w™'u €
L*(R®)}. The symbols L2 (R?* R?) and L2 _, (R?*; R?) denote the vector-valued analogs
of the above spaces.

We denote by D’ (R?; ]R3) the space of vector-valued distributions on R3. Also we
denote byoﬁfl(R3, R?) and H'(R?,R?) := W1 (R3, R3)/R3, the vector-valued counter-
parts of W1(R3) and H*(R?), respectively, for which the same considerations hold.
Observe that

(2.3) L2(R?) :={ue L (R):wue L*(R*)}, w(z):=

(2.4) ||V(1||%2(R3) = ||diV a||2L2(R3) + ||curla||2L2(R3) Va € ﬁl(RS;RS),
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which may be seen from the fact that for every a € D(R3;R3) we have

(2.5) ||Va||2L2(R3) = —/ a-Aa= / a-curlcurla — / a - Vdiva,
R3 R3 R3

and then arguing by density (see also [2, 33, 37]).
In the spirit of (2.1), we also define the homogeneous Sobolev space

(2.6) W(curl, R®) := {b € D'(R*R®) : curlb € L*(R* R?)}.

Note that, Wl(curl, R?) is a subspace of D’(R?;R?), and that the functional

2.7)

| : |curl

b e W curl,R%) — |curl b|?
R3

is a seminorm on W (curl, R?). The kernel of |-|_,,, consists of all curl-free distribu-
tions. Therefore, by the Poincaré—de Rham lemma [49, p. 355],

(2.8)  ker|-|,q =VD'(R?) = {beD(R*R*) :b= Vo for some v e D'(R*)}.

curl

We identify distributions which differ by a gradient field. The resulting quotient space
(2.9) H'(curl, R?) := W (curl, R?)/ VD' (R?)

is a Hilbert space. Indeed, the following result holds.

PROPOSITION 1. The pair (H'(curl, R?), | - |cun1) forms a complete inner product
space.

Proof. Let (by)nen € H'(curl, R?) be a Cauchy sequence in H*(curl,R?). This
means that (curl b, ),en is a Cauchy sequence in L?(R3;R3). Therefore, there exists
j € L?(R3;R3) such that curl b,, — j in L?(R3;R3). To prove completeness, it remains
to show that j is in curl (D’(R3;R3)). This is a consequence of the Poincaré-de Rham
lemma [49, p. 355]. Indeed, as j € L?(R?;R?) we have, for every ¢ € D(R3),

(divj,cp):/ 7 Vo= lim curl b, - Vo =0,
R3

n—oo [ps

and therefore divj = 0. Hence, curl b = j for some b € D'(R3; R3). d

We shall need the closed subspace of H L(curl, R3) generated by the limits of all
divergence-free (solenoidal) and compactly supported vector fields. To this end, we
set

(2.10) Dyo1(R3;R?) := {a € D(R*R?) : diva = 0} .

Remark 2.1. Since the set of harmonic functions in D(R3; R?) reduces to the null
function, it is natural to be concerned about the cardinality of Dy, (R?;R3). In that
regard, we observe that the vector space Dso1(R?;R?) is infinite dimensional. Indeed,
let p: R — RT be in D(R) and suppose p = 1 in a neighborhood of 0. Also, let
¢ € C(R3;R?) and consider the vector field

(2.11) a(x) := p(|z|)(&(x) x ), r € R3.

Clearly, a € D(R3;R3) and, moreover, diva(z) = p(|z|)curl &(z)-z+(V[p(|z])] x &(2))-
x. Since V[p(]z|)] = 0 in a sufficiently small neighborhood of the origin, and outside
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that neighborhood one has V{p(|z|)] = p’'(|z|)x/|z|, we get that (V[p(|z|)] x &(x)) - =
0 everywhere in R3. It then follows that diva(z) = p(|z|)curl&(z) - z. As a conse-
quence, for any curl-free vector field £ € C°°(R3;R3), and any bump function p we get
diva = 0. This proves that Dsol(R?’; R?’) is infinite dimensional due to the arbitrary
choices of p and €.

We denote by HL (curl,R3) the closure of Dy (R3;R3) in H(curl, R3). We ob-
serve that, with w(z) := (1 + |z|>)~/2, the following inequality holds:

(2.12) la(z)]2w?(z)dz < 4/

. » lcurla(z)]* dz Va € Dy (R?; R?).

