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Abstract

Post-translational modifications (PTMs) of proteins extensively
diversify the biological information flow from the genome to the
proteome and thus have profound pathophysiological implica-
tions. Precise dissection of the regulatory networks of PTMs
benefits from the ability to achieve conditional control through
external optogenetic or chemogenetic triggers. Genetic code
expansion provides a unique solution by allowing for site-
specific installation of functionally masked unnatural amino
acids (UAAs) into proteins, such as enzymes and enzyme
substrates, rendering them inert until rapid activation through
exposure to light or small molecules. Here, we summarize the
most recent advances harnessing this methodology to study
various forms of PTMs, as well as generalizable approaches to
externally control nodes-of-interest in PTM networks.
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Introduction

Post-translational modifications (PTMs) of proteins
greatly expand the biological information transferred
from the genome to the proteome by chemically trans-
forming peptides during and/or after protein translation.
The addition of various groups to the amino acid resi-
dues is crucial for diversifying the functions of nascent
proteins by regulating their enzymatic activity, substrate
or cofactor specificity, localization, and stability [1,2].

Important PTMs include phosphorylation, ubiquitina-
tion, methylation, lipidation, glycosylation, etc. Studies
of PTMs have profound pathophysiological implications
as they are involved in almost all cellular processes,
including proliferation, differentiation, cell death, and
immune response, and thus, dysregulation of PTMs is
related to the pathogenesis of many human diseases [3].
Most PTMs display spatiotemporal dynamics as pro-
teins can be transiently modified by writers and erasers
at varied time points and subcellular locations during
biological events. Further complexity is added through
combinatorial modifications to one protein in an
orchestrated manner to modulate the biological
outcome, or PTM ‘crosstalk’ [4,5]. Recent advances in
the study of PTMs have employed chemical biology
tools to address the aforementioned challenges [6].
Amongst these tools, unnatural amino acid mutagenesis
through genetic code expansion has provided a powerful
solution [7]. UAAs with a chemically masked function-
ality (for select examples important to the topic of this
review, see Table 1; for more comprehensive lists of
genetically encoded UAAs, see Refs. [8,9]) are site-
specifically inserted during protein biosynthesis in
response to an amber codon mutation in the mRNA.
This is enabled by the expression of engineered
tRNAcua/tRNA synthetase pairs that are orthogonal to
the host organism. While stop codon suppression is
widely adopted, other codons can also be reassigned,
such as rare sense codons and quadruplet codons
[10,11]. This strategy not only allows for site-specific
and genetically encoded introduction of PTMs [12—
16] or caged PTMs [17—20] but can also confer tem-
poral and spatial control to PTM writers and erasers
using light (optogenetic) or small molecule (chemo-
genetic) triggers of protein function [21—23]. In this
review, we summarize recent progress in using optical
and chemical triggers to control post-translational
modifications via UAA mutagenesis.

Caging the activity of PTM-writing enzymes

Protein phosphorylation is a key post-translational
modification that is crucial for signal transduction net-
works composed of interconnected signaling pathways
that cells use to make decisions in response to external
and internal stimuli [37]. Classically, signal transduction
from receptors at the cell surface to transcription factors

www.sciencedirect.com

Current Opinion in Chemical Biology 2021, 63:123—-131


mailto:deiters@pitt.edu
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.cbpa.2021.02.016
https://doi.org/10.1016/j.cbpa.2021.02.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cbpa.2021.02.016&domain=pdf
www.sciencedirect.com/science/journal/13675931
www.sciencedirect.com/science/journal/13675931

124 Chemical genetics and epigenetics

Table 1

Caged amino acids that have been genetically encoded in
mammalian cells. For caging groups, only the general core
structures are described, while derivatives are being included in
the references.