Indeed, (2.4) and Hardy’s inequality [25, p. 296] imply ||wa|\%2(R3) < 4 ||VaH%2(R3).
(curl, R?).
(curl,R?) to denote the equiva-

Our first observation is a regularity result on the structure of Iofslol

In what follows, we use the notation [a] € ﬁ[slol

lence class which has a € Wl(curl,R3) as representative; in other words, [a] :=
{a + VU}UGD,(R3).
THEOREM 1. The following statements hold:
(i) Let [a] € HL (curl,R?). There exists a unique representative a* € [a] N
H L(R3; R3) which is divergence-free. In particular, a* is the unique divergence-
[ree representative of [a] that belongs to L2 (R?;R?).
(ii) If [a] € HL (curl,R3) has a representative 3 € L*(R3R3), then also a*
belongs to L?(R3;R?). Precisely, a* can be decomposed into the form

(2.13) a* =3+ Vuy,

with v, the unique solution in ﬁl(R?’) of the Poisson equation —Av, = div 3.
(i) If ao € H'(R3;R3) and diva, = 0, then |a.] € HL, (curl, R?) and a, = a*.

sol
Proof. (i) Let [a] € HL (curl,R?) and a,, € Dy (R?; R?) be such that a, — a in

H'(curl, R3). Clearly, [a] € f[slol(curL R3) and (curl @, )nen is Cauchy in IOJSIOI(CUI'L R3).

Since L2 (R3;R3?) is a complete space, by (2.12), there exists a* € L2 (R3;R3) such
that a, — a* in L2(R3;R3). Therefore,

(2.14) 0=diva, — diva* =0 in D'(R*R?),
(2.15) curla,, — curla* in D' (R?;R%),
(2.16) curla, — curla in D' (R R?).

This means that curl (a* — a) = 0 and, therefore, that in any equivalence class [a] €
ﬁslol(curl,]R3) there exists a divergence-free vector field a* € L2 (R3;R3). Note that
a* € L2(R3R?) is then necessarily unique. Indeed, if 3* € L2?(R3;R3) is another
divergence-free representative, then curla* = curl 3* and diva* = divy* = 0. This
implies that

(2.17) 0 =V(div(a* — 7%)) — curl (curl (a* — §%)) = A(a* — 7%) in D'(R3;R?),

and in view of a* — j* € L2 (R?;R?) we have A(a* — 7*) = 0 in the sense of tempered
distributions &'(R?). Therefore, by Liouville’s theorem [24, p. 41], it follows that
a*—7* is a polynomial vector field. We conclude by observing that the only polynomial
vector field in L2 (R3;R3) is the zero vector field.
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It remains to prove that a* € H!(R3; R3). We observe that since diva* = 0, if we
set b* := curla*, then a* is a solution of the vector Poisson equation —Aa = curl b*.
Also, since b* € L*(R?;R?), we have that curl b* generates a linear and continuous
functional on H! (R‘i; R3) and, therefore, by the Riesz representation theorem, there
exists a unique @ € H'(R?; R?) such that —Aa = curl b*. But this implies that a —a*
is a harmonic L2 (R3;R3) vector field; therefore, necessarily a* = a € H'(R3;R?).

(ii) If y € [@]NL?(R3; R3), then there exists v, € VD'(R?) such that j—a* = —Vu,.
Hence,

(2.18) — Av, =div (g —a*) =divy,

and the previous equation admits a unique solution v, € H! (R?) by the Riesz repre-
sentation theorem for the dual of a Hilbert space.
(iii) Let a, € H'(R3;R?) be such that diva, = 0. The variational equation

(2.19) /3 curla - curl p* = /3 curla, - curl*  Ve* € HL (curl, R?)
R R
has a unique solution [a] € f[slol(curLR3) because curlcurla, can be identified with

an element of I;Ts;ll(curl,R?’). In particular, testing against functions of the type
¢* = curl p with ¢ € D(R?;R?), we get that

(2.20) curl (curl curl (@ — a,)) = 0 in D'(R3; R?).