amino acid caging trigger references
group

lysine nitrobenzyl 365 nm light [24,25]

coumarinyl 405 and 760 nm [26]
light

azidobenzyl phosphine [27,28]
azidobenzyl trans-cyclooctene  [29]
trans-cyclooctenyl tetrazine [30]
propargyl Pd(Il) complex [31]

tyrosine nitrobenzyl 365 nm light [32,15]
allenyl Pd(ll) complex [33]

cysteine nitrobenzyl 365 nm light [34—36]

homocysteine nitrobenzyl 365 nm light [35]

in the cell nucleus is mediated by protein kinases that
catalyze the transfer of yy-phosphate groups of ATP to
the designated residue(s) on substrate proteins, which
can be further passed onto downstream substrates in the
form of a cascade of phosphorylation events. In contrast,
protein phosphatases catalyze the reverse process by
removing a phosphate modification from targeted resi-
dues. These enzymes work in collaboration to regulate
cellular signaling pathways, notably the mitogen-
activated protein kinase (MAPK) pathways, including
extracellular signal-regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), and p38 pathways in mammals
[38,39]. In each of these cascades, three kinases are
sequentially activated: a serine/threonine kinase classi-
fied as a MAPK kinase kinase (MAPKKK or M3K)
phosphorylates and activates a dual-specificity MAPK
kinase (MAPKK or M2K), which, in turn, phosphory-
lates and activates the MAPK. Of these, the ERK
cascade (Raf/MEK/ERK) controls cell proliferation in
response to growth factor stimulation, and the JNK
(MKK4/MKK?7/JNK) and p38 (MKK3/MKK6/p38) cas-
cades are considered to respond with apoptosis to
cellular stress and inflammatory signals [40,41].

In recent years, a universal strategy has been developed
for the conditional control of enzymatic activity,
including kinases of the MAPK family: a catalytically
critical residue in the active site is substituted by a
‘caged’ UAA, which masks catalytic activity until light-
induced or small molecule-induced restoration of the
native residue and thus protein function is achieved
(Figure 1a). This provides rapid, temporal control over
PTM writing and erasing, thereby eliminating compen-
satory effects that are elicited by slow, genetic knock-
down or knock-in approaches. Utilizing this approach,
the Haugh and Deiters labs used a photocaged lysine
(PCK) [24], which undergoes photolysis upon 365 nm
light irradiation to restore a native lysine (Figure 1b), to

achieve optical control of MKK6 activity and to interro-
gate the crosstalk between the MKK6 pathway and the
ERK pathway [42]. Not only did the Haugh lab define
MKK®6 as a new pleiotropic signal transducer that pro-
motes both proapoptotic and antiproliferative signaling,
but they also discovered that light-activated MKK6
downregulates the ERK pathway in the presence of p38
inhibitor (Figure 1c), which upended the conventional
belief that the MKK6-ERK crosstalk is p38-dependent
[43]. These results highlight the advantages of an opti-
cally triggered MKKG6 for the elucidation of signaling
network topologies, such as crosstalk between the p38
and ERK cascades, without network adaptation and
premature triggering of cell apoptosis.

Similar to kinases, the catalytic residue of phospho-lyases
or phosphatases can be caged to conditionally trigger
dephosphorylation (Figure 1d). The Chen group achieved
irreversible dephosphorylation of p38 (phospho-pT180/
Y182) and ERK (phospho-T202/Y204) MAPKSs using a
phospho-lyase, OspE from Shigella spp. [44]. A photocaged
o-nitrobenzyl-oxycarbonyl-N¢-L-lysine (ONBK) [25] was
incorporated at the catalytic lysine K134 and is decaged by
365 nm light to convert phosphoserine or phospho-
threonine of p-p38 and p-ERK to [-methyldehy-
droalanine, rendering the sites incapable of
rephosphorylation [45]. Permanently suppressed p38/
ERK activity led to an attenuated immune response and
reduced expression of cytokine interleukin-8 (IL-8)
showcasing light-induced modulation of MAPK activity in
living cells (data not shown). Additionally, Chen intro-
duced the 7rans-cyclooctenyl lysine TCOK into the same
site for small molecule-triggered decaging through a
tetrazine ligation followed by elimination (Figure 1le).
Chemical rescue of nucleus-localized OspF function by
Me,-T'z also conferred significantly reduced secretion of
IL-8 duringan immune response, providing precise tuning
of the timing and strength of interleukin secretion in T
cells (Figure 1f). Although light-activated and small
molecule-activated phospho-lyase can be used to condi-
tionally regulate dephosphorylation of MAPK, it lacks
substrate specificity.

A recent development by the Deiters group successfully
addressed this issue by introducing the first light-
activated mammalian protein phosphatase by photo-
caging MAPK phosphatase 3 (MKP3), which has high
specificity for erasing ERK phosphorylation. Following
the strategy described in Figure 1d, the catalytic
cysteine was replaced with a caged cysteine [46], NVC,
which would mask the nucleophilicity of nascent C293
until UV irradiation removes the caging group. Upon
light activation of MKP3 C293NVC, ERK cascade ac-
tivity was suppressed even in the presence of EGF
(estrogen growth factor) stimulation (data not shown).

Apart from the most recent progress mentioned above,
the Chen lab achieved chemogenetic control of Src
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Control of enzymes adding protein post-translational modifications by caging catalytic residues. The catalytic residue is indicated in teal, the caging group
is blue, and the transferred phosphate PTM is red. (a) lllustrating the general strategy for caging a conserved, catalytic lysine residue within kinases. (b)
Irradiation of the photocaged lysine PCK removes the caging group and restores a native lysine residue. (¢) NIH3T3 cells expressing an ERK KTR
(kinase translocation reporter) and a caged MKK6 were preincubated with FBS (fetal bovine serum), then irradiated, and treated with a p38 inhibitor
45 min later. ERK activation is represented by the translocation of ERK KTR from the nucleus to the cytoplasm, despite p38 inhibition. Adapted from
Ref. [42] with permission. (d) General strategy for caging the catalytic residue of a phospho-lyase or a phosphatase. (e) Addition of a tetrazine (Mex-Tz,
3,6-dimethyl-1,2,4,5-tetrazine) removes the TCO caging group and restores a native lysine residue, thereby restoring enzymatic function. (f) Signaling in
Jurkat cells expressing OspF K134TCOK was activated by PMA (phorbol-12-myristate-13-acetate) and ionomycin, followed by Me,-Tz treatment after
10 min (red) or 3 h (purple) for nucleus-localized caged OspF (nu-OspF°) activation. Adapted from Ref. [44] with permission.
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(sarcoma kinase), FAK (focal adhesion Kkinase), and
MEKT1 via tetrazine-induced TCO cleavage in cells and
animals [47]. The same decaging strategy was then used
by Chen to isoform-specifically activate MEK1/2 mu-
tants orthogonal to endogenous MEK1/2, which un-
veiled that MEK1 induces ERK phosphorylation more
strongly than MEK2 and led to the discovery of four
MEKI1-specific inhibitors [48]. The Chin lab introduced
an optically controlled LLCK (lymphocyte-specific pro-
tein tyrosine kinase) to investigate its role in T-cell
antigen receptor signaling, revealing that CD4/8 uses a
similar mechanism to enhance LCK recruitment for
ZAP70 membrane translocation [49]. In the same year,
the Deiters lab reported temporal control of MEK ac-
tivity in zebrafish embryos using an optically active
lysine, enabling studies of its role during embryonic
development and RASopathy birth defects [50].
Photocaging of enzymatic activity, combined with
constitutively active enzyme mutants, allows for direct
activation and investigation of a particular node-of-
interest or a particular subnetwork by decoupling it
from upstream regulators.

Caging the accessibility of protein
substrates

Another approach to control phosphatase activity for the
control of target protein phosphorylation was also
developed in the previously mentioned report by Deiters
[51] (Figure 2a). Installation of a sterically hindered,
charge-neutral photocaged hydroxycoumarin lysine
(HCK) in the place of an arginine residue (R65) at the
phosphatase—substrate interface breaks the electrostatic
interaction between MKP3 R65 and ERK2 D319, and
thus, blocks ERK dephosphorylation. Optical triggering
converts HCK to a positively charged lysine residue
(Figure 2b), restores the electrostatic interaction, and
initiates dephosphorylation of ERK by activated MKP3
(Figure 2¢). This led to an optically triggered phospha-
tase with highly tunable activity, based on the duration of
light exposure, and the approach is poised to be appli-
cable to many of the 200 protein phosphatases.
Compared to nitrobenzyl-caging groups in PCK, ONBK,
and NVC, the hydroxycoumarin-caging group in HCK
displays higher photosensitivity and can be photolyzed
through irradiation with blue light [26].