At the same time, by the result in point (i) we have that a* € L2 (R3?; R?) is the unique
divergence-free representative belonging to [a] N H'(R?;R?). This implies that

(2.21) — A(curl (@* — a,)) =0 in D'(R3 R?)

with curl (a* — a,) € L?(R3?;R3). Therefore curl (a* — a,) = 0, which means a, €
[a*]. Again, by the uniqueness of the divergence-free representative we conclude that
a, = a*. 0

3. Magnetostatics. We begin by nondimensionalizing the micromagnetic en-
ergy, using the exchange length lox := \/2A4/(uoM2) as the unit of length. Intro-
ducing the normalized magnetization vector m(r) := M(£exr)/M; depending on the
dimensionless position vector r, the quality factor Q := 2K/(uoM2) associated with
crystalline anisotropy, and

_ Hy _ H, _ E(M)
(31) hd—i ha—ﬁs, 5(m)— 2A£ex’

we can write the micromagnetic energy in dimensionless form as

1 1

(3.2) Em):== [ |[Vm|* + Q o(m) — / h, -m — 7/ hg-m,
2 Ja 2 Jo Q0 2 Ja

where Q was appropriately rescaled and the symbol d3r is omitted from all the inte-

grals from now on for simplicity of presentation. The rescaled demagnetizing field hq

and the associated rescaled magnetic induction by solve

(3.3) curlh =0 in R?,
(3.4) divb =0 in R,
(3.5) b=h+m inR3
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In turn, the corresponding rescaled scalar potential ugq and vector potential aq are
related to their unscaled counterparts via

_ Ug(lexr)

(36) ud(r) = Ad (Kexr)

Msgcx ’ ad(r) T MOMS60X7

so that bqy = curlaq and hgy = —Vuq. Finally, the rescaled stray field energy is

(3.7 &E(m) = —5/ hg-m,

where hq is understood as a function of m uniquely determined by the solution of
(3.3)—(3.5) (for a precise statement, see below).

Throughout the rest of this paper, we suppress the subscript “d” everywhere to
avoid cumbersome notations. However, whenever needed we utilize the subscript m
to explicitly indicate the dependence of the associated quantities on a given mag-
netization m, so there should be no confusion. The main result of this section is
Theorem 2. We remark that all the assumptions of this theorem are satisfied in the
context of micromagnetics when the ferromagnet occupies a bounded domain.

THEOREM 2. Let m € L*(R3;R3). The following assertions hold:
(i) There exists a unique magnetic scalar potential uy, € H*(R3) such that

(3.8) Ry = —VUm, by :=hg, +m,
is a solution of (3.3)—(3.5) in L2(R3;R3) x L?(R3;R3). The stray field energy

is given through the following mazximization problem:

1
(3.9) &(m) = max W(m,u), W(m,u) == Vu-m—f/ |Vul?,
u€H1(R3) R3 2 Jrs

whose unique solution coincides with w.,. Moreover, if m € Li,l(R?’;Rs),
then g, € HY(R3). )
(ii) There exists a unique magnetic vector potential [ay,] € H'(curl, R?) such that

(3.10) b, :=curl|a.y,], h,,:=b_ —m,

is a solution of (3.3)—(3.5) in L?(R3;R3) x L?(R3;R®). The stray field energy
is given through the following minimization problem:

5S(m) = Qmin chrl (mv [a’Da
lale H! (curl,R3)

(3.11)
Vewrt (m, [a]) := %/R |curl [a] — m|?,

whose unique solution coincides with [Q.y,)].
Moreover, if m € Li_l(RB;R?’), then there exists a unique representative
al, € [am] satisfying the Coulomb gauge conditions

(3.12) a}, € L*(R%R?), diva}, =0.

The representative ay,, belongs to HY(R3;R3) and can be characterized as the
unique solution in H'(R3;R3) of the vector Poisson equation

(3.13) — Aa}, = curlm  in H '(R%;R?).
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Equivalently, ay, can be characterized as the unique solution in ﬁfslol (curl, R?)

of the variational equation

(3.14) / curlal, -curle* = | m-curlg* Vo € HL (curl, R?).
R3 R3
1. We have
1
(3.15) R = h,., by = b, &mnzf/\mﬂ?
2 Jus
. Ifm e L2 _(R°;R?), the stray field energy admits the following repre-
2. If L2_.(R3;R?), the stray field gy admits the following
sentation:
E&(m) = min  V(m,a)
acH1(R3;R3)
(3.16)

/|V 1> + /| m~cur1a,

and the unique minimizer of V(m,-) coincides with aj,

Proof. (1) We start with an observation that holds under minimal regularity as-
sumptions. Let m € D'(R3;R3). If a solution (R, bm) € D'(R*;R?) x D'(R3;R?)
of (3.3)-(3.5) exists, then curl h,, = 0 distributionally. Therefore, according to
the Poincaré-de Rham lemma [49, p. 355], there exists a magnetostatic potential
Um € D'(R3) such that hy,, = —Vu,,. But then, from (3.4) and (3.5), we get that
U, 18 a particular solution of the Poisson equation

(3.17) AUy, = divm  in D'(R?).

Conversely, if uy, is a particular solution of (3.17), then the general solution of the
magnetostatic equations is given by

(3.18) hyp := —Vum + Vg, by := hyy +m,

for an arbitrary harmonic distribution vy € D’(R?). Indeed, defining Ry, := —Viim,
and by, := hy, +m we have that (Rg,, by, ) is a solution of (3.3)—(3.5), and any other
demagnetizing field differs by a gradient distribution. Taking the divergence of the
first equation in (3.18) we get that vy € D’(R3) is necessarily harmonic.

Now, for m € L?(R?; R?) we have that divm generates a linear continuous func-
tional on H* (R3) and, therefore, by the Riesz representation theorem there exists a
unique uy, € H'(R3) such that

(3.19) Vi - Vo = m -V Vo € HY(R?).
R3 R3

Hence, setting
(3.20) hyp := —VUum, bm:=h,+m,

we get a solution (Rm,bpy) € L?(R3R3) x L?(R3;R3) of (3.3)-(3.5). Also, note
that u,, is the unique magnetostatic potential which gives a demagnetizing field in
L?(R3;R3). Indeed, if —Vum, + Vg € L%(R?;R?) with vy harmonic, then, according
to Liouville’s theorem, Vvg = 0. Finally, a standard argument gives that u,,, coincides
with the unique solution of the mazimization problem (3.9).
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Now, if m € L?_,(R?R?), then m generates a continuous linear functional on
H'(R3;R?). Indeed, by Hardy’s inequality, for every ¢ € H'(R3; R?) we have

1) [ im ol < o mluaes) lwplzaqes) < 4l ml ) [Vepl o).

Therefore, by the Riesz representation theorem there exists a unique ,,, € H! (R3;R3)
such that —Ay, = m. We set Uy, := —divy,. Note that u,, € L?(R3) and satisfies
the equation

(3.22) Ay, = —div V(div by, ) = —div Ath,, = divm  in D'(R?).

This implies that u,m, € L2(R3) N HY(R3) = H(R3).

(ii) Once again, we start with an observation that is valid under minimal regularity
assumptions. Let m € D'(R% R3). If a solution (R, bm) € D'(R?R?) x D'(R3;R?)
of (3.3)—(3.5) exists, then div b, = 0 distributionally. Therefore, it follows from the
Poincaré-de Rham lemma that there exists a vector potential a,, € D'(R3;R3) such
that by, = curla,,. But then, from (3.3) and (3.5), we get that a,, is a particular
solution of the double-curl equation

(3.23) curlcurl @, = curlm  in D'(R?;R?).

Conversely, assume that a,, is a particular solution of (3.23). We claim that the
general solution of (3.3)—(3.5) is given by

(3.24) b, :=curla., + Vvg, hgy, :=by, —m

for an arbitrary harmonic distribution vy € D’(R3). Indeed, the assignment b,, :=
curl @y, and Ry, := by, —m gives a particular solution of (3.3)—(3.5). Moreover, any
other vector field b satisfying (3.3)—(3.5) must differ from b,, by a curl distribution,
i.e., we have

(3.25) b, == curl (ag + @), hm :=bm —m =curl(ag+ @m) —m
for some ag € D'(R3;R3). Taking the curl of the second equation in (3.25), we get
(3.26) curl curl (ag + @ym,) — curlm = 0,

and from the definition of a,,, we obtain that curl curlag = 0. It follows that curl ag =
Vg for some vy € D'(R?). In particular, vg is a harmonic distribution.