The Chen lab reported a generalizable pipeline for
creating caged enzymes aided by 7 silico screening using
a set of predefined criteria [52]. As shown in Figure 2d, a
photocaged tyrosine (ONBY) is placed in close prox-
imity to the catalytic site of an enzyme, blocking the
accessibility to the cognate substrate until light irradi-
ation relieves said hindrance and restores catalytic ac-
tivity (Figure Ze), provided that neither ONBY nor the
nascent tyrosine after decaging disturbs the native
conformation of the enzyme. Chen and collaborators
were able to use this universal strategy to photocage

MEKI1. In Jurkat cells, MEK1 N2210ONBY blocked
PMA-stimulated IL-8 secretion until light restored
MEKI1 kinase activity and triggered an immune
response. Moreover, the proximal tyrosine mutation
conferred resistance to a MEK1/2 inhibitor (PD318088)
that targets endogenous MEK1 but not MEK1 N221Y,
which could be leveraged to build tailor-made signaling
cascades that are not interfered with by their endoge-
nous counterparts (Figure 2f). The general applicability
of this approach was demonstrated by caging the small
GTPase KRAS through a Y230ONBY substitution.

Though the two aforementioned tactics both control
writing and erasing of phosphate PTMs by regulating
substrate accessibility, it should be noted that disrup-
tion of protein—protein interaction (PPI) interfaces
with UAAs can be rationally designed based on struc-
tural information or through scanning of putative in-
terfaces with photocaged amino acids, followed by
activity readouts before and after optical stimulation.

Caging amino acid residues that are PTM
targets

Apart from phosphorylation, control of other types of
PTMs, including protein ubiquitination and SUMOy-
lation (SUMO, small ubiquitin-like modifier), have also
been achieved in the past few years through genetic
code expansion. Ubiquitination and SUMOylation are
two important post-translational modifications on lysine
residues, regulating signal transduction, protein traf-
ficking, protein stability, and transcription via protein
fate determination [53]. Their dysregulation can lead to
aberrant protein degradation, and in turn, contribute to
disease [54]. Crosstalk between these two reversible
modifications further underlines the demand for the
optogenetic or chemogenetic triggering of ubiquitina-
tion and SUMOylation [55,52].

Towards this goal, the Deiters group [27] and the Lang
group [56] used a Staudinger reduction to unveil a
nucleophilic amino group for site-specific post-trans-
lational modification by ubiquitin (Ub) or SUMO
(Figure 3a). Building onto an earlier report [28], the
Deiters lab developed a second-generation protected
lysine PABK, which shows higher incorporation efficiency
and superior decaging kinetics when exposed to the
phosphine 2DPBM (Figure 3b). To control SUMOylation
with small molecule triggers, a naturally SUMOylated
lysine residue on Ran GTPase Activating Protein 1
(RanGAP1), K524, was replaced with PABK in NIH3T3
cells. Upon 2DPBM-triggered reduction, RanGAP1 was
rapidly SUMOylated in the cytosol and translocated to
the nuclear pore complex, similar to wild-type RanGAP1
and contrary to the SUMOylation-resistant K524R
mutant (Figure 3c). This approach is expected to be
broadly applicable to chemically control modification of
specific lysines with SUMO and other P TMs.
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Control of protein post-translational modifications by regulating access of the substrate to the caged PTM-writing enzyme. (a) Strategy utilized for
regulating a phosphatase—substrate interface. The catalytic residue is shown in teal, the caging group is blue, the residue essential to the protein—protein
interaction is marked in yellow, and the phosphate modification is red. (b) Irradiation of the caged lysine HCK removes the caging group and restores a
native lysine residue, thereby restoring the phosphatase—substrate interface. (¢) HEK293T cells expressing an ERK KTR mCherry and the caged MKP3
phosphatase were pretreated with epidermal growth factor and subsequently irradiated. ERK activation leads to translocation of the reporter from the
nucleus to the cytoplasm. Adapted from Ref. [51] with permission. (d) The proximity caging approach introduces a caged residue, marked in yellow, close
to the catalytic center of the enzyme. (e) Irradiation of ONBY removes the caging group and restores a tyrosine residue that does not perturb enzyme
function. (f) Jurkat cells expressing MEK1 N221ONBY were incubated with or without PD318088. Secretion of IL-8 was only detected with MEK-WT
(without PD318088) and light-activated MEK1 N221ONBY (with and without PD318088). Adapted from Ref. [52] with permission.
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Figure 3
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Control of post-translational modification by caging of amino acid residues receiving the PTM. (a) General strategy for decaging residues before PTM. The
caging group is shown in blue, the modification site/residue is grey, and the PTM is marked in red. (b) Addition of 2DPBM (2-(diphenylphosphino)
benzamide) removes the azido-caging group and restores a native lysine residue, which is then SUMOylated. (¢) NIH3T3 cells expressing RanGAP-
K524-RFP mutants show that the K524PABK mutant remains cytosolic, but translocates to the nuclear membrane after treatment with 2DPBM and