Now, for m € L?(R3;R3) we have that curlm generates a linear continuous
functional on H(curl, R?) and, therefore, by the Riesz representation theorem there
exists a unique [am,] € H'(curl, R3) such that

(3.27) / curl [am] - curlyp = [ m-curlyp Vop € H' (curl, R?).
R3 R3
Hence, setting

(3.28) b, :=curl[a.,], h,,:=b_ —m,

we get a solution (h.,, b)) € L?*(R%R3) x L2(R3;R3) of (3.3)-(3.5). Note that

m’ T m
@ is the unique magnetostatic potential which gives b,, € L?(R?;R?). Indeed, if
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curl @, + Vg € L?(R3;R3) and v is harmonic, then necessarily Vvg = 0. From the
preceding considerations, it is clear that the variational characterization (3.11) holds.
Next, as in the proof of (i), for m € L?_,(R?* R?) there exists a unique 9, €
H'(R3;R3) such that —At,, = m. We set a}, := curliy,. Note that af, €
L?(R3;R3) and, by construction, divaj, = 0. Also, aZ, satisfies the equation

(3.29) curlay, = curlcurly,,, = m + Vdiv,,.

But divp,, € L?(R3) satisfies —A(divap,,) = divm and, therefore, Vdiva,, €
L2(R3;R3). Overall, from (3.29), we infer that [a},] is an element of H'(curl, R3)
satisfying (3.27). It follows that [a;,,] = [an,] and diva;, = 0. Also, from (3.29) we
know that a}, solves the equation —Aa}, = curl m with data curl m in H—(R3;R3).
Hence, a}, € H'(R3;R3).

Finally, if [a}}] € HL (curl, R?) is the unique solution of (3.14) and a} €
L2 (R3; R?) its unique divergence-free representative, testing against ¢* = curl ¢ with
» € D(R*R?) we get

(3.30) curlcurla}y = curlm + Vyy  in D’(R?’; R?’)
for some harmonic polynomial vg. Therefore, since a} is divergence-free, we have

(3.31) — Alcurl (@ — aX,)) = 0,

m

with curl (a}: — a},) € L?(R3;R3). But this means that aX¥ = aX, + Vo with v

harmonic and Vv € L2 (R3;R3). Therefore Vo = 0. This concludes the proof of (ii).
(iii) The first two equalities in (3.15) follow from the uniqueness of solutions of

(3.3)—(3.5) in L*(R3;R3). The third equality in (3.15) follows from (3.8) and (3.9).
(iv) From (3.14) it is clear that

(3.32) E(m) = min Veurl (M, [@*]),
la*]€eH]} (curl,R3)

where we noted that the minimum above is attained because H 1 (curl, R?) is a closed
subspace of the Hilbert space H!(curl,R?). Since H'(R?;R?) can be identified with
a subset of H'(curl,R3), and (3.12) holds, it is sufficient to show that

(3.33) min ~ V(m,a) < &(m).
acH1(R3;R3)

To this end, we observe that if [a},] € ﬁslol(curl, R3) minimizes Veur (m, [a@*]), then,

without loss of generality, we can assume that a}, is the unique representative sat-

isfying the Coulomb gauge regularity conditions (3.12). But then, since diva}, = 0,

by (2.4) we have

(3.34) a,, € fII(R?’;Rg), V(m,al,) = Veurl (M, [a},]),

and this implies (3.33). ad

Remark 3.1. The weight w in the assumptions on m imposes the behavior at
infinity of the magnetostatic potential u,,. Note that in general u,, does not belong to
H'(R?) if m € L*(R3;R3). To see this consider m = —Vu with u € H'(R3)\ H*(R3).
However, it is known that « € H'(R?) provided m € L?*(R?;R?) has compact support
[34, 48]. The above theorem gives a generalization of this result to a wider class of
functions m € L2 _, (R3;R3).
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Remark 3.2. If un, is the unique weak solution of Au,, = divm’ with m/ €
L?(R3;R3), then testing against ¢ := uy, in the weak formulation of Au,, = divm,
and testing against ¢ := u,, in the weak formulation of Au,, = divm/’, we get the
so-called reciprocity relations

(3.35) / R - By = — m-hm/:—/ Ry -m/.
R3 R3 R3

Thus, the operator H : m € L*(R3;R?) = h,, € L?(R3;R3) is self-adjoint, and for
m = m/ we recover the expression of £(m) in (3.15). Furthermore, A has unit norm,
as can be seen from

(3.36) Il ey < Imllzsesy V€ L2(RYR?)

with equality achieved for all m = Vo with v € H'(R?). Additionally, it is possible
to prove that the spectrum of H is at most countable and contained in the interval
[0,1]. Note that any element m € Dy (R3;R3), in particular, any configuration
built as in Remark 2.1, belongs to the kernel of H (see [30] for a detailed analysis).
Finally, we recall that H maps constant magnetizations in  (and zero outside) into
constant magnetic fields in £ (but not constant outside) if and only if 2 is an ellipsoid
[17, 19, 35]. Thus, if © is an ellipsoid, the restriction of H to three-dimensional
constant vector fields in  defines a finite-dimensional linear operator (the so called
demagnetizing tensor), whose eigenvalues (the so-called demagnetizing factors) are
among the most important quantities in ferromagnetism [44].

4. Micromagnetics of curved thin shells. We now illustrate the utility of
the variational principles discussed in section 3 in the case of dimension reduction for
thin ferromagnetic shells. Previously such results have been established under suitable
technical assumptions on the geometry of the surface in the case of thin layers [11],
and shells enclosing convex bodies [18]. Here we use Theorem 2 to give an elementary
proof of the dimension reduction via I'-convergence, which does not require convexity
or other purely technical assumptions on the shape of the shell.

Let Q be a bounded domain in R3. For any m € H'(Q,S?), the micromagnetic
energy functional in (3.2) in the absence of crystalline anisotropy and the applied
magnetic field, reads

1

(4.1) Ga(m) := 5/9 (IVm|? — by -m),

where h,, is the solution of (3.3)—(3.5) with m extended by zero outside €. Taking
into account Theorem 2, the following equivalent expressions arise:

1

(4.2) Ga(m) = = / Vm|+ min  V(m,a),
2 Ja acH1(R3;R3)
1

(4.3) gg(m):7/|vm|2+ max  W(m,u).
2 Jo uw€H1(R3)

In particular, if we define

(14) Galm,a)i= 5 [ [Vm® 4 V(m.a), Galm,u)i= 5 [ [Vml* + Wm,u)
Q Q
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then
WO ey B0 = B e ) )
(4.6) in _ Gq(m) = in max Gq(m,u).

m m
meH (Q,5?) mEeH(Q,5?) ue ' (R%)

Thus, the minimization problem for the micromagnetic energy functional H!(Q,S?)
can be restated as a minimization problem on the product space H* (£, S?)x H! (R3; R3),
or as a minimax problem on the spaces H' (€2, S?) x H*(R3).

Let S be a compact C? surface in R3. It is well known that S is orientable and
admits a tubular neighborhood (cf. [21, Prop. 1, p. 113]). Precisely, let n : S — S?
be the unit normal vector field associated with the choice of an orientation of S. For
every £ € S, 0 € Ry, denote by £5(§) := {£ +tn(£)};j<s the normal segment to S
having radius § and centered at £. Then, there exists § € R} such that the following
properties hold (cf. [21, p. 112]):

e For every &1,&; € S one has £5(£1) N €s(&2) = O whenever & # &s.
e The union Qs := Ugesls(€) is an open set of R? containing S.
e For [ :=(—1,1), set M := S x I. For every ¢ € I;’ :=(0,9), the map

(4.7) Pe: (§1) € M= E+etn(§) € e

is a C! diffeomorphism of the product manifold M onto €.. In particular,
the nearest point projection 7 : . — S, which maps any x € €. onto the
unique ¢ € S such that x € £.(£), is a C! map. All integrals over M are with
respect to the measure H? x L.
The open set {25 is then called a tubular neighborhood of S of radius §. Note that
Q5 = ’(/15 (M)

In what follows, the symbols 7 (£), 72(§) denote the orthonormal basis of T¢S
made by the principal directions at £ € S. Also, we denote by /g the metric factor
which relates the volume form on (). to the volume form on M, and by b, b2 the
metric coefficients which transform the gradient on 2. into the gradient on M. A
direct computation shows that

(4.8) Vg (&,t) = |1+ 2etH(E) +*2G(E)|, hic(&,t) := (1+etri(€))™ (i € Ny),

where H(§) and G () are, respectively, the mean and Gaussian curvature at £ € S, and
k1(€), ka(&) are the principal curvatures at £ € S. In what follows we always assume
the thickness J to be sufficiently small so that the quantities in (4.8) are uniformely
bounded from both above and below by some positive constants depending only on
S.