subsequent SUMOylation. Adapted from Ref. [27] with permission. (d) Addition of 2DPBA (2-

(diphenylphosphino)benzoic acid) converts an azide into an

a-amino group in the glycylglycine motif of GGK, allowing for sortase-mediated ubiquitination.

Aiming to site-specifically ubiquitylate and SUMOylate
any target protein of interest in an inducible fashion, the
Lang lab uniquely combined sortase-mediated trans-
peptidation and genetic code expansion. Here, sortase A
(SrtA) forms a Ub-SrtA intermediate with Ub-LPLTGG,
which is then site-specifically delivered to a lysine res-
idue on the protein of interest (POI). The transfer is
controlled through phosphine (2DPBA) reduction of an
azido group on the genetically encoded AzGGK tripep-
tide UAA to the corresponding, nucleophilic amino group
(Figure 3d). The LPLT'GG linker, though different from
the natural linker in ubiquitination, retains recognition
by ubiquitin-binding domains. This method extends

conditional control of ubiquitination and SUMOylation
beyond naturally ubiquitinated/SUMOylated residues,
which has been challenging with present chemical
methods in native environments [57]. Sortylation is
easily implementable and is poised to enable dissection
of Ub/SUMO-regulated cellular signaling networks by
obviating the requirement to activate upstream signaling
components.

Summary and outlook

In the past few years, significant progress has been
made in the field of optogenetic and chemogenetic
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control of protein post-translational modifications by
applying unnatural amino acid mutagenesis in cells
with an expanded genetic code. These efforts were
aimed at conditional control of PTMs in a spatiotem-
poral and site-specific manner, paving the way for a
better understanding of transient, dynamic PTM
events [58,59], dissecting their roles in spatially
distinct cells and tissues during development [60,61],
and unveiling previously obscured biological mecha-
nisms of enzyme isoforms [62,63]. Optical and chemi-
cal triggers have been exploited in these studies,
providing noninvasive, dose-dependent, and temporally
precise control. While light uniquely enjoys spatial
specificity and rapid activation, small molecules have
advantages in ease of application without the need for
special equipment and in better penetration into deep
and nontransparent tissues. Several generally applicable
methodologies have been established and validated,
including caging enzymatic activity, controlling sub-
strate accessibility, and masking the amino acid residue
that receives the enzyme-assisted post-translational
modification. Several labs have employed conditional
control of phosphorylation to interrogate physiological
processes, to unveil previously unknown crosstalk
mechanisms [42], characterize time windows of MEK/
ERK function in zebrafish development [50], and
identify T cell receptor kinases interactions [49].
Overall, hypothesis-driven interrogation of PTM func-
tion will benefit from further technology development
of spatiotemporal control, as well as an expanded panel
of chemically functionalized amino acids beyond the
most frequently adopted lysine and tyrosine
derivatives.

Given the potential of controlling PTMs through un-
natural amino acid mutagenesis, we envision that the
combination of conditional trigger and multiomics tech-
nologies will provide unique opportunities to interrogate
PTM function at the systems level. Moreover, several
PTMs have not been targeted with the approaches
presented here, including lipidation, hydroxylation,
glycosylation, and nitrosylation. UAA-enabled conditional
control of PTM erasers, other than phosphatases, such as
demethylases, deacylases, and deubiquitinating enzymes
has also not been explored. The field of nucleic acid-
modifying enzymes is also underdeveloped as it comes
to UAA mutagenesis, with the exception of recent re-
ports of light-triggered DNA 5'-methylcytosine oxidation
[64] and RNA NV’-methyladenosine demethylation [52].
In summary, UAA mutagenesis has a bright future in
exploring PTM biology and other epigenetic
mechanisms.
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