We denote by H*(M;R?) the Sobolev space of vector-valued functions defined on
M endowed with the norm Hm||fql(M) = ||m||%2(M) + |\V§m||%2(M) + ||8tm\|%2(M),
where V¢m stands for the tangential gradient of 7 on S. Finally, we write H'(M;S?)
for the subset of H'(M;R3) consisting of functions taking values in S2.

Next, for every € € I;' we consider the micromagnetic energy functional on
H'(Q.,S?) which, after normalization, reads

m ._i =2 i 2
(4.9) Ge(m) = o /Q Vm|” + o /RJV“’”'

with uz being the unique solution in H*(R?) of the Poisson equation Ausm = divm
with the understanding that m is extended by zero outside of Q.. The change of
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variables (4.7) allows for the following equivalent expression of the micromagnetic
energy functional

1
(4.10) Fo(m) =& (m)+ — | |Vum|’
2e R3

with m(&,t) == mo . (€,t) € HY(M;S?) for m € HY(,S?), and &, the family of
Dirichlet energies on M defined by

1 1

1€Ny

We are interested in the limiting behavior of the minimizers of 7. when ¢ — 0. In
that regard, we prove the following I'-convergence result.

THEOREM 3. As e — 0, the following statements hold:

1. If the sequence (m.) C HY(M;S?) satisfies F-(m.) < C, then upon possible
extraction of a subsequence there exists mg € H'(M;S?) such that m. — myg
weakly in H'(M;S?).

2. The family (.7-"5)561;r is equicoercive in the weak topology of H*(M;S?), and
(}-E)EGI; I'-converges in that topology to the functional

1 2 2 .
(4.12) F(m) = g/M [[Vem|? + (m - n)?| A& if 9m =0,

+00 otherwise.

3. If m. are minimizers of F., then upon possible extraction of a subsequence
(m.) converges strongly in H*(M;S?) to a minimizer of F.

Proof. The first statement is a direct consequence of the boundedness of the
Dirichlet energy of (m)_. I The equicorecivity of the family (F:)_. I is proved

in [18], where it is also proved the I'-convergence of the Dirichlet energies & to the
energy functional

1
7/ |Vem[?d¢  if 9;m =0,
2 Jm

+o00 otherwise.

(4.13) E:m e H' (M;S?) —

In particular, if m € H'(M;S?), m(¢, ) is not constant for a.e. £ € S, and m. — m
weakly in H!(M;S?), then necessarily lim sup,_,, F-(m.) = +oc. Therefore, without
loss of generality, we can restrict our analysis to families (m.)_. I in H*(M;S?) such
that m.(£,s) — mo(£)x(s) for some my € H(S,S?).

Step 1. I'-liminf inequality. To shorten notation, it is convenient to introduce
Ve = (h1,e07 (o) bg,aam(f),eflﬁt). Then, to every m. € H'(Q.,S?), u € H'(R?), we
associate the vector field m, := m; o 1), and the scalar potential u. := 1 o 1),.
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1 ne(t)

—d/e d/e

Fic. 1. The function n. used in the construction of the family of potentials.

We use the characterization of the magnetostatic sef-energy given in Theorem 2
(cf. (3.9)). For every 6 > 0, we denote by M; the product manifold Ms := S x Is.
We have, with the identification of Hg(£2s5) as a subspace of H!(R3),

1 N 1 -
|Vum = max (/ Vi -me — f/ |Vu|2>
25 N a€H! (R3) € 2 R3
— 1
> max - </ Vi-m, — f/ |Vﬂ|2>
GEH(Qs) € 2 Qs

= max (/Vuowe E\/QE—%

uGHl Q5

s3]

Veli o] ﬁ)

Ms e

(4.14) > / Vot - mor/ae — & / Veue” Vo
M 2 Ms e

for every u. = @ o 1. with @ € H}(Qs). Note that u. is well defined on Ms /.. Next,
we build the family of potentials (cf. Figure 1)

t if |t] < 1,
(415)  w(&) == en(t)(mo(€) (&), me(t) = L 1<t < /e,
0 if |t| > §/e.
Note that 7. (t) = 0 if [¢| > §/e > 1. Also we have
2
(4.16) ) =1 if |t <1,  0.(t)2= wiie)? if 1< |t < 6/

Hence, we have Veuc(€,t) = ene(t)Ve(mo(§) - n(§)) and dyuc(€,t) = enl(t)(mo(§) -
n(€)). Tt follows that ||V5u5||i/( — 0 as ¢ = 0. Therefore, from (4.14) and (4.15)
5/e

we obtain

(4.17)
1 1
liminf — [ |Vum.|? > / (mo -n)? — = lim sup/ (mo - n)2(n.(t))?dedt.
e=0 2¢ Jps M 2 50 M.

On the other hand, we have

(4.18) /M (mo(€) - )2 (. (£))2dgdt
§/e

- (1+6€€> /M(mo'")Qﬂ/M(mo-n)Q.
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Summarizing, we get

1 1
(4.19) hminf—/ |Vug. |2 > f/ (myg - n)? z/(m0~n)2.
2¢e R3 N 2 M S

e—0

Taking into account (4.13), we conclude that for any (mg)ccr, in H'(M;S?) such
that m.(£,s) — mo(£)x(s) for some mo € H'(S,S?), the following lower bound
holds:

1 1
(4.20) lim inf . (m.) > 7/ Vemo|® + f/ (myg - n)2.
0 M 2/ m

e— 2
Step 2. Recovery sequence. We now show that, for any mg € H'(S,S?), the
constant family of magnetizations given by m.(§,t) := m(£)x;(t) defines a recovery
sequence. It is clear that such a family of functions works for the exchange energies &,
due to (4.13). Therefore, we can focus on the magnetostatic self-energy. To shorten

notation, it is convenient to introduce the symbol curl .a* := curl. ¢a* +e7'n x 9;a*
with

2
(4.21) curlc ea* =B (6,) (1:(8) X 0y, e)a") -

i=1

By the expression of the magnetostatic self-energy in terms of the magnetic vector
potential given in Theorem 2 (cf. (3.16)), we have

1 1 — U
—/ Vum.|> = —  min / (|VEL*|2 + [m.|? — 2curl @* -mg)
2e Jgs N 2¢ grcH'(R3;R3) JR3

. 1 o 2
min - Vela™ o). e
pomin (z [, v ov Ve

+ ;/M(|m€|2 — 2curl .[@* o 9] ms)\/Q?>

N

N

1 * ]‘ *
(4.22) 5/ (|m5\2 — 2curl .a ~ms) \/g§+§/ IV.a** ae
M Ms,

€

for every a* = a* o ¢, with a* € H}(Q5,R3?). Next, we consider the family of
potentials

(4.23) aZ(&,t) == en:(t)(mo(§) x n(§))
with 7. given by (4.15). We get that
(4.24) Veal(&,t) =en-(t)Ve(mo(§) x n(€)), daZ( t) = enl(t)(mo(§) x n(§)).

Hence, we have ||[Vea?||3, — 0 ase — 0. Therefore
§/e

. 1 1
hmsup% /3 \Vumg|2 < 5/ |m0|2 —/ [n x (mo x n)] - mg
R M M

e—0

(4.25) #timsup (5 [ mo x ) e ).
2 M6/€

e—0
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Moreover, we have

€ 0
:(1+ )/ Imo x n|> == Img x n|*.
—&/Im M

Summarizing, we get

1 1 1
limsup—/ \Vum5|2 < 7/ |m|? —/ [n x (my x n)] ~m0+7/ |mo x n|?
e—0 2e R3 2 M M 2 M

(4.27) = ;/M(m0 -n)?.

Strong convergence of minimizers m. — myg in H(M;S?) follows from weak conver-
gence in H'(M;S?) and convergence of the norms

(4.28) /M D 10 me|* + /

1€Ny M
where the latter is a straightforward consequence of £.(m.) — & (m) for a minimizing
sequence (m.). This completes the proof. ]

|2 / Vemol?,
M
